Science.gov

Sample records for absorption radiometer car

  1. The New Cloud Absorption Radiometer (CAR) Software: One Model for NASA Remote Sensing Virtual Instruments

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rapchun, David A.; Jones, Hollis H.

    2001-01-01

    The Cloud Absorption Radiometer (CAR) instrument has been the most frequently used airborne instrument built in-house at NASA Goddard Space Flight Center, having flown scientific research missions on-board various aircraft to many locations in the United States, Azores, Brazil, and Kuwait since 1983. The CAR instrument is capable of measuring scattered light by clouds in fourteen spectral bands in UV, visible and near-infrared region. This document describes the control, data acquisition, display, and file storage software for the new version of CAR. This software completely replaces the prior CAR Data System and Control Panel with a compact and robust virtual instrument computer interface. Additionally, the instrument is now usable for the first time for taking data in an off-aircraft mode. The new instrument is controlled via a LabVIEW v5. 1.1-developed software interface that utilizes, (1) serial port writes to write commands to the controller module of the instrument, and (2) serial port reads to acquire data from the controller module of the instrument. Step-by-step operational procedures are provided in this document. A suite of other software programs has been developed to complement the actual CAR virtual instrument. These programs include: (1) a simulator mode that allows pretesting of new features that might be added in the future, as well as demonstrations to CAR customers, and development at times when the instrument/hardware is off-location, and (2) a post-experiment data viewer that can be used to view all segments of individual data cycles and to locate positions where 'start' and stop' byte sequences were incorrectly formulated by the instrument controller. The CAR software described here is expected to be the basis for CAR operation for many missions and many years to come.

  2. The Cloud Absorption Radiometer HDF Data User's Guide

    NASA Technical Reports Server (NTRS)

    Li, Jason Y.; Arnold, G. Thomas; Meyer, Howard G.; Tsay, Si-Chee; King, Michael D.

    1997-01-01

    The purpose of this document is to describe the Cloud Absorption Radiometer (CAR) Instrument, methods used in the CAR Hierarchical Data Format (HDF) data processing, the structure and format of the CAR HDF data files, and methods for accessing the data. Examples of CAR applications and their results are also presented. The CAR instrument is a multiwavelength scanning radiometer that measures the angular distributions of scattered radiation.

  3. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  4. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  5. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  6. Jam-absorption driving with a car-following model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yohei; Nishi, Ryosuke; Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-09-01

    Jam-absorption driving (JAD) refers to the action performed by a single car to dynamically change its headway to remove a traffic jam. Because of its irregular motion, a car performing JAD perturbs other cars following it, and these perturbations may grow to become the so-called secondary traffic jams. A basic theory for JAD (Nishi et al. 2013) does not consider accelerations of cars or the stability of traffic flow. In this paper, by introducing car-following behaviors, we implement these elements in JAD. Numerous previous studies on the instability of traffic flow showed that even in a region whose density is below a critical density, perturbation may grow if its initial magnitude is large. According to these previous studies, we expect that the perturbations caused by JAD, if they are sufficiently small, do not grow to become secondary traffic jams. Using a microscopic car-following model, we numerically confirmed that the stability of a flow obeying the model depends on the magnitude of JAD perturbations. On the basis of this knowledge, numerical results indicate that parameter regions exist where JAD allows traffic jams to be removed without causing secondary traffic jams. Moreover, JAD is robust against a parameter of acceleration in the model, as well as the choice of car-following models.

  7. High Velocity Absorption during Eta Car B's Periastron Passage

    NASA Technical Reports Server (NTRS)

    Nielsen, Krister E.; Groh, J. H.; Hillier, J.; Gull, Theodore R.; Owocki, S. P.; Okazaki, A. T.; Damineli, A.; Teodoro, M.; Weigelt, G.; Hartman, H.

    2010-01-01

    Eta Car is one of the most luminous massive stars in the Galaxy, with repeated eruptions with a 5.5 year periodicity. These events are caused by the periastron passage of a massive companion in an eccentric orbit. We report the VLT/CRIRES detection of a strong high-velocity, (<1900 km/s) , broad absorption wing in He I at 10833 A during the 2009.0 periastron passage. Previous observations during the 2003.5 event have shown evidence of such high-velocity absorption in the He I 10833 transition, allowing us to conclude that the high-velocity gas is crossing the line-of-sight toward Eta Car over a time period of approximately 2 months. Our analysis of HST/STlS archival data with observations of high velocity absorption in the ultraviolet Si IV and C IV resonance lines, confirm the presence of a high-velocity material during the spectroscopic low state. The observations provide direct detection of high-velocity material flowing from the wind-wind collision zone around the binary system, and we discuss the implications of the presence of high-velocity gas in Eta Car during periastron

  8. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  9. Targeting Inaccurate Atomic Data in the Eta Car Ejecta Absorption

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Gull, T. R.; Blackwell-Whitehead, R.; Nilsson, H.

    2006-01-01

    The input from the laboratory spectroscopist community has on many occasions helped the analysis of the eta Car spectrum. Our analysis has targeted spectra where improved wavelengths and oscillator strengths are needed. We will demonstrate how experimentally derived atomic data have improved our spectral analysis, and illuminate where more work still is needed.

  10. PHOCUS radiometer

    NASA Astrophysics Data System (ADS)

    Nyström, O.; Murtagh, D.; Belitsky, V.

    2012-06-01

    PHOCUS - Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50-110 km. This paper describes the SondRad instrument in the PHOCUS payload, a radiometer comprising two frequency channels (183 GHz and 557 GHz) aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining) clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD) at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend, whereas GARD was responsible for the radiometer optics and calibration systems. The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer, while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and Fast Fourier Transform Spectrometers (FFTS) backends with 67 kHz resolution. The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a continuous wave CW pilot signal calibrating the entire receiving chain, while the intermediate frequency chain (the IF-chain) of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler. The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable resolution over the spectrum, the data set was

  11. PHOCUS radiometer

    NASA Astrophysics Data System (ADS)

    Nyström, O.; Murtagh, D.; Belitsky, V.

    2012-01-01

    PHOCUS - Particles, Hydrogen and Oxygen Chemistry in the Upper Summer Mesosphere is a Swedish sounding rocket experiment, launched in July 2011, with the main goal of investigating the upper atmosphere in the altitude range 50-110 km. This paper describes the SondRad instrument in the PHOCUS payload, the radiometer comprising two frequency channels, 183 GHz and 557 GHz, aimed at exploring the water vapour concentration distribution in connection with the appearance of noctilucent (night shining) clouds. The design of the radiometer system has been done in a collaboration between Omnisys Instruments AB and the Group for Advanced Receiver Development (GARD) at Chalmers University of Technology where Omnisys was responsible for the overall design, implementation, and verification of the radiometers and backend whereas GARD was responsible for the radiometer optics and calibration systems. The SondRad instrument covers the water absorption lines at 183 GHz and 557 GHz. The 183 GHz channel is a side-looking radiometer while the 557 GHz radiometer is placed along the rocket axis looking in the forward direction. Both channels employ sub-harmonically pumped Schottky mixers and FFT spectrometer backends with 67 kHz resolution. The radiometers include novel calibration systems specifically adjusted for use with each frequency channel. The 183 GHz channel employs a CW-pilot signal calibrating the entire receiving chain while the IF-chain of the 557 GHz channel is calibrated by injecting a signal from a reference noise source through a directional coupler. The instrument collected complete spectra for both the 183 GHz and the 557 GHz with 300 Hz data rate for the 183 GHz channel and 10 Hz data rate for the 557 GHz channel for about 60 s reaching the apogee of the flight trajectory and 100 s after that. With lossless data compression using variable resolution over the spectrum, the data set was reduced to 2 × 12 MByte. The first results indicate that the instrument has

  12. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  13. Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins

    NASA Astrophysics Data System (ADS)

    Kubicki, Jan; Młyńczak, Jaroslaw; Kopczyński, Krzysztof

    2013-01-01

    Some aspects of stand-off detection of alcohol in simulated car cabins are described. The proposed method is the well-known "difference absorption" method applied to the differential absorption lidar system, modified by taking advantage of a third laser beam. The modification was motivated by the familiar physical phenomena such as dispersion and different absorption coefficients in window panes for applied laser wavelengths. The mathematical expressions for the method were derived and confirmed by experiments. The presented investigations indicate that the method can be successfully applied to stand-off detection of ethyl alcohol in moving cars.

  14. Cars, Cars, Cars

    ERIC Educational Resources Information Center

    McIntosh, Phyllis

    2013-01-01

    Cars are the focus of this feature article, which explores such topics as the history of cars in the United States, the national highway system, safety and pollution concerns, mobility and freedom for women, classic car shows, and the road trip in American literature and film. Also included are links to the websites of Automobile in American Life…

  15. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  16. Water Vapor Radiometer-Global Positioning System Comparison Measurements and Calibration of the 20 to 32 Gigahertz Tropospheric Water Vapor Absorption Model

    NASA Astrophysics Data System (ADS)

    Keihm, S. J.; Bar-Sever, Y.; Liljegren, J.

    2000-10-01

    Collocated measurements of opacity (from water vapor radiometer (WVR) brightness temperatures) and wet path delay (from ground-based tracking of Global Positions System (GPS) satellites) are used to constrain the model of atmospheric water vapor absorption in the 20 to 32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately 5 months of data were obtained from two experiment sites. At the Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma, three independent WVRs provided near-continuous opacity measurements over the interval from July through September 1998. At NASA's Goldstone tracking station in the California desert, two WVRs obtained opacity data over the September through October 1997 interval. At both sites, a GPS receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of three candidate absorption models referenced in the recent literature. With one exception, all three models provide agreement within approximately 5 percent of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2 to 3 percent level. This accuracy is sufficient to meet the requirements of the tropospheric calibration system now being deployed at Goldstone to support the Cassini Gravitational Wave Experiment.

  17. The Radiometer

    ERIC Educational Resources Information Center

    Stern, David P.

    1970-01-01

    The often observed and misunderstood phenomenon of movement of black and white vanes in toy radiometers under illumination is discussed in a generalized non-mathematical manner. Effects of light pressure, low gas density, friction, heat, and motion are illustrated. (JM)

  18. Broadband radiometer

    DOEpatents

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  19. Broadband radiometer

    DOEpatents

    Cannon, Theodore W.

    1994-01-01

    A broadband radiometer including (a) an optical integrating sphere having a enerally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample.

  20. Steady state thermal radiometers

    NASA Technical Reports Server (NTRS)

    Loose, J. D. (Inventor)

    1974-01-01

    A radiometer is described operating in a vacuum under steady state conditions. The front element is an aluminum sheet painted on the outer side with black or other absorptive material of selected characteristics. A thermocouple is bonded to the inner side of the aluminum sheet. That is backed by highly insulative layers of glass fiber and crinkled, aluminized Mylar polyester. Those layers are backed with a sturdy, polyester sheet, and the entire lamination is laced together by nylon cords. The device is highly reliable in that it does not drift out of calibration, and is significantly inexpensive.

  1. Development of UHF radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, B. M.; Blume, H. J. C.; Cross, A. E.

    1985-01-01

    A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer.

  2. Modelling the Emission And/or Absorption Features in the High Resolution Spectra of the Southern Binary System: HH Car

    NASA Astrophysics Data System (ADS)

    Koseoglu, Dogan; Bakış, Hicran

    2016-07-01

    High-resolution spectra (R=48000) of the southern close binary system, HH Car, has been analyzed with modern analysis techniques. Precise absolute parameters were derived from the simultaneous solution of the radial velocity, produced in this study and the light curves, published. According to the results of these analyses, the primary component is an O9 type main sequence star while the secondary component is a giant/subgiant star with a spectral type of B0. Hα emissions can be seen explicitly in the spectra of HH Car. These features were modelled using the absolute parameters of the components. Since components of HH Car are massive early-type stars, mass loss through stellar winds can be expected. This study revealed that the components of HH Car have stellar winds and the secondary component loses mass to the primary. Stellar winds and the gas stream between the components were modelled as a hot shell around the system. It is determined that the interaction between the winds and the gas stream leads to formation of a high temperature impact region.

  3. The 2011 Eco3D Flight Campaign: Vegetation Structure and Biomass Estimation from Simultaneous SAR, Lidar and Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola; Rincon, Rafael; Harding, David; Gatebe, Charles; Ranson, Kenneth Jon; Sun, Guoqing; Dabney, Phillip; Roman, Miguel

    2012-01-01

    The Eco3D campaign was conducted in the Summer of 2011. As part of the campaign three unique and innovative NASA Goddard Space Flight Center airborne sensors were flown simultaneously: The Digital Beamforming Synthetic Aperture Radar (DBSAR), the Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) and the Cloud Absorption Radiometer (CAR). The campaign covered sites from Quebec to Southern Florida and thereby acquired data over forests ranging from Boreal to tropical wetlands. This paper describes the instruments and sites covered and presents the first images resulting from the campaign.

  4. High solar intensity radiometer

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Spisz, E. W.

    1972-01-01

    Silicon solar cells are used to measure visible radiant energy and radiation intensities to 20 solar constants. Future investigations are planned for up to 100 solar constants. Radiometer is small, rugged, accurate and inexpensive.

  5. Car Art.

    ERIC Educational Resources Information Center

    Meilach, Dona Z.

    2002-01-01

    Discusses car art and its appeal to boys and girls. Describes the popularity of customizing cars, focusing on this as a future career for students. Includes a list of project ideas that focuses on car art. (CMK)

  6. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.

  7. Aquarius Radiometer Status

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Piepmeier, J. R.; Dinnat, E. P.; de Matthaeis, P.; Utku, C.; Abraham, S.; Lagerloef, G.S.E.; Meissner, T.; Wentz, F.

    2014-01-01

    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results.

  8. Stable radiometal antibody immunoconjugates

    DOEpatents

    Mease, Ronnie C.; Srivastava, Suresh C.; Gestin, Jean-Francois

    1994-01-01

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials.

  9. Stable radiometal antibody immunoconjugates

    DOEpatents

    Mease, R.C.; Srivastava, S.C.; Gestin, J.F.

    1994-08-02

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials. No Drawings

  10. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  11. Millimeter radiometer system technology

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Swanson, P. N.

    1989-01-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  12. Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary; Black, Peter G.

    2014-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.

  13. Portable Diagnostic Radiometer.

    DTIC Science & Technology

    1985-07-01

    noise. The single-throw-double-pole switch is usually realized with an electronically- switched , latching ferrite circulator; however, at these...R2. Dl, D2 and R2 are then displayed on the liquid crystal display. The Q lines are next set to switch the latching switches into the 800 MHz...operation is basically as follows: On start- up, the CPU resets the Q line (P1-6) which sets the latching switches (see Fig. 18) to the 4 GHz radiometer

  14. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  15. Miniature Extreme Ultraviolet Solar Radiometers

    NASA Astrophysics Data System (ADS)

    McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.

    2015-12-01

    Free-standing zone plates for use in EUV solar radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total solar irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their small size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for small CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.

  16. Radiant Temperature Nulling Radiometer

    NASA Technical Reports Server (NTRS)

    Ryan, Robert (Inventor)

    2003-01-01

    A self-calibrating nulling radiometer for non-contact temperature measurement of an object, such as a body of water, employs a black body source as a temperature reference, an optomechanical mechanism, e.g., a chopper, to switch back and forth between measuring the temperature of the black body source and that of a test source, and an infrared detection technique. The radiometer functions by measuring radiance of both the test and the reference black body sources; adjusting the temperature of the reference black body so that its radiance is equivalent to the test source; and, measuring the temperature of the reference black body at this point using a precision contact-type temperature sensor, to determine the radiative temperature of the test source. The radiation from both sources is detected by an infrared detector that converts the detected radiation to an electrical signal that is fed with a chopper reference signal to an error signal generator, such as a synchronous detector, that creates a precision rectified signal that is approximately proportional to the difference between the temperature of the reference black body and that of the test infrared source. This error signal is then used in a feedback loop to adjust the reference black body temperature until it equals that of the test source, at which point the error signal is nulled to zero. The chopper mechanism operates at one or more Hertz allowing minimization of l/f noise. It also provides pure chopping between the black body and the test source and allows continuous measurements.

  17. Thermal analysis of radiometer containers for the 122m hoop column antenna concept

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.

    1986-01-01

    A thermal analysis was conducted for the 122 Meter Hoop Column Antenna (HCA) Radiometer electronic package containers. The HCA radiometer containers were modeled using the computer aided graphics program, ANVIL 4000, and thermally simulated using two thermal programs, TRASYS and MITAS. The results of the analysis provided relationships between the absorptance-emittance ratio and the average surface temperature of the orbiting radiometer containers. These relationships can be used to specify the surface properties, absorptance and reflectance, of the radiometer containers. This is an initial effort in determining the passive thermal protection needs for the 122 m HCA radiometer containers. Several recommendations are provided which expand this effort so specific passive and active thermal protection systems can be defined and designed.

  18. Multiband radiometer for field research

    NASA Technical Reports Server (NTRS)

    Robinson, B. F.; Bauer, M. E.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.

    1979-01-01

    A multiband radiometer for field research with 8 bands between 0.4 and 12.5 micrometers is described. The data acquisition system will record the results from the radiometer, a precision radiation thermometer, and ancillary sources. The radiometer and data handling systems will be adaptable to helicopter, truck, to tripod platforms; the system will also be suitable for portable hand-held operation. The general characteristics of this system are that it will be (1) inexpensive to acquire, maintain, and operate, (2) simple to calibrate, (3) complete with data handling hardware and software, and (4) well-documented for use by researchers.

  19. Radiometers Optimize Local Weather Prediction

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  20. Mineral discrimination using a portable ratio-determining radiometer.

    USGS Publications Warehouse

    Whitney, G.; Abrams, M.J.; Goetz, A.F.H.

    1983-01-01

    A portable ratio-determining radiometer has been tested in the laboratory to evaluate the use of narrow band filters for separating geologically important minerals. The instrument has 10 bands in the visible and near-infrared portion of the spectrum (0.5-2.4mm), positioned to sample spectral regions having absorption bands characteristic of minerals in this wavelength region. Measurements and statistical analyses were performed on 66 samples, which were characterized by microscopic and X-ray diffraction analyses. Comparison with high-resolution laboratory spectral reflectance curves indicated that the radiometer's raw values faithfully reproduced the shapes of the spectra. -from Authors

  1. Specular UV reflectance measurements for cavity radiometer design.

    PubMed

    Booker, R L

    1982-01-01

    Specular reflectance measurements were made on a black paint used in a solar constant monitoring cavity radiometer. Interference filters peaking at 180, 200, and 220 nm were used in conjunction with a deuterium lamp source and a silicon photodiode detector. Results showed that the black paint was specular for light incident 60 degrees from normal and it reflected ~8% of the light at these wavelengths. We conclude that the high absorptance of the radiometer calculated for visible wavelengths should remain valid down to ~190-nm UV wavelengths.

  2. Car Sickness

    MedlinePlus

    ... or Animals Genitals and Urinary Tract Glands & Growth Head Neck & Nervous System Heart Infections Learning Disabilities Obesity Orthopedic ... Vaccine Preventable Diseases Healthy Children > Health Issues > Conditions > Head Neck & Nervous System > Car Sickness Health Issues Listen Español ...

  3. Flying Cars

    NASA Technical Reports Server (NTRS)

    Crow, Steven

    1996-01-01

    Flying cars have nearly mythical appeal to nonpilots, a group that includes almost the whole human race. The appeal resides in the perceived utility of flying cars, vehicles that offer portal-to-portal transportation, yet break the bonds of road and traffic and travel freely through the sky at the drivers will. Part of the appeal is an assumption that flying cars can be as easy to fly as to drive. Flying cars have been part of the dream of aviation since the dawn of powered flight. Glenn Curtiss built, displayed, and maybe even flew a flying car in 1917, the Curtiss Autoplane. Many roadable airplanes were built in the 1930's, like the Waterman Arrowbile and the Fulton Airphibian. Two flying cars came close to production in the early 1950's. Ted Hall built a series of flying cars culminating in the Convaircar, sponsored by Consolidated Vultee, General Motors, and Hertz. Molt Taylor built and certified his Aerocar, and Ford came close to producing them. Three Aerocars are still flyable, two in museums in Seattle and Oshkosh, and the third owned and flown by Ed Sweeny. Flying cars do have problems, which so far have prevented commercial success. An obvious problem is complexity of the vehicle, the infrastructure, or both. Another is the difficulty of matching low power for normal driving with high power in flight. An automobile uses only about 20 hp at traffic speeds, while a personal airplane needs about 160 hp at speeds typical of flight. Many automobile engines can deliver 160 hp, but not for very long. A more subtle issue involves the drag of automobiles and airplanes. A good personal airplane can fly 30 miles per gallon of fuel at 200 mph. A good sports car would need 660 hp at the same speed and would travel only 3 miles per gallon. The difference is drag area, about 4.5 sq ft for the automobile and 1.4 sq ft for the airplane. A flying car better have the drag area of the airplane, not the car!

  4. Digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Stanley, W. D.; Harrington, R. F.

    1980-01-01

    A microprocessor based digital signal processing unit has been proposed to replace analog sections of a microwave radiometer. A brief introduction to the radiometer system involved and a description of problems encountered in the use of digital techniques in radiometer design are discussed. An analysis of the digital signal processor as part of the radiometer is then presented.

  5. HELIOS dual swept frequency radiometer

    NASA Technical Reports Server (NTRS)

    White, J. R.

    1975-01-01

    The HELIOS dual swept frequency radiometer, used in conjunction with a dipole antenna, was designed to measure electromagnetic radiation in space. An engineering prototype was fabricated and tested on the HELIOS spacecraft. Two prototypes and two flight units were fabricated and three of the four units were integrated into the HELIOS spacecraft. Two sets of ground support equipment were provided for checkout of the radiometer.

  6. GPM Plans for Radiometer Intercalibration

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Stout, John; Chou, Joyce

    2011-01-01

    The international Global Precipitation Measurement (GPM) mission led by NASA and JAXA is planned as a multi-radiometer constellation mission. A key mission component is the ability to intercalibrate the Tb from the partner constellation radiometers and create inter-calibrated, mission consistent Tc. One of the enabling strategies for this approach is the launching of a joint NASA/JAXA core satellite which contains a JAXA/NICT provided dual precipitation radar and a NASA provided Microwave Imaging passive radiometer. The observations from these instruments on the core satellite provide the opportunity to develop a transfer reference standard that can then be applied across the partner provided constellation radiometers that enables the creation of mission consistent brightness temperatures. The other aspect of the strategy is the development of a community consensus intercalibration algorithm that will be applied to the Tb observations from partner radiometers and create the best calibrated Tc. Also described is the development of the framework in which the inter-calibration is included in the final algorithm. A part of the latter effort has been the development of a generic, logical structure which can be applied across radiometer types and which guarantees the user community that key information for using Tc properly is recorded. Key

  7. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  8. Radiometer Testbed Development for SWOT

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Brown, Shannon; Gaier, Todd; Dawson, Douglas; Harding, Dennis; Fu, Lee-Lueng; Esteban-Fernandez, Daniel

    2010-01-01

    Conventional altimeters include nadir looking colocated 18-37 GHz microwave radiometer to measure wet tropospheric path delay. These have reduced accuracy in coastal zone (within 50 km from land) and do not provide wet path delay over land. The addition of high frequency channels to Jason-class radiometer will improve retrievals in coastal regions and enable retrievals over land. High-frequency window channels, 90, 130 and 166 GHz are optimum for improving performance in coastal region and channels on 183 GHz water vapor line are ideal for over-land retrievals.

  9. Ozone height profiles using laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  10. Solid-state spectral transmissometer and radiometer

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Steward, R. G.; Payne, P. R.

    1985-01-01

    An in situ instrument designed to measure the spectral attenuation coefficient of seawater and the ocean remote-sensing reflectance from 400 to 750 nm is in the test and development stage. It employs a 256 channel, charge-coupled type of linear array measuring the spectral intensities diffracted by a grating. Examples of the types of data delivered by this instrument have been simulated using a breadboard laboratory instrument and an above-water, solid-state radiometer. Algorithms developed using data from these instruments provide measures of chlorophyll a plus phaeophytin a concentrations from less than 0.1 to 77.0 mg/cu m, gelbstoff spectral absorption coefficients, and detrital spectral backscattering coefficients for waters of the west Florida shelf.

  11. Car sick.

    PubMed

    Renner, M G

    1988-01-01

    The automobile is currently seen as the most desirable mode of transportation. However, this view needs to be changed since the proliferation of the automobile worldwide is leading to the poisoning of the environment and people. In the US the number of passenger cars grew 51% between 1971-86 and in the noncommunist industrialized community that figure is 71%. The gasoline and diesel fuel used to power the overwhelming majority of cars creates a variety of problems. The pollution is estimated to have a hidden cost of US $.80/gallon. Others estimate that the pollution causes 30,000 premature deaths annually just in the US. 75% of the carbon monoxide (CO), 48% of nitrogen oxides (NO2), 13% of particulates (P), and 3% of sulfur (S) emissions come from cars in the countries of the Organization for Economic Cooperation and Development (OECD), which includes the US, Canada, Western Europe, Japan, Australia, and New Zealand. 17% of all worldwide carbon dioxide (CO2) emission comes from the production and use of fossil fuels for cars. The single biggest problem associated with cars is the photochemical smog they create in urban areas. In 1986 75 million Americans lived in areas that failed to meet national air quality standards for CO, P, and ozone (03). The only area of major improvement has been the removal of lead from gasoline. It was known to cause problems from the beginning of its use in the 1920s, but remained for 50 years because of auto and oil company pressure. Ground 03 is estimated by the US government to cost US $4 billion in annual losses, just for corn, wheat, soybeans, and peanuts. Acid rain is the other major problem associated with cars, and its damage is estimated at US $5 billion annually. Both these problems are shortterm, their effects occur immediately; the longterm disadvantage is the build up of CO2 and its contribution to the greenhouse effect. While the US is at the forefront of regulation and many other countries are modeling their emission

  12. High intensity solar cell radiometer

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Spisz, E. W.

    1972-01-01

    Device can be employed under high intensity illumination conditions such as would occur in a close-solar-approach space mission or in monitoring high intensity lamps. Radiometer consists of silicon solar cells with thin semi-transparent coatings of aluminum deposited on the front surfaces to permit transmission of small percentage of light and reflect the remainder.

  13. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  14. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  15. Digital simulation of dynamic processes in radiometer systems. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    The development and application of several computer programs for simulating different classes of microwave radiometers are described. The programs are dynamic in nature, and they may be used to determine the instantaneous behavior of system variables as a function of time. Some of the programs employ random variable models in the simulations so that the statistical nature of the results may be investigated. The programs have been developed to utilize either the Continuous System Modeling Program or the Advanced Continuous System Language. The validity of most of the programs was investigated using statistical tests, and the results show excellent correlation with theoretical predictions. The programs are currently being used in the investigation of new design techniques for microwave radiometers.

  16. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  17. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data

    SciTech Connect

    Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.

    2009-01-26

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.

  18. Optical fibre-coupled cryogenic radiometer with carbon nanotube absorber

    NASA Astrophysics Data System (ADS)

    Livigni, David J.; Tomlin, Nathan A.; Cromer, Christopher L.; Lehman, John H.

    2012-04-01

    A cryogenic radiometer was constructed for direct-substitution optical-fibre power measurements. The cavity is intended to operate at the 3 K temperature stage of a dilution refrigerator or 4.2 K stage of a liquid cryostat. The optical fibre is removable for characterization. The cavity features micromachined silicon centring rings to thermally isolate the optical fibre as well as an absorber made from micromachined silicon on which vertically aligned carbon nanotubes were grown. Measurements of electrical substitution, optical absorption and temperature change indicate that the radiometer is capable of measuring a power level of 10 nW with approximate responsivity of 155 nW K-1 and 1/e time constant of 13 min. An inequivalence between optical and electrical power of approximately 10% was found, but the difference was largely attributable to unaccounted losses in the optical fibre.

  19. Car Seat Safety

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Car Seat Safety KidsHealth > For Parents > Car Seat Safety ... certified child passenger safety technician.) Guidelines for Choosing Car Seats Choose a seat with a label that ...

  20. Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver

    NASA Technical Reports Server (NTRS)

    Menzies, R. T. (Inventor)

    1973-01-01

    The presence of selected atmospheric pollutants can be determined by transmitting an infrared beam of proper wavelength through the atmosphere, and detecting the reflections of the transmitted beam with a heterodyne radiometer transmitter-receiver using part of the laser beam as a local oscillator. The particular pollutant and its absorption line strength to be measured are selected by the laser beam wave length. When the round-trip path for the light is known or measured, concentration can be determined. Since pressure (altitude) will affect the shape of the molecular absorption line of a pollutant, tuning the laser through a range of frequencies, which includes a part of the absorption line of the pollutant of interest, yields pollutant altitude data from which the altitude and altitude profile is determined.

  1. A millimeter-wave radiometer for detecting microbursts

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert

    1992-01-01

    This paper describes a millimeter-wave radiometer for the detection of wind shear from airborne platforms or at airport terminals. This proposed instrument will operate near the group of atmospheric oxygen absorptions centered near 60 GHz, which it will use to sense temperature from a distance. The instrument will use two channels to provide two different temperature measurements, providing the basis for solution of two equations in two unknowns, which are range to the wind shear plume and its temperature. A third channel will measure ambient atmospheric temperature. Depending on the temperature difference between the wind-shear plume and ambient, the standard deviation of range measurement accuracy is expected to be about 1 km at 5 km range, while the temperature measurement standard deviation will be about one-fourth the temperature difference between plume and ambient at this range. The instrument is expected to perform usefully at ranges up to 10 km, giving adequate warning of the presence of wind shear even for high performance jet aircraft. Other atmospheric hazards which might be detected by this radiometer include aircraft wakes and vortices, clear-air turbulence, and wind rotors, although the latter two phenomena would be detected by an airborne version of the instrument. A separate radiometer channel will be provided in the proposed instrument to detect aircraft wakes and vortices based on perturbation of the spectrum of microscopic atmospheric temperature fluctuations caused by the passage of large aircraft.

  2. Interferometric Synthetic Aperture Microwave Radiometers : an Overview

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; McKague, Darren

    2011-01-01

    This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session.

  3. Measuring the instrument function of radiometers

    SciTech Connect

    Winston, R.; Littlejohn, R.G.

    1997-12-31

    The instrument function is a function of position and angle, the knowledge of which allows one to compute the response of a radiometer to an incident wave field in any state of coherence. The instrument function of a given radiometer need not be calculated; instead, it may be measured by calibration with incident plane waves.

  4. Portable Radiometer Identifies Minerals in the Field

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Machida, R. A.

    1982-01-01

    Hand-held optical instrument aids in identifying minerals in field. Can be used in exploration for minerals on foot or by aircraft. The radiometer is especially suitable for identifying clay and carbonate minerals. Radiometer measures reflectances of mineral at two wavelengths, computes ratio of reflectances, and displays ratio to user.

  5. Global atmospheric temperature anomaly monitoring with passive microwave radiometers

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Christy, John R.

    1990-01-01

    The potential of microwave sounding units (MSU) for augmenting the surface-based thermometer record by providing a measurement representing a significant depth of the troposphere is considered. These radiometers measure the thermal emission by molecular oxygen in the atmosphere at different spectral intervals in the oxygen absorption complex near 60 GHz. Brightness temperature variations measured by NOAA-6 and NOAA-7 MSUs during a near-two year period are analyzed and compared with monthly averaged surface air temperature data. It is demonstrated that MSUs, while of limited use for vertical profiling of the atmosphere, provide stable measurements of vertically average atmospheric temperatures, centered at a constant pressure level.

  6. Four band differential radiometer for monitoring LNG vapors

    NASA Technical Reports Server (NTRS)

    Simmonds, J. J.

    1981-01-01

    The development by JPL of a four band differential radiometer (FBDR) which is capable of providing a fast rate of response, accurate measurements of methane, ethane, and propane concentrations on the periphery of a dispersing LNG cloud. The FBDR is a small, low power, lightweight, portable instrument system that uses differential absorption of near infrared radiation by the LNG cloud as a technique for the determination of concentration of the three gases as the LNG cloud passes the instrument position. Instrument design and data analysis approaches are described. The data obtained from the FBDR prototype instrument system deployed in an instrument array during two 40 cubic meter spill tests are discussed.

  7. A Radiometer for Precision Coherent Radiation Measurements

    PubMed Central

    Thomas, Douglas B.; Zalewski, Edward F.

    1992-01-01

    A radiometer has been designed for precision colierent radiation measurements and tested for long-term repeatability at wavelengths of 488 and 633 nm. The radiometer consists of a pn silicon photodiode maintained in a nitrogen atmosphere with a quartz window designed to eliminate interference problems. Ratio measurements between the radiometer and an absolute type detector were made over a period of 215 d. At 0.5 mW, the standard deviations were 0.008% and 0.009% at 488 and 633 nm, respectively. The maximum deviations from the mean were 0.016% and 0.015% at the respective wavelengths. Measurements were also made on the radiometer with respect to angular and spatial uniformity and linearity. The high precision, simplicity, and portability of the radiometer suggest it for use as a transfer standard for radiometric measurements. PMID:28053435

  8. Radiometer Design Analysis Based Upon Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Lang, Roger H.

    2004-01-01

    This paper introduces a method for predicting the performance of a radiometer design based on calculating the measurement uncertainty. The variety in radiometer designs and the demand for improved radiometric measurements justify the need for a more general and comprehensive method to assess system performance. Radiometric resolution, or sensitivity, is a figure of merit that has been commonly used to characterize the performance of a radiometer. However when evaluating the performance of a calibration design for a radiometer, the use of radiometric resolution has limited application. These limitations are overcome by considering instead the measurement uncertainty. A method for calculating measurement uncertainty for a generic radiometer design including its calibration algorithm is presented. The result is a generalized technique by which system calibration architectures and design parameters can be studied to optimize instrument performance for given requirements and constraints. Example applications demonstrate the utility of using measurement uncertainty as a figure of merit.

  9. A multifrequency microwave radiometer of the future

    NASA Technical Reports Server (NTRS)

    Le Vine, D.; Wilheit, T.; Murphy, R.; Swift, C.

    1987-01-01

    The design of the High-Resolution Multifrequency Microwave Radiometer (HMMR), which is to be installed on EOS, is described. The HMMR is to consist of the Advanced Microwave Sounding Unit (AMSU), the Advanced Mechanically Scanned Radiometer (AMSR), and the Electronically Scanned Thinned Array Radiometer (ESTAR). The AMSU is a 20-channel microwave radiometer system designed to measure profiles of atmospheric temperature and humidity and the AMSR is a microwave imager with channels at 6, 10, 18, 21, 37, and 90 GHz for measuring snow cover over land, the age and areal extent of sea ice, the intensity of precipitation over oceans and land, and the amount of water in the atmosphere. ESTAR is an imaging radiometer operating near 1.4 GHz capable of obtaining global maps of surface soil moisture with a spatial resolution of about 10 km. The antenna and signal processing utilized in the ESTAR to achieve the real aperture resolution are examined.

  10. The Radiometer Atmospheric Cubesat Experiment

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of < 9.5 dB. The noise figure is dominated by the insertion loss of the Dicke switch which at these frequencies are > 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures < 4 dB. The gain and noise figure variation over temperature is approximately 0.55 dB/K. The NEDT of the system is < 1K, and on orbit performance is expected to improve due to the thermal environment. The current system is configured for direct detection to reduce power consumption by eliminating the need for a local oscillator. A 2012 NASA CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  11. Distributed-switch Dicke radiometers

    NASA Technical Reports Server (NTRS)

    Levis, C. A. (Inventor)

    1979-01-01

    A radiometer on an orbiting spacecraft is described which derives high spatial resolution information from terrestrial and atmospheric regions. The N elements or subapertures on the spacecraft transduce electromagnetic energy into electric signals. Many or all of the elements are simultaneously illuminated by electromagnetic energy radiated from the same region. Identical, parallel processing channels are responsive to the N elements. Each of the channels includes a variable gain amplifier responsive to the signal transduced by its corresponding array elements. The gain of each amplifier is controlled as a function of the output difference when the channel is connected periodically to each of a pair of Dicke noise sources, such as resistors maintained at predetermined temperatures.

  12. Matching chelators to radiometals for radiopharmaceuticals.

    PubMed

    Price, Eric W; Orvig, Chris

    2014-01-07

    Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.

  13. 17. CABLE CAR #22, VIEW SHOWING CAR ROUNDING CORNER IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. CABLE CAR #22, VIEW SHOWING CAR ROUNDING CORNER IN LOADING AREA NEXT TO CAR DUMP AND CAR DUMP BUILDING - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  14. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  15. Galileo Photopolarimeter/Radiometer experiment

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Brown, F. G.; Chandos, R. A.; Fincher, W. C.; Kubel, L. F.; Lacis, A. A.; Travis, L. D.

    1992-01-01

    The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 microns to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.

  16. Cars, Cycles, and Consumers.

    ERIC Educational Resources Information Center

    Idleman, Hillis K. Ed.

    The purpose of this consumer education module is to provide information and skills, and the ability to raise questions and find answers, while seeking the best automobile or motorcycle buy available for the money. The module may be used for a full or part semester course. The five sections (cars and the consumer, renting and leasing cars, cars and…

  17. NIST-BMDO transfer radiometer (BXR)

    NASA Astrophysics Data System (ADS)

    Jung, Timothy M.; Carter, Adriaan C.; Lorentz, Steven R.; Datla, Raju V.

    2000-07-01

    An infrared transfer radiometer has been recently developed at the Low-Background Infrared Calibration (LBIR) facility at the National Institute of Standards and Technology (NIST) for the Ballistic Missile Defense Organization (BMDO) program. The BMDO Transfer Radiometer (BXR) is designed to measure the irradiance of a collimated source of infrared light having an angular divergence of less than 1 mrad. It is capable of measuring irradiance levels as low as 10-15 W/cm2 over the spectral range from 2 micrometer to 30 micrometer. The radiometer uses an arsenic-doped silicon blocked impurity band (BIB) detector operated at temperatures below 12 K. Spectral resolution is provided by narrow bandpass interference filters and long-wavelength blocking filters. All the components of the radiometer, which include a mechanical shutter, an internal calibration source and detector, a long baffle section, a spatial filter, two filter wheels and a two- axis detector stage are cooled with an active flow of liquid helium to maintain temperatures below 20 K. A cryogenic vacuum chamber has been built to house the radiometer and to provide mechanical tilt alignment to the source. The radiometer is easily transported to a user site along with its support equipment.

  18. Spectral responsivity calibrations of two types of pyroelectric radiometers using three different methods

    NASA Astrophysics Data System (ADS)

    Zeng, J.; Eppeldauer, G. P.; Hanssen, L. M.; Podobedov, V. B.

    2012-06-01

    Spectral responsivity calibrations of two different types of pyroelectric radiometers have been made in the infrared region up to 14 μm in power mode using three different calibration facilities at NIST. One pyroelectric radiometer is a temperature-controlled low noise-equivalent-power (NEP) single-element pyroelectric radiometer with an active area of 5 mm in diameter. The other radiometer is a prototype using the same type of pyroeletric detector with dome-input optics, which was designed to increase absorptance and to minimize spectral structures to obtain a constant spectral responsivity. Three calibration facilities at NIST were used to conduct direct and indirect responsivity calibrations tied to absolute scales in the infrared spectral regime. We report the calibration results for the single-element pyroelectric radiometer using a new Infrared Spectral Comparator Facility (IRSCF) for direct calibration. Also, a combined method using the Fourier Transform Infrared Spectrophotometry (FTIS) facility and single wavelength laser tie-points are described to calibrated standard detectors with an indirect approach. For the dome-input pyroelectric radiometer, the results obtained from another direct calibration method using a circular variable filter (CVF) spectrometer and the FTIS are also presented. The inter-comparison of different calibration methods enables us to improve the responsivity uncertainty performed by the different facilities. For both radiometers, consistent results of the spectral power responsivity have been obtained applying different methods from 1.5 μm to 14 μm with responsivity uncertainties between 1 % and 2 % (k = 2). Relevant characterization results, such as spatial uniformity, linearity, and angular dependence of responsivity, are shown. Validation of the spectral responsivity calibrations, uncertainty sources, and improvements for each method will also be discussed.

  19. Electric car arrives - again

    SciTech Connect

    Dunn, S.

    1997-03-01

    The first mass-produced electric cars in modern times are here, although they are expensive, limited in capability and unfamiliar to most prospective consumers. This article presents a brief history of the reintroduction of the modern electric car as well as discussions of the limitations of development, alternative routes to both producing and selling electric cars or some modified version of electric cars, economic incentives and governmental policies, and finally a snapshot description of the future for electric cars. 6 refs., 1 tab.

  20. View-limiting shrouds for insolation radiometers

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Trentelman, G. F.

    1985-01-01

    Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined.

  1. ELECTRIC MOTOR CARS.

    DTIC Science & Technology

    The electric automobiles studied are designed as the equivalent of their gasoline-engine counterparts in size, comfort, performance, and initial...acceleration. Top speeds comparable to those of small present-day cars are shown to be realizable, though the range between refueling is not. Batteries...noise abatement. The lifetime costs derived can be somewhat lower than those of conventional cars ; therefore it is concluded that electric cars

  2. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  3. Novel Cyclotron-Based Radiometal Production

    SciTech Connect

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.

  4. Low-cost microprocessor controlled shadowband radiometer

    NASA Astrophysics Data System (ADS)

    Michalsky, J. J.; Lebaron, B. A.; Harrison, L. C.

    1985-06-01

    This paper describes the second phase in the development of a low-cost microprocessor-controlled rotating shadowband radiometer at PNL. The initial work, to develop a solar photometer, resulted in a mechanical design that is adopted for the solar radiometer with only minor changes. The goals of this effort are: (1) to improve the data acquisition system; and (2) to derive corrections for the silicon cell-based pyranometer that would allow measurements of total horizontal, diffuse horizontal, and direct normal solar radiation approaching first-class instrumentation accuracy at a fraction of the cost. Significant progress on temperature, cosine and spectral corrections is achieved.

  5. Electrically scanning microwave radiometer for Nimbus E

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An electronically scanning microwave radiometer system has been designed, developed, and tested for measurement of meteorological, geomorphological and oceanographic parameters from NASA/GSFC's Nimbus E satellite. The system is a completely integrated radiometer designed to measure the microwave brightness temperature of the earth and its atmosphere at a microwave frequency of 19.35 GHz. Calibration and environmental testing of the system have successfully demonstrated its ability to perform accurate measurements in a satellite environment. The successful launch and data acquisition of the Nimbus 5 (formerly Nimbus E) gives further demonstration to its achievement.

  6. The Hurricane Imaging Radiometer: Present and Future

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.; Morris, M.; Uhlhorn, E. W.; Black, P. G.

    2013-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.

  7. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  8. Radiometer experiment for the aeroassist flight experiment

    NASA Astrophysics Data System (ADS)

    Davy, W. C.; Park, C.; Arnold, J. O.; Balakrishnan, A.

    1985-06-01

    A forthcoming NASA flight experiment is described that provides an opportunity to obtain a large base of radiometric data for high-altitude, high-velocity thermochemically nonequilibrated-flow conditions. As a preliminary to the design of a radiometer for this experiment, an approximate method for predicting both equilibrium and nonequilibrium radiative surface fluxes is described. Spectral results for one trajectory state, a velocity of 10 km/sec at an altitude of 85 km, are presented. These results are then used to develop some of the instrument parameters that will be needed for designing of the three genre of radiometers that are proposed for this experiment.

  9. Preliminary analysis of shuttle multispectral radiometer data for Southern Egypt

    USGS Publications Warehouse

    Rowan, L.C.; Goetz, A.F.H.; Kingston, M.J.

    1983-01-01

    The Shuttle Multispectral Infrared Radiometer (SMIRR) is a spectroradiometer covering the region from 0.5 to 2.5 ??m in 10 channels that acquired data from spots 100 m in diameter along the subspacecraft ground track. It was flown aboard the second flight of the space shuttle Columbia, November 12-14, 1981. Data collected during orbit 16 over southern Egypt show that carbonate rocks, kaolinite, and possibly montmorillonite can be identified by their SMIRR spectral signatures and limited knowledge of the lithologic units present. Detailed analysis of SMIRR data for this area indicates that calcite, kaolinite, and montmorillonite rocks give rise to absorption features that result in characteristic 10 channel spectra. ?? 1983.

  10. Atmospheric solar absorption measurements in the 9-11 micron region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground based measurements of atmospheric solar absorption spectra in the 9 to 12 micron spectral range. The performance and operating characteristics of this tunable infrared heterodyne radiometer (TIHR) is discussed along with recently measured heterodyne solar absorption spectra in the 10 to 11 micron spectral region.

  11. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. 18. CABLE CAR #21, DETAIL OF CAR COMING OUT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. CABLE CAR #21, DETAIL OF CAR COMING OUT OF LOADING AREA OF CAR DUMP BUILDING - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  13. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. The Electric Cars Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    Over 100 years ago, the great inventor Thomas Edison warned that gasoline cars would pollute the environment and lead to gasoline shortages. He preferred the use of clean electric vehicles. He also put his money where his mouth was and developed an entirely new alkaline storage battery system for his beloved cars, the nickel-iron storage battery.…

  15. An investigation of radiometer design using digital processing techniques

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.

    1981-01-01

    The use of digital signal processing techniques in Dicke switching radiometer design was investigated. The general approach was to develop an analytical model of the existing analog radiometer and identify factors which adversly affect its performance. A digital processor was then proposed to verify the feasibility of using digital techniques to minimize these adverse effects and improve the radiometer performance. Analysis and preliminary test results comparing the digital and analog processing approaches in radiometers design were analyzed.

  16. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    SciTech Connect

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.; Morris, Victor R.

    2005-05-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed an agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval.

  17. Shuttle car loading system

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr. (Inventor)

    1985-01-01

    A system is described for loading newly mined material such as coal, into a shuttle car, at a location near the mine face where there is only a limited height available for a loading system. The system includes a storage bin having several telescoping bin sections and a shuttle car having a bottom wall that can move under the bin. With the bin in an extended position and filled with coal the bin sections can be telescoped to allow the coal to drop out of the bin sections and into the shuttle car, to quickly load the car. The bin sections can then be extended, so they can be slowly filled with more while waiting another shuttle car.

  18. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  19. Blackbody cavity radiometer has rapid response

    NASA Technical Reports Server (NTRS)

    Haley, F. C.

    1966-01-01

    Fast response, spectrally linear standard detector in the form of a blackbody cavity radiometer calibrates rapidly responding photodetectors against a calibrated standard detector. A power amplifier with maximum available gain reduces error signal without stability loss. It may be used as a blackbody radiator by manipulation of the bridge variable arm.

  20. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  1. Accounting For Nonlinearity In A Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Stelzried, Charles T.

    1991-01-01

    Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.

  2. Heat capacity mapping radiometer for AEM spacecraft

    NASA Technical Reports Server (NTRS)

    Sonnek, G. E.

    1977-01-01

    The operation, maintenance, and integration of the applications explorer mission heat capacity mapping radiometer is illustrated in block diagrams and detail schematics of circuit functions. Data format and logic timing diagrams are included along with radiometric and electronic calibration data. Mechanical and electrical configuration is presented to provide interface details for integration of the HCMR instrument to AEM spacecraft.

  3. LARSPEC spectroradiometer-multiband radiometer data formats

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.

    1982-01-01

    The data base software system, LARSPEC, is discussed and the data base format for agronomic, meteorological, spectroradiometer, and multiband radiometer data is described. In addition, the contents and formats of each record of data and the wavelength tables are listed and the codes used for some of the parameters are described.

  4. Balloon-borne radiometer profiler: Field observations

    SciTech Connect

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given.

  5. Application of Uncooled Monolithic Thermoelectric Linear Arrays to Imaging Radiometers

    NASA Astrophysics Data System (ADS)

    Kruse, Paul W.

    Introduction Identification of Incipient Failure of Railcar Wheels Technical Description of the Model IR 1000 Imaging Radiometer Performance of the Model IR 1000 Imaging Radiometer Initial Application Summary Imaging Radiometer for Predictive and Preventive Maintenance Description Operation Specifications Summary References INDEX CONTENTS OF VOLUMES IN THIS SERIES

  6. Wideband filter radiometers for blackbody temperature measurements

    NASA Astrophysics Data System (ADS)

    Boivin, L. P.; Bamber, C.; Gaertner, A. A.; Gerson, R. K.; Woods, D. J.; Woolliams, E. R.

    2010-10-01

    The use of high-temperature blackbody (HTBB) radiators to realize primary spectral irradiance scales requires that the operating temperature of the HTBB be accurately determined. We have developed five filter radiometers (FRs) to measure the temperature of the National Research Council of Canada's HTBB. The FRs are designed to minimize sensitivity to ambient temperature fluctuations. They incorporate air-spaced colored glass filters and a Si photodiode detector that are housed in a cell whose temperature is controlled to ±0.1°C by means of annular thermoelectric elements at the front and rear of the cell. These wideband filter radiometers operate in four different wavelength bands. The spectral responsivity measurements were performed in an underfill geometry for a power-mode calibration that is traceable to NRC's cryogenic radiometer. The spectral temperature sensitivity of each of these FRs has been measured. The apertures for these FRs were cold-formed by swaging machine-cut apertures onto precision dowel pins. A description of the filter radiometer design, fabrication and testing, together with a detailed uncertainty analysis, is presented. We derive the equations that relate the spectral irradiance measured by the FRs to the spectral radiance and temperature of the HTBB, and deal specifically with the change of index of refraction over the path of the radiation from the interior of the HTBB to the FRs. We believe these equations are more accurate than recently published derivations. Our measurements of the operating temperature of our HTBB working at temperatures near 2500 K, 2700 K and 2900 K, together with measurements using a pyrometer, show agreement between the five filter radiometers and with the pyrometer to within the estimated uncertainties.

  7. Langley method of calibrating UV filter radiometers

    NASA Astrophysics Data System (ADS)

    Slusser, James; Gibson, James; Bigelow, David; Kolinski, Donald; Disterhoft, Patrick; Lantz, Kathleen; Beaubien, Arthur

    2000-02-01

    The Langley method of calibrating UV multifilter shadow band radiometers (UV-MFRSR) is explored in this paper. This method has several advantages over the traditional standard lamp calibrations: the Sun is a free, universally available, and very constant source, and nearly continual automated field calibrations can be made. Although 20 or so Langley events are required for an accurate calibration, the radiometer remains in the field during calibration. Difficulties arise as a result of changing ozone optical depth during the Langley event and the breakdown of the Beer-Lambert law over the finite filter band pass since optical depth changes rapidly with wavelength. The Langley calibration of the radiometers depends critically upon the spectral characterization of each channel and on the wavelength and absolute calibration of the extraterrestrial spectrum used. Results of Langley calibrations for two UV-MFRSRs at Mauna Loa, Hawaii were compared to calibrations using two National Institute of Standards and Technology (NIST) traceable lamps. The objectives of this study were to compare Langley calibration factors with those from standard lamps and to compare field-of-view effects. The two radiometers were run simultaneously: one on a Sun tracker and the other in the conventional shadow-band configuration. Both radiometers were calibrated with two secondary 1000 W lamp, and later, the spectral response functions of the channels were measured. The ratio of Langley to lamp calibration factors for the seven channels from 300 nm to 368 nm using the shadow-band configuration ranged from 0.988 to 1.070. The estimated uncertainty in accuracy of the Langley calibrations ranged from ±3.8% at 300 nm to ±2.1% at 368 nm. For all channels calibrated with Central Ultraviolet Calibration Facility (CUCF) lamps the estimated uncertainty was ±2.5% for all channels.

  8. Audit of Car Ownership Models

    DTIC Science & Technology

    2002-01-01

    In this report, a review was presented of existing models for car ownership. This review contains a description and comparison of existing Dutch car ...the AVV car ownership models. The car ownership model that AVV uses for most applications is the so-called FACTS model (Forecasting Air pollution...through Car Traffic Simulation). FACTS also provides the future total number of cars that is used as an external total in the Dutch national Model System

  9. The Electric Car Challenge.

    ERIC Educational Resources Information Center

    Diehl, Brian E.

    1997-01-01

    Describes the Electric Car Challenge during which students applied methods of construction to build lightweight, strong vehicles that were powered by electricity. The activity required problem solving, sheet metal work, electricity, design, and construction skills. (JOW)

  10. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  11. Nulling Infrared Radiometer for Measuring Temperature

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    A nulling, self-calibrating infrared radiometer is being developed for use in noncontact measurement of temperature in any of a variety of industrial and scientific applications. This instrument is expected to be especially well-suited to measurement of ambient or near-ambient temperature and, even more specifically, for measuring the surface temperature of a natural body of water. Although this radiometer would utilize the long-wavelength infrared (LWIR) portion of the spectrum (wavelengths of 8 to 12 m), its basic principle of operation could also be applied to other spectral bands (corresponding to other temperature ranges) in which the atmosphere is transparent and in which design requirements for sensitivity and temperature-measurement accuracy could be satisfied.

  12. The HYDROS Radiometer/Radar Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael W.; Njoku, Eni; Entekhabi, Dara; Doiron, Terence; Piepmeier, Jeffrey; Girard, Ralph

    2004-01-01

    The science objectives of the HYDROS mission are to provide frequent, global measurements of surface soil moisture and surface freeze/thaw state. In order to adequately measure these geophysical quantities, the key instrument requirements were determined by the HYDROS science team to be: 1) Dual-polarization L-Band passive radiometer measurements at 40 km resolution, 2) Dual-polarization L-Band active radar measurements at 3 km resolution, and 3) A wide swath to insure global three day refresh time for these measurements (1000 km swath at the selected orbit altitude of 670 km). As a solution to this challenging set of instrument requirements, a relatively large, 6 meter, conically-scanning reflector antenna architecture was selected for the instrument design. The deployable mesh antenna is shared by both the radiometer and radar electronics by employing a single L-Band feed.

  13. Planar electrical-substitution carbon nanotube cryogenic radiometer

    NASA Astrophysics Data System (ADS)

    Tomlin, N. A.; White, M.; Vayshenker, I.; Woods, S. I.; Lehman, J. H.

    2015-04-01

    We have developed a fully-lithographic electrical-substitution planar bolometric-radiometer (PBR) that employs multiwall vertically-aligned carbon nanotubes (VACNT) as the absorber and thermistor, micro-machined Si as the weak thermal link and thin-film Mo as the electrical heater. The near-unity absorption of the VACNT over a broad wavelength range permits a planar geometry, compatible with lithographic fabrication. We present performance results on a PBR with an absorption of 0.999 35 at 1550 nm, a thermal conductance of 456 µW K-1 at 4 K and a time constant (1/e) of 7.7 ms. A single measurement of approximately 100 µW optical power at 1550 nm achieved in less than 100 s yields an expanded uncertainty of 0.14% (k = 2). We also observe an elevated superconducting transition temperature of 3.884 K for the Mo heater, which opens the possibility of future devices incorporating more sensitive thermistors and superconducting thin-film wiring. Contribution of an agency of the US government; not subject to copyright

  14. Galileo Net Flux Radiometer Report 1997

    NASA Technical Reports Server (NTRS)

    Tomasko, Martin G.

    1997-01-01

    On 7 December 1995, the Galileo probe entered Jupiter's atmosphere. The Net Flux Radiometer (NFR) on board the probe, measured upward and downward fluxes in the visible and infrared. At the University of Arizona, we have analyzed the data from the two visible-light channels, as well as the solar contributions to the thermal channels. The results are being prepared for submission to JGR in early September.

  15. Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements

    SciTech Connect

    Comstock, Jennifer M.; Sassen, Kenneth

    2001-10-01

    A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ratio for each lidar profile, which accounts for changes in cloud microphysical properties with time. The technique also utilizes a correlated K distribution radiative transfer model,where absorption coefficients K have been tabulated specifically for the bandwidth and filter function of the infrared radiometer. The radiative transfer model allows for estimation of infrared emission due to atmospheric water vapor,ozone,and carbon dioxide, which is essential for deriving cirrus radiative properties. Also described is an improved technique for estimation of upwelling IR radiation that is emitted by the surface of the earth and reflected by the cloud into the radiometer field-of-view. Derived cirrus cloud properties include base and top height and temperature, visible optical depth, emittance, backscatter-to-extinction ratio, and extinction-to-absorption ratio. The purpose of this algorithm is to facilitate the analysis of the extensive high-cloud dataset obtained at the University of Utah, Facility for Atmospheric Remote Sensing in Salt Lake City, UT. To illustrate the method, a cirrus case study is presented.

  16. Requirements for an Advanced Ocean Radiometer

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; McClain, Charles R.; Ahmad, Ziauddin; Bailey, Sean W.; Barnes, Robert A.; Brown, Steven; Eplee, Robert E.; Franz, Bryan; Holmes, Alan; Monosmith, W. Bryan; Patt, Frederick S.; Stumpf, Richard P.; Turpie, Kevin R.; Werdell, P. Jeremy

    2011-01-01

    This document suggests requirements for an advanced ocean radiometer, such as e.g. the ACE (Aerosol/Cloud/Ecosystem) ocean radiometer. The ACE ocean biology mission objectives have been defined in the ACE Ocean Biology white paper. The general requirements presented therein were chosen as the basis for the requirements provided in this document, which have been transformed into specific, testable requirements. The overall accuracy goal for the advanced ocean radiometer is that the total radiometric uncertainties are 0.5% or smaller for all bands. Specific mission requirements of SeaWiFS, MODIS, and VIIRS were often used as a model for the requirements presented here, which are in most cases more demanding than the heritage requirements. Experience with on-orbit performance and calibration (from SeaWiFS and MODIS) and prelaunch testing (from SeaWiFS, MODIS, and VIIRS) were important considerations when formulating the requirements. This document describes requirements in terms of the science data products, with a focus on qualities that can be verified by prelaunch radiometric characterization. It is expected that a more comprehensive requirements document will be developed during mission formulation

  17. Calibration of ground-based microwave radiometers - Accuracy assessment and recommendations for network users

    NASA Astrophysics Data System (ADS)

    Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen

    2016-04-01

    Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.

  18. Excited Ejecta in Light of Sight from Eta Car

    NASA Technical Reports Server (NTRS)

    Vieira, G.; Gull, T. R.; Danks, A.

    2003-01-01

    In the NUV spectrum of Eta Car, we have resolved many narrow absorption lines of neutral and singly-ionized elements with the Space Telescope Imaging Spectrograph. We report for the first time the detection of interstellar vanadium in absorption, and many highly-excited absorption lines of Fe, Cr, Ti, Ni, Co, Mn, and Mg. These elements, normally tied up in dust grains in the ISM, are located within wall of the Homunculus within 20,000 A.U. of Eta Car. Stellar radiation and stellar wind are interacting with the wall. Dust is likely being modified and/or destroyed. Previous Homunculus studies have demonstrated that nitrogen is overabundant and that carbon and oxygen emission lines are weak, or non-existent. Are the large column densities of these heavy elements due to abundance effects, excitation mechanisms, or modified grains? We may gain insight as Eta Car goes through its spectroscopic minimum in the summer of 2003.

  19. A new radiometer for earth radiation budget studies

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  20. A new radiometer for earth radiation budget studies

    SciTech Connect

    Weber, P.G.

    1992-05-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  1. Study of N2 CARS spectra of a coal-fired flow facility

    NASA Astrophysics Data System (ADS)

    Singh, Jagdish P.; Yueh, Fang-Yu

    1993-07-01

    A comparative study of N2 CARS spectra was performed at a coal-fired flow facility diffuser and aerodynamic duct. Spectra recorded at the diffuser have atypical feature near V = 1-2 N2 CARS vibrational transition. Atypical feature intensity decreases in the aerodynamic duct spectra. N2 CARS spectra at the aerodynamic duct show the laser-produced C2 absorption around the fundamental band. The CARS inferred temperature at the diffuser is estimated to be +/- 100 K where as at the aerodynamic duct it is +/- 250 K. The error in the inferred temperature with different interference in the CARS spectrum was also studied.

  2. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  3. Ultra Stable Microwave Radiometers for Future Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Tanner, Alan B.; Pellerano, Fernando A.; Horgan, Kevin A.

    2005-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius will measure global sea surface salinity with 100-km spatial resolution every 8 days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than 0.1 K over 8 days. This three-year research program on ultra stable radiometers has addressed the radiometer requirements and configuration necessary to achieve this objective for Aquarius and future ocean salinity missions. The system configuration and component performance have been evaluated with radiometer testbeds at both JPL and GSFC. The research has addressed several areas including component characterization as a function of temperature, a procedure for the measurement and correction for radiometer system non-linearity, noise diode calibration versus temperature, low noise amplifier performance over voltage, and temperature control requirements to achieve the required stability. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability. This report also presents the results of the radiometer test program, a detailed radiometer noise model, and details of the operational switching sequence optimization that can be used to achieve the low noise and stability requirements. Many of the results of this research have been incorporated into the Aquarius radiometer design and will allow this instrument to achieve its goals.

  4. Resolution Enhancement of Spaceborne Radiometer Images

    NASA Technical Reports Server (NTRS)

    Krim, Hamid

    2001-01-01

    Our progress over the last year has been along several dimensions: 1. Exploration and understanding of Earth Observatory System (EOS) mission with available data from NASA. 2. Comprehensive review of state of the art techniques and uncovering of limitations to be investigated (e.g. computational, algorithmic ...). and 3. Preliminary development of resolution enhancement algorithms. With the advent of well-collaborated satellite microwave radiometers, it is now possible to obtain long time series of geophysical parameters that are important for studying the global hydrologic cycle and earth radiation budget. Over the world's ocean, these radiometers simultaneously measure profiles of air temperature and the three phases of atmospheric water (vapor, liquid, and ice). In addition, surface parameters such as the near surface wind speed, the sea surface temperature, and the sea ice type and concentration can be retrieved. The special sensor microwaves imager SSM/I has wide application in atmospheric remote sensing over the ocean and provide essential inputs to numerical weather-prediction models. SSM/I data has also been used for land and ice studies, including snow cover classification measurements of soil and plant moisture contents, atmospheric moisture over land, land surface temperature and mapping polar ice. The brightness temperature observed by SSM/I is function of the effective brightness temperature of the earth's surface and the emission scattering and attenuation of the atmosphere. Advanced Microwave Scanning Radiometer (AMSR) is a new instrument that will measure the earth radiation over the spectral range from 7 to 90 GHz. Over the world's ocean, it will be possible to retrieve the four important geographical parameters SST, wind speed, vertically integrated water vapor, vertically integrated cloud liquid water L.

  5. Receivers for the Microwave Radiometer on Juno

    NASA Technical Reports Server (NTRS)

    Maiwald, F.; Russell, D.; Dawson, D.; Hatch, W.; Brown, S.; Oswald, J.; Janssen, M.

    2009-01-01

    Six receivers for the MicroWave Radiometer (MWR) are currently under development at JPL. These receivers cover a frequency range of 0.6 to 22 GHz in approximately octave steps, with 4 % bandwidth. For calibration and diagnosis three noise diodes and a Dicke switch are integrated into each receiver. Each receiver is connected to its own antenna which is mounted with its bore sights perpendicular to the spin axis of the spacecraft. As the spacecraft spins at 2 RPM, the antenna field of view scans Jupiter's atmosphere from limb to nadir to limb, measuring microwave emission down to 1000-bar.

  6. Atmospheric monitoring with an infrared radiometer

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; Chadwick, P. M.

    2015-03-01

    The molecular atmosphere has a number of windows where it is effectively transparent to electromagnetic radiation, one of these being in the infrared 8-14 micron region. The presence of clouds and aerosols, which are more effective emitters of infrared radiation, in the atmosphere show up as an increase in the effective brightness temperature compared to the clear sky. This talk will cover the results from operating a scanning radiometer at the H.E.S.S. site in Namibia in determining atmospheric conditions.

  7. RF Reference Switch for Spaceflight Radiometer Calibration

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph

    2013-01-01

    The goal of this technology is to provide improved calibration and measurement sensitivity to the Soil Moisture Active Passive Mission (SMAP) radiometer. While RF switches have been used in the past to calibrate microwave radiometers, the switch used on SMAP employs several techniques uniquely tailored to the instrument requirements and passive remote-sensing in general to improve radiometer performance. Measurement error and sensitivity are improved by employing techniques to reduce thermal gradients within the device, reduce insertion loss during antenna observations, increase insertion loss temporal stability, and increase rejection of radar and RFI (radio-frequency interference) signals during calibration. The two legs of the single-pole double-throw reference switch employ three PIN diodes per leg in a parallel-shunt configuration to minimize insertion loss and increase stability while exceeding rejection requirements at 1,413 MHz. The high-speed packaged diodes are selected to minimize junction capacitance and resistance while ensuring the parallel devices have very similar I-V curves. Switch rejection is improved by adding high-impedance quarter-wave tapers before and after the diodes, along with replacing the ground via of one diode per leg with an open circuit stub. Errors due to thermal gradients in the switch are reduced by embedding the 50-ohm reference load within the switch, along with using a 0.25-in. (approximately equal to 0.6-cm) aluminum prebacked substrate. Previous spaceflight microwave radiometers did not embed the reference load and thermocouple directly within the calibration switch. In doing so, the SMAP switch reduces error caused by thermal gradients between the load and switch. Thermal issues are further reduced by moving the custom, highspeed regulated driver circuit to a physically separate PWB (printed wiring board). Regarding RF performance, previous spaceflight reference switches have not employed high-impedance tapers to improve

  8. DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BATCH CAR, BUILT BY ATLAS CAR & MANUFACTURING COMPANY. BATCH STORAGE SILOS IN BACKGROUND - Chambers Window Glass Company, Batch Plant, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA

  9. Design, fabrication and deployment of a miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profiling

    NASA Astrophysics Data System (ADS)

    Iturbide-Sanchez, Flavio

    This dissertation describes the design, fabrication and deployment of the Compact Microwave Radiometer for Humidity profiling (CMR-H). The CMR-H is a new and innovative spectrometer radiometer that is based on monolithic microwave and millimeter-wave integrated circuit (MMIC) technology and is designed for tropospheric water vapor profiling. The CMR-H simultaneously measures microwave emission at four optimally-selected frequency channels near the 22.235 GHz water vapor absorption line, constituting a new set of frequencies for the retrieval of the water vapor profile. State-of-the-art water vapor radiometers either measure at additional channels with redundant information or perform multi-frequency measurements sequentially. The fabrication of the CMR-H demonstrates the capability of MMIC technology to reduce substantially the operational power consumption and size of the RF and IF sections. Those sections comprise much of the mass and volume of current microwave receivers for remote sensing, except in the case of large antennas. The use of the compact box-horn array antenna in the CMR-H demonstrates its capability to reduce the mass and volume of microwave radiometers, while maintaining similar performance to that of commonly-used, bulky horn antennas. Due to its low mass, low volume, low power consumption, fabrication complexity and cost, the CMR-H represents a technological improvement in the design of microwave radiometers for atmospheric water vapor observations. The field test and validation of the CMR-H described in this work focuses on comparisons of measurements during two field experiments from the CMR-H and a state-of-the-art microwave radiometer, which measures only in a volume subtended by the zenith-pointing antenna's beam pattern. In contrast, the CMR-H is designed to perform volumetric scans and to function correctly as a node in a network of radiometers. Mass production of radiometers based on the CMR-H design is expected to enable the

  10. Modeling the Mousetrap Car

    ERIC Educational Resources Information Center

    Jumper, William D.

    2012-01-01

    Many high school and introductory college physics courses make use of mousetrap car projects and competitions as a way of providing an engaging hands-on learning experience incorporating Newton's laws, conversion of potential to kinetic energy, dissipative forces, and rotational mechanics. Presented here is a simple analytical and finite element…

  11. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    Aerosol particles have an important impact on the surface net radiation budget by direct scattering and absorption (direct aerosol effect) of solar radiation, and also by influencing cloud formation processes (semi-direct and indirect aerosol effects). To study the former, a number of multispectral sky- and sunphotometers have been developed at the Institute for Space Sciences of the Free University of Berlin in the past two decades. The latest operational developments were the multispectral aureole- and sunphotometer FUBISS-ASA2, the zenith radiometer FUBISS-ZENITH, and the nadir polarimeter AMSSP-EM, all designed for a flexible use on moving platforms like aircraft or ships. Currently the multiangle, multispectral radiometer URMS/AMSSP (Universal Radiation Measurement System/ Airborne Multispectral Sunphotometer and Polarimeter) is under construction for a Wing-Pod of the high altitude research aircraft HALO operated by DLR. The system is expected to have its first mission on HALO in 2011. The algorithms for the retrieval of aerosol and trace gas properties from the recorded multidirectional, multispectral radiation measurements allow more than deriving standard products, as for instance the aerosol optical depth and the Angstrom exponent. The radiation measured in the solar aureole contains information about the aerosol phasefunction and therefore allows conclusions about the particle type. Furthermore, airborne instrument operation allows vertically resolved measurements. An inversion algorithm, based on radiative transfer simulations and additionally including measured vertical zenith-radiance profiles, allows conclusions about the aerosol single scattering albedo and the relative soot fraction in aerosol layers. Ozone column retrieval is performed evaluating measurements from pixels in the Chappuis absorption band. A retrieval algorithm to derive the water-vapor column from the sunphotometer measurements is currently under development. Of the various airborne

  12. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. The Millimeter-Wave Imaging Radiometer (MIR)

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Jackson, D. M.; Adler, R. F.; Dod, L. R.; Shiue, J. C.

    1991-01-01

    The Millimeter-Wave Imaging Radiometer (MIR) is a new instrument being designed for studies of airborne passive microwave retrieval of tropospheric water vapor, clouds, and precipitation parameters. The MIR is a total-power cross-track scanning radiometer for use on either the NASA ER-2 (high-altitude) or DC-8 (medium altitude) aircraft. The current design includes millimeter-wave (MMW) channels at 90, 166, 183 +/- 1,3,7, and 220 GHz. An upgrade for the addition of submillimeter-wave (SMMW) channels at 325 +/- 1,3,7 and 340 GHz is planned. The nadiral spatial resolution is approximately 700 meters at mid-altitude when operated aboard the NASA ER-2. The MIR consists of a scanhead and data acquisition system, designed for installation in the ER-2 superpod nose cone. The scanhead will house the receivers (feedhorns, mixers, local oscillators, and preamplifiers), a scanning mirror, hot and cold calibration loads, and temperature sensors. Particular attention is being given to the characterization of the hot and cold calibration loads through both laboratory bistatic scattering measurements and analytical modeling. Other aspects of the MIR and the data acquisition system are briefly discussed, and diagrams of the location of the MIR in the ER-2 superpod nosecone and of the data acquisition system are presented.

  14. Scanning and focusing mechanisms of METEOSAT radiometer

    NASA Technical Reports Server (NTRS)

    Jouan, J.

    1977-01-01

    The scanning and focusing mechanisms settled onboard the METEOSAT Radiometer are described. A large camera which will take line by line pictures of the earth from a geostationary satellite in the same manner as a TV picture using both the spin of the spacecraft and the tilt of a telescope is included. The scanning mechanism provides the + or - 9 degrees tilt angle of the telescope through 2,500 elementary steps of 1.256 0.0001 radian. As the radiometer image quality is closely dependent on the characteristics of the scanning law, the mechanism is required to fulfill functional performances specifications particularly severe in terms of linearity of the scan curve, accuracy of each step as well as repeatability of the short-term scanning. The focusing mechanism allows + or - 12 millimeters shift of the telescope focus by step increments of 0.140 mm. The focus adjustment is achieved by moving a dihedral reflector according to a pure straight-line motion. The main requirements of each mechanism are summarized and their design and performances are described in detail.

  15. Microfluidic Radiometal Labeling Systems for Biomolecules

    SciTech Connect

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  16. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  17. Design of an intelligent car

    NASA Astrophysics Data System (ADS)

    Na, Yongyi

    2017-03-01

    The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.

  18. Conceptual radiometer design studies for Earth observations from low Earth orbit

    NASA Technical Reports Server (NTRS)

    Harrington, Richard F.

    1994-01-01

    A conceptual radiometer design study was performed to determine the optimum design approach for spaceborne radiometers in low Earth orbit. Radiometric system configurations which included total power radiometers, unbalanced Dicke radiometers, and balanced Dicke, or as known as noise injection, radiometers were studied. Radiometer receiver configurations which were analyzed included the direct detection radiometer receiver, the double sideband homodyne radiometer receiver, and the single sideband heterodyne radiometer receiver. Radiometer system performance was also studied. This included radiometric sensitivity analysis of the three different radiometer system configurations studied. Both external and internal calibration techniques were analyzed. An accuracy analysis with and without mismatch losses was performed. It was determined that the balanced Dicke radiometer system configuration with direct detection receivers and external calibrations was optimum where frequent calibration such as once per minute were not feasible.

  19. Chem-E-Car Downunder.

    ERIC Educational Resources Information Center

    Rhodes, Martin

    2002-01-01

    Presents the Chem-E-Car competition in which students build a small car powered by a chemical reaction. Focuses on a controlled chemical reaction in which the car travels a required specific distance and stops. Requires participants to prepare poster presentations. (YDS)

  20. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  1. Flight tests of a clear-air turbulence alerting system. [infrared radiometers

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Kuhn, P. M.; Stearns, L. P.

    1981-01-01

    The detection of clear-air turbulence (CAT) ahead of an aircraft in real-time by an infrared (IR) radiometer is discussed. It is noted that the alter time and reliability depend on the band-pass of the IR filter used and on the altitude of the aircraft. Results of flights tests indicate that a bandpass of 20 to 40 microns appears optimal for altering the aircraft crew to CAT at times before encounter of 2 to 9 min. Alert time increases with altitude, as the atmospheric absorption determining the horizontal weighting is reduced.

  2. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  3. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Astrophysics Data System (ADS)

    King, J. L.

    1980-05-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  4. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Technical Reports Server (NTRS)

    King, J. L.

    1980-01-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  5. Non-Scanning Radiometer Results for Earth Radiation Budget Investigations

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Green, Richard N.; Lee, Robert B., III; Bess, T. Dale; Rutan, David

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) included non-scanning radiometers (Luther, 1986) flown aboard a dedicated mission of Earth Radiation Budget Satellite, and the NOAA-9 and -10 operational meteorological spacecraft (Barkstrom and Smith, 1986). The radiometers first began providing Earth radiation budget data in November 1984 and have remained operational, providing a record of nearly 8 years of data to date for researchers. Although they do not produce measurements with the resolution given by the scanning radiometers, the results from the non-scanning radiometers are extremely useful for climate research involving long-term radiation data sets. This paper discusses the non-scanning radiometers, their stability, the method of analyzing the data, and brief scientific results from the data.

  6. 1/ f-Type noise in a total power radiometer

    NASA Astrophysics Data System (ADS)

    Tsybulev, P. G.; Dugin, M. V.; Berlin, A. B.; Nizhelskij, N. A.; Kratov, D. V.; Udovitskiy, R. Yu.

    2014-04-01

    We report the experimental results of a study of the sources of 1/ f α type noise (hereafter referred to as 1/ f-type noise for the sake of brevity) in a total power radiometer. We find this noise to have two main sources in the radiometer: microwave amplifiers and the square-law diode detector with a Schottky barrier. We present methods for a substantial reduction of 1/ f-type noise, which allow total power radiometer measurements to be performed with nominal sensitivity on time scales of up to 10 seconds. The sensitivity of the total power radiometer on time scales up to 100 seconds remains higher than that of a Dicke switched radiometer.

  7. MCM Polarimetric Radiometers for Planar Arrays

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  8. Girls, Cars, and Science

    NASA Astrophysics Data System (ADS)

    Parks, Beth

    2005-03-01

    For the past two summers, I have run an NSF-funded residential camp for girls ages 14-17. This camp is designed to stimulate girls' interest in science by building on their interest in automobiles. The girls spend half the day in hands-on work with cars at Morrisville State College. The other half of the day is dedicated to laboratory exercises at Colgate University that have been designed to help girls learn the science behind the operation of cars. While it is impossible to assess the long-range impact of this program after only two years, the results seem promising. I will discuss the camp program, with particular emphasis on the laboratory experiments that have been developed, which could easily be incorporated into standard high school or college laboratories.

  9. Water Vapor Radiometer for ALMA: Optical Design and Verification

    NASA Astrophysics Data System (ADS)

    Cherednichenko, S.; Emrich, A.; Peacocke, T.

    2010-03-01

    Atacama Large Millimeter wave Array (ALMA) is being built at a high altitude Atacama Desert in Chile. It will consist of 50 12m telescopes with heterodyne instruments to cover a large frequency range from about 30GHz to nearly 1THz. In order to facilitate the interferometer mode of operation all receivers have to be phase synchronized. It will be accomplished by phase locking of all local oscillators from a single reference source. However, a noticeable part of the phase error is caused as the signal propagates through the Earth atmosphere. Since this effect originates from the fluctuations of water vapors, it can be accounted for by carefully measuring the spectral width of one of water vapor resonance absorption lines. This will be done with a submillimeter heterodyne radiometer, Water Vapor Radiometer (WVR). WVR will measure the sky brightness temperature in the beam path of every telescope across the 183GHz water line with a spectral resolution of about 1GHz. Accuracy of the calculated optical delay is determined by the combination of the radiometric accuracy of the WVR and of the errors originated in the WVR illumination of the telescope. We will describe major challenges in the design of the WVR to comply with the stringent requirements set to the WVR. Several approaches to simulate the quasioptical waveguide which brings the signal from the telescope's subreflector to the mixer horn, were used: fundamental mode Gaussian beam propagation, combined ray tracing with diffraction effects (using package ZEMAX), and a full vector electromagnetic simulations (using GRASP). The computational time increases rapidly from the first method to the last one. We have found that ZEMAX results are quite close to the one from GRASP, however obtained with nearly instant computation, which allows multiple iterations during system optimization. The beam pattern of the WVR and of WVR with the optical Relay (used to bring the signal from the telescope's main axis to the WVR input

  10. Usability of car stereo.

    PubMed

    Razza, Bruno Montanari; Paschoarelli, Luis Carlos

    2012-01-01

    Automotive sound systems vary widely in terms of functions and way of use between different brands and models what can bring difficulties and lack of consistency to the user. This study aimed to analyze the usability of car stereo commonly found in the market. Four products were analyzed by task analysis and after use reports and the results indicate serious usability issues with respect to the form of operation, organization, clarity and quality of information, visibility and readability, among others.

  11. New developments in clinical CARS

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Kellner-Höfer, Marcel; Bückle, Rainer; Darvin, Maxim; Lademann, Juergen; König, Karsten

    2013-02-01

    We combined two-photon fluorescence and coherent anti-Stokes Raman scattering (CARS) imaging in a clinical hybrid multiphoton tomograph for in vivo imaging of human skin. The clinically approved TPEF/CARS system provides simultaneous imaging of endogenous fluorophores and non-fluorescent lipids. The Stokes laser for the two-beam configuration of CARS is based on spectral broadening of femtosecond laser pulses in a photonic crystal fiber (PCF). We report on the highly flexible medical TPEF/CARS tomograph MPTflex®-CARS with an articulated arm and first in vivo measurements on human skin.

  12. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  13. The Use of Rotating Shadowband Radiometers and Microwave Radiometers to Obtain Cloud Properties in Arctic Environments

    SciTech Connect

    Barnard, James C. ); Liljegren, James C.; Min, Qilong; Doran, J Christopher )

    2001-01-01

    In this paper we discuss the use of rotating shadowband radiometers and microwave radiometers to find shortwave cloud optical depth and cloud effective radius at two Arctic sites. These sites are the SHEBA ice camp site (a field study undertaken in 1997 and 1998) and the ARM Barrow (AK) site. Special measures are necessary to process the data from the SHEBA site to account for the harsh environment in which the instruments reside. The analysis shows that, over the summer of 1998, the median cloud optical depth at the SHEBA site is greater than the median cloud optical depth at the Barrow site. The cloud droplet effective radius is less at the SHEBA site than the Barrow site.

  14. Stable Targets for Spaceborne Microwave Radiometer Calibration

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Chan, S. K.; Armstrong, R. L.; Brodzik, M. J.; Savoie, M. H.; Knowles, K.

    2006-01-01

    Beginning in the 1970s, continuous observations of the Earth have been made by spaceborne microwave radiometers. Since these instruments have different observational characteristics, care must be taken in combining their data to form consistent long term records of brightness temperatures and derived geophysical quantities. To be useful for climate studies, data from different instruments must be calibrated relative to each other and to reference targets on the ground whose characteristics are stable and can be monitored continuously. Identifying such targets over land is not straightforward due to the heterogeneity and complexity of the land surface and cover. In this work, we provide an analysis of multi-sensor brightness temperature statistics over ocean, tropical forest, and ice sheet locations, spanning the period from 1978 to the present, and indicate the potential of these sites as continuous calibration monitoring targets.

  15. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  16. Prototype Cryospheric Experimental Synthetic Aperture Radiometer (CESAR)

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M.; Phelps, Norman L.; Riley, J. Thomas; Markus, Thorsten M.; Bland, Geoffrey L.; Ruf, Christopher; Lawrence, Roland W.; Reising, Steven C.; Pichel, Thomas

    2005-01-01

    Present satellite microwave radiometers typically have a coarse spatial resolution of several kilometers or more. This is only adequate only over homogenous areas. Significantly enhanced spatial resolution is critically important to reduce the uncertainty of estimated cryospheric parameters in heterogeneous and climatically-sensitive areas. Examples include: (1) dynamic sea ice areas with frequent lead and polynya developments and variable ice thicknesses, (2) mountainous areas that require improved retrieval of snow water equivalent, and (3) melting outlet glacier or ice shelf areas along the coast of Greenland and Antarctica. For these situations and many others, an Earth surface spot size of no more than 100 m is necessary to retrieve the information needed for significant new scientific progress, including the synthesis of field observations with satellite observations with high confidence.

  17. Biases caused by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers

    NASA Astrophysics Data System (ADS)

    Meunier, V.; Löhnert, U.; Kollias, P.; Crewell, S.

    2013-05-01

    More so than the traditional fixed radiometers, the scanning radiometer requires a careful design to ensure high quality measurements. Here the impact of the radiometer characteristics (e.g., antenna beam width and receiver bandwidth) and atmospheric propagation (e.g. curvature of the Earth and vertical gradient of refractive index) on scanning radiometer measurements are presented. A forward radiative transfer model that includes all these effects to represent the instrument measurements is used to estimate the biases. These biases are estimated using differences between the measurement with and without these characteristics for three commonly used frequency bands: K, V and W-band. The receiver channel bandwidth errors are less important in K-band and W-band. Thus, the use of a wider bandwidth to improve detection at low signal-to-noise conditions is acceptable at these frequencies. The biases caused by omitting the antenna beam width in measurement simulations are larger than those caused by omitting the receiver bandwidth, except for V-band where the bandwidth may be more important in the vicinity of absorption peaks. Using simple regression algorithms, the effects of the bandwidth and beam width biases in liquid water path, integrated water vapour, and temperature are also examined. The largest errors in liquid water path and integrated water vapour are associated with the beam width errors.

  18. The Hurricane Imaging Radiometer (HIRAD): Instrument Status and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Bailey, M. C.; Gross, Steven; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative radiometer which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR) [Uhlhorn and Black, 2004]. The HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology [Ruf et al., 1988]. This sensor operates over 4-7 GHz, where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometer [Bettenhausen et al., 2006; Brown et al., 2006]. HIRAD incorporates a new and unique array antenna design along with several technologies successfully demonstrated by the Lightweight Rain Radiometer instrument [Ruf et al., 2002; Ruf and Principe, 2003]. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean winds and rain in hurricane conditions. Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. The Hurricane Imaging Radiometer (HIRAD) is an innovative architecture which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology combined with a a unique array antenna design. The overarching design concept of HIRAD is to combine the multi-frequency C-band observing strategy of the SFMR with STAR technology to

  19. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    PubMed Central

    Pérez, Isaac Ramos; Bosch-Lluis, Xavi; Camps, Adriano; Alvarez, Nereida Rodriguez; Hernandez, Juan Fernando Marchán; Domènech, Enric Valencia; Vernich, Carlos; de la Rosa, Sonia; Pantoja, Sebastián

    2009-01-01

    The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN) signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network. PMID:22454576

  20. Characterizations of the Earth Radiation Budget Experiment (ERBE) scanning radiometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Avis, Lee M.; Halyo, Nesim; Gibson, Michael A.

    1989-01-01

    NASA's Earth Radiation Budget Experiment employs the Earth Radiation Budget Satellite and the NOAA 9 and 10 spacecraft to obtain absolute measurements of incoming solar radiation, shortwave earth-reflected solar radiation, and longwave earth-emitted radiation, using both scanning and nonscanning radiometers. Each of the three remote-sensing spacecraft carry narrow FOV scanning radiometers whose detection sensors are thermistor bolometers. Attention is presently given to the calibration models and methods employed in characterizing the scanning radiometers' output signals; the design features of the scanners and flight calibration systems are presented.

  1. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  2. Infrared radiometer for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Moorman, S. L.; Becker, E. C.

    1978-01-01

    An infrared radiometer is described which was developed to measure temperature rises of wind tunnel models undergoing transient heating over a temperature range of -17.8 C to 260 C. This radiometer interfaces directly with a system which measures the effective thermophysical property square root of rho ck. It has an output temperature fluctuation of 0.26 C at low temperatures and 0.07 C at high temperatures, and the output frequency response of the radiometer is from dc to 400 hertz.

  3. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  4. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Annual Report of Cars Loaded and Cars Terminated... LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the... STB-54, Annual Report of Cars Loaded and Cars Terminated, together with the accompanying...

  5. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily Wilson

    2016-01-01

    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  6. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  7. The vertical structure of Arctic haze as determined from airborne net-flux radiometer measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, T. P.; Valero, F. P. J.

    1984-01-01

    From net-flux radiometer measurements and model results, the vertical layer structure is deduced of the Arctic haze encountered during two of the AGASP flights. The total value of the absorption optical depth is found to be on the order of 0.065 for both flights, with the majority of the absorbing aerosol concentrated in the lowest 1.6 km of the atmosphere. A comparison of these results with measurements of the carbon concentration leads to a value of the specific absorption of carbon of 24 sq m g. While higher than expected, this value is shown to be consistent with an internally-mixed aerosol of carbon cores and sulfate shells.

  8. CARS-based silicon photonics

    NASA Astrophysics Data System (ADS)

    Vermeulen, Nathalie; Debaes, Christof; Thienpont, Hugo

    2009-05-01

    In this invited paper, we will first discuss the recent research progress regarding silicon-on-insulator (SOI) Raman wavelength converters, the working principle of which is based on the four-wave mixing process of coherent anti-Stokes Raman scattering (CARS). Next, we will present our research results on other aspects of CARS in SOI waveguides. First, starting from the basic formalism for CARS we will show that, in contrast to what most scientists believe, CARS exchanges energy with the Raman medium in which it takes place and is even able to extract energy (i.e. extract phonons) from it. Furthermore, we will introduce a novel CARS-based approach to reduce the heat dissipation in Raman lasers due to the quantum defect between pump and lasing photons, and we will numerically demonstrate that with this "CARS-based heat mitigation technique" the quantum-defect heating in SOI waveguide Raman lasers could be reduced with as much as 35%.

  9. Next generation along track scanning radiometer - SLSTR

    NASA Astrophysics Data System (ADS)

    Frerick, J.; Nieke, J.; Mavrocordatos, C.; Berruti, B.; Donlon, C.; Cosi, M.; Engel, W.; Bianchi, S.; Smith, Dave

    2012-10-01

    Since 1991, along track scanning radiometers (A)ATSR have been flown on a series of satellite platforms. These instruments use an along-track scanning design that provides two views of the same earth target through different atmospheric paths. Dual-view multispectral measurements can be used to derive an accurate atmospheric correction when retrieving geophysical parameters such as Sea Surface Temperature (SST). In addition, the (A)ATSR family of instruments use actively cooled detector systems and two precision calibration blackbody targets to maintain and manage on-board calibration. Visible channel calibration is implemented using a solar diffuser viewed once per orbit. As a consequence of these design features, resulting data derived from (A)ATSR instruments is both accurate and well characterized. After 10 years of Service the ENVISAT platform was lost in early 2012 asnd AATSR operations stopped. The Global Monitoring for Environment and Security (GMES) Sentinel-3 "Sea Land Surface Temperature Radiometer" (SLSTR) instrument is the successor to the AATSR family of instruments and is expected to launch in April 2014. The challenge for SLSTR is to develop and deliver a new instrument with identical or improved performance to that of the (A)ATSR family. The SLSTR design builds on the heritage features of the (A)ATSR with important extensions to address GMES requirements. SLSTR maintains the main instrument principles (along-track scanning, a two point infrared on-board radiometric calibration, actively cooled detectors, solar diffuser). The design also includes more spectral channels including additional bands at 1.3 and 2.2 μm providing enhanced cloud detection, dedicated fire channels, an increase of dual view swath from 500 to 740 km, an increase in the nadir swath of 1400 km. The increase in swath has led to, a new optical front-end design incorporating two rotating scan mirrors (with encoders to provide pointing knowledge) and an innovative flip mechanism to

  10. Lighting innovations in concept cars

    NASA Astrophysics Data System (ADS)

    Berlitz, Stephan; Huhn, Wolfgang

    2005-02-01

    Concept cars have their own styling process. Because of the big media interest they give a big opportunity to bring newest technology with styling ideas to different fairgrounds. The LED technology in the concept cars Audi Pikes Peak, Nuvolari and Le Mans will be explained. Further outlook for the Audi LED strategy starting with LED Daytime Running Lamp will be given. The close work between styling and technical engineers results in those concept cars and further technical innovations based on LED technologies.

  11. Cars Spectroscopy of Propellant Flames

    DTIC Science & Technology

    1983-11-01

    Bele,:1t )"(vaiaable Copy AD AD-E4OI 102 TECMNICA._ REPORT ;RLCD-TR-83047 CARS SPECTROSCOPY Of PROPELLANT FLAMES L. E. HARRIS DTIC ii IELECTE0 "" NOV...4. TITLE (mid Subtitle) 5. TYPE OF REPORT & PERIOD COVERED CARS SPECTROSCOPY OF PROPELLANT FLAMES Final Ś. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a...ea•abo. Broadband CARS CARS spectra Spectroscopy Propellant *0AUINIACT (0w o roemtae 401 N uueedswr Mu $000tit? b7 61"k Auhee) Obtaining useful

  12. Sparks fly over electric cars

    SciTech Connect

    Griffith, V.

    1994-10-01

    While the US automobile industry scrambles to meet 1998 deadlines to put electric vehicles on the market, controversy about the environmental benefits and commercial viability of battery-operated cars is mounting. Circumstances in the US increasingly favor the electric car. Air quality laws in California and Massachusetts now demand that {open_quotes}zero-emission{close_quotes} vehicles comprise 2 percent of total sales in the car market by 1998. Electric cars are the only vehicles to meet such standards so far. Other states are considering similar laws. This article examines the pros and cons of electric vehicle use.

  13. Errors in scatterometer-radiometer wind measurement due to rain

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Chaudhry, A. H.; Birrer, I. J.

    1983-01-01

    The behavior of radiometer corrections for the scatterometer is investigated by simulating simple situations using footprint sizes comparable with those used in the SEASAT-1 experiment and also actual footprints and rain rates from a hurricane observed by the SEASAT-1 system. The effects on correction due to attenuation and wind speed gradients are examined independently and jointly. It is shown that the error in the wind-speed estimate can be as large as 200% at higher wind speeds. The worst error occurs when the scatterometer footprint overlaps two or more radiometer footprints and the attenuation in the scatterometer footprint differs greatly from those in parts of the radiometer footprints. This problem could be overcome by using a true radiometer-scatterometer system having identical coincident footprints comparable in size with typical rain cells.

  14. Eta Car: The Good, the Bad and the Ugly of Nebular and Stellar Confusion

    NASA Technical Reports Server (NTRS)

    Gull, T.R.; Sonneborn, G.; Jensen, A.G.; Nielsen, K.E.; Vieira Kover, G.; Hillier, D.J.

    2008-01-01

    Observations in the far-UV provide a unique opportunity to investigate the very massive star Eta Car and its hot binary companion, Eta Car B. Eta Car was observed with FUSE over a large portion of the 5.54 year spectroscopic period before and after the 2003.5 minimum. The observed spectrum is defined by strong stellar wind signatures, primarily from Eta Car A, complicated by the strong absorptions of the ejecta surrounding Eta Car plus interstellar absorption. The Homunculus and Little Homunculus are massive bipolar ejecta historically associable with LBV outbursts in the 1840s and the 1890s and are linked to absorptions at -513 and -146 km/s, respectively. The FUSE spectra are confused by the extended nebulosity and thermal drifting of the FUSE co-pointed instruments. Interpretation is further complicated by two B-stars sufficiently close to h Car to be included most of the time in the large FUSE aperture. Followup observations partially succeeded in obtaining spectra of at least one of these B-stars through the smaller apertures, allowing potential separation of the B-star contributions and h Car. A complete analysis of all available spectra is currently underway. Our ultimate goals are to directly detect the hot secondary star if possible with FUSE and to identify the absorption contributions to the overall spectrum especially of the stellar members and the massive ejecta.

  15. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  16. Multibeam 1.4-GHz Pushbroom Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Roland W.; Bailey, Marion C.; Harrington, Richard F.; Hearn, Chase P.; Wells, John G., Jr.; Stanley, William L.

    1990-01-01

    Airborne prototype of multiple-beam pushbroom microwave radiometer (PBMR) developed to advance radiometric technology necessary for remote sensing of geophysical parameters. Instrument used in several joint Langley Research Center/United States Department of Agriculture soil-moisture flight experiments in Virginia, Texas, and California. Data from experiments used to modify, develop, and verify algorithms used to predict soil moisture from remote-sensing measurements. Image data useful in study of effects of characters of beams on radiometer imaging data.

  17. A low-noise beta-radiometer

    SciTech Connect

    Antonenko, G.I.; Savina, V.I.

    1995-12-01

    The two-channel detector for a low-noise (down to 0.06 sec{sup -1}) beta-radiometer for measuring the mass concentration of {sup 90}Sr in the environment after the chemical extraction of strontium by the oxalate-nitrate method was certified at the D.I. Mendeleev Institute of Metrology (certificate No. 137/93). A detector unit using two end-window self-quenching counters with thin input windows (8 {mu}m thick and 60 mm in diameter) operating as a Geiger-Mueller counter and filled with a mixture of 90% helium (atomic gas) and 10% ethanol (organic molecules) can measure the beta-activity of two substrates concurrently. It is often used to detect the beta-radiation of {sup 90}Sr. This isotope produces particles with energies ranging from 180 to 1000 keV, and the detection efficiency is 50% at a level of 0.1 Bq after measuring for 20 min with an uncertainty of 25%.

  18. Pioneer Saturn infrared radiometer - Preliminary results

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.; Neugebauer, G.; Orton, G. S.; Muench, G.; Chase, S. C.

    1980-01-01

    Preliminary results of the infrared radiometer experiment on Pioneer Saturn are reported. The instrument made use of two broadband channels centered at 20 and 45 microns which scan at a fixed 75-deg angle with respect to the spacecraft spin axis to acquire 10,000 image pairs of Saturn and its rings in the 2.5 h before closest approach, as well as several observations of Titan. The intensities of radiation observed in both bands indicate an effective temperature of 94.4 + or - 3 K for the planet, implying a total emission greater than twice the absorbed sunlight. Infrared data also indicates a molecular abundance of 0.85 for H2 relative to H2 + He, which can be improved by comparing the derived temperature profiles and radio occultation data. Planetary temperatures are found to range from a minimum of 83 to 140 K at the 1 bar level, with differences of 2.5 K between belts and zones up to the 0.06-bar level, while ring temperatures range from 60 to 70 K on the illuminated side and from less than 60 to 67 K in the planet's shadow and average 55 K on the unilluminated side. Preliminary estimates indicate a 45-micron brightness temperature of 80 + or - 10 K for Titan.

  19. A segmented mirror antenna for radiometers

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Houshmand, B.; Zimmerman, M.; Acosta, R.

    1989-01-01

    An antenna is designed for the radiometer application of the planned NASA Earth Science Geostationary Platforms in the 1990's. The antenna consists of two parts: a regular parabolic dish of 5 meters in diameter which converts the radiation from feeds into a collimated beam, and a movable mirror that redirects the beam to a prescribed scan direction. The mirror is composed of 28 segmented planar conducting plates, mostly one square meter in size. The secondary pattern of the antenna was analyzed based on a physical optics analysis. For frequencies between 50 and 230 GHz, and for a scan range of + or -8 deg (270 beamwidths scan at 230 GHz), the worst calculated beam efficiency is 95 percent. To cover such a wide frequency and scan range, each of the 28 plates is individually controlled for a tilting less than 4 deg, and for a sliding less than 0.5 cm. The sliding is done at discrete steps. At 230 GHz, a step size of 2 mil is sufficient. The plate positions must be reset for each frequency and for each scan direction. Once the position is set, the frequency bandwidth of the antenna is very narrow.

  20. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    SciTech Connect

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  1. Global irradiance calibration of multifilter UV radiometers

    NASA Astrophysics Data System (ADS)

    Piedehierro, A. A.; Cancillo, M. L.; Serrano, A.; Antón, M.; Vilaplana, J. M.

    2016-01-01

    It is well known that the amount of ultraviolet solar radiation (UV) reaching the Earth's surface is governed by stratospheric ozone, which has exhibited notable variations since the late 1970s. A thorough monitoring of UV radiation requires long-term series of accurate measurements worldwide, and to keep track of its evolution, it is essential to use high-quality instrumentation with an excellent long-term performance capable of detecting low UV signal. There are several UV monitoring networks worldwide based on multifilter UV radiometers; however, there is no general agreement about the most suitable methodology for the global irradiance calibration of these instruments. This paper aims to compare several calibration methods and to analyze their behavior for different ranges of solar zenith angle (SZA). Four methods are studied: the two currently most frequently used methods referred to in the literature and two new methods that reduce systematic errors in calibrated data at large solar zenith angles. The results evidence that proposed new methods show a clear improvement compared to the classic approaches at high SZA, especially for channels 305 and 320 nm. These two channels are of great interest for calculating the total ozone column and other products such as dose rates of biological interest in the UV range (e.g., the erythemal dose).

  2. 54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ASSEMBLIES AND METAL REINFORCING, December 19, 1947. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. Radiometer system requirements for microwave remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Juang, Jeng-Nan

    1990-01-01

    An area of increasing interest is the establishment of a significant research program in microwave remote sensing from satellites, particularly geosynchronous satellites. Due to the relatively small resolution cell sizes, a severe requirement is placed on beam efficiency specifications for the radiometer antenna. Geostationary satellite microwave radiometers could continuously monitor several important geophysical parameters over the world's oceans. These parameters include the columnar content of atmospheric liquid water (both cloud and rain) and water vapor, air temperature profiles, and possibly sea surface temperature. Two principle features of performance are of concern. The first is the ability of the radiometer system to resolve absolute temperatures with a very small absolute error, a capability that depends on radiometer system stability, on frequency bandwidth, and on footprint dwell time. The second is the ability of the radiometer to resolve changes in temperature from one resolution cell to the next when these temperatures are subject to wide variation over the overall field-of-view of the instrument. Both of these features are involved in the use of the radiometer data to construct high-resolution temperature maps with high absolute accuracy.

  4. Car versus bicycle: conclusion.

    PubMed

    Ross, David W; Wichman, Carol; Mackinnon, Mike

    2009-01-01

    A 58-year-old man was riding his bicycle and was struck by a car. He was ejected and landed on his back on the pavement of the roadway. He complained of severe pain in his lower back and sacral area. Ground emergency medical services (EMS) arrived to find a pale, diaphoretic man who was alert but in distress. His medical history was negative, and he was taking no medications. The initial heart rate was 130 beats/minute, and the blood pressure was 70 mmHg by palpation. A helicopter air ambulance was requested from the rural scene location to transport the patient to a trauma center. The physical examination by the flight crew demonstrated the patient had not changed from the original EMS assessment, despite the administration of 1 L normal saline intravenously. There were no apparent injuries to his head, neck, chest, or extremities.

  5. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless the car...

  6. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless the car...

  7. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless the car...

  8. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless the car...

  9. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked...

  10. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with...

  11. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with...

  12. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with...

  13. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with...

  14. AAP Updates Recommendations on Car Seats

    MedlinePlus

    ... Size Email Print Share AAP Updates Recommendations on Car Seats Page Content Article Body Children should ride ... of approved car safety seats. Healthy Children Radio: Car Seat Safety Dennis Durbin, MD, FAAP, lead author ...

  15. Car design and risk of pedestrian deaths.

    PubMed Central

    Robertson, L S

    1990-01-01

    Fatal pedestrian injury rates by cars with relatively sharp front-corner designs were compared to such rates by cars of similar-size with relatively smooth front-corner designs. The relative risk of death by front-corner impact was 26 percent greater among the sharp-cornered cars. Pedestrian death rates from impact with other points on the cars and insurance claim frequencies among the studied cars were similar between the two sets of cars. PMID:2327543

  16. Pervasive Adaptation in Car Crowds

    NASA Astrophysics Data System (ADS)

    Ferscha, Alois; Riener, Andreas

    Advances in the miniaturization and embedding of electronics for microcomputing, communication and sensor/actuator systems, have fertilized the pervasion of technology into literally everything. Pervasive computing technology is particularly flourishing in the automotive domain, exceling the “smart car”, embodying intelligent control mechanics, intelligent driver assistance, safety and comfort systems, navigation, tolling, fleet management and car-to-car interaction systems, as one of the outstanding success stories of pervasive computing. This paper raises the issue of the socio-technical phenomena emerging from the reciprocal interrelationship between drivers and smart cars, particularly in car crowds. A driver-vehicle co-model (DVC-model) is proposed, expressing the complex interactions between the human driver and the in-car and on-car technologies. Both explicit (steering, shifting, overtaking), as well as implicit (body posture, respiration) interactions are considered, and related to the drivers vital state (attentive, fatigue, distracted, aggressive). DVC-models are considered as building blocks in large scale simulation experiments, aiming to analyze and understand adaptation phenomena rooted in the feed-back loops among individual driver behavior and car crowds.

  17. Safety upgrades plug car leaks

    SciTech Connect

    Not Available

    1993-08-01

    To lessen the chance of a chemical leak occurring during rail transport, some companies are improving tank car sturdiness and safety by adding such features as top-loading valves, on-board monitoring devices, and thicker, more impact-resistant hulls. Results include a dramatic drop in the number of rail incidents and leak tank cars. Chemicals Division of Olin Corporation (Stamford, Connecticut) has assigned its name to a new fleet of chlorine, caustic soda and toluene diisocyanate (TDI) tank cars. Each car carries the company's Care[trademark]Car registered trademark. The upgrade is part of a company-wide quality improvement process started in 1986. The company requires acoustic emissions (AE) testing on all hazardous materials tank cars. If an area has a defect, it expands and makes a slight sound when subjected to stress. In an AE test, cars are subject to simulated bumps and jolts as in rail shipment. Electronic sensors transfer any stress noises onto a computer screen, where an operator can pinpoint the trouble source.

  18. Clinical multiphoton and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Darvin, M. E.; Lademann, J.; König, K.

    2012-03-01

    We report on clinical CARS imaging of human skin in vivo with the certified hybrid multiphoton tomograph CARSDermaInspect. The CARS-DermaInspect provides simultaneous imaging of non-fluorescent intradermal lipid and water as well as imaging of two-photon excited fluorescence from intrinsic molecules. Two different excitation schemes for CARS imaging have been realized: In the first setup, a combination of fs oscillator and optical parametric oscillator provided fs-CARS pump and Stokes pulses, respectively. In the second setup a fs oscillator was combined with a photonic crystal fiber which provided a broadband spectrum. A spectral range out of the broadband-spectrum was selected and used for CARS excitation in combination with the residual fs-oscillator output. In both setups, in addition to CARS, single-beam excitation was used for imaging of two-photon excited fluorescence and second harmonic generation signals. Both CARS-excitation systems were successfully used for imaging of lipids inside the skin in vivo.

  19. UV Nebular Absorption in Eta Car and Weigelt D

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Vieira, G. L.; Gull, T. R.; Lindler, D. J.

    2004-01-01

    Coronal Mass Ejections (CMEs) are a spectacular manifestation of solar activity. CMEs typically appear as looplike features that disrupt helmet streamers in the solar corona. They are believed to be the primary cause of large, non-recurrent geomagnetic storms. The goal of our research sponsored by NASA's Supporting Research and Technology Program in Solar Physics is to investigate how the corona evolves to produce these eruptions. In the following sections we describe the work performed under this contract.

  20. Radiometer effect in space missions to test the equivalence principle

    NASA Astrophysics Data System (ADS)

    Nobili, A. M.; Bramanti, D.; Comandi, G.; Toncelli, R.; Polacco, E.; Catastini, G.

    2001-05-01

    Experiments to test the equivalence principle in space by testing the universality of free fall in the gravitational field of the Earth have to take into account the radiometer effect, caused by temperature differences in the residual gas inside the spacecraft as it is exposed to the infrared radiation from Earth itself. We report the results of our evaluation of this effect for the three proposed experiments currently under investigation by space agencies: μSCOPE, STEP, and GG. It is found that in μSCOPE, which operates at room temperature, and even in STEP, where the effect is greatly reduced by means of very low temperatures, the radiometer effect is a serious limitation to the achievable sensitivity. Instead, by axially spinning the whole spacecraft and with an appropriate choice of the sensitivity axes-as proposed in GG-the radiometer effect averages out and becomes unimportant even at room temperature.

  1. Progress in Low-Power Digital Microwave Radiometer Technologies

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2004-01-01

    Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.

  2. CAR, driving into the future.

    PubMed

    Swales, Karen; Negishi, Masahiko

    2004-07-01

    The nuclear orphan receptor CAR is active in the absence of ligand with the unique capability to be further regulated by activators. A number of these activators, including phenobarbital, do not directly bind to the receptor. Considered a xenobiotic sensing receptor, CAR transcriptionally modifies the expression of genes involved in the metabolism and elimination of xenobiotics and steroids in response to these compounds and other cellular metabolites. Its hepatic expression pattern endows the liver with the ability to protect against not only exogenous but also endogenous insults. The mechanism of CAR activation is complex, involving translocation from the cytoplasm to the nucleus in the presence of activators, followed by further activation steps in the nucleus. Although this mechanism remains under investigation, we have summarized here the cellular signaling pathways elucidated so far and speculate on the mechanism by which CAR activators regulate gene expression through this network.

  3. Car Safety for Special Children.

    ERIC Educational Resources Information Center

    Holland, Suzanne Hauser

    1983-01-01

    Various car seats, harnesses, and vests that can be used with handicapped children are described. Suggestions are also made for improvment when existing equipment is not appropriate. A list of resources on the topic is also provided. (CL)

  4. Maser radiometer for cosmic background radiation anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Fixsen, D. J.; Wilkinson, D. T.

    1982-06-01

    A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.

  5. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  6. Experimental characterization of edge force on the Crookes radiometer

    SciTech Connect

    Ventura, Austin L.; Ketsdever, Andrew D.; Gimelshein, Natalia E.; Gimelshein, Sergey F.

    2014-12-09

    The contribution of edge force on the Crookes radiometer is experimentally investigated with three vane geometries. This work examines increasing the force per unit weight of a radiometer vane for applications such as near-space propulsion by increasing the vane’s perimeter while decreasing the total surface area of the vane by means of machined holes in the vanes. Experimental results are given for three vane geometries. These results indicate that although force to vane weight ratios can be improved, the maximum force is achieved by a vane geometry that contains no hole features.

  7. Maser radiometer for cosmic background radiation anisotropy measurements

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Wilkinson, D. T.

    1982-01-01

    A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated.

  8. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  9. ESTAR - A synthetic aperture microwave radiometer for measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Griffis, A.; Swift, C. T.; Jackson, T. J.

    1992-01-01

    The measurement of soil moisture from space requires putting relatively large microwave antennas in orbit. Aperture synthesis, an interferometric technique for reducing the antenna aperture needed in space, offers the potential for a practical means of meeting these requirements. An aircraft prototype, electronically steered thinned array L-band radiometer (ESTAR), has been built to develop this concept and to demonstrate its suitability for the measurement of soil moisture. Recent flights over the Walnut Gulch Watershed in Arizona show good agreement with ground truth and with measurements with the Pushbroom Microwave Radiometer (PBMR).

  10. Getting More Mileage out of Mousetrap Cars

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Wylo, Bonnie

    2004-01-01

    Building and racing mousetrap cars is a common activity in many eighth- and ninth-grade physical science classrooms. However, once students have raced their cars, most mousetrap assignments come to an end. In this article, the authors developed a project to help teachers get more mileage out of mousetrap cars. The Mousetrap Car Project addresses…

  11. Art Cars: Transformations of the Mundane

    ERIC Educational Resources Information Center

    Stienecker, Dawn

    2010-01-01

    The automobile itself is often understood as an extension of oneself, where individuals may manipulate the interior and exterior of cars and trucks, decorating them through detailing, stickers, custom colors, and so on. Others go further and change their cars into unique works of art called art cars. Such cars break away from the banality of mass…

  12. 49 CFR 215.203 - Restricted cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than...

  13. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  14. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  15. 49 CFR 215.203 - Restricted cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than...

  16. 49 CFR 1037.2 - Cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars....

  17. 49 CFR 215.203 - Restricted cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than...

  18. 49 CFR 215.203 - Restricted cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than...

  19. 49 CFR 174.615 - Cleaning cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned...

  20. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  1. 49 CFR 1037.2 - Cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars....

  2. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  3. 49 CFR 1037.2 - Cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars....

  4. 49 CFR 1037.2 - Cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars....

  5. 49 CFR 1037.2 - Cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars....

  6. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  7. 49 CFR 215.203 - Restricted cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than...

  8. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    SciTech Connect

    Andreas, Afshin M.; Wilcox, Stephen M.

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  9. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  10. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  11. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  12. Calibration plan for the sea and land surface temperature radiometer

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of <0.3K traced to international standards. To achieve these low uncertainties requires an end to end instrument calibration strategy that includes pre-launch calibration at subsystem and instrument level, on-board calibration systems and sustained post launch activities. The authors describe the preparations for the pre-launch calibration activities including the spectral response, instrument level alignment tests, solar and infrared radiometric calibration. A purpose built calibration rig has been designed and built at RAL space that will accommodate the SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  13. Topographic Signatures in Aquarius Radiometer/Scatterometer Response: Initial Results

    NASA Technical Reports Server (NTRS)

    Utku, C.; LeVine, D. M.

    2012-01-01

    The effect of topography on remote sensing at L-band is examined using the co-located Aquarius radiometer and scatterometer observations over land. A correlation with slope standard deviation is demonstrated for both the radiometer and scatterometer at topographic scales. Although the goal of Aquarius is remote sensing of sea surface salinity, the radiometer and scatterometer are on continuously and collect data for remote sensing research over land. Research is reported here using the data over land to determine if topography could have impact on the passive remote sensing at L-band. In this study, we report observations from two study regions: North Africa between 15 deg and 30 deg Northern latitudes and Australia less the Tasmania Island. Common to these two regions are the semi-arid climate and low population density; both favorable conditions to isolate the effect of topography from other sources of scatter and emission such as vegetation and urban areas. Over these study regions, topographic scale slopes within each Aquarius pixel are computed and their standard deviations are compared with Aquarius scatterometer and radiometer observations over a 36 day period between days 275 and 311 of 2011.

  14. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  15. Radiometer calibration procedure and beacon attenuation estimation reference level

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1994-01-01

    The primary objectives are to compare radiometer attenuation with beacon attenuation and to compare sky temperature estimates with calculations using simultaneous meteorological data. Secondary objectives are: (1) noise diode and reference load measurements and (2) to adjust for outside temperature and component temperature changes.

  16. The MASCOT Radiometer MARA for the Hayabusa 2 Mission

    NASA Astrophysics Data System (ADS)

    Grott, M.; Knollenberg, J.; Hänschke, F.; Helberg, J.; Kührt, E.

    2012-09-01

    The MASCOT radiometer MARA is a multispectral instrument to radiatively measure the surface temperature of the Hayabusa 2 target asteroid 1999JU3. MARA uses 5 bandpass and one longpass channel to determine the surface temperature, emissivity, and thermal inertia. In addition, surface mineralogy can be constrained.

  17. High resolution soil moisture radiometer. [large space structures

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  18. Global measurements of air pollution from satellites. [employing radiometer techniques

    NASA Technical Reports Server (NTRS)

    Acton, L. L.; Bartle, E. R.; Griggs, M.; Hall, G. D.; Hesketh, W. D.; Ludwig, C. B.; Malkmus, W.; Reichle, H.

    1974-01-01

    The conceptual design of an FOV nadir radiometer was examined for its applicability to monitoring the radiation process in the atmosphere as it relates to aerosol behavior. The instrument employs a gas filter correlation technique and is suitable for transportation onboard satellite.

  19. Radio-frequency interference mitigating hyperspectral L-band radiometer

    NASA Astrophysics Data System (ADS)

    Toose, Peter; Roy, Alexandre; Solheim, Frederick; Derksen, Chris; Watts, Tom; Royer, Alain; Walker, Anne

    2017-02-01

    Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio-astronomy frequency allocation of 1400-1427 MHz but nonetheless are still subjected to frequent RFI intrusions. We present a unique surface-based and airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI-detecting radiometer designed with a frequency range from 1400 through ≈ 1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm), and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets and 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.

  20. ENVISAT-1 Microwave Radiometer (MWR): validation campaign achievements

    NASA Astrophysics Data System (ADS)

    Bombaci, Ornella; L'Abbate, Michele; Svara, Carlo; Caltagirone, Francesco; Guijarro, J.

    1998-12-01

    Alenia Aerospazio Remote Sensing Division started in 1986 the study of microwave radiometers under Italian Space Agency fundings, and since 1989 the definition and development of radiometric systems under European Space Agency (ESA) contracts. In particular the Multifrequency Imaging Microwave Radiometer (MIMR) and the ENVISAT Microwave Radiometer (MWR) were both developed by the European Industry, with Alenia Aerospazio as Prime Contractor. MWR is an instrument designed and developed as part of the Envisat-1 satellite scientific payload, with Alenia Spazio engaged in the phase C-D as instrument Prime Contractor, leading an industrial consortium of European and American companies. The Flight Model of the Instrument has been delivered to ESA at the end of July 1997, after completion of test and calibration activities. Given the MWR in-flight calibration concept, a specific pre-flight calibration and characterization activity was performed to define a radiometer mathematical model and a relevant ground characterization database including all model coefficients. The model and its database will be used by on-ground processing during instrument in-flight operation to retrieve the antenna-measured temperature. Standing its complexity and iterative measurement concept, the pre-flight characterization and calibration of the instrument is the key aspect of its development phase. Within this paper the key instrument design topics are summarized, and after a summary overview of the overall flight model qualification campaign, emphasis will be on the pre-flight calibration and characterization activities and radiometric performance achievements among several test phases.

  1. A cavity radiometer for Earth albedo measurement, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiometric measurements of the directional albedo of the Earth requires a detector with a flat response from 0.2 to 50 microns, a response time of about 2 seconds, a sensitivity of the order of 0.02 mw/sq cm, and a measurement uncertainty of less than 5 percent. Absolute cavity radiometers easily meet the spectral response and accuracy requirements for Earth albedo measurements, but the radiometers available today lack the necessary sensitivity and response time. The specific innovations addressed were the development of a very low thermal mass cavity and printed/deposited thermocouple sensing elements which were incorporated into the radiometer design to produce a sensitive, fast response, absolute radiometer. The cavity is applicable to the measurement of the reflected and radiated fluxes from the Earth surface and lower atmosphere from low Earth orbit satellites. The effort consisted of requirements and thermal analysis; design, construction, and test of prototype elements of the black cavity and sensor elements to show proof-of-concept. The results obtained indicate that a black body cavity sensor that has inherently a flat response from 0.2 to 50 microns can be produced which has a sensitivity of at least 0.02 mw/sq cm per micro volt ouput and with a time constant of less than two seconds. Additional work is required to develop the required thermopile.

  2. Mapping the sky with the COBE differential microwave radiometers

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Gulkis, S.

    1992-01-01

    The Differential Microwave Radiometers (DMR) instrument on COBE is designed to determine the anisotropy of the Cosmic Microwave Background by providing all-sky maps of the diffuse sky brightness at microwave frequencies. The principal intent of this lecture is to show how these maps are generated from differential measurements.

  3. A New Way to Demonstrate the Radiometer as a Heat Engine

    ERIC Educational Resources Information Center

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  4. A novel solution for car traffic control based on radiometric microwave devices

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  5. Radiometer effect in the μSCOPE space mission

    NASA Astrophysics Data System (ADS)

    Nobili, A. M.; Bramanti, D.; Comandi, G. L.; Toncelli, R.; Polacco, E.

    2002-12-01

    Space experiments to test the Equivalence Principle (EP) are affected by a systematic radiometer effect having the same signature as the target signal. In [PhRvD 63 (2001) 101101(R)] we have investigated this effect for the three proposed experiments currently under study by space agencies: μSCOPE, STEP and GG, setting the requirements to be met—on temperature gradients at the level of the test masses—for each experiment to reach its goal. We have now re-examined the radiometer effect in the case of μSCOPE and carried out a quantitative comparative analysis, on this issue, with the proposed heliocentric LISA mission for the detection of gravity waves. We find that, even assuming that the μSCOPE spacecraft and payload be built to meet all the challenging requirements of LISA, temperature gradients along its test masses would still make the radiometer effect larger than the target signal of an EP violation because of flying in the low geocentric orbit required for EP testing. We find no way to separate with certainty the radiometer systematic disturbance from the signal. μSCOPE is designed to fly a second accelerometer whose test masses have the same composition, in order to separate out systematic effects which—not being composition dependent like the signal—must be detected by both accelerometers. We point out that this accelerometer is in fact insensitive to the radiometer effect, just as it is to an EP violation signal, and therefore even having it onboard will not allow this disturbance to be separated out. μSCOPE is under construction and it is scheduled to fly in 2004. If it will detect a signal to the expected level, it will be impossible to establish with certainty whether it is due to the well known classical radiometer effect or else to a violation of the equivalence principle—which would invalidate General Relativity. The option to increase the rotation speed of the spacecraft (now set at about 10 -3 Hz) so as to average out the temperature

  6. Quantifying the Magnitude of Anomalous Solar Absorption

    SciTech Connect

    Ackerman, Thomas P.; Flynn, Donna M.; Marchand, Roger T.

    2003-05-16

    The data set from ARESE II, sponsored by the Atmospheric Radiation Measurement Program, provides a unique opportunity to understand solar absorption in the atmosphere because of the combination of three sets of broadband solar radiometers mounted on the Twin Otter aircraft and the ground based instruments at the ARM Southern Great Plains facility. In this study, we analyze the measurements taken on two clear sky days and three cloudy days and model the solar radiative transfer in each case with two different models. On the two clear days, the calculated and measured column absorptions agree to better than 10 Wm-2, which is about 10% of the total column absorption. Because both the model fluxes and the individual radiometer measurements are accurate to no better than 10 Wm-2, we conclude that the models and measurements are essentially in agreement. For the three cloudy days, the model calculations agree very well with each other and on two of the three days agree with the measurements to 20 Wm-2 or less out of a total column absorption of more than 200 Wm-2, which is again agreement at better than 10%. On the third day, the model and measurements agree to either 8% or 14% depending on which value of surface albedo is used. Differences exceeding 10% represent a significant absorption difference between model and observations. In addition to the uncertainty in absorption due to surface albedo, we show that including aerosol with an optical depth similar to that found on clear days can reduce the difference between model and measurement by 5% or more. Thus, we conclude that the ARESE II results are incompatible with previous studies reporting extreme anomalous absorption and can be modeled with our current understanding of radiative transfer.

  7. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  8. A Climate Record of Enhanced Spatial Resolution Radiometer Data (Invited)

    NASA Astrophysics Data System (ADS)

    Paget, A. C.; Long, D. G.; Brodzik, M.

    2013-12-01

    Satellite radiometers, such SMMR, SSM/I, SSMIS, and AMSR, provide a multi-decadal time series of observations of the globe to support studies of climate change. Unfortunately, spatial resolution and sampling characteristics differ between sensors, which complicate compiling a single climate record. Resolution concerns can be ameliorated by reconstructing radiometer brightness temperature measurement (Tb) data onto daily-averaged compatible grids. We consider and contrast two widely used methods for image reconstruction: a radiometer version of the scatterometer image reconstruction (SIR) algorithm and Backus-Gilbert (BG). Both require detailed information about the spatial response function (antenna gain pattern) and the sampling geometry. We discuss considerations for an optimum gridding scheme based on the EASE-Grid 2.0 map projection. The EASE-Grid 2.0 simplifies the application of the Tb images in derived products since the reconstruction for each radiometer channel is implement on the same grid. This has the effect of optimally interpolating low-resolution measurements to locations of the highest resolution measurements. By employing reconstruction techniques rather than 'drop in the bucket' (dib) gridding, the effective resolution of the images is spatially enhanced compared to dib images, at the expense of additional computation required for the reconstruction processing. We evaluate the sensitivity of the radiometric accuracy of the resulting Tb images to uncertainties in the antenna gain pattern as well as variations in local-time-of-day. We briefly consider a number of applications of reconstructed Tb images. As part of the NASA-MEASUREs project 'An improved, enhanced-resolution, gridded passive microwave ESDR for monitoring cryospheric and hydrologic time series' we are processing all available satellite radiometer data to generate a consistently calibrated and processed time series of gridded images spanning from the 1970's to the present.

  9. Cortisol awakening response (CAR)'s flexibility leads to larger and more consistent associations with psychological factors than CAR magnitude.

    PubMed

    Mikolajczak, Moïra; Quoidbach, Jordi; Vanootighem, Valentine; Lambert, Florence; Lahaye, Magali; Fillée, Catherine; de Timary, Philippe

    2010-06-01

    The cortisol awakening response (CAR) is increasingly recognized as a potential biological marker of psychological and physical health status. Yet, the CAR literature is replete with contradictory results: both supposedly protective and vulnerability psychosocial factors have been associated with both increased and decreased CAR. In this study, we tested the hypothesis that the CAR flexibility would be a better indicator of psychological status than CAR magnitude. Forty-two men measures of happiness, perceived stress and neuroticism, and took saliva samples immediately on awakening, then at 15, 30, 45 and 60min post-awakening on three study days (i.e., Sunday, Monday and Tuesday). When considering the CAR magnitude, our effects perfectly reflect the inconsistencies previously observed in the literature (i.e., the main effects of the psychological predictors are not consistent with each other, and the effect of one predictor on a given day contradicts the effect of the same predictor on another day). However, considering the CAR flexibility leads to a fully consistent pattern: protective factors (i.e., high happiness, low stress, low neurotiscim) are associated with a flexible CAR (i.e., lower CAR during weekends compared to workdays) whereas vulnerability factors (i.e., low happiness, high stress, high neurotiscim) are associated with a stiff CAR (i.e., same magnitude during weekends and workdays). We conclude that considering the CAR flexibility (e.g., between weekends and workdays) rather than the traditional CAR magnitude might be a way to understand the apparent conflicts in the CAR literature.

  10. The Correlation Radiometer - A New Application in MM-Wave Total Power Radiometry

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Tanner, Alan; Kangaslahti, Pekka; Lim, Boon

    2013-01-01

    We describe the design and performance of a 180 GHz correlation radiometer suitable for remote sensing. The radiometer provides continuous comparisons between a the observed signal and a reference load to provide stable radiometric baselines. The radiometer was assembled and tested using parts from the GeoSTAR-II instrument and is fully compatible with operation in a synthetic aperture radiometer or as a standalone technology for use in microwave sounding and imaging. This new radiometer was tested over several days easily demonstrating the required 6 hour stability requirement for observations of mean brightness temperature for a geostationary instrument.

  11. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  12. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  13. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  14. Broadband electromagnetic analysis of dispersive, periodic structures for radiometer calibration

    NASA Astrophysics Data System (ADS)

    Sandeep, S.

    frequencies followed by decreasing reflectivity as frequency is increased. There is a reflectivity jump at frequencies where non-specular Floquet modes starts propagating. This is followed by nearly sinusoidal oscillations at high frequencies. (5) Asymptotic techniques can be used at high frequencies instead of full wave analysis. The plane wave reflectivity estimated using full wave analysis is an approximate method to calculate brightness temperature as measured by antenna during radiometer calibration. It assumes two conditions: (1) The calibration targets have a uniform temperature profile. (2) Antenna is in the far field. These two conditions are never met in practice. In order to estimate the near field thermal emission, Fluctuation Dissipation Theorem (FDT) must be used. Dyadic Green Function (DGF) along with FDT can be used to calculate the thermal emission from simple geometries. Analytical formulations to this end is given in this thesis. The rest of the thesis (˜ 50%) contains work related to numerical methods applied to radiative transfer and computational electromagnetics. In the first part, a novel method to calculate the absorption coefficient, scattering coefficient, backscattering coefficient and phase asymmetry parameter of a polydispersed distribution of liquid water and ice hydrometeors is presented. The conventional method of calculating these coefficients can be time consuming, because of the Mie series summation to calculate Mie coefficients and the numerical quadrature over a distribution of spheres to calculate the requried coefficients. By using spline interpolation on a precomputed look up table, the calculation procedure can be accelerated. The second part deals with time domain analysis of dispersive, periodic structures for oblique plane wave incidence. This is a difficult problem with only one work available in literature till now. The proposed method uses Laguerre Marching-In-On-Degree (MoD) where time dependant quantities are expressed as an

  15. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  16. DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE.

    PubMed

    Klemetsen, O; Birkelund, Y; Jacobsen, S K; Maccarini, P F; Stauffer, P R

    2011-01-01

    We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25-3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (< 5 mm × 5 mm) and which offer satisfactory overall sensitivity. Two different Dicke radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure.Numerical simulations were performed to test the design concepts before building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components

  17. Symmetry in the Car Park

    ERIC Educational Resources Information Center

    Hancock, Karen

    2007-01-01

    In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…

  18. Automated Car Park Management System

    NASA Astrophysics Data System (ADS)

    Fabros, J. P.; Tabañag, D.; Espra, A.; Gerasta, O. J.

    2015-06-01

    This study aims to develop a prototype for an Automated Car Park Management System that will increase the quality of service of parking lots through the integration of a smart system that assists motorist in finding vacant parking lot. The research was based on implementing an operating system and a monitoring system for parking system without the use of manpower. This will include Parking Guidance and Information System concept which will efficiently assist motorists and ensures the safety of the vehicles and the valuables inside the vehicle. For monitoring, Optical Character Recognition was employed to monitor and put into list all the cars entering the parking area. All parking events in this system are visible via MATLAB GUI which contain time-in, time-out, time consumed information and also the lot number where the car parks. To put into reality, this system has a payment method, and it comes via a coin slot operation to control the exit gate. The Automated Car Park Management System was successfully built by utilizing microcontrollers specifically one PIC18f4550 and two PIC16F84s and one PIC16F628A.

  19. Car Hits Boy on Bicycle

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2005-01-01

    In this article we present the fascinating reconstruction of an accident where a car hit a boy riding his bicycle. The boy dramatically flew several metres through the air after the collision and was injured, but made a swift and complete recovery from the accident with no long-term after-effects. Students are challenged to determine the speed of…

  20. Friction in a Moving Car

    ERIC Educational Resources Information Center

    Goldberg, Fred M.

    1975-01-01

    Describes an out-of-doors, partially unstructured experiment to determine the coefficient of friction for a moving car. Presents the equation which relates the coefficient of friction to initial velocity, distance, and time and gives sample computed values as a function of initial speed and tire pressure. (GS)

  1. Restoring a Classic Electric Car

    ERIC Educational Resources Information Center

    Kraft, Thomas E.

    2012-01-01

    One hundred years ago, automobiles were powered by steam, electricity, or internal combustion. Female drivers favored electric cars because, unlike early internal-combustion vehicles, they did not require a crank for starting. Nonetheless, internal-combustion vehicles came to dominate the industry and it's only in recent years that the electrics…

  2. The Speeding Car Design Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    All too often, one reads about high-speed police chases in pursuit of stolen cars that result in death and injury to people and innocent bystanders. Isn't there another way to accomplish the apprehension of the thieves that does not put people at such great risk? This article presents a classroom challenge to use technology to remotely shutdown…

  3. Coke quench car emission control system

    SciTech Connect

    Baum, J.P.

    1983-07-19

    A coke quench car emission control system includes a coke car and a filter car connected in tandem for joint movement on rails disposed adjacent a coke oven. A hood and recuperator are mounted on a third car disposed on auxiliary rails which extend longitudinally along the upper portions of both the quench car and the filter car and in end-wise alignment. The hood is adapted to be coupled to the coke oven for receiving coke during a pushing operation. The recuperation has an inlet coupled to the hood for receiving emissions and withdrawing heat therefrom. The recuperator also has an outlet which is disposed adjacent the inlet of a filter system mounted on the filter car, when the third car is positioned atop the quench car. The third car is sized so that it can be moved on the auxiliary rails from a position atop the quench car to a position atop the filter car whereby the quench car can be exposed for a quenching operation.

  4. Data Processing and In -flight Calibration/validation of Envisat and Jason Radiometers

    NASA Astrophysics Data System (ADS)

    Obligis, E.; Eymard, L.; Zanife, O. Z.

    Retrieval algorithms for wet tropospheric correction, integrated vapor and liquid water contents are formulated using a database of geophysical parameters from global analyses from a meteorological model and corresponding simulated brightness temperatures and backscattering cross -sections. Meteorological data are 12 hours predictions of the European Center for Medium range Weather Forecasts (ECMWF) model. Relationships between satellite measurements and geophysical parameters are formulated using a statistical method. Quality of retrieval algorithms depends therefore on the representativity of the database, the accuracy of the radiative transfer model used for the simulations and finally on the quality of the inversion model. The database has been built using the latest version of the ECMWF forecast model, which has been operationally run since November, 2000. The 60 levels in the model allows a complete description of the troposphere/s tratosphere profiles and the horizontal resolution is now half of a degree. The radiative transfer model is the emissivity model developed at the Université Catholique de Louvain [Lemaire, 1998], coupled to an atmospheric model [Liebe et al, 1993] for gazeous absorption. For the inversion, we will compare performances of a classical loglinear regression with those of a neural networks inversion. In case of Envisat, the backscattering coefficient in Ku band is used in the different algorithms to take into account the surface roughness like it is done with the 18 GHz channel for TOPEX algorithms and a third term in wind speed for ERS2 algorithms. The in-flight calibration/validation of both radiometers will consist first in the evaluation of the calibration by comparison of measurements with simulations, using the same radiative transfer model and several other ECMWF global meteorological fields at coincident locations with satellite measurements. Although such a method only provides the relative discrepancy with respect to the

  5. Laser Heterodyne Radiometer for Sensitive Detection of CO2 and CH4

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Miller, J. Houston

    2011-01-01

    We propose to develop an inexpensive, miniaturized, passive laser heterodyne radiometer (LHR) using commercially available telecommunications laser components to measure two significant carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). This instrument would operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach that supports the Decadal Survey. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In a laser heterodyne radiometer, the weak input signal is light that has undergone absorption by a trace gas. The local oscillator is a laser at a near-by frequency - in this case a low-cost distributed feedback (DFB) telecommunications laser. These two light waves are superimposed in either a beamsplitter or in a fiber coupler (as is the case in this design). The signals are mixed in the detector, and the RF beat frequency is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. A schematic of the progression of the LHR development project is shown in the figure below. At the center (within the dashed line), light from the local oscillator is superimposed upon light that has undergone absorption by a trace gas, in a single mode

  6. Phased Array Radiometer Calibration Using a Radiated Noise Source

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutoch S.; Laymon, Charles A.; Meyer, Paul J.

    2010-01-01

    Electronic beam steering capability of phased array antenna systems offer significant advantages when used in real aperture imaging radiometers. The sensitivity of such systems is limited by the ability to accurately calibrate variations in the antenna circuit characteristics. Passive antenna systems, which require mechanical rotation to scan the beam, have stable characteristics and the noise figure of the antenna can be characterized with knowledge of its physical temperature [1],[2]. Phased array antenna systems provide the ability to electronically steer the beam in any desired direction. Such antennas make use of active components (amplifiers, phase shifters) to provide electronic scanning capability while maintaining a low antenna noise figure. The gain fluctuations in the active components can be significant, resulting in substantial calibration difficulties [3]. In this paper, we introduce two novel calibration techniques that provide an end-to-end calibration of a real-aperture, phased array radiometer system. Empirical data will be shown to illustrate the performance of both methods.

  7. Linear response of an instrument entitled Sky Radiometer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Wei; Zhou, Zhe; Wang, Dong; Xu, Wen-qing; Fan, Ren-jie

    2016-11-01

    In order to validate the good linear response of an instrument entitled Sky Radiometer(abbreviated to DTL-1) and check the great accuracy of radiance, the experiments which checked the DTL-1 using the large diameter integrating sphere system verified that the instrument had fine linearity and working stability. At the same time, the sky radiance in Hefei was measured, and the validity and correctness of DTL-1 were verified using fibre-optical spectrometer. The results indicated that the instrument had fine work ability, including good linear response, and could satisfy the scientific research and the actual application. However, the linear response of the instrument entitled Sky Radiometer in different region will be validated.

  8. Rotating shadowband radiometer development and analysis of spectral shortwave data

    SciTech Connect

    Michalsky, J.; Harrison, L.; Min, Q.

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  9. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  10. Calibration analysis for a multi-channel infrared scanning radiometer

    NASA Technical Reports Server (NTRS)

    Walden, H.; Hurley, E. J.; Korb, C. L.

    1977-01-01

    A procedure for calibrating an infrared scanning spectroradiometer by a computerized parametric error analysis technique was developed. The uncertainties in the radiometric measurements of scene radiance and (for the case of a blackbody scene) temperature due to possible uncertainties in the calibration target temperature, calibration target emissivity, and instrument temperature were calculated for a range of uncertainty levels in the parameters, as well as for a gamut of scent temperatures corresponding to a given spectral channel. This technique is applicable to the radiometric calibration of any infrared radiometer. It was applied specifically to the Cloud-Top Scanning (C.T.S) Radiometer, a three-channel instrument designed for aircraftborne cloud radiance measurements in the 6.75 and 11.5 micron thermal emission spectral regions.

  11. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Astrophysics Data System (ADS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-06-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  12. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  13. Solar-Reflectance-Based Calibration of Spectral Radiometers

    NASA Technical Reports Server (NTRS)

    Cattrall, Christopher; Carder, Kendall L.; Thome, Kurtis J.; Gordon, Howard R.

    2001-01-01

    A method by which to calibrate a spectral radiometer using the sun as the illumination source is discussed. Solar-based calibrations eliminate several uncertainties associated with applying a lamp-based calibration to field measurements. The procedure requires only a calibrated reflectance panel, relatively low aerosol optical depth, and measurements of atmospheric transmittance. Further, a solar-reflectance-based calibration (SRBC), by eliminating the need for extraterrestrial irradiance spectra, reduces calibration uncertainty to approximately 2.2% across the solar-reflective spectrum, significantly reducing uncertainty in measurements used to deduce the optical properties of a system illuminated by the sun (e.g., sky radiance). The procedure is very suitable for on-site calibration of long-term field instruments, thereby reducing the logistics and costs associated with transporting a radiometer to a calibration facility.

  14. Inflation Rates, Car Devaluation, and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Pogliani, Lionello; Berberan-Santos, Màrio N.

    1996-10-01

    The inflation rate problem of a modern economy shows quite interesting similarities with chemical kinetics and especially with first-order chemical reactions. In fact, capital devaluation during periods of rather low inflation rates or inflation measured over short periods shows a dynamics formally similar to that followed by first-order chemical reactions and they can thus be treated by the aid of the same mathematical formalism. Deviations from this similarity occurs for higher inflation rates. The dynamics of price devaluation for two different types of car, a compact car and a luxury car, has been followed for seven years long and it has been established that car devaluation is a process that is formally similar to a zeroth-order chemical kinetic process disregarding the type of car, if car devaluation is much faster than money devaluation. In fact, expensive cars devaluate with a faster rate than inexpensive cars.

  15. A Demonstration of Car Braking Instabilities.

    ERIC Educational Resources Information Center

    Irwin, Jack; Swinson, Derek

    1990-01-01

    Detailed are the construction of a demonstration car, apparatus and procedures used in the demonstration, and the analysis of the effects of car braking. The cases of rear-wheel and front-wheel braking are considered. (CW)

  16. Solar-powered car. Final report

    SciTech Connect

    Plank, D.

    1982-03-30

    The work reported was to modify a commercially available electric vehicle to use power generated by solar cells. Besides the technical and financial aspects of constructing the car, media publicity and public showings of the car are discussed. (LEW)

  17. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  18. A combined radar-radiometer with variable polarization

    NASA Technical Reports Server (NTRS)

    Martin, D. P.

    1972-01-01

    An instrument is described that provides both radar and radiometer data at the same time. The antenna and receiver are time shared for the two sensor functions. The antenna polarization can be electronically scanned at rates up to 5000 changes for both the transmit and receive signal paths. This equipment is to investigate target signatures for remote sensing applications. The function of the equipment is described and the results for observations of asphalt, grass, and gravel surfaces are presented.

  19. Analysis of Anechoic Chamber Testing of the Hurricane Imaging Radiometer

    NASA Technical Reports Server (NTRS)

    Fenigstein, David; Ruf, Chris; James, Mark; Simmons, David; Miller, Timothy; Buckley, Courtney

    2010-01-01

    The Hurricane Imaging Radiometer System (HIRAD) is a new airborne passive microwave remote sensor developed to observe hurricanes. HIRAD incorporates synthetic thinned array radiometry technology, which use Fourier synthesis to reconstruct images from an array of correlated antenna elements. The HIRAD system response to a point emitter has been measured in an anechoic chamber. With this data, a Fourier inversion image reconstruction algorithm has been developed. Performance analysis of the apparatus is presented, along with an overview of the image reconstruction algorithm

  20. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems.

  1. Ozone profiles above Kiruna from two ground-based radiometers

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.; Walker, Kaley A.; Raffalski, Uwe; Kivi, Rigel; Gross, Jochen; Manney, Gloria L.

    2016-09-01

    This paper presents new atmospheric ozone concentration profiles retrieved from measurements made with two ground-based millimetre-wave radiometers in Kiruna, Sweden. The instruments are the Kiruna Microwave Radiometer (KIMRA) and the Millimeter wave Radiometer 2 (MIRA 2). The ozone concentration profiles are retrieved using an optimal estimation inversion technique, and they cover an altitude range of ˜ 16-54 km, with an altitude resolution of, at best, 8 km. The KIMRA and MIRA 2 measurements are compared to each other, to measurements from balloon-borne ozonesonde measurements at Sodankylä, Finland, and to measurements made by the Microwave Limb Sounder (MLS) aboard the Aura satellite. KIMRA has a correlation of 0.82, but shows a low bias, with respect to the ozonesonde data, and MIRA 2 shows a smaller magnitude low bias and a 0.98 correlation coefficient. Both radiometers are in general agreement with each other and with MLS data, showing high correlation coefficients, but there are differences between measurements that are not explained by random errors. An oscillatory bias with a peak of approximately ±1 ppmv is identified in the KIMRA ozone profiles over an altitude range of ˜ 18-35 km, and is believed to be due to baseline wave features that are present in the spectra. A time series analysis of KIMRA ozone for winters 2008-2013 shows the existence of a local wintertime minimum in the ozone profile above Kiruna. The measurements have been ongoing at Kiruna since 2002 and late 2012 for KIMRA and MIRA 2, respectively.

  2. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  3. Color coded data obtained by JPL's Shuttle Multispectral Infrared radiometer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Color coded data obtained from Baja California, Mexico to Texas by JPL's Shuttle Multispectral Infrared radiometer is pictured. The map shows where data was obtained on the 19th orbit of the mission. Yellow and green areas represent water. The first brown segment at left is Baja California, and the second begins at the coast of mainland Mexico and extends into Texas. The dark brown strips at the right are clouds.

  4. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    NASA Technical Reports Server (NTRS)

    Walter, Steven; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James; Smith, Christopher; Thomassen, John

    2000-01-01

    Submillimeter-wave cloud ice radiometry is an innovative technique for determining the amount of ice present in cirrus clouds, measuring median crystal size, and constraining crystal shape. The radiometer described in this poster is being developed to acquire data to validate radiometric retrievals of cloud ice at submillimeter wavelengths. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, meeting key climate modeling and NASA measurement needs.

  5. A Low-Cost, Compact, Moored Spectral Radiometer.

    DTIC Science & Technology

    2007-11-02

    spectral irradiance over time at prescribed depths. Data from a mooring in the Arabian Sea are presented, and clearly show the change in spectral quality...after the onset of the SW monsoon. The operation of the moored spectral radiometer (MSR) agrees closely with the data from an MER-2040, once a... data collected during a six-month deployment during the Forced Upper Ocean Dynamics Experiment in the Arabian Sea(Trask et. al., 1995), and a

  6. Development and application of an automated precision solar radiometer

    NASA Astrophysics Data System (ADS)

    Qiu, Gang-gang; Li, Xin; Zhang, Quan; Zheng, Xiao-bing; Yan, Jing

    2016-10-01

    Automated filed vicarious calibration is becoming a growing trend for satellite remote sensor, which require a solar radiometer have to automatic measure reliable data for a long time whatever the weather conditions and transfer measurement data to the user office. An automated precision solar radiometer has been developed. It is used in measuring the solar spectral irradiance received at the Earth surface. The instrument consists of 8 parallel separate silicon-photodiode-based channels with narrow band-pass filters from the visible to near-IR regions. Each channel has a 2.0° full-angle Filed of View (FOV). The detectors and filters are temperature stabilized using a Thermal Energy Converter at 30+/-0.2°. The instrument is pointed toward the sun via an auto-tracking system that actively tracks the sun within a +/-0.1°. It collects data automatically and communicates with user terminal through BDS (China's BeiDou Navigation Satellite System) while records data as a redundant in internal memory, including working state and error. The solar radiometer is automated in the sense that it requires no supervision throughout the whole process of working. It calculates start-time and stop-time every day matched with the time of sunrise and sunset, and stop working once the precipitation. Calibrated via Langley curves and simultaneous observed with CE318, the different of Aerosol Optical Depth (AOD) is within 5%. The solar radiometer had run in all kinds of harsh weather condition in Gobi in Dunhuang and obtain the AODs nearly eight months continuously. This paper presents instrument design analysis, atmospheric optical depth retrievals as well as the experiment result.

  7. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  8. Scanning mechanism study for multi-frequency microwave radiometers

    NASA Technical Reports Server (NTRS)

    Shin, I.

    1976-01-01

    Scanning mode for a microwave radiometer having large aperture antenna is determined from scientific needs by engineering tradeoffs. Two configurations of the scan drive mechanism with an integral momentum compensation are formulated for 1.OM and 1.4M diameter antennas. As the formulation is based on currently available components, it is possible to design and fabricate the formulated mechanism without new hardware development. A preliminary specification for major components of formulated drives is also included in the report.

  9. Radiometer system to map the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Gorenstein, M. V.; Muller, R. A.; Smoot, G. F.; Tyson, J. A.

    1978-01-01

    A 33-GHz airborne radiometer system has been developed to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 deg apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of plus or minus 1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 deg, reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, Calif.

  10. Experimental measurements and noise analysis of a cryogenic radiometer

    SciTech Connect

    Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U.

    2014-07-15

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/√(Hz) for the measured experimental parameters.

  11. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  12. Radiometer system to map the cosmic background radiation.

    PubMed

    Gorenstein, M V; Muller, R A; Smoot, G F; Tyson, J A

    1978-04-01

    We have developed a 33-GHz airborne radiometer system to map large angular scale variations in the temperature of the 3 K cosmic background radiation. A ferrite circulator switches a room-temperature mixer between two antennas pointing 60 degrees apart in the sky. In 40 min of observing, the radiometer can measure the anisotropy of the microwave background with an accuracy of +/-1 mK rms, or about 1 part in 3000 of 3 K. The apparatus is flown in a U-2 jet to 20 km altitude where 33-GHz thermal microwave emission from the atmosphere is at a low level. A second radiometer, tuned to 54 GHz near oxygen emission lines, monitors spurious signals from residual atmospheric radiation. The antennas, which have an extremely low side-lobe response of less than -65 dB past 60 degrees , reject anisotropic radiation from the earth's surface. Periodic interchange of the antenna positions and reversal of the aircraft's flight direction cancel equipment-based imbalances. The system has been operated successfully in U-2 aircraft flown from NASA-Ames at Moffett Field, CA.

  13. Examples of recent ground based L-band radiometer experiments

    NASA Astrophysics Data System (ADS)

    Schwank, Mike; Voelksch, I.; Maetzler, Ch.; Wigneron, Jean-Pierre; Kerr, Y. H.; Antolin, M. C.; Coll, A.; Millan-Scheiding, C.; Lopez-Baeza, Ernesto

    L-band (1 -2 GHz) microwave radiometry is a remote sensing technique to monitor soil mois-ture over land surfaces. The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) radiometer mission aims at providing global maps of soil moisture, with accuracy bet-ter than 0.04 m3 m-3 every 3 days, with a spatial resolution of approximately 40 km. Monitoring the large scale moisture dynamics at the boundary between the deep bulk soil and the atmo-sphere provides essential information both for terrestrial and atmospheric modellers. Perform-ing ground based radiometer campaigns before the mission launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the used radiative transfer models. This presentation starts with an outline of the basic concepts behind remote moisture retrieval from passive L-band radiation. Then the results from a selection of ground based microwave campaigns performed ü with the ELBARA radiometer and its successor models (JULBARA, ELBARAII) are pre-sented. Furthermore, some of the most important technical features, which were implemented in ELBARAII as the result of the experiences made with the forerunner, are outlined.

  14. Microwave radiometer observations of soil moisture in HAPEX-SAHEL

    NASA Astrophysics Data System (ADS)

    Schmugge, Thomas J.; Chanzy, Andre; Kerr, Yann H.; van Oevelen, Peter

    1995-01-01

    Water stored in the soil serves as the reservoir for the evapotranspiration process, thus the interest in trying to map its spatial and temporal variations in experiments studying the soil- plant-atmosphere interactions at the GCM grid scale. During the 8 week intensive observation period (IOP) of HAPEX-Sahel (Hydrologic Atmospheric Pilot Experiment in the Sahel), this was done with two airborne microwave radiometer systems. The five frequency (5 to 90 GHz) PORTOS radiometer on the French ARAT aircraft and the single frequency (1.42 GHz) multibeam pushbroom microwave radiometer (PBMR) on the NASA C-130 were used. These aircraft measurements were supported by ground based observations at the central sites and, because of several rains during the IOP, covered a good range of soil wetness conditions that existed. The PBMR and the 5.05 GHz PORTOS channel in H polarization show a large dynamic range of TB on each day and between different days in response to variations in rainfall and drying conditions ranging from low TBs of 210 to 220 K for the wettest conditions to values of 280 to 290 K for the driest.

  15. Source analysis of spaceborne microwave radiometer interference over land

    NASA Astrophysics Data System (ADS)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  16. Shuttle-Car System for Continuous Mining

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Buffer storage catches coal production between loadings. Telescoping reservoir filled continuously. With tailgate down, shuttle car slides into place along sides and bottom of reservoir. Reservoir retracts along inside of car and out through tailgate, leaving coal behind in car. System not restricted to coal mining and may prove economical for hauling other solid materials.

  17. Determining the Air Drag on a Car.

    ERIC Educational Resources Information Center

    Farr, John E.

    1983-01-01

    Students' cars and wristwatches are used as "apparatus" to introduce and demonstrate Newton's second law of motion. Forces acting on cars are discussed and typical student data (for different makes of cars) are provided. Data could also be used in discussions of work, horsepower, efficiency, and energy cost. (JN)

  18. Video monitoring system for car seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A video monitoring system for use with a child car seat has video camera(s) mounted in the car seat. The video images are wirelessly transmitted to a remote receiver/display encased in a portable housing that can be removably mounted in the vehicle in which the car seat is installed.

  19. Car Ownership and Welfare-to-Work

    ERIC Educational Resources Information Center

    Ong, Paul M.

    2002-01-01

    This study examines the role of car ownership in facilitating employment among recipients under the current welfare-to-work law. Because of a potential problem with simultaneity, the analysis uses predicted car ownership constructed from two instrumental variables, insurance premiums and population density for car ownership. The data come from a…

  20. 49 CFR 174.57 - Cleaning cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed....

  1. 49 CFR 212.217 - Car inspector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Car inspector. 212.217 Section 212.217..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel § 212.217 Car inspector. (a) The car inspector is required, at a minimum, to be able to conduct independent inspections...

  2. 49 CFR 174.110 - Car magazine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Car magazine. 174.110 Section 174.110...) Materials § 174.110 Car magazine. When specially authorized by the carrier, Division 1.1 or 1.2 (explosive) materials in quantity not exceeding 68 kg (150 pounds) may be carried in construction or repair cars if...

  3. 49 CFR 174.110 - Car magazine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Car magazine. 174.110 Section 174.110...) Materials § 174.110 Car magazine. When specially authorized by the carrier, Division 1.1 or 1.2 (explosive) materials in quantity not exceeding 68 kg (150 pounds) may be carried in construction or repair cars if...

  4. 49 CFR 212.217 - Car inspector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Car inspector. 212.217 Section 212.217..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel § 212.217 Car inspector. (a) The car inspector is required, at a minimum, to be able to conduct independent inspections...

  5. 49 CFR 212.217 - Car inspector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Car inspector. 212.217 Section 212.217..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel § 212.217 Car inspector. (a) The car inspector is required, at a minimum, to be able to conduct independent inspections...

  6. 49 CFR 174.110 - Car magazine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Car magazine. 174.110 Section 174.110...) Materials § 174.110 Car magazine. When specially authorized by the carrier, Division 1.1 or 1.2 (explosive) materials in quantity not exceeding 68 kg (150 pounds) may be carried in construction or repair cars if...

  7. 49 CFR 174.57 - Cleaning cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed....

  8. 49 CFR 174.57 - Cleaning cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed....

  9. 49 CFR 212.217 - Car inspector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Car inspector. 212.217 Section 212.217..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel § 212.217 Car inspector. (a) The car inspector is required, at a minimum, to be able to conduct independent inspections...

  10. 49 CFR 174.57 - Cleaning cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed....

  11. 49 CFR 212.217 - Car inspector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Car inspector. 212.217 Section 212.217..., DEPARTMENT OF TRANSPORTATION STATE SAFETY PARTICIPATION REGULATIONS State Inspection Personnel § 212.217 Car inspector. (a) The car inspector is required, at a minimum, to be able to conduct independent inspections...

  12. 49 CFR 174.110 - Car magazine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Car magazine. 174.110 Section 174.110...) Materials § 174.110 Car magazine. When specially authorized by the carrier, Division 1.1 or 1.2 (explosive) materials in quantity not exceeding 68 kg (150 pounds) may be carried in construction or repair cars if...

  13. 49 CFR 174.57 - Cleaning cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed....

  14. 49 CFR 174.110 - Car magazine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Car magazine. 174.110 Section 174.110...) Materials § 174.110 Car magazine. When specially authorized by the carrier, Division 1.1 or 1.2 (explosive) materials in quantity not exceeding 68 kg (150 pounds) may be carried in construction or repair cars if...

  15. Analysis of aerosol optical properties from continuous sun-sky radiometer measurements at Halley and Rothera, Antarctica over seven years

    NASA Astrophysics Data System (ADS)

    Campanelli, Monica; Estellés, Victor; Colwell, Steve; Shanklin, Jonathan; Ningombam, Shantikumar S.

    2015-04-01

    The Antarctic continent is located far from most anthropogenic emission sources on the planet, it has limited areas of exposed rock and human activities are less developed. Air circulation over Antarctica also seems to prevent the direct transport of air originating from anthropogenic sources of pollution at lower latitudes. Therefore Antarctica is considered an attractive site for studying aerosol properties as unaltered as possible by human activity. Long term monitoring of the optical and physical properties is necessary for observing possible changes in the atmosphere over time and understanding if such changes are due to human activity or natural variation. Columnar aerosol optical and physical properties can be obtained from sun-sky radiometers, very compact instruments measuring spectral direct and diffuse solar irradiance at the visible wavelengths and using fast and efficient inversion algorithms. The British Antarctic Survey has continuously operated two Prede Pom-01 sun-sky radiometers in Antarctica as part of the ESR-European Skynet Radiometers network (www.euroskyrad.net, Campanelli et al, 2012). They are located at Halley and Rothera, and have operated since 2009 and 2008 respectively. In the present study the aerosol optical thickness, single scattering albedo, Ångström exponent, volume size distribution and refractive index were retrieved from cloud-screened measurements of direct and diffuse solar irradiance using the Skyrad 4.2 pack code (Nakajima et al., 1986). The analysis of the daily and yearly averages showed an important increase of the absorbing properties of particles at Halley from 2013 to the beginning of 2014 related to the increasing presence of smaller particles (from 2012) but with a non-significant variation of aerosol optical depth. The same increase of absorption was visible at Rothera only in 2013. Air pressure measurements, wind directions and intensity, and vertical profiles from radio-soundings, together with HYSPLIT model

  16. The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives

    SciTech Connect

    Stamnes, K.; Leontieva, E.

    1996-04-01

    The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

  17. An Overview of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Accurate observations of ocean surface vector winds (OSVW) with high spatial and temporal resolution are critically important to improve both our understanding and predictability of tropical cyclones. As the successful NASA QuikSCAT satellite continues to age beyond its planned life span, many members of the tropical cyclone research and operational community recognize the need to develop new observational technologies and strategies to meet the essential need for OSVW information. This concern has been expressed in both the "Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond" developed by the National Research Council Committee on Earth Science and Applications from Space and the "Interagency Strategic Research Plan for Tropical Cyclone The Way Ahead" developed by the Joint Action Group for Tropical Cyclone Research (JAG-TCR) sponsored by the Office of the Federal Coordinator for Meteorology. One innovative technology development which offers the potential for new, unique remotely sensed observations of tropical cyclone OSVW and precipitation is the Hurricane Imaging Radiometer (HIRAD). This new instrument is passive microwave synthetic thinned aperture radiometer under development at the NASA Marshall Space Flight Center that will operate at the C-Band frequencies of 4, 5, 6, and 7 GHz. These frequencies have been successfully demonstrated by the NOAA nadir-staring Stepped Frequency Microwave Radiometer (SFMR) as useful for monitoring tropical cyclone ocean surface wind speeds and rain rates from low altitude reconnaissance aircraft. The HIRAD design incorporates a unique antenna design as well as several technologies that have been successfully demonstrated by the University of Michigan Lightweight Rain Radiometer sponsored by NASA Earth Science Technology Office Instrument Incubator Program. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce imagery of ocean wind surface

  18. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  19. Low-cost solar array project: Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: Radiometer standards

    NASA Technical Reports Server (NTRS)

    Estey, R. S.; Seaman, C. H.

    1981-01-01

    Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.

  20. Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA.

    PubMed

    Whitworth, D E; Hodgson, D A

    2001-11-01

    In the bacterium Myxococcus xanthus, carotenoids are produced in response to illumination, as a result of expression of the crt carotenoid biosynthesis genes. The majority of crt genes are clustered in the crtEBDC operon, which is repressed in the dark by CarA. Genetic data suggest that, in the light, CarS is synthesized and achieves activation of the crtEBDC operon by removing the repressive action of CarA. As CarS contains no known DNA-binding motif, the relief of CarA-mediated repression was postulated to result from a direct interaction between these two proteins. Use of the yeast two-hybrid system demonstrated direct interaction between CarA and CarS. The two-hybrid system also implied that CarA and, possibly, CarS are capable of homodimerization. Direct evidence for CarS anti-repressor action was provided in vitro. A glutathione S-transferase (GST)-CarA protein fusion was shown to bind specifically to a palindromic operator sequence within the crtEBDC promoter. CarA was prevented from binding to its operator, and prebound CarA was removed by the addition of purified CarS. CarS is therefore an anti-repressor.

  1. [Vision and car driving ability].

    PubMed

    Wilhelm, Helmut

    2011-05-01

    Visual functions relevant for car driving are: Visual acuity, contrast and twilight vision, visual field, ocular motility and alignment and colour vision. Generally accepted and standardized tests are available for visual acuity and visual field. Maximum permissible values have been defined arbitrarily and are hardly supported by studies. European standards have been published comprising also contrast and twilight vision. When examining driving ability progressive and treatable ocular disorders such as cataract and glaucoma have to be considered.

  2. CAR-T cells are serial killers.

    PubMed

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  3. S-branch CARS applicability to thermometry

    SciTech Connect

    Akihama, K.; Asai, T. )

    1990-07-20

    The pressure and temperature dependence of background-free {ital S}-branch CARS spectra of N{sub 2} are investigated in the temperature range of 300--700 K for pressures of 1--20 atm. Collisional narrowing for {ital S}-branch CARS spectra is proved to be negligible. Individual {ital S}-branch lines are clearly resolved in the entire range, enabling unequivocal determination of temperatures by their peak ratios. Advantages and disadvantages of {ital S}-branch CARS thermometry are discussed on the basis of experimental results. The dual narrowband Stokes CARS technique is also discussed as a practical method of {ital S}-branch CARS thermometry.

  4. S-branch CARS applicability to thermometry.

    PubMed

    Akihama, K; Asai, T

    1990-07-20

    The pressure and temperature dependence of background-free S-branch CARS spectra of N(2) are investigated in the temperature range of 300-700 K for pressures of 1-20 atm. Collisional narrowing for S-branch CARS spectra is proved to be negligible. Individual S-branch lines are clearly resolved in the entire range, enabling unequivocal determination of temperatures by their peak ratios. Advantages and disadvantages of S-branch CARS thermometry are discussed on the basis of experimental results. The dual narrowband Stokes CARS technique is also discussed as a practical method of S-branch CARS thermometry.

  5. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  6. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  7. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  8. 49 CFR 215.121 - Defective car body.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion...

  9. 49 CFR 215.121 - Defective car body.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion...

  10. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  11. 49 CFR 215.121 - Defective car body.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion...

  12. 49 CFR 215.121 - Defective car body.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion...

  13. 49 CFR 232.305 - Single car air brake tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Single car air brake tests. 232.305 Section 232... car air brake tests. (a) Single car air brake tests shall be performed by a qualified person in... single car air brake test on a car when: (1) A car has its brakes cut-out or inoperative when...

  14. 49 CFR 215.121 - Defective car body.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion...

  15. Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.

    2012-01-01

    In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.

  16. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  17. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  18. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  19. An improved car-following model considering the immediately ahead car's velocity difference

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Shi, Zhongke

    2016-11-01

    The field car-following data at a signalized intersection of Jinan in China are collected for data mining. An improved car-following model considering the immediately ahead car's velocity difference on a single-lane road was proposed, calibrated and verified based on full velocity difference model. The results of some numerical simulations indicate that the immediately ahead car's velocity difference has significant effects on the following car's motion, that the improved car-following model fits the measured data well and can qualitatively describe the impacts of the immediately ahead car's velocity difference on traffic flow, and that modeling the car-following behavior considering the immediately ahead car's velocity difference can improve the stability of the simulated traffic flow.

  20. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  1. Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.

    1986-01-01

    The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.

  2. Ground registration of data from an airborne Multifrequency Microwave Radiometer (MfMR). [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Richter, J. C. (Principal Investigator)

    1981-01-01

    The agricultural soil moisture experiment was conducted near Colby, Kansas, in July and August 1978. A portion of the data collected was taken with a five band microwave radiometer. A method of locating the radiometer footprints with respect to a ground based coordinate system is documented. The procedure requires that the airplane's flight parameters along with aerial photography be acquired simultaneously with the radiometer data. The software which documented reads in data from the precision radiation thermometer (PRT Model 5) and attaches the scene temperature to the corresponding multifrequency microwave radiometer data. Listings of the programs used in the registration process are included.

  3. Noise control for rapid transit cars on elevated structures

    NASA Astrophysics Data System (ADS)

    Hanson, C. E.

    1983-03-01

    Noise control treatments for the propulsion motor noise of rapid transit cars on concrete elevated structures and the noise reduction from barrier walls were investigated by using acoustical scale models and supplemented by field measurements of noise from trains operated by the Port Authority Transportation Corporation (PATCO) in New Jersey. The results show that vehicle skirts and undercar sound absorption can provide substantial cost-effective reductions in propulsion noise at the wayside of transit systems with concrete elevated guideways. The acoustical scale model noise reductions applied to PATCO vehicles on concrete elevated structures show reductions in the A-weighted noise levels of 5 dB for undercar sound absorption, 5 dB for vehicle skirts, and 10 dB for combined undercar absorption and vehicle skirts. Acoustical scale model results for sound barrier walls lined with absorptive treatment showed reductions from 7 dB to 12 dB of noise from vehicles in the far track, depending on the height of the wall, and reductions from 12 dB to 20 dB of noise from vehicles on the near track. Transit vehicles at high speeds where propulsion system noise dominates are 7 dB(A) noisier at 50 ft on concrete elevated structures than on at-grade on tie and ballast. Of this amount, 3 dB is due to loss of ground effect, and 4 dB is due to the absence of undercar absorption provided by ballast.

  4. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

    NASA Technical Reports Server (NTRS)

    McLinden, Matthew; Piepmeier, Jeffrey

    2013-01-01

    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This

  5. A Novel Miniature Wide-band Radiometer for Space Applications

    NASA Astrophysics Data System (ADS)

    Sykulska-Lawrence, Hanna

    2016-10-01

    Design, development and testing of a novel miniaturised infrared radiometer is described. The instrument opens up new possibilities in planetary science of deployment on smaller platforms - such as unmanned aerial vehicles and microprobes - to enable study of a planet's radiation balance, as well as terrestrial volcano plumes and trace gases in planetary atmospheres, using low-cost long-term observations. Thus a key enabling development is that of miniaturised, low-power and well-calibrated instrumentation.The paper reports advances in miniature technology to perform high accuracy visible / IR remote sensing measurements. The infrared radiometer is akin to those widely used for remote sensing for earth and space applications, which are currently either large instruments on orbiting platforms or medium-sized payloads on balloons. We use MEMS microfabrication techniques to shrink a conventional design, while combining the calibration benefits of large (>1kg) type radiometers with the flexibility and portability of a <10g device. The instrument measures broadband (0.2 to 100um) upward and downward radiation fluxes, with built-in calibration capability, incorporating traceability to temperature standards such as ITS-90.The miniature instrument described here was derived from a concept developed for a European Space Agency study, Dalomis (Proc. of 'i-SAIRAS 2005', Munich, 2005), which involved dropping multiple probes into the atmosphere of Venus from a balloon to sample numerous parts of the complex weather systems on the planet. Data from such an in-situ instrument would complement information from a satellite remote sensing instrument or balloon radiosonde. Moreover, the addition of an internal calibration standard facilitates comparisons between datasets.One of the main challenges for a reduced size device is calibration. We use an in-situ method whereby a blackbody source is integrated within the device and a micromirror switches the input to the detector between

  6. Conversion of sunflower multiband radiometer polarization measurements to polarization parameters

    NASA Technical Reports Server (NTRS)

    Biehl, Larry L.

    1995-01-01

    The data processing analysis and conversion of polarization measurements to polarization parameters from the Sunflower multiband radiometer is presented in this final report. Included is: (1) the actual data analysis; (2) the comparison of the averaging techniques and the percent polarization derived from the original and averaged I, Q, U parameters; (3) the polarizer angles used in conversion; (4) the Matlab files; (5) the relative ground size, field of view location, and view zenith angles, and (6) the summary of all the sky data for all dates.

  7. Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Technical Reports Server (NTRS)

    Zomberg, Brian G.; Chren, William A., Jr.

    1994-01-01

    A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.

  8. Application of microwave radiometers for wetlands and estuaries monitoring

    SciTech Connect

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-06-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface.

  9. Diagnosis Of A Pressure-Modulator-Radiometer Cell

    NASA Technical Reports Server (NTRS)

    May, Randy D.; Mccleese, Daniel J.; Rider, David M.; Schofield, John T.; Webster, Christopher

    1990-01-01

    Spectral response of pressure-modulator-radiometer cell measured with help of lead-salt tunable diode laser. Laser chosen because of narrow bandwidths {2 x 10 to negative 4th power (cm) to negative 1st power} and relatively high powers (up to 1 mW continuous) of such lasers and because available for wavelengths from 3 to 30 micrometers. Direct measurement of spectral response enables formulation of more-precise atmospheric-transmission functions, enabling extraction of better information from readings taken with instrument.

  10. Clear air turbulence avoidance using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1984-01-01

    The avoidance of Clear Air Turbulence (CAT) is theoretically possible by selecting flight levels that are a safe distance from the tropopause and inversion layers. These favored sites for CAT generation can be located by an 'airborne microwave radiometer' (AMR) passive sensor system that measures altitude temperature profiles. A flight evaluation of the AMR sensor shows that most CAT could be avoided by following sensor-based advisories. Some limitations still exist for any hypothetical use of the sensor. The principal need is to augment the sensor's 'where' advisories to include useful 'when' forecasts.

  11. Multichannel infrared fiber optic radiometer for controlled microwave heating

    NASA Astrophysics Data System (ADS)

    Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1990-07-01

    An infrared fiberoptic multichannel radiometer was used for monitoring and controlling the temperature of samples in a microwave heating system. The temperature of water samples was maintained at about 40 °C, with a standard deviation of +/- 0.2°C and a maximum deviation of +/- 0.5°C. The temperature was monitored on the same time at several points on the surface and inside the sample. This novel controlled system is reliable and precise. Such system would be very useful for medical applications such as hypothermia and hyperthermi a.

  12. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  13. Landsat-simulating radiometer for agricultural remote sensing

    NASA Technical Reports Server (NTRS)

    Lemme, G. D.; Westin, F. C.

    1979-01-01

    The reliability of a Landsat-simulating ground-based spectral radiometer for use in agricultural remote sensing was investigated. Significant correlation coefficients in all wavebands except Band 7 were found to exist between Landsat computer compatible tape (CCT) and ground-based radiometric data from several corn fields. No significant correlations were found within data from small grain fields. Combined data from several common agricultural crops yielded significant correlation coefficients in the wavebands most commonly employed in agricultural remote sensing. It was also found that sun angle within certain limits of a given day had minimal effect on ground-based radiometric measurements taken from a fallow and barley field.

  14. Io's thermal emission from the Galileo photopolarimeter-radiometer.

    PubMed

    Spencer, J R; Rathbun, J A; Travis, L D; Tamppari, L K; Barnard, L; Martin, T Z; McEwen, A S

    2000-05-19

    Galileo's photopolarimeter-radiometer instrument mapped Io's thermal emission during the I24, I25, and I27 flybys with a spatial resolution of 2.2 to 300 kilometers. Mapping of Loki in I24 shows uniform temperatures for most of Loki Patera and high temperatures in the southwest corner, probably resulting from an eruption that began 1 month before the observation. Most of Loki Patera was resurfaced before I27. Pele's caldera floor has a low temperature of 160 kelvin, whereas flows at Pillan and Zamama have temperatures of up to 200 kelvin. Global maps of nighttime temperatures provide a means for estimating global heat flow.

  15. Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Astrophysics Data System (ADS)

    Zomberg, Brian G.; Chren, William A., Jr.

    1994-06-01

    A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.

  16. Color enhancement of nimbus high resolution infrared radiometer data.

    PubMed

    Kreins, E R; Allison, L J

    1970-03-01

    Two examples of Nimbus high resolution infrared radiometer (HRIR) data processed by a color display enhancement system demonstrate possible meteorological, oceanographic, and geomorphological applications of this technique for geophysical research. A commonly used means of displaying radiation temperatures mapped by the HRIR has been a black and white photofacsimile film strip. However, the human eye can distinguish many more colors than shades of gray, and this characteristic permits an analyst to evaluate quantitatively radiation values mapped in color more readily than in black and white.

  17. A new broadband square law detector. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    A broadband constant law detector was developed for precision power measurements, radio metric measurements, and other applications. It has a wide dynamic range and an accurate square law response. Other desirable characteristics, which are all included in a single compact unit, are: (1) high-level dc output with immunity to ground loop problems; (2) fast response times; (3) ability to insert known time constants; and (4) good thermal stability. The detector and its performance are described in detail. The detector can be operated in a programmable system with a ten-fold increase in accuracy. The use and performance of the detector in a noise-adding radiometer system is also discussed.

  18. Near-infrared diffractive optical element (DOE) radiometer

    NASA Astrophysics Data System (ADS)

    Hamilton, Kelvin E.; Codere, J. R. Michel; Verreault, J. J. M.; Fjarlie, Earl J.

    1994-10-01

    A radiometer has been designed that operates at 1064 nanometers using a diffractive element arrangement to focus the energy onto a detector array. The aperture is made up of several elements consisting of both on and off-axis designed elements arranged to provide an overall FOV. The blur circle and the efficiency of the elements have been measured. The advantages of DOEs are weight saving, repetitiveness of design, the making of either off-axis or on-axis elements with the same ease, good efficiency of energy collection, and diffraction limited focusing.

  19. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  20. Systems design and analysis of the microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1981-01-01

    Systems design and analysis data were generated for microwave radiometer spacecraft concept using the Large Advanced Space Systems (LASS) computer aided design and analysis program. Parametric analyses were conducted for perturbations off the nominal-orbital-altitude/antenna-reflector-size and for control/propulsion system options. Optimized spacecraft mass, structural element design, and on-orbit loading data are presented. Propulsion and rigid-body control systems sensitivities to current and advanced technology are established. Spacecraft-induced and environmental effects on antenna performance (surface accuracy, defocus, and boresight off-set) are quantified and structured material frequencies and modal shapes are defined.

  1. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  2. COBE DMR results and implications. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  3. COBE Differential Microwave Radiometers - Preliminary systematic error analysis

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Aymon, J.; De Amici, G.; Hinshaw, G.; Jackson, P. D.; Kaita, E.; Keegstra, P.

    1992-01-01

    The techniques available for the identification and subtraction of sources of dynamic uncertainty from data of the Differential Microwave Radiometer (DMR) instrument aboard COBE are discussed. Preliminary limits on the magnitude in the DMR 1 yr maps are presented. Residual uncertainties in the best DMR sky maps, after correcting the raw data for systematic effects, are less than 6 micro-K for the pixel rms variation, less than 3 micro-K for the rms quadruple amplitude of a spherical harmonic expansion, and less than 30 micro-(K-squared) for the correlation function.

  4. COBE Differential Microwave Radiometers - Preliminary systematic error analysis

    NASA Astrophysics Data System (ADS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Aymon, J.; de Amici, G.; Hinshaw, G.; Jackson, P. D.; Kaita, E.; Keegstra, P.; Lineweaver, C.; Loewenstein, K.; Rokke, L.; Tenorio, L.; Boggess, N. W.; Cheng, E. S.; Gulkis, S.; Hauser, M. G.; Janssen, M. A.; Kelsall, T.; Mather, J. C.; Meyer, S.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Weiss, R.; Wilkinson, D. T.

    1992-12-01

    The techniques available for the identification and subtraction of sources of dynamic uncertainty from data of the Differential Microwave Radiometer (DMR) instrument aboard COBE are discussed. Preliminary limits on the magnitude in the DMR 1 yr maps are presented. Residual uncertainties in the best DMR sky maps, after correcting the raw data for systematic effects, are less than 6 micro-K for the pixel rms variation, less than 3 micro-K for the rms quadruple amplitude of a spherical harmonic expansion, and less than 30 micro-(K-squared) for the correlation function.

  5. Improvements to Stepped Frequency Microwave Radiometer Real-time Tropical Cyclone Products

    NASA Astrophysics Data System (ADS)

    Uhlhorn, E. W.; Klotz, B.

    2012-12-01

    With the installation of C-band stepped frequency microwave radiometers (SFMR) on Air Force Reserve Command WC-130J hurricane reconnaissance aircraft, the SFMR has assumed a prominent role for operational measurement of surface winds, and thus, hurricane intensity estimation. The current SFMR wind retrieval algorithm was developed from GPS dropwindsonde surface wind measurements, and has been successfully implemented across all SFMR-equipped aircraft. The algorithm improvements were specifically targeted at improving surface wind accuracy at hurricane force conditions (> 65 kts, 33 m/s), especially within the eyewall, although the SFMR surface wind vs. emissivity geophysical model function was developed over a broad range of wind speeds (10-140 kts, 5-70 m/s) with the expectation that the hurricane wind field could be readily measured in general. Due to the significant microwave absorption by precipitation, a by-product of the wind retrieval process is an estimate of the path-averaged rain rate (in actuality, the rain water content). An SFMR surface wind speed high bias in strong precipitation has recently been quantified and is particularly evident at weak-to-moderate wind speeds (<65 kts, 33 m/s) and large rain rates (>20 mm/hr), which has important implications for identifying tropical systems at the depression and storm stages, and additionally for observing significant outer wind radii. A major reason for this wind bias is due to an inaccurate rain absorption model that was used to develop the current surface emissivity vs. wind speed geophysical model function. Observations now suggest that the rain-induced absorption is significantly overestimated by the model, resulting in underestimated rain rate values. With the wind speed bias identified, the rain absorption component of the SFMR geophysical model function is addressed to provide an improved rain rate product. This new absorption model is developed by relating SFMR excess brightness temperature

  6. Research and Development Trends of Car Networking

    NASA Astrophysics Data System (ADS)

    He, Wei; Li, Zhixiong; Xie, Guotao

    With the rapid development of the world economy, road transport has become increasingly busy. An unexpected incident would cause serious traffic disaster due to traffic accidents. To solve this problem, the intelligent transportation system (ITS), which is important for the health developments of the city transportation, has become a hot topic. The car networking provides a new way for intelligent transportation system. It can ensure intelligent control and monitoring of urban road with high performance. This paper described the concept of car networking and related technology both in oversea and domestic. The importance of car networking to achieve vehicle and details of the car networking related technologies were illustrated firstly. Then, attentions focus on the research nodus of the car networking. Lastly, the development trend of car networking research was discussed.

  7. Collisions with passenger cars and moose, Sweden.

    PubMed Central

    Björnstig, U; Eriksson, A; Thorson, J; Bylund, P O

    1986-01-01

    The number of collisions between motor vehicles and moose is increasing in many countries. Collisions with large, high animals such as moose cause typical rear- and downward deformation of the windshield pillars and front roof, most pronounced for small passenger cars; the injury risk increases with the deformation of the car. A strengthening of the windshield pillars and front roof and the use of antilacerative windshields would reduce the injury risk to car occupants. PMID:3953927

  8. Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.

    1982-01-01

    A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.

  9. Calibration and Image Reconstruction for the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Roberts, J. Brent; Biswas, Sayak; James, Mark W.; Miller, Timothy

    2012-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne passive microwave synthetic aperture radiometer designed to provide wide swath images of ocean surface wind speed under heavy precipitation and, in particular, in tropical cyclones. It operates at 4, 5, 6 and 6.6 GHz and uses interferometric signal processing to synthesize a pushbroom imager in software from a low profile planar antenna with no mechanical scanning. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during Fall 2010 as its first science field campaign. HIRAD produced images of upwelling brightness temperature over a aprox 70 km swath width with approx 3 km spatial resolution. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The calibration and image reconstruction algorithms that were used to verify HIRAD functional performance during and immediately after GRIP were only preliminary and used a number of simplifying assumptions and approximations about the instrument design and performance. The development and performance of a more detailed and complete set of algorithms are reported here.

  10. Infrared Fiber Radiometer For Thermometry In Electromagnetic Induced Therapeutic Healing

    NASA Astrophysics Data System (ADS)

    Katzir, A.; Bowman, F.; Asfour, Y.; Zur, A.; Valeri, C. R.

    1988-06-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35°C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0°C for an extended period (e.g. 30 min.) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electro-magnetic field. For this purpose we have developed a fiberoptic radiometer system which is based on a non-metallic, infrared fiber probe, which can operate either in contact or in non-contact modes. In preliminary investigations the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of ±0.5°C.

  11. Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment

    SciTech Connect

    Katzir, A.; Bowman, H.F.; Asfour, Y.; Zur, A.; Valeri, C.R.

    1989-06-01

    Hypothermia is a condition which results from prolonged exposure to a cold environment. Rapid and efficient heating is needed to rewarm the patient from 32-35 degrees C to normal body temperature. Hyperthermia in cancer treatment involves heating malignant tumors to 42.5-43.0 degrees C for an extended period (e.g., 30 min) in an attempt to obtain remission. Microwave or radio frequency heating is often used for rewarming in hypothermia or for temperature elevation in hyperthermia treatment. One severe problem with such heating is the accurate measurement and control of temperature in the presence of a strong electromagnetic field. For this purpose, we have developed a fiberoptic radiometer system which is based on a nonmetallic, infrared fiber probe, which can operate either in contact or noncontact mode. In preliminary investigations, the radiometer worked well in a strong microwave or radiofrequency field, with an accuracy of +/- 0.5 degrees C. This fiberoptic thermometer was used to control the surface temperature of objects within +/- 2 degrees C.

  12. Knudsen pump inspired by Crookes radiometer with a specular wall

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Hardt, Steffen; Shahabi, Vahid; Roohi, Ehsan

    2017-03-01

    A rarefied gas is considered in a channel consisting of two infinite parallel plates between which an evenly spaced array of smaller plates is arranged normal to the channel direction. Each of these smaller plates is assumed to possess one ideally specularly reflective and one ideally diffusively reflective side. When the temperature of the small plates differs from the temperature of the sidewalls of the channel, these boundary conditions result in a temperature profile around the edges of each small plate that breaks the reflection symmetry along the channel direction. This in turn results in a force on each plate and a net gas flow along the channel. The situation is analyzed numerically using the direct simulation Monte Carlo method and compared with analytical results where available. The influence of the ideally specularly reflective wall is assessed by comparing with simulations using a finite accommodation coefficient at the corresponding wall. The configuration bears some similarity to a Crookes radiometer, where a nonsymmetric temperature profile at the radiometer vanes is generated by different temperatures on each side of the vane, resulting in a motion of the rotor. The described principle may find applications in pumping gas on small scales driven by temperature gradients.

  13. Spatial sampling errors for a satellite-borne scanning radiometer

    NASA Technical Reports Server (NTRS)

    Manalo, Natividad D.; Smith, G. L.

    1991-01-01

    The Clouds and Earth's Radiant Energy System (CERES) scanning radiometer is planned as the Earth radiation budget instrument for the Earth Observation System, to be flown in the late 1990's. In order to minimize the spatial sampling errors of the measurements, it is necessary to select design parameters for the instrument such that the resulting point spread function will minimize spatial sampling errors. These errors are described as aliasing and blurring errors. Aliasing errors are due to presence in the measurements of spatial frequencies beyond the Nyquist frequency, and blurring errors are due to attenuation of frequencies below the Nyquist frequency. The design parameters include pixel shape and dimensions, sampling rate, scan period, and time constants of the measurements. For a satellite-borne scanning radiometer, the pixel footprint grows quickly at large nadir angles. The aliasing errors thus decrease with increasing scan angle, but the blurring errors grow quickly. The best design minimizes the sum of these two errors over a range of scan angles. Results of a parameter study are presented, showing effects of data rates, pixel dimensions, spacecraft altitude, and distance from the spacecraft track.

  14. Characterization of the Earth Radiation Budget Experiment radiometers

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Barkstrom, B. R.

    1991-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers were used to measure the earth's radiation fields during the period November 1984 through February 1990. The ERBE radiometric packages were placed into orbit aboard the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. In each radiometric package, thermistor bolometers were used as detection elements for the broadband total (0,2 - 50,0 microns), shortwave (0,2 - 5,0 microns), and longwave (5,0 - 50,0 microns) spectral regions. Flight calibration facilities were built into each of the spacecraft radiometric packages. The flight facilities consisted of black bodies, tungsten lamps, and silicon photodiodes. The black bodies and tungsten lamps were found to be reliable at precision levels approaching 0,5 percent over a five-year period. The photodiodes were found to degrade more than 2 percent during the first year in orbit. In this paper, the flight calibration systems for the ERBE scanning radiometers are described along with the resultant measurements.

  15. Improvement of scanning radiometer performance by digital reference averaging

    NASA Technical Reports Server (NTRS)

    Bremer, J. C.

    1979-01-01

    Most radiometers utilize a calibration technique in which measurements of a known reference are subtracted from measurements of an unknown source so that common-mode bias errors are cancelled. When a radiometer is scanned over a varying scene, it produces a sequence of outputs, each being proportional to the difference between the reference and the corresponding input. A reference averaging technique is presented that employs a simple digital algorithm which exploits the asymmetry between the time-variable scene inputs and the nominally constant reference input by averaging many reference measurements to decrease the statistical uncertainty in the reference value. This algorithm is, therefore, optimized by an asymmetric chopping sequence in which the scene is viewed for more than one-half of the duty cycle (unlike the analog Dicke technique). Reference averaging algorithms are well within the capabilities of small microprocessors. Although this paper develops the technique for microwave radiometry, it may be beneficial for any system which measures a large number of unknowns relative to a known reference in the presence of slowly varying common-mode errors.

  16. Modeling the frequency response of microwave radiometers with QUCS

    NASA Astrophysics Data System (ADS)

    Zonca, A.; Roucaries, B.; Williams, B.; Rubin, I.; D'Arcangelo, O.; Meinhold, P.; Lubin, P.; Franceschet, C.; Jahn, S.; Mennella, A.; Bersanelli, M.

    2010-12-01

    Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.

  17. L-Band Radiometer Measurements of Conifer Forests

    NASA Technical Reports Server (NTRS)

    Lang, R.; LeVine, D.; Chauhan, N.; deMatthaeis, P.; Bidwell, S.; Haken, M.

    2000-01-01

    Airborne radiometer measurements have been made at L-band over conifer forests in Virginia to study radiometric response to biomass and soil moisture. The horizontally polarized synthetic aperture radiometer, ESTAR, has been deployed abroad a NASA-P3 aircraft which is based at the Goddard Space Flight Center's Wallops Flight Facility. The instrument has been mounted in the bomb bay of the P-3 and images data in the cross track direction. Aircraft and surface measurements were made in July, August and November of 1999 over relatively homogeneous conifer stands of varying biomass. The surface measurements included soil moisture measurements in several stands. The soil moisture was low during the July flight and highest in November after heavy rains had occurred. The microwave images clearly distinguished between the different forest stands. Stand age, obtained from International Paper Corporation which owns the stands, showed a strong correlation between brightness temperature and stand age. This agrees with previous simulation studies of conifer forests which show that the brightness temperature increases with increasing stand biomass. Research is continuing to seek a quantitative correlation between the observed brightness temperature of the stands and their biomass and surface soil moisture.

  18. Uncertainties in radiometer intercalibration associated with variability in geophysical parameters

    NASA Astrophysics Data System (ADS)

    Yang, John Xun; McKague, Darren S.; Ruf, Christopher S.

    2016-10-01

    Spaceborne radiometry plays a major role in weather and climate science and applications. Intercalibrating different radiometers has become an indispensable task for diagnosing instrument performance and integrating constellation data to extend the observational record. Because intercalibration affects both base radiance data and downstream science products, it is critical to examine intercalibration performance. In this study, we use constellation radiometer data from the Global Precipitation Measurement mission to detect and characterize a pronounced variability in intercalibration stability with a 40 day periodicity. A regional dependence of the calibration is also found. The variability is related to geophysical parameters including water vapor, surface wind speed, and sea surface temperature. It is found that the variability is caused by periodic variations in the local times and locations of the overlap regions between spacecraft. An analytical orbit model is developed for calculating the period of oscillation and agrees well with observation. Calibration errors show nonlinear and nonmonotonic dependences on geophysical parameters and brightness temperature, which cannot be removed by simple linear regression. The variability affects both base radiance calibration accuracy and retrieved science data products.

  19. ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK

    SciTech Connect

    AUSTIN, ME; LOHR, J

    2002-08-01

    OAK A271 ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK. The electron cyclotron emission (ECE) heterodyne radiometer diagnostic on DIII-D has been upgraded with the addition of eight channels for a total of 40. The new, higher frequency channels allow measurements of electron temperature into the magnetic axis in discharges at maximum field, 2.15 T. The complete set now extends over the full usable range of second harmonic emission frequencies at 2.0 T covering radii from the outer edge inward to the location of third harmonic overlap on the high field side. Full coverage permits the measurement of heat pulses and magnetohydrodynamic (MHD) fluctuations on both sides of the magnetic axis. In addition, the symmetric measurements are used to fix the location of the magnetic axis in tokamak magnetic equilibrium reconstructions. Also, the new higher frequency channels have been used to determine central T{sub e} with good time resolution in low field, high density discharges using third harmonic ECE in the optically gray and optically thick regimes.

  20. Aquarius Radiometer RFI Detection, Mitigation, and Impact Assessment

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher; Chen, David; Le Vine, David; de Matthaeis, Paolo; Piepmeier, Jeffrey

    2012-01-01

    The Aquarius/SAC-D satellite was launched on 10 June 2011 into a sun-synchronous polar orbit and the Aquarius microwave radiometers [1] became operational on 25 August 2011. Since that time, it has been measuring brightness temperatures at 1.4 GHz with vertical, horizontal and 3rd Stokes polarizations . Beginning well before the launch, there has been the concern that Radio Frequency Interference (RFI) could have an appreciable presence. This concern was initiated by, among other things, its prevalence in both early [2] and more recent [3,4] aircraft field experiments using 1.4 GHz radiometers, as well as by the strong RFI environment encountered during the recent ESA SMOS mission, also at 1.4 GHz [5]. As a result, a number of methods for RFI detection and mitigation have been developed and tested. One in particular, "glitch detection" and "pulse blanking" mitigation has been adapted for use by Aquarius [6, 7]. The early on-orbit performance of the Aquarius RFI detection and mitigation algorithm is presented here, together with an assessment of the global RFI environment at 1.4 GHz which can be derived from the Aquarius results.

  1. Comparative Analysis of Radiometer Systems Using Non-Stationary Processes

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers require periodic calibration to correct for instabilities in the receiver response. Various calibration techniques exist that minimize the effect of instabilities in the receivers. The optimal technique depends upon many parameters. Some parameters are constrained by the particular application and others can be chosen in the system design. For example, the measurement uncertainty may be reduced to the limits of the resolution of the measurement (sensitivity) if periodic absolute calibration can be performed with sufficient frequency. However if the period between calibrations is long, a reference-differencing technique, i.e. Dicke-type design, can yield better performance. The measurement uncertainty not only depends upon the detection scheme but also on the number of pixels between calibrations, the integration time per pixel, integration time per calibration reference measurement, calibration reference temperature, and the brightness temperature of what is being measured. The best scheme for reducing the measurement uncertainty also depends, in large part, on the stability of the receiver electronics. In this presentation a framework for evaluating calibration schemes for a wide range of system architectures is presented. Two methods for treating receiver non-stationarity are compared with radiometer measurements.

  2. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  3. Stock-car racing makes intuitive physicists

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-03-01

    Formula One races involve cars festooned with gadgets and complex electronic devices, in which millions of dollars are spent refining a vehicle's aerodynamics and reducing its weight. But in events run by America's National Association of Stock Car Auto Racing (NASCAR), cars hurtle round an oval track at speeds of about 300 km h-1 without the help of the complex sensors that are employed in Formula One cars. To avoid crashing, drivers must make their own adjustments to track conditions, engine problems and the traffic around them.

  4. CARS thermometry in high temperature gradients

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Dunn-Rankin, D.

    1993-01-01

    CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.

  5. Millimeter-Wave Imaging Radiometer (MIR) Data Processing and Development of Water Vapor Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1998-01-01

    This document describes the final report of the Millimeter-wave Imaging Radiometer (MIR) Data Processing and Development of Water Vapor Retrieval Algorithms. Volumes of radiometric data have been collected using airborne MIR measurements during a series of field experiments since May 1992. Calibrated brightness temperature data in MIR channels are now available for studies of various hydrological parameters of the atmosphere and Earth's surface. Water vapor retrieval algorithms using multichannel MIR data input are developed for the profiling of atmospheric humidity. The retrieval algorithms are also extended to do three-dimensional mapping of moisture field using continuous observation provided by airborne sensor MIR or spaceborne sensor SSM/T-2. Validation studies for water vapor retrieval are carried out through the intercomparison of collocated and concurrent measurements using different instruments including lidars and radiosondes. The developed MIR water vapor retrieval algorithm is capable of humidity profiling under meteorological conditions ranging from clear column to moderately cloudy sky. Simulative water vapor retrieval studies using extended microwave channels near 183 and 557 GHz strong absorption lines indicate feasibility of humidity profiling to layers in the upper troposphere and improve the overall vertical resolution through the atmosphere.

  6. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  7. An improved car-following model considering velocity fluctuation of the immediately ahead car

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Huang, Mengxing; Ren, Jia; Shi, Zhongke

    2016-05-01

    To better describe car-following behaviors in the adaptive cruise control strategy and further increase roadway traffic mobility and reduce fuel consumptions, the linkage between velocity fluctuation of the immediately ahead car and the following car's acceleration or deceleration is explored with respect to the measured car-following data by employing the gray correlation analysis theory and then an improved car-following model considering velocity fluctuation of the immediately ahead car on basis of the full velocity difference model is proposed. Numerical simulations are carried out and the effects of velocity fluctuation of the immediately ahead car on each car's velocity, acceleration, vehicular gap, fuel consumptions and the total fuel consumptions of the whole car-following system with different time window lengths are investigated in detail. The results show that velocity fluctuation of the immediately ahead car has significant effects on car-following behaviors and fuel consumptions, and that considering velocity fluctuation of the immediately ahead car in designing the adaptive cruise control system can improve traffic flow stability and reduce fuel consumptions.

  8. An improved car-following model with two preceding cars' average speed

    NASA Astrophysics Data System (ADS)

    Yu, Shao-Wei; Shi, Zhong-Ke

    2015-01-01

    To better describe cooperative car-following behaviors under intelligent transportation circumstances and increase roadway traffic mobility, the data of three successive following cars at a signalized intersection of Jinan in China were obtained and employed to explore the linkage between two preceding cars' average speed and car-following behaviors. The results indicate that two preceding cars' average velocity has significant effects on the following car's motion. Then an improved car-following model considering two preceding cars' average velocity was proposed and calibrated based on full velocity difference model and some numerical simulations were carried out to study how two preceding cars' average speed affected the starting process and the traffic flow evolution process with an initial small disturbance, the results indicate that the improved car-following model can qualitatively describe the impacts of two preceding cars' average velocity on traffic flow and that taking two preceding cars' average velocity into account in designing the control strategy for the cooperative adaptive cruise control system can improve the stability of traffic flow, suppress the appearance of traffic jams and increase the capacity of signalized intersections.

  9. Car driver casualty rates in Great Britain by type of car.

    PubMed

    Broughton, Jeremy

    2008-07-01

    Since 1989, the British STATS19 national road accident reporting system has included the Vehicle Registration Mark (VRM). This allows the basic vehicle record to be augmented with details such as the date of first registration and codes that specify the vehicle's make and model. In order to examine the influence of car type upon the driver casualty rate, this paper groups car models into six types, ranging from 'Minis and Superminis' to '4x4s and people carriers (pc)'. Exploratory analyses of data from accidents that occurred between 2001 and 2005 show that the driver casualty rate falls markedly with size of car. In car-car collisions, the rate also rises markedly with the size of the other car. The car's year of first registration also influences the casualty rate, and represents the influence of changes in the characteristics of new cars. Statistical models are fitted to identify the separate influences on a driver's risk of injury in a car-car collision of the type and registration year of the driver's car and the type and registration year of the other car in the collision. The analysis is extended to include collisions with other vehicles such as lorries and buses.

  10. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  11. Dual transmission grating based imaging radiometer for tokamak edge and divertor plasmas

    SciTech Connect

    Kumar, Deepak; Clayton, Daniel J.; Parman, Matthew; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael

    2012-10-15

    The designs of single transmission grating based extreme ultraviolet (XUV) and vacuum ultraviolet (VUV) imaging spectrometers can be adapted to build an imaging radiometer for simultaneous measurement of both spectral ranges. This paper describes the design of such an imaging radiometer with dual transmission gratings. The radiometer will have an XUV coverage of 20-200 A with a {approx}10 A resolution and a VUV coverage of 200-2000 A with a {approx}50 A resolution. The radiometer is designed to have a spatial view of 16 Degree-Sign , with a 0.33 Degree-Sign resolution and a time resolution of {approx}10 ms. The applications for such a radiometer include spatially resolved impurity monitoring and electron temperature measurements in the tokamak edge and the divertor. As a proof of principle, the single grating instruments were used to diagnose a low temperature reflex discharge and the relevant data is also included in this paper.

  12. Intercomparison of 51 radiometers for determining global horizontal irradiance and direct normal irradiance measurements

    SciTech Connect

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Wilcox, Stephen; Stoffel, Thomas

    2016-08-01

    Accurate solar radiation measurements require properly installed and maintained radiometers with calibrations traceable to the World Radiometric Reference. This study analyzes the performance of 51 commercially available and prototype radiometers used for measuring global horizontal irradiances or direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with an internal shading mask deployed at the National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012), and their measurements were compared under clear-sky, partly cloudy, and mostly cloudy conditions to reference values of low estimated measurement uncertainties. The intent of this paper is to present a general overview of each radiometer's performance based on the instrumentation and environmental conditions available at NREL.

  13. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-01-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  14. In-flight shortwave calibrations of the active cavity radiometers using tungsten lamps

    NASA Technical Reports Server (NTRS)

    Thomas, Susan; Lee, Robert B.; Gibson, Michael A.; Wilson, Robert S.; Bolden, William C.

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) active cavity radiometers are used to measure the incoming solar, reflected shortwave solar, and emitted longwave radiations from the Earth and atmosphere. The radiometers are located on the NASA's Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. Two of the radiometers, one wide field of view (WFOV) and one medium field of view (MFOV), measure the total radiation in the spectral region of 0.2 to 50 microns and the other two radiometers (WFOV and MFOV) measure the shortwave radiation in the spectral region of 0.2 to 5.0 microns. For the in-flight calibrations, tungsten lamp and the sun are used as calibration sources for shortwave radiometers. Descriptions of the tungsten lamp and solar calibration procedures and mechanisms are presented. The tungsten lamp calibration measurements are compared with the measurements of solar calibration for ERBS and NOAA-9 instruments.

  15. A 94/183 GHz aircraft radiometer system for Project Storm Fury

    NASA Astrophysics Data System (ADS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.; Welch, J. M.; Gallentine, D. O.

    1980-04-01

    A radiometer design suitable for use in NASA's WB-57F aircraft to collect data from severe storm regions was developed. The design recommended was a 94/183 GHz scanning radiometer with 3 IF channels on either side of the 183.3 GHz water vapor line and a single IF channel for a low loss atmospheric window channel at 94 GHz. The development and construction of the 94/183 GHz scanning radiometer known as the Advanced Microwave Moisture Sounder (AMMS) is presented. The radiometer scans the scene below the aircraft over an angle of + or - 45 degrees with the beamwidth of the scene viewed of approximately 2 degrees at 94 GHz and 1 degree at 183 GHz. The AMMS data collection system consists of a microcomputer used to store the radiometer data on the flight cartridge recorder, operate the stepper motor driven scanner, and collect housekeeping data such as thermistor temperature readings and aircraft time code.

  16. A hot wire radiant energy source for mapping the field of view of a radiometer

    NASA Technical Reports Server (NTRS)

    Edwards, S. F.; Stewart, W. F.; Vann, D. S.

    1977-01-01

    The design and performance of a calibration device that allows the measurement of a radiometer's field of view are described. The heart of the device is a heated 0.0254-mm (0.001-inch) diameter filament that provides a variable, isothermal line source of radiant energy against a cold background. By moving this discrete line source across the field of view of a radiometer, the radiometer's spatial response can be completely mapped. The use of a platinum filament provides a durable radiation source whose temperature is stable and repeatable to 10 K over the range of 600 to 1200 K. By varying the energy emitted by the filament, the field of view of radiometers with different sensitivities (or multiple channel radiometers) can be totally mapped.

  17. Semiconductor millimeter and centimeter wave radiometer for the study of the radiation of an underlying surface

    NASA Technical Reports Server (NTRS)

    Bordonskiy, G. S.; Zazinov, A. N.; Kirsanov, Y. A.; Kravchenko, M. K.; Khapin, Y. B.; Sharapov, A. N.; Etkin, V. S.

    1979-01-01

    A theoretical and experimental investigation of a superheterodyne radiometer system with input frequency converter and intermediate frequency modulation is presented. Conditions are found, at which the temperature sensitivity of the device does not deteriorate. A sensitivity function to external parameters (temperature, heterodyne power) of a radiometer system with intermediate frequency modulation and a Schottky diode frequency converter is presented and calculated. Use of a frequency converter at the second harmonic of the heterodyne permitted simplication of the radiometer design and the use of a semiconductor heterodyne. A 3 cm range intermediate frequency amplifier permitted the use of centimeter wave radiometer signals. Fluctuation sensitivity of radiometers with a 1 sec time constant is 0.3 K at 3.4 mm and 0.06 K at 3 cm.

  18. 49 CFR 1033.1 - Car hire rates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Car hire rates. 1033.1 Section 1033.1... OF TRANSPORTATION GENERAL RULES AND REGULATIONS CAR SERVICE § 1033.1 Car hire rates. (a) Definitions applicable to this section: (1) Car. A freight car bearing railroad reporting marks, other than an...

  19. 49 CFR 1033.1 - Car hire rates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Car hire rates. 1033.1 Section 1033.1... OF TRANSPORTATION GENERAL RULES AND REGULATIONS CAR SERVICE § 1033.1 Car hire rates. (a) Definitions applicable to this section: (1) Car. A freight car bearing railroad reporting marks, other than an...

  20. 49 CFR 1033.1 - Car hire rates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Car hire rates. 1033.1 Section 1033.1... OF TRANSPORTATION GENERAL RULES AND REGULATIONS CAR SERVICE § 1033.1 Car hire rates. (a) Definitions applicable to this section: (1) Car. A freight car bearing railroad reporting marks, other than an...

  1. 49 CFR 1033.1 - Car hire rates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Car hire rates. 1033.1 Section 1033.1... OF TRANSPORTATION GENERAL RULES AND REGULATIONS CAR SERVICE § 1033.1 Car hire rates. (a) Definitions applicable to this section: (1) Car. A freight car bearing railroad reporting marks, other than an...

  2. 49 CFR 238.311 - Single car test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains...

  3. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  4. 49 CFR 238.311 - Single car test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains...

  5. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  6. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  7. 49 CFR 238.311 - Single car test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains...

  8. 49 CFR 238.311 - Single car test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains...

  9. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Qualification of tank cars. 180.507 Section 180... QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car...

  10. 49 CFR 180.507 - Qualification of tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Qualification of tank cars. 180.507 Section 180... MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used for the...

  11. 49 CFR 238.311 - Single car test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains...

  12. Car Stopping Distance on a Tabletop

    ERIC Educational Resources Information Center

    Haugland, Ole Anton

    2013-01-01

    Stopping distances in car braking can be an intriguing topic in physics teaching. It illustrates some basic principles of physics, and sheds valuable light on students' attitude towards aggressive driving. Due to safety considerations, it can be difficult to make experiments with actual car braking. (Contains 2 figures.)

  13. Smart CARs Engineered for Cancer Immunotherapy

    PubMed Central

    Priceman, Saul J.; Forman, Stephen J.; Brown, Christine E.

    2015-01-01

    Purpose Chimeric antigen receptors (CARs) are synthetic immunoreceptors that can redirect T cells to selectively kill tumor cells, and as “living-drugs” have the potential to generate long-term anti-tumor immunity. Given their recent clinical successes for the treatment of refractory B-cell malignancies, there is a strong push toward advancing this immunotherapy to other hematological diseases and solid cancers. Here, we summarize the current state of the field, highlighting key variables for the optimal application of CAR T cells for cancer immunotherapy. Recent Findings Advances in CAR T cell therapy have highlighted intrinsic CAR design and T cell manufacturing methods as critical components for maximal therapeutic success. Similarly, addressing the unique extrinsic challenges of each tumor type, including overcoming the immunosuppressive tumor microenvironment and tumor heterogeneity, as well as mitigating potential toxicity, will dominate the next wave of CAR T cell development. Summary CAR T cell therapeutic optimization, including intrinsic and extrinsic factors, is critical to developing effective CAR T cell therapies for cancer. The excitement of CAR T cell immunotherapy has just begun, and will continue with new insights revealed in laboratory research and in ongoing clinical investigations. PMID:26352543

  14. A Radio-Controlled Car Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Watching a radio-controlled car zip along a sidewalk or street has become a common sight. Within this toy are the basic ingredients of a mobile robot, used by industry for a variety of important and potentially dangerous tasks. In this challenge, students consider modifying an of-the-shelf, radio-controlled car, adapting it for a robotic task.

  15. CRISPR Meets CAR T-cell Therapy.

    PubMed

    2017-03-21

    Using CRISPR/Cas9 technology, researchers have devised a method to deliver a CAR gene to a specific locus, TRAC, in T cells. This targeted approach yielded therapeutic cells that were more potent even at low doses; in a mouse model of acute lymphoblastic leukemia, they outperformed CAR T cells created with a randomly integrating retroviral vector.

  16. Rear-facing car seat (image)

    MedlinePlus

    A rear-facing car seat position is recommended for a child who is very young. Extreme injury can occur in an accident because ... child. In a frontal crash a rear-facing car seat is best, because it cradles the head, ...

  17. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  18. Zoom Zoom: racing CARs for multiple myeloma.

    PubMed

    Maus, Marcela V; June, Carl H

    2013-04-15

    Chimeric antigen receptors redirect T cells to surface antigens. Discovery and validation of appropriate target antigens expand the possible indications for chimeric-antigen receptor (CAR)-T cells. B-cell maturation antigen (BCMA) is expressed only on mature B cells and plasma cells and promotes their survival. BCMA is a promising target for CAR-T cells in multiple myeloma.

  19. Entertainment and Pacification System For Car Seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2006-01-01

    An entertainment and pacification system for use with a child car seat has speakers mounted in the child car seat with a plurality of audio sources and an anti-noise audio system coupled to the child car seat. A controllable switching system provides for, at any given time, the selective activation of i) one of the audio sources such that the audio signal generated thereby is coupled to one or more of the speakers, and ii) the anti-noise audio system such that an ambient-noise-canceling audio signal generated thereby is coupled to one or more of the speakers. The controllable switching system can receive commands generated at one of first controls located at the child car seat and second controls located remotely with respect to the child car seat with commands generated by the second controls overriding commands generated by the first controls.

  20. The kinematic advantage of electric cars

    NASA Astrophysics Data System (ADS)

    Meyn, Jan-Peter

    2015-11-01

    Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.

  1. Coal cars - the first three hundred years

    SciTech Connect

    Martin Robert Karig III

    2007-12-15

    This is the comprehensive study of the freight cars that conveyed coal across broad swaths of land that had been impassible before the invention of the steam engine. This volume traces the history and evolution of coal cars from their earliest use in England to the construction of major railways for the purpose of coal hauling and the end of the steam era on American railroads. In addition to contextualizing coal cars in the annals of industrial history, the book features extensive design specifications and drawings as well as a complete history of the various safety and mechanical innovations employed on these freight cars. It concludes with a photographic essay illustrating the development of the coal car over its first 300 years of use. 608 photos.

  2. Silicon solar cells as a high-solar-intensity radiometer

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Robson, R. R.

    1971-01-01

    The characteristics of a conventional, 1- by 2-cm, N/P, gridded silicon solar cell when used as a radiometer have been determined for solar intensity levels to 2800 mW/sq cm (20 solar constants). The short-circuit current was proportional to the radiant intensity for levels only to 700 mW/sq cm (5 solar constants). For intensity levels greater than 700 mW/sq cm, it was necessary to operate the cell in a photoconductive mode in order to obtain a linear relation between the measured current and the radiant intensity. When the solar cell was biased with a reverse voltage of -1 V, the measured current and radiant intensity were linearly related over the complete intensity range from 100 to 2800 mW/sq cm.

  3. Scientific results from the Pioneer Saturn infrared radiometer

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Ingersoll, A. P.; Froidevaux, L.; Neugebauer, G.; Muench, G.; Chase, S. C.

    1981-01-01

    Data on Saturn and its rings are presented, obtained by the Pioneer 11 infrared radiometer in broadband channels, centered at 20 and 45 microns. Assuming symmetry about the equator and a constant flux poleward of 7.5 deg latitude, an average effective temperature of 96.5 + or - 2.5 K indicates a total emission which is 2.8 times that of the absorbed sunlight. Temperatures at the 1 bar level are 137 and 140 K, and a minimum temperature averaging 87 K is registered near the 0.06 bar level. Ring boundaries and optical depths are consistent with those at optical wavelengths. Ring temperatures are 54-86 K on the south side, approximately 54 K on the north side, and at least 67 K in Saturn's shadow.

  4. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)

    2003-01-01

    During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  5. Mission definition for a large-aperture microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.

    1981-01-01

    An Earth-observation measurements mission is defined for a large-aperture microwave radiometer spacecraft. This mission is defined without regard to any particular spacecraft design concept. Space data application needs, the measurement selection rationale, and broad spacecraft design requirements and constraints are described. The effects of orbital parameters and image quality requirements on the spacecraft and mission performance are discussed. Over the land the primary measurand is soil moisture; over the coastal zones and the oceans important measurands are salinity, surface temperature, surface winds, oil spill dimensions and ice boundaries; and specific measurement requirements have been selected for each. Near-all-weather operation and good spatial resolution are assured by operating at low microwave frequencies using an extremely large aperture antenna in a low-Earth-orbit contiguous mapping mode.

  6. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.

    2003-01-01

    During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  7. Pioneer Venus infrared radiometer - Design, implementation and preliminary results

    NASA Technical Reports Server (NTRS)

    Martonchik, J. V.; Taylor, F. W.

    1979-01-01

    The paper discusses the Pioneer Venus infrared radiometer design and operation. Its main function is to measure the thermal emission from the atmosphere at seven pressure levels above the Venus clouds, allowing a determination of the vertical temperature structure. In addition to the temperature sounding channels, there are two channels operating in the visible and near infrared to study the structure of the upper clouds, and a far infrared channel sensitive to water vapor in and above the clouds. The instrument can operate in four modes including a calibration sequence; by utilizing the spinning action of the spacecraft and short integration times, a substantial portion of the planet can be mapped within a 90 min data taking period centered about periapsis time. Temperature profiles retrieved during the course of the mission will clarify the dynamical processes in the upper atmosphere.

  8. Cumulus convection as observed from an airborne infrared radiometer

    NASA Technical Reports Server (NTRS)

    Szejwach, G.; Simpson, J.

    1982-01-01

    The implementation of high resolution passive radiative remote sensing of the cloudiness volume in the atmospheric window between 10.5-12.5 microns is described. Airborne radiometers, the NASA/Cloud Top Scanner, were used to obtain radiances during several passages over two merging cumulus clouds, with the data being converted into equivalent blackbody temperatures. Data were also gathered in the 0.55-0.70 micron visible bands as part of the SESAME-79 experiment. The number of points observed in the IR channel were adjusted to account for the viewing angle and areal extents were calculated. A relationship was assumed to exist between the brightness temperatures of the cloud surface and the level of cloudiness at a given atmospheric altitude. Further measurements with lidar scans are indicated in order to reduce the error levels associated with the method.

  9. Towards a fiber-coupled picowatt cryogenic radiometer.

    PubMed

    Tomlin, N A; Lehman, J H; Nam, S

    2012-06-15

    A picowatt cryogenic radiometer (PCR) has been fabricated at the microscale level for electrical substitution optical fiber power measurements. The absorber, electrical heater, and thermometer are all on a micromachined membrane less than 1 mm on a side. Initial measurements with input powers from 50 fW to 20 nW show a response inequivalence between electrical and optical power of 8%. A comparison of the response to electrical and optical input powers between 15 pW to 70 pW yields a repeatability better than ±0.3% (k=2). From our first optical tests, the system has a noise equivalent power of ≈5×10(-15) W/√Hz at 2 Hz, but simple changes to the measurement scheme should yield an NEP 2 orders of magnitude lower.

  10. Data processing for the DMSP microwave radiometer system

    NASA Technical Reports Server (NTRS)

    Rigone, J. L.; Stogryn, A. P.

    1977-01-01

    A software program was developed and tested to process microwave radiometry data to be acquired by the microwave sensor (SSM/T) on the Defense Meteorological Satellite Program spacecraft. The SSM/T 7-channel microwave radiometer and systems data will be data-linked to Air Force Global Weather Central (AFGWC) where they will be merged with ephemeris data prior to product processing for use in the AFGWC upper air data base (UADB). The overall system utilizes an integrated design to provide atmospheric temperature soundings for global applications. The fully automated processing at AFGWC was accomplished by four related computer processor programs to produce compatible UADB soundings, evaluate system performance, and update the a priori developed inversion matrices. Tests with simulated data produced results significantly better than climatology.

  11. Remote sensing of snowpack with microwave radiometers for hydrologic applications

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Chang, A. T. C.; Boyne, H.; Ellerbruch, D.

    1978-01-01

    A microwave remote sensing of snowpack experiment is described and some preliminary data presented. A mobile field laboratory consisting of a four-frequency (5, 10.7, 18 and 37 GHz), all with dual linear (vertical and horizontal) polarizations, microwave radiometer system attached to a truck-mounted aerial lift was used to study the microwave emission characteristics of snowpacks in the Colorado Rocky Mountains during the winter of 1977-78. The influence of snowpack physical parameters such as water equivalent, grain size, and melt-freeze cycle on its microwave brightness temperature and its implications to the application of microwave radiometric technique to remote sensing of snowpack for runoff prediction are discussed.

  12. Scientific support of the Apollo infrared scanning radiometer experiment

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.

    1976-01-01

    The Infrared Scanning Radiometer (ISR) was designed to map the thermal emission of the lunar surface from the service module of the orbiting Apollo 17 spacecraft. Lunar surface nighttime temperatures, which are extremely difficult to map from earth based telescopes were measured. The ISR transmitted approximately 90 hours of lunar data spread over 5 days in lunar orbit. Approximately 10 to the 8th power independent lunar temperature measurements were made with an absolute accuracy of 2K. Spatial resolution at nadir was approximately 2.2 km (depending on orbital altitude), exceeding that of earth based measurements by at least an order of magnitude. Preliminary studies of the data reveal the highest population of thermal anomalies (or hot spots) in Oceanus Procellarum. Very few anomalies exist on the far side of the moon as was predicted from the association of anomalies with mare on the near side. A number of negative anomalies (or cold spots) have also been found.

  13. Measurement of oceanic wind vector using satellite microwave radiometers

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.

    1992-01-01

    A feasibility study of deriving both a wind speed and direction from microwave radiometer measurements of the ocean is presented. The study was based on the Special Sensor Microwave/Imager (SSM/I) measurements in conjunction with buoy reports from the National Data Buoy Center. It was found that the SSM/I minus the buoy wind speed difference is correlated with wind direction due to a wind direction signal in the brightness temperatures. When this wind direction signal is removed the rms difference between the SSM/I and buoy winds reduces to 1.3 m/s. The wind direction signal was used to make global, low-resolution maps of the monthly mean oceanic wind vector.

  14. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  15. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to

  16. Calibrating ground-based microwave radiometers: Uncertainty and drifts

    NASA Astrophysics Data System (ADS)

    Küchler, N.; Turner, D. D.; Löhnert, U.; Crewell, S.

    2016-04-01

    The quality of microwave radiometer (MWR) calibrations, including both the absolute radiometric accuracy and the spectral consistency, determines the accuracy of geophysical retrievals. The Microwave Radiometer Calibration Experiment (MiRaCalE) was conducted to evaluate the performance of MWR calibration techniques, especially of the so-called Tipping Curve Calibrations (TCC) and Liquid Nitrogen Calibrations (LN2cal), by repeatedly calibrating a fourth-generation Humidity and Temperature Profiler (HATPRO-G4) that measures downwelling radiance between 20 GHz and 60 GHz. MiRaCalE revealed two major points to improve MWR calibrations: (i) the necessary repetition frequency for MWR calibration techniques to correct drifts, which ensures stable long-term measurements; and (ii) the spectral consistency of control measurements of a well known reference is useful to estimate calibration accuracy. Besides, we determined the accuracy of the HATPRO's liquid nitrogen-cooled blackbody's temperature. TCCs and LN2cals were found to agree within 0.5 K when observing the liquid nitrogen-cooled blackbody with a physical temperature of 77 K. This agreement of two different calibration techniques suggests that the brightness temperature of the LN2 cooled blackbody is accurate within at least 0.5 K, which is a significant reduction of the uncertainties that have been assumed to vary between 0.6 K and 1.5 K when calibrating the HATPRO-G4. The error propagation of both techniques was found to behave almost linearly, leading to maximum uncertainties of 0.7 K when observing a scene that is associated with a brightness temperature of 15 K.

  17. Thermistor bolometer radiometer signal contamination due to parasitic heat diffusion

    NASA Astrophysics Data System (ADS)

    Priestley, Kory J.; Mahan, J. R.; Haeffelin, Martial P.; Savransky, Maxim; Nguyen, Tai K.

    1995-12-01

    Current efforts are directed at creating a high-level end-to-end numerical model of scanning thermistor bolometer radiometers of the type used in the Earth Radiation Budget Experiment (ERBE) and planned for the clouds and the earth's radiative energy system (CERES) platforms. The first-principle model accurately represents the physical processes relating the electrical signal output to the radiative flux incident to the instrument aperture as well as to the instrument thermal environment. Such models are useful for the optimal design of calibration procedures, data reduction strategies, and the instruments themselves. The modeled thermistor bolometer detectors are approximately 40 micrometers thick and consist of an absorber layer, the thermistor layer, and a thermal impedance layer bonded to a thick aluminum substrate which acts as a heat sink. Thermal and electrical diffusion in the thermistor bolometer detectors is represented by a several-hundred-node- finite-difference formulation, and the temperature field within the aluminum substrate is computed using the finite-element method. The detectors are electrically connected in adjacent arms of a two-active-arm bridge circuit so that the effects of common mode thermal noise are minimized. However, because of a combination of thermistor self heating, loading of the bridge by the bridge amplifier, and the nonlinear thermistor resistance-temperature relationship, bridge deflections can still be provoked by substrate temperature changes, even when the change is uniform across the substrate. Of course, transient temperature gradients which may occur in the substrate between the two detectors will be falsely interpreted as a radiation input. The paper represents the results of an investigation to define the degree of vulnerability of thermistor bolometer radiometers to false signals provoked by uncontrolled temperature fluctuations in the substrate.

  18. Car size or car mass: which has greater influence on fatality risk?

    PubMed Central

    Evans, L; Frick, M C

    1992-01-01

    OBJECTIVES. Proposed increases in corporate average fuel economy standards would probably lead to lighter cars. Well-established relationships between occupant risk and car mass predict consequent additional casualties. However, if size, not mass, is the causative factor in these relationships, then decreasing car mass need not increase risk. This study examines whether mass or size is the causative factor. METHODS. Data from the Fatal Accident Reporting System are used to explore relationships between car mass, car size (as represented by wheelbase), and driver fatality risk in two-car crashes. RESULTS. When cars of identical (or similar) wheelbase but different mass crash into each other, driver fatality risk depends strongly on mass; the relationship is quantitatively similar to that found in studies that ignore wheelbase. On the other hand, when cars of similar mass but different wheelbase crash into each other, the data reveal no dependence of driver fatality risk on wheelbase. CONCLUSIONS. Mass is the dominant causative factor in relationships between driver risk and car size in two-car crashes, with size, as such, playing at most a secondary role. Reducing car mass increases occupant risk. PMID:1636830

  19. 1. GENERAL VIEW OF TIPPLE LOOKING NORTHWEST, SHOWING LARRY CARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF TIPPLE LOOKING NORTHWEST, SHOWING LARRY CARS BELOW HOPPER BIN. GRAY FITZSIMONS, HAER HISTORIAN, IS STANDING ON PLATFORM NEXT TO LARRY CARS - Lucernemines Coke Works, Larry Car Tipple, East of Lucerne, Lucerne Mines, Indiana County, PA

  20. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. 5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF BRIDGE AND ENGINE CAR ON TRACKS, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  2. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    SciTech Connect

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  4. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    SciTech Connect

    Ooi, C. H. Raymond

    2009-07-10

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  5. A CARS solution with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Landwehr, Stefanie; Lurquin, Vanessa; Hay, William C.; Krishnamachari, Vishnu; Schwarz, Ulf

    2011-03-01

    Confocal and multiphoton microscopy are powerful fluorescence techniques for morphological and dynamics studies of labeled elements. For non-fluorescent components, CARS (Coherent Anti-Stokes Raman Scattering) microscopy can be used for imaging various elements of cells such as lipids, proteins, DNA, etc. This technique is based on the intrinsic vibrational properties of the molecules. Leica Microsystems has combined CARS technology with its TCS SP5 II confocal microscope to provide several advantages for CARS imaging. The Leica TCS CARS combines two technologies in one system: a conventional scanner for maximum accuracy and a resonant scanner for highly time resolved imaging. For CARS microscopy, two picosecond near-infrared lasers are overlapped tightly, spatially and temporally, and sent directly into the confocal system. The conventional scanner can be used for morphological studies and the resonant scanner for following dynamic processes of unstained living cells. The fast scanner has several advantages over other solutions. First, the sectioning is truly confocal and does not suffer from spatial leakage. Second, the high speed (29 images/sec @ 512x512 pixels) provides fast data acquisition at video rates, allowing studies at the sub-cellular level. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS CARS a powerful tool for multimodal and three-dimensional imaging of chemical and biological sample.

  6. Monoclonal antibody against mouse CAR following genetic immunization.

    PubMed

    Carson, Steven D; Switzer, Barbara L; Tracy, Steven M; Chapman, Nora M

    2004-02-01

    To broaden our repertoire of monoclonal antibodies against CAR (coxsackievirus and adenovirus receptor), we inoculated mice with an expression vector containing the cDNA encoding human CAR extracellular and transmembrane sequence, and boosted the response by inoculation with soluble human CAR protein produced in E. coli. Of the hybridomas obtained following this immunization protocol, one secreted IgG with exceptional reactivity against mouse CAR. Since CAR has been shown to form dimers, expression of human CAR in cells that express mouse CAR may have stimulated the host immune system to recognize endogenous CAR in heterodimers.

  7. Radiometers based on SIS mixers to measure SZ effect from galaxy clusters

    NASA Astrophysics Data System (ADS)

    Gervasi, M.; Banfi, S.; Boella, G.; Passerini, A.; Natale, V.; Sironi, G.; Tartari, A.; Zannoni, M.

    2007-03-01

    We present a project to realize radiometers devoted to the observation of the Sunyaev-Zeldovich effect towards galaxy clusters. Radiometers are based on SIS mixers and are working at three frequency bands (around 94, 240 and 345 GHz) covering both the positive and negative part of the spectral displacement. The radiometers have been developed to be used at a telescope of 3 m class, like MITO. The observation program would be completed performing low frequency measurements first at the Noto radiotelescope (at 43 GHz) and then at SRT (at 40 and 90 GHz).

  8. The daily and annual (2007) effects of dew on a non-ventilated net radiometer

    NASA Astrophysics Data System (ADS)

    Malek, E.

    2010-07-01

    Although dew is an unimportant source of moisture in humid areas, plants and arthropods living in some arid regions depend on it for survival. On the other hand, the formation of dew mainly on the upper dome of a non-ventilated net radiometer seriously affects the measurement of available energy (net radiation). Net radiometers measure the available or net energy and are widely used for estimation of evapotranspiration throughout the world. To study the effects of dew on a non-ventilated net radiometer, a radiation station was set up which uses 2 CM21 Kipp & Zonen pyranometers (one inverted), 2 CG1 Kipp & Zonen pyrgeometers (one inverted), along with a Q*7.1 net radiometer (Radiation & Energy Balance Systems, Inc.; REBS) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using 4 CV2 Kipp & Zonen ventilation systems. The net radiometer was not ventilated. The ventilation of pyranometers and pyrgeometers prevents dew and frost deposition and snow accumulation which otherwise would disturb measurements. All sensors were installed at about 3.0 m above the ground, which was covered with natural vegetation during the growing season (May - September). The incoming and outgoing solar or shortwave radiation, the incoming (atmospheric) and outgoing (terrestrial) longwave radiation, and the net radiation have been continuously measured by pyranometers, pyrgeometers and a net radiometer, respectively, since 1995. These parameters have been measured every 2 seconds and averaged into 20 minutes. To evaluate the effect of dew on the non-ventilated net radiometer 6 April 2007 with early morning dew was chosen. Dew formation occurred mainly on the upper dome of the non-ventilated Q*7.1 net radiometer on this day, while the ventilated Kipp & Zonen system was free of dew. Net radiation measured by the non-ventilated net radiometer Rn,unvent. during dew periods of the above-mentioned day was greater than the ventilated ones Rn

  9. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  10. The human controller in car following

    NASA Technical Reports Server (NTRS)

    Burnham, G. O.; Bekey, G. A.

    1975-01-01

    The man machine interface between the human driver and his automobile during car following tasks was examined. A direct connection between models of the human operator and the theory of optimal control was established for car following situations involving both linear and nonlinear car dynamics. Results obtained from several types of mathematical models are discussed. Conventional parameter identification techniques were used to obtain the parameters of these models by comparing their performance to data obtained by aerial photogrammetry. The results indicate that there are two general classes of model structures: models assumed to have preview information and models without preview.

  11. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    NASA Astrophysics Data System (ADS)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.

    2017-03-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  12. Limits of Precipitation Detection from Microwave Radiometers and Sounders

    NASA Astrophysics Data System (ADS)

    Munchak, S. J.; Skofronick-Jackson, G.; Johnson, B. T.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission will unify and draw from numerous microwave conical scanning imaging radiometers and cross-track sounders, many of which already in operation, to provide near real-time precipitation estimates worldwide at 3-hour intervals. Some of these instruments were designed for primary purposes unrelated to precipitation remote sensing. Therefore it is worthwhile to evaluate the strengths and weaknesses of each set of channels with respect to precipitation detection to fully understand their role in the GPM constellation. The GPM radiometer algorithm will use an observationally-based Bayesian retrieval with common databases of precipitation profiles for all sensors. Since these databases are still under development and will not be truly complete until the GPM core satellite has completed at least one year of dual-frequency radar observations, a screening method based upon retrieval of non-precipitation parameters related to the surface and atmospheric state is used in this study. A cost function representing the departure of modeled radiances from their observed values plus the departure of surface and atmospheric parameters from the TELSEM emissivity atlas and MERRA reanalysis is used as an indicator of precipitation. Using this method, two datasets are used to evaluate precipitation detection: One year of matched AMSR-E and AMSU-B/MHS overpasses with CloudSat used as validation globally; and SSMIS overpasses over the United States using the National Mosaic and QPE (NMQ) as validation. The Heidke Skill Score (HSS) is used as a metric to evaluate detection skill over different surfaces, seasons, and across different sensors. Non-frozen oceans give the highest HSS for all sensors, followed by bare land and coasts, then snow-covered land and sea ice. Negligible skill is present over ice sheets. Sounders tend to have higher skill than imagers over complex surfaces (coast, snow, and sea ice), whereas imagers have higher skill

  13. O2 (1Δg) detection using broadband CARS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbo; Guo, Jingwei; Cai, Xianglong; Gai, Baodong; Meng, Qingkun; Jin, Yuqi

    2015-02-01

    1 Δg oxygen was the active medium of chemical oxygen iodine laser (COIL), the concentration and distribution of 1 Δg oxygen was important for the output power and beam quality. However, the current test technique, such as fluorescence detection method, absorption spectrum method could not get accurate 1 Δg oxygen information, due to the interference from the iodine fluorescence or the rigorous request of the laser source and optics and detection elements. The anti-stokes Raman spectrum of 1 Δg oxygen was regarded as a potential technique to obtain desirable signal, and the coherent anti-stokes Raman scatter (CARS) was the most feasible technique to get better signal to noise ratio (SNR). In this paper, we reported a broadband nanosecond coherent anti-stokes Raman scatter (CARS) detecting system built up for the detection of the concentration and distribution of O2( 1 Δg) in COIL:The second harmonic of a Nd: YAG pulse laser was separated into two parts, one part was used to pump a broadband nanosecond dye laser to generate light of 578-580 nm, which covered both stokes lines of O2 ( 1 Δg)and O2 (3 ∑) The other part was combined with dye laser output by a dichroic mirror, and then introduced into the detection region of COIL through a focus lens. CARS signals for O2(1 Δg)and O2 (3 ∑)have different wavelengths, and their intensity was proportional to the square of the concentration of O2(1 Δg) and O2( 3 ∑). By changing the focus spot of pump and stokes laser, the concentration distribution of O2(1 Δg) and O2(3 ∑)at different position could be obtained.

  14. CAR models: next-generation CAR modifications for enhanced T-cell function.

    PubMed

    Abate-Daga, Daniel; Davila, Marco L

    2016-01-01

    T cells genetically targeted with a chimeric antigen receptor (CAR) to B-cell malignancies have demonstrated tremendous clinical outcomes. With the proof in principle for CAR T cells as a therapy for B-cell malignancies being established, current and future research is being focused on adapting CAR technology to other cancers, as well as enhancing its efficacy and/or safety. The modular nature of the CAR, extracellular antigen-binding domain fused to a transmembrane domain and intracellular T-cell signaling domains, allows for optimization by replacement of the various components. These modifications are creating a whole new class of therapeutic CARs. In this review, we discuss the recent major advances in CAR design and how these modifications will impact its clinical application.

  15. Policy: A challenging future for cars

    NASA Astrophysics Data System (ADS)

    Howey, David A.

    2012-01-01

    The rising demand for road vehicles increases Europe's oil dependency and carbon emissions. Switching to alternative cars and fuels can help energy security and climate change policy, if consumers can be persuaded.

  16. Binarity of the LBV HR Car

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Boffin, H. M. J.; de Wit, W. J.; Mehner, A.; Martayan, Ch.; Guieu, S.; Le Bouquin, J.-B.

    2015-01-01

    VLTI/AMBER and VLTI/PIONIER observations of the LBV HR Car show an interferometric signature that could not possibly be explained by an extended wind, more or less symmetrically distributed around a single object. Instead, observations both in the Brγ line and the H-band continuum are best explained by two point sources (or alternatively one point source and one slightly extended source) at about 2 mas separation and a contrast ratio of about 1:5. These observations establish that HR Car is a binary, but further interpretation will only be possible with future observations to constrain the orbit. Under the assumption that the current separation is close to the maximum one, the orbital period can be estimated to be of the order of 5 years, similar as in the η Car system. This would make HR Car the second such LBV binary.

  17. How to Buy a Car 101

    ERIC Educational Resources Information Center

    Flores, Charity A.

    2006-01-01

    This article elaborates on the basics of problem-based learning units and tips for implementation. The problem-based learning unit described focuses on the course of action involved in purchasing a new car. (Contains 2 figures.)

  18. CAR-T Cell Therapy for Lymphoma.

    PubMed

    Ramos, Carlos A; Heslop, Helen E; Brenner, Malcolm K

    2016-01-01

    Lymphomas arise from clonal expansions of B, T, or NK cells at different stages of differentiation. Because they occur in the immunocyte-rich lymphoid tissues, they are easily accessible to antibodies and cell-based immunotherapy. Expressing chimeric antigen receptors (CARs) on T cells is a means of combining the antigen-binding site of a monoclonal antibody with the activating machinery of a T cell, enabling antigen recognition independent of major histocompatibility complex restriction, while retaining the desirable antitumor properties of a T cell. Here, we discuss the basic design of CARs and their potential advantages and disadvantages over other immune therapies for lymphomas. We review current clinical trials in the field and consider strategies to improve the in vivo function and safety of immune cells expressing CARs. The ultimate driver of CAR development and implementation for lymphoma will be the demonstration of their ability to safely and cost-effectively cure these malignancies.

  19. CAR-T Cell Therapy for Lymphoma

    PubMed Central

    Ramos, Carlos A.; Heslop, Helen E.; Brenner, Malcolm K.

    2016-01-01

    Lymphomas arise from clonal expansions of B, T, or NK cells at different stages of differentiation. Because they occur in the immunocyte-rich lymphoid tissues, they are easily accessible to antibodies and cell-based immunotherapy. Expressing chimeric antigen receptors (CARs) on T cells is a means of combining the antigen-binding site of a monoclonal antibody with the activating machinery of a T cell, enabling antigen recognition independent of major histocompatibility complex restriction, while retaining the desirable antitumor properties of a T cell. Here, we discuss the basic design of CARs and their potential advantages and disadvantages over other immune therapies for lymphomas. We review current clinical trials in the field and consider strategies to improve the in vivo function and safety of immune cells expressing CARs. The ultimate driver of CAR development and implementation for lymphoma will be the demonstration of their ability to safely and cost-effectively cure these malignancies. PMID:26332003

  20. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: Implications for emission modeling

    NASA Astrophysics Data System (ADS)

    Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni

    2014-03-01

    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three

  1. A microbolometer-based far infrared radiometer to study thin ice clouds in the Arctic

    NASA Astrophysics Data System (ADS)

    Libois, Quentin; Proulx, Christian; Ivanescu, Liviu; Coursol, Laurence; Pelletier, Ludovick S.; Bouzid, Yacine; Barbero, Francesco; Girard, Éric; Blanchet, Jean-Pierre

    2016-04-01

    A far infrared radiometer (FIRR) dedicated to measuring radiation emitted by clear and cloudy atmospheres was developed in the framework of the Thin Ice Clouds in Far InfraRed Experiment (TICFIRE) technology demonstration satellite project. The FIRR detector is an array of 80 × 60 uncooled microbolometers coated with gold black to enhance the absorptivity and responsivity. A filter wheel is used to select atmospheric radiation in nine spectral bands ranging from 8 to 50 µm. Calibrated radiances are obtained using two well-calibrated blackbodies. Images are acquired at a frame rate of 120 Hz, and temporally averaged to reduce electronic noise. A complete measurement sequence takes about 120 s. With a field of view of 6°, the FIRR is not intended to be an imager. Hence spatial average is computed over 193 illuminated pixels to increase the signal-to-noise ratio and consequently the detector resolution. This results in an improvement by a factor of 5 compared to individual pixel measurements. Another threefold increase in resolution is obtained using 193 non-illuminated pixels to remove correlated electronic noise, leading an overall resolution of approximately 0.015 W m-2 sr-1. Laboratory measurements performed on well-known targets suggest an absolute accuracy close to 0.02 W m-2 sr-1, which ensures atmospheric radiance is retrieved with an accuracy better than 1 %. Preliminary in situ experiments performed from the ground in winter and in summer on clear and cloudy atmospheres are compared to radiative transfer simulations. They point out the FIRR ability to detect clouds and changes in relative humidity of a few percent in various atmospheric conditions, paving the way for the development of new algorithms dedicated to ice cloud characterization and water vapor retrieval.

  2. Saturns Thermal Emission at 2.2-cm Wavelength as Imaged by the Cassini RADAR Radiometer

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Ingersoll, A. P.; Allison, M. D.; Gulkis, S.; Laraia, A. L.; Baines, K. H.; Edgington, S. G.; Anderson, Y. Z.; Kelleher, K.; Oyafuso, F. A.

    2013-01-01

    We present well-calibrated, high-resolution maps of Saturn's thermal emission at 2.2-cm wavelength obtained by the Cassini RADAR radiometer through the Prime and Equinox Cassini missions, a period covering approximately 6 years. The absolute brightness temperature calibration of 2% achieved is more than twice better than for all previous microwave observations reported for Saturn, and the spatial resolution and sensitivity achieved each represent nearly an order of magnitude improvement. The brightness temperature of Saturn in the microwave region depends on the distribution of ammonia, which our radiative transfer modeling shows is the only significant source of absorption in Saturn's atmosphere at 2.2-cm wavelength. At this wavelength the thermal emission comes from just below and within the ammonia cloud-forming region, and yields information about atmospheric circulations and ammonia cloud-forming processes. The maps are presented as residuals compared to a fully saturated model atmosphere in hydrostatic equilibrium. Bright regions in these maps are readily interpreted as due to depletion of ammonia vapor in, and, for very bright regions, below the ammonia saturation region. Features seen include the following: a narrow equatorial band near full saturation surrounded by bands out to about 10deg planetographic latitude that demonstrate highly variable ammonia depletion in longitude; narrow bands of depletion at -35deg latitude; occasional large oval features with depleted ammonia around -45deg latitude; and the 2010-2011 storm, with extensive saturated and depleted areas as it stretched halfway around the planet in the northern hemisphere. Comparison of the maps over time indicates a high degree of stability outside a few latitudes that contain active regions.

  3. 75 FR 1179 - Passenger Equipment Safety Standards; Front End Strength of Cab Cars and Multiple-Unit Locomotives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ...This final rule is intended to further the safety of passenger train occupants by amending existing regulations to enhance requirements for the structural strength of the front end of cab cars and multiple-unit (MU) locomotives. These enhancements include the addition of requirements concerning structural deformation and energy absorption by collision posts and corner posts at the forward end......

  4. CARS Diagnostics of High Pressure Combustion.

    DTIC Science & Technology

    1982-11-01

    e) 8. CONTRACT OR GRANT NUMBER(e) J. H. Stufflebeam t JDAAG29- 79-C-0008J %A,, Shirley R,,. Hall 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10...also the work in N2 at elevated tem- perature up to 30 atmospheres. John H. Stufflebeam continued the high pressure CARS work under the contract...Spectroscopy, Bordeaux, France, September 1982. 12. J. H. Stufflebeam , J. F. Verdieck, and R. J. Hall: CARS Diagnostics of High Pressure and

  5. EcoCAR Challenge Profile: Virginia Tech

    SciTech Connect

    Gantt, Lynn

    2011-01-01

    Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C..

  6. The Goods Upstairs Car Innovative Design

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Lan; Zhang, Bo; Gao, Bo; Liu, Yan-Xin; Gao, Bo

    2016-05-01

    The design is a new kind of cars used for loading goods when you upstairs. The cars -- ones are very safe and convenient --consist of body, chassis, bottom, round, object, stage, upstairs, train wheels, handles, storage tank, security fence etc. The design, composed of combination of each structure, achieves the purpose of loading goods and even some large potted plants when you go upstairs or downstairs very flatly.

  7. EcoCAR Challenge Profile: Virginia Tech

    ScienceCinema

    Gantt, Lynn

    2016-07-12

    Since childhood, Lynn Gantt has had a deep seeded passion for cars and the mechanics that drive them. The Virginia native spent his weekends rebuilding antique tractors with his dad to race at tractor pulls across the state, and now the Virginia Tech graduate student is the proud team co-leader of Virginia Tech's EcoCAR Challenge team -- the winners of the three-year long competition, as announced last night at an awards ceremony in Washington, D.C..

  8. Reducing broadband shortwave radiometer calibration-bias caused by longwave irradiance in the reference direct beam

    DOE PAGES

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; ...

    2017-01-13

    Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, and measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This paper describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers, by using an ACR with Schott glass window to measuremore » the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 um to 3 um.« less

  9. Reducing Broadband Shortwave Radiometer Calibration-Bias Caused by Longwave Irradiance in the Reference Direct Beam

    SciTech Connect

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Sengupta, Manajit; Habte, Aron; Kutchenreiter, Mark

    2017-01-01

    Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, and measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This article describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers, by using an ACR with Schott glass window to measure the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 um to 3 um.

  10. Multi-angle Imaging Spectro Radiometer (MISR) Design Issues Influened by Performance Requirements

    NASA Technical Reports Server (NTRS)

    Bruegge, C. J.; White, M. L.; Chrien, N. C. L.; Villegas, E. B.; Raouf, N.

    1993-01-01

    The design of an Earth Remote Sensing Sensor, such as the Multi-angle Imaging SpectroRadiometer (MISR), begins with a set of science requirements and is quickly followed by a set of instrument specifications.

  11. L-Band Radiometer Experiment in the SMOS Test Site Upper Danube

    NASA Astrophysics Data System (ADS)

    Schlenz, Florian; Gebhardt, Timo; Loew, Alexander; Marzahn, Philip; Mauser, Wolfram

    2010-12-01

    In the frame of calibration and validation activities for ESA's soil moisture and ocean salinity mission, SMOS, the University of Munich operates a ground based L-band radiometer (ELBARA II) at 1.4 GHz to test and validate the radiative transfer model L-MEB also used in the SMOS Level 2 processor. The radiometer is situated on a test site near Puch, about 30 km west of Munich in the Upper Danube watershed in southern Germany in a temperate agricultural area. It is mounted on a scaffolding that allows to rotate the antenna which enables it to look at 2 different fields with grass and winter rape as land use respectively. In addition to the radiometer, a variety of complementary sensors are installed measuring all important meteorological and hydrological parameters. First datasets of the radiometer experiment are presented.

  12. Analysis of Shuttle Multispecral Infrared Radiometer measurements of the western Saudi Arabian shield.

    USGS Publications Warehouse

    Rowan, L.C.; Goetz, A.F.H.; Abbott, E.

    1987-01-01

    During the November 12-14, 1981 mission of the space shuttle Columbia, the Shuttle Multispectral Infrared Radiometer (SMIRR) recorded radiances in 10 channels along a 100m wide groundtrack across the western Saudi Arabian shield.-from Authors

  13. Geosynchronous Microwave Atmospheric Sounding Radiometer (MASR) feasibility studies. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The mission of the microwave atmospheric sounding radiometer (MASR) is to collect data to aid in the observation and prediction of severe storms. The geosynchronous orbit allows the continuous atmospheric measurement needed to resolve mesoscale dynamics. The instrument may operate in conjunction with this document, Volume 1 - Management, which summarizes the highlights of final reports on both the radiometer instrument and antenna studies. The radiometer instrument summary includes a synopsis of Volume 2 - Radiometer Receiver Feasibility, including design, recommended configuration, performance estimates, and weight and power estimates. The summary of the antenna study includes a synopsis of Volume 3 - Antenna Feasibility, including preliminary design tradeoffs, performance of selected design, and details of the mechanical/thermal design.

  14. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; Freedman, Adam

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  15. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  16. Calibration of IR test chambers with the missile defense transfer radiometer

    NASA Astrophysics Data System (ADS)

    Kaplan, Simon G.; Woods, Solomon I.; Carter, Adriaan C.; Jung, Timothy M.

    2013-05-01

    The Missile Defense Transfer Radiometer (MDXR) is designed to calibrate infrared collimated and flood sources over the fW/cm2 to W/cm2 power range from 3 μm to 28μ m in wavelength. The MDXR operates in three different modes: as a filter radiometer, a Fourier-transform spectrometer (FTS)-based spectroradiometer, and as an absolute cryogenic radiometer (ACR). Since 2010, the MDXR has made measurements of the collimated infrared irradiance at the output port of seven different infrared test chambers at several facilities. We present a selection of results from these calibration efforts compared to signal predictions from the respective chamber models for the three different MDXR calibration modes. We also compare the results to previous measurements made of the same chambers with a legacy transfer radiometer, the NIST BXR. In general, the results are found to agree within their combined uncertainties, with the MDXR having 30 % lower uncertainty and greater spectral coverage.

  17. Shortwave Radiometer Calibration Methods Comparison and Resulting Solar Irradiance Measurement Differences: A User Perspective

    SciTech Connect

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-11-21

    Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibration service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These different

  18. Car radiator burns: a prevention issue.

    PubMed

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  19. Car drivers' attitudes towards motorcyclists: a survey.

    PubMed

    Crundall, David; Bibby, Peter; Clarke, David; Ward, Patrick; Bartle, Craig

    2008-05-01

    Motorcyclists are over-represented in UK traffic accident statistics. Many car-motorcycle accidents are however due to the inappropriate actions of car drivers. It is predicted that car drivers at risk of collision with motorcycles have divergent attitudes and beliefs about motorcyclists compared to safer drivers, which may lead to a deficient mental model guiding their interactions with motorcyclists. To assess car drivers' attitudes towards motorcyclists, a survey was undertaken. Respondents filled in 26 general and motorcycle-related items and the 24 items of the reduced Driver Behaviour Questionnaire. Compared to an experienced dual driver group (who both drive cars and ride motorcycles), all other drivers showed divergent beliefs and attitudes. Four factors were extracted from the motorcycle items: negative attitudes, empathic attitudes, awareness of perceptual problems, and spatial understanding. Car drivers with a moderate amount of experience (between 2 and 10 years driving) held the most negative views and reported the most violations. The results have lead to several suggestions for interventions aimed at decreasing the divergence between drivers' perceptions of motorcyclists, and the perceptions of experienced dual drivers.

  20. Macroscopic car condensation in a parking garage.

    PubMed

    Ha, Meesoon; Den Nijs, Marcel

    2002-09-01

    An asymmetric exclusion process type process, where cars move forward along a closed road that starts and terminates at a parking garage, displays dynamic phase transitions into two types of condensate phases where the garage becomes macroscopically occupied. The total car density rho(o) and the exit probability alpha from the garage are the two control parameters. At the transition, the number of parked cars N(p) diverges in both cases, with the length of the road N(s), as N(p) approximately N(y(p))(s) with y(p)=1/2. Towards the transition, the number of parked cars vanishes as N(p) approximately epsilon(beta) with beta=1, epsilon=/alpha-alpha(*)/ or epsilon=|rho(*)(o)-rho(o)/ being the distance from the transition. The transition into the normal phase represents also the onset of transmission of information through the garage. This gives rise to unusual parked car autocorrelations and car density profiles near the garage, which depend strongly on the group velocity of the fluctuations along the road.

  1. Pyrene is a Novel Constitutive Androstane Receptor (CAR) Activator and Causes Hepatotoxicity by CAR.

    PubMed

    Zhang, Xiao-Jie; Shi, Zhe; Lyv, Jing-Xi; He, Xuyan; Englert, Neal A; Zhang, Shu-Yun

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous persistent environmental pollutants which are primarily formed from the incomplete combustion of organic materials. Many potential sources of human exposure to PAHs exist, including daily exposures from the ambient environment or occupational settings. PAHs have been found to cause harmful effects on human health. Here, we evaluated the adverse effects of pyrene, a common PAH, on the liver. The present study demonstrates that pyrene is able to activate mouse constitutive androstane receptor (CAR). CAR protein, as measured by Western blot analysis, was observed to translocate into the nucleus from the cytoplasm in mouse liver after exposure to pyrene. Utilizing CAR null mice, we identified that CAR mediates pyrene-induced hepatotoxicity. Increased relative liver weight, hepatocellular hypertrophy, and elevated serum alanine aminotransferase levels were found in wild-type but not CAR null mice after orally administered pyrene. We further show that pyrene induced the expression of mouse liver metabolism enzymes including CYP2B10, CYP3A11, GSTm1, GSTm3, and SULT1A1, and caused hepatic glutathione depletion in wild-type but not CAR null mice. Moreover, by luciferase reporter assay and quantitative real-time PCR analysis, pyrene was found to be a potential inducer of CYP2B6 expression via activation of human CAR in HepG2 cells and human primary hepatocytes. Our observations suggest that pyrene is a novel CAR activator and that CAR is essential for mediating pyrene-induced liver injury.

  2. A New Principle for Construction of Microwave Multireceiver Radiometers Using a Modified Method of Zero Measurement

    NASA Astrophysics Data System (ADS)

    Filatov, A. V.

    2016-11-01

    We consider a microwave multireceiver radiometer based on in-parallel operated receiving channels using the principle of zero balance and measuring the antenna signal by all receivers in the same spectral range with time division. This yields a higher fluctuation sensitivity than in the case of an ideal full-power compensation radiometer while achieving a high stability of measurements by a modified method of zero measurement.

  3. Precipitation Estimation Using Combined Radar and Microwave Radiometer Observations from - Improvements and Initial Validation

    NASA Astrophysics Data System (ADS)

    Olson, W. S.; Grecu, M.; Munchak, S. J.; Kuo, K. S.; Johnson, B. T.; Haddad, Z. S.; Tian, L.; Liao, L.; Kelley, B. L.; Ringerud, S.

    2015-12-01

    In recent satellite missions, spaceborne radar observations, sometimes in combination with passive microwave radiometer measurements, are being used to estimate vertical profiles of precipitation rates. Launched in 2014, the Global Precipitation Measurement (GPM) mission core satellite observatory features a dual-frequency radar operating at 13.6 and 35.5 GHz (Ku and Ka bands) and a microwave radiometer with thirteen channels from 10 - 183 GHz. The use of combined radar and radiometer observations should yield the most accurate estimates of precipitation profiles from space, and these estimates will ultimately serve as a crucial reference for cross-calibrating passive microwave precipitation estimates from the GPM radiometer constellation. And through the microwave radiometer estimates, the combined algorithm calibration will ultimately be propagated to GPM infrared-microwave multisatellite estimates of surface rainfall. The GPM combined precipitation estimation algorithm performs initial estimates (an "ensemble") of precipitation profiles based upon an observed Ku-band reflectivity profile and different a priori assumptions concerning the size distributions of the precipitation particles and the profiles of cloud water and water vapor in the atmospheric column. The initial ensemble of profiles is then updated using a filter that embodies the physics relating precipitation to the observed Ka reflectivity profile, Ku and Ka path-integrated attenuation (derived from radar surface backscatter measurements), and microwave radiances. The final, filtered ensemble of profiles is consistent with all the available radar-radiometer data and a priori information. Since the GPM launch, the combined radar-radiometer algorithm has been improved to more specifically account for the effects of radar non-uniform beamfilling, multiple-scattering of radar pulses, the different resolutions of the radar and radiometer observations, interrelated radar and passive microwave surface

  4. Analysis of Multi-Vane Radiometers in High-Altitude Propulsion

    DTIC Science & Technology

    2010-06-17

    L* = characteristic length [m] λ = mean free path [m] Nu = Nusselt number Pr = Prandtl number Re = Reynolds number W = radiometer vane thickness...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 17-06-2010 2. REPORT TYPE...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Analysis of multi-Vane Radiometers in High

  5. Development of a Miniature L-band Radiometer for Education Outreach in Remote Sensing

    NASA Technical Reports Server (NTRS)

    King, Lyon B.

    2004-01-01

    Work performed under this grant developed a 1.4-Mhz radiometer for use in soil moisture remote sensing from space. The resulting instrument was integrated onto HuskySat. HuskySat is a 30-kg nanosatellite built under sponsorship from the Air Force Research Laboratory and NASA. This report consists of the interface document for the radiometer (the Science Payload of HuskySat) as detailed in the vehicle design report.

  6. Automated test-site radiometer for vicarious calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yin, Ya-peng; Liu, En-chao; Zhang, Yan-na; Xun, Li-na; Wei, Wei; Zhang, Zhi-peng; Qiu, Gang-gang; Zhang, Quan; Zheng, Xiao-bing

    2014-11-01

    In order to realize unmanned vicarious calibration, Automated Test-site Radiometer (ATR) was developed for surface reflectance measurements. ATR samples the spectrum from 400nm-1600 nm with 8 interference filters coupled with silicon and InGaAs detectors. The field of view each channel is 10 ° with parallel optical axis. One SWIR channel lies in the center and the other seven VNIR channels are on the circle of 4.8cm diameters which guarantee each channel to view nearly the same section of ground. The optical head as a whole is temperature controlled utilizing a TE cooler for greater stability and lower noise. ATR is powered by a solar panel and transmit its data through a BDS (China's BeiDou Navigation Satellite System) terminator for long-term measurements without personnel in site. ATR deployed in Dunhuang test site with ground field about 30-cm-diameter area for multi-spectral reflectance measurements. Other instruments at the site include a Cimel sunphotometer and a diffuser-to-globe irradiance meter for atmosphere observations. The methodology for band-averaged reflectance retrieval and hyperspectral reflectance fitting process are described. Then the hyperspectral reflectance and atmospheric parameters are put into 6s code to predict TOA radiance which compare with MODIS radiance.

  7. Thermal Modeling and Analysis of the Hurricane Imaging Radiometer (HIRad)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  8. Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Mauro, Stephanie

    2013-01-01

    The Hurricane Imaging Radiometer (HIRad) is a payload carried by an unmanned aerial vehicle (UAV) at altitudes up to 60,000 ft with the purpose of measuring ocean surface wind speeds and near ocean surface rain rates in hurricanes. The payload includes several components that must maintain steady temperatures throughout the flight. Minimizing the temperature drift of these components allows for accurate data collection and conclusions to be drawn concerning the behavior of hurricanes. HIRad has flown on several different UAVs over the past two years during the fall hurricane season. Based on the data from the 2011 flight, a Thermal Desktop model was created to simulate the payload and reproduce the temperatures. Using this model, recommendations were made to reduce the temperature drift through the use of heaters controlled by resistance temperature detector (RTD) sensors. The suggestions made were implemented for the 2012 hurricane season and further data was collected. The implementation of the heaters reduced the temperature drift for a portion of the flight, but after a period of time, the temperatures rose. With this new flight data, the thermal model was updated and correlated. Detailed analysis was conducted to determine a more effective way to reduce the temperature drift. The final recommendations made were to adjust the set temperatures of the heaters for 2013 flights and implement hardware changes for flights beyond 2013.

  9. A survey of ATL-compatible radiometer antennas

    NASA Technical Reports Server (NTRS)

    Love, A. W.

    1975-01-01

    A survey was made of antennas suitable for remote sensing of the earth's surface, in particular the world ocean, by means of microwave radiometers operating in the 1 to 26 GHz frequency region and carried on board the shuttle-launched advanced technology laboratory. Array antennas are found to be unattractive and unsuited to the task. Reflectors, including Cassegrain and offset types, as well as horn-reflectors are possible candidates but all have shortcomings which impair the accuracy of measurement. Horns of the corrugated type have excellent electrical characteristics. Although they are physically very large and will require development of suitable deployment mechanisms, they appear to be valid candidates for the task. The evolution of the periscope antenna is outlined, and it is shown to possess nearly ideal electrical characteristics for the intended application. Its only shortcoming is that the feed horn creates aperture blocking; there is no blocking due to struts or any other source. The periscope antenna is recommended for ATL radiometry.

  10. Microscale radiometer based on the Knudsen thermal force

    NASA Astrophysics Data System (ADS)

    Strongrich, Andrew D.

    Radiometric phenomena arise in non-isothermal rarefied gas flows for which the molecular mean-free path is approximately equal to the characteristic scale of the temperature gradient. The non-equilibrium nature of these flows results in thermal stresses which are capable of exerting forces and moments on immersed structures. When the stresses are established between unequally heated bodies the forces are referred to as Knudsen thermal forces. This work presents the design, fabrication, and characterization of a novel in-plane microscale radiometer capable of both producing and resolving Knudsen forces in low pressures. The current work differs from previous implementations in that both capacitance and temperature measurements are acquired simultaneously, extending permissible measurement range by up to 3 pressure decades. Sensitivity to ambient pressure, temperature gradient, as well as gas composition is demonstrated, illustrating the mechanism's versatility in measuring various macroscopic fluid properties. For constant input power force output is shown to vary non-monotonically with ambient pressure, having peak magnitude at a Knudsen number of approximately unity. Using thermal microscopy, results are presented in terms of a non-dimensional force coefficient, showing output enhancement of over 7 times at peak magnitude compared to existing out-of-plane cantilevered configurations.

  11. Advanced very high resolution radiometer, Mod 2 engineering report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Advanced High Resolution Radiometer, Mod 2 (AVHRR/2) is a modification of the original AVHRR (AVHRR/1) to expand the number of channels from four to five and provide additional sensing in the infrared region. A comparison of the spectral regions employed in the two instruments is given. Three of the channels are the same on both instruments. The difference in instruments is in the long wave IR region where a single channel was replaced by two channels. The modification from AVHRR/1 to AVHRR/2 was done with a minimum of changes. The areas of change are highlighted and the modifications by module are summarized. It is seen that the primary changes are in the relay optics and in the cooler. In this development program only two models are involved. The first model, the Optical Test Model was constructed and tested to prove the performance and structural integrity of the optical system and the modified cooler. The second model constructed is the Protoflight. Only the areas of the AVHRR/2 which were modified from the AVHRR/1 design are discussed.

  12. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  13. The MASCOT Radiometer MARA for the Hayabusa 2 Mission

    NASA Astrophysics Data System (ADS)

    Grott, M.; Knollenberg, J.; Borgs, B.; Hänschke, F.; Kessler, E.; Helbert, J.; Maturilli, A.; Müller, N.

    2016-08-01

    The MASCOT radiometer MARA is a multi-spectral instrument which measures net radiative flux in six wavelength bands. MARA uses thermopile sensors as sensing elements, and the net flux between the instrument and the surface in the 18° field of view is determined by evaluating the thermoelectric potential between the sensors' absorbing surface and the thermopile's cold-junction. MARA houses 4 bandpass channels in the spectral range of 5.5-7, 8-9.5, 9.5-11.5, and 13.5-15.5 μm, as well as one long-pass channel, which is sensitive in the >3 μm range. In addition, one channel is similar to that used by the Hayabusa 2 orbiter thermal mapper, which uses a wavelength range of 8-12 μm. The primary science objective of the MARA instrument it the determination of the target asteroid's surface brightness temperature, from which surface thermal inertia can be derived. In addition, the spectral bandpass channels will be used to estimate the spectral slope of the surface in the thermal infrared wavelength range. The instrument has been calibrated using a cavity blackbody, and the temperature uncertainty is 1 K in the long pass channel for target temperatures of >173 K. Measurement uncertainty in the spectral bandpasses is 1 K for target temperatures above 273 K.

  14. Inversion of multiwavelength radiometer measurements by three-dimensional filtering

    NASA Technical Reports Server (NTRS)

    Rosenkranz, P. W.; Baumann, W. T.

    1980-01-01

    Remote sensing data from satellites typically have three dimensions: scan position, spacecraft position, and wavelength. Inversion of the radiometric data to infer geophysical parameters is a filtering problem in which the dimension of wavelength (or channel number) is transformed into a dimension of geophysical parameters, and the most general solution is a three-dimensional filter. Linear filters have the advantages of computational speed and easily described transfer functions; but often the measurements are nonlinear functions of the parameters to be inferred. To the extent that the nonlinear inversion problem is overdetermined, it can be modeled by a critically determined linear problem. As an example, inversion of Scanning Multichannel Microwave Radiometer (SMMR) data by means of a three-dimensional Wiener Filter is described. Atmospheric water vapor content, rain liquid water content, surface wind speed and surface temperature are the parameters inferred from the measurements. Nonprecipitating liquid water and water vapor scale height are also modeled but not retrieved. The a priori statistics on which the filter is trained have the effect of governing the selection of a trade-off point of noise as a function of resolution (in all three retrieval dimensions).

  15. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    NASA Astrophysics Data System (ADS)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters < 1 Ga (Ghent et al., 2014). Here, we use nighttime regolith temperatures derived from Diviner data to constrain regolith thermal inertia, thickness, and spatial variability. Applied to models, these new data help improve understanding of regolith formation on a variety of geologic units. We will also discuss several anomalous features that merit further investigation. Reference: Ghent, R. R., Hayne, P. O., Bandfield, J. L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  16. Towards the Temperature Retrieval by Using Airborne Microwave Radiometer Data

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Kenntner, Mareike; Szajkowski, Michal; Fix, Andreas; Trautmann, Thomas

    2016-08-01

    Atmospheric temperature is a key geophysical parameter when dealing with the atmosphere in areas such as climatology and meteorology. In general, thermal emissions of molecular lines (e.g. oxygen, carbon dioxide) can be used for the determination of the temperature profile. The superheterodyne radiometer MTP (Microwave Temperature Profiler) passively detects thermal emission from oxygen lines at a selection of frequencies between 55-60 GHz by scanning the atmosphere from near zenith to near nadir in the flight direction. The MTP instrument was designed to observe the vertical temperature distribution over the upper troposphere and lower stratosphere (UTLS) with a good temporal and spatial resolution. The instrument was originally developed at NASA's JPL and has been recently flown on DLR's HALO research aircraft.To estimate the temperature profile from microwave measurements (e.g. provided by MTP), the retrieval algorithm TIRAMISU (Temperature Inversion Algorithm for Microwave Sounding) has been developed at DLR and is currently used to conduct the data processing of the MTP measurements. This study performs the retrievals from the MTP data with a focus on the ML-CIRRUS mission. The corresponding retrieval performance is investigated by associated error characterization and external comparisons with other ground-based and satellite observations. These observations are important to resolve a variety of phenomena in the UTLS region and to potentially improve the temperature spaceborne soundings.

  17. CIRiS: Compact Infrared Radiometer in Space

    NASA Astrophysics Data System (ADS)

    Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.

    2016-09-01

    The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.

  18. Wiener filtering of the COBE Differential Microwave Radiometer data

    NASA Technical Reports Server (NTRS)

    Bunn, Emory F.; Fisher, Karl B.; Hoffman, Yehuda; Lahav, Ofer; Silk, Joseph; Zaroubi, Saleem

    1994-01-01

    We derive an optimal linear filter to suppress the noise from the cosmic background explorer satellite (COBE) Differential Microwave Radiometer (DMR) sky maps for a given power spectrum. We then apply the filter to the first-year DMR data, after removing pixels within 20 deg of the Galactic plane from the data. We are able to identify particular hot and cold spots in the filtered maps at a level 2 to 3 times the noise level. We use the formalism of constrained realizations of Gaussian random fields to assess the uncertainty in the filtered sky maps. In addition to improving the signal-to-noise ratio of the map as a whole, these techniques allow us to recover some information about the cosmic microwave background anisotropy in the missing Galactic plane region. From these maps we are able to determine which hot and cold spots in the data are statistically significant, and which may have been produced by noise. In addition, the filtered maps can be used for comparison with other experiments on similar angular scales.

  19. Research on calibration method of relative infrared radiometer

    NASA Astrophysics Data System (ADS)

    Yang, Sen; Li, Chengwei

    2016-02-01

    The Relative Infrared Radiometer (RIR) is commonly used to measure the irradiance of the Infrared Target Simulator (ITS), and the calibration of the RIR is central for the measurement accuracy. RIR calibration is conventionally performed using the Radiance Based (RB) calibration method or Irradiance Based (IB) calibration method, and the relationship between the radiation of standard source and the response of RIR is determined by curve fitting. One limitation existing in the calibration of RIR is the undesirable calibration voltage fluctuation in single measurement or in the reproducibility measurement, which reduces the calibration reproducibility and irradiance measurement accuracy. To address this limitation, the Equivalent Blackbody Temperature Based (EBTB) calibration method is proposed for the calibration of RIR. The purpose of this study is to compare the proposed EBTB calibration method with conventional RB and IB calibration methods. The comparison and experiment results have shown that the EBTB calibration method is not only able to provide comparable correlation between radiation and response to other calibration methods (IB and RB) in the irradiance measurement but also reduces the influence of calibration voltage fluctuation on the irradiance measurement result, which improves the calibration reproducibility and irradiance measurement accuracy.

  20. A 163 micron laser heterodyne radiometer for OH

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Boyd, T. L.

    1980-01-01

    A 163 micron (1.836 THz) radiometer developed for airplane and/or balloon platforms is described. The laser local oscillator is a CO2 pumped methanol laser operating at a frequency which is approx. 1 GHz from the J = 3/2 - 1/2 transition of OH. The laser is used directly as a local oscillator or is translated in frequency to closer coincidence with the OH emission, depending on achieved detector IF bandwidth. Frequency translation techniques which are described are diode mixing and a method of single sideband generation using an external Stark modulated gas cell. The photoconductive mixer used is a strained Ge crystal, doped with Ga, originally used as an incoherent detector. The uniaxial strain on the Ga doped Ge crystal shifts the threshold for photoconduction from 100/cm to frequencies as low as 50/cm. These detectors are currently being characterized as mixers in the laboratory. Of particular interest are the effect of local oscillator power and strain on IF, bandwidth detector impedance, and conversion loss. Preliminary results of these tests are described and compared with theorectical expectations.