Absorption Coefficient of Alkaline Earth Halides.
1980-04-01
levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...of as can be achieved through improved crystal growing techniques and surface polishing. 2.5. Urbach’s Rule A central question for the development of...high absorption levels , inaccuracies progressively increasing with decreasing absorption level , a natural consequence of decreasing in instrumental
Absorption coefficient instrument for turbid natural waters.
Friedman, E; Poole, L; Cherdak, A; Houghton, W
1980-05-15
An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Optical absorption coefficients of pure water
NASA Astrophysics Data System (ADS)
Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.
2002-10-01
The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.
Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique
2016-11-17
The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.
Absorption coefficient instrument for turbid natural waters
NASA Astrophysics Data System (ADS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-05-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Absorption coefficient instrument for turbid natural waters
NASA Technical Reports Server (NTRS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-01-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Sánchez-Castaño, G; Ruíz-García, A; Bañón, N; Bermejo, M; Merino, V; Freixas, J; Garriguesx, T M; Plá-Delfina, J M
2000-11-01
A preliminary study attempting to predict the intrinsic absolute bioavailability of a group of antibacterial 6-fluoroquinolones-including true and imperfect homologues as well as heterologues-was carried out. The intrinsic absolute bioavailability of the test compounds, F, was assessed on permanently cannulated conscious rats by comparing the trapezoidal normalized areas under the plasma concentration-time curves obtained by intravenous and oral routes (n = 8-12). The high-performance liquid chromatography analytical methods used for plasma samples are described. Prediction of the absolute bioavailability of the compounds was based on their intrinsic rat gut in situ absorption rate constant, k(a). The working equation was: where T represents the mean absorbing time. A T value of 0.93 (+/-0.06) h provides the best correlation between predicted and experimentally obtained bioavailabilities (F' and F, respectively) when k(a) values are used (slope a = 1.10; intercept b = -0.05; r = 0.991). The k(a) values can also be expressed in function of the in vitro partition coefficients, P, between n-octanol and a phosphate buffer. In this case, theoretical k(a) values can be determined with the parameters of a standard k(a)/P correlation previously established for a group of model compounds. When P values are taken instead of k(a) values, reliable bioavailability predictions can also be made. These and other relevant features of the method are discussed.
Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.
NASA Astrophysics Data System (ADS)
Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.
2007-12-01
aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.
Continuum Absorption Coefficient of Atoms and Ions
NASA Technical Reports Server (NTRS)
Armaly, B. F.
1979-01-01
The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.
Field testing of sound absorption coefficients in a classroom
NASA Astrophysics Data System (ADS)
Pettyjohn, Steve
2005-09-01
Formal procedures for determining the sound absorption coefficients of materials installed in the field do not exist. However, the U.S. Air Force requested such tests to prove that the sound-absorbing material used in classrooms at Beale AFB in Marysville, CA, met the specified NRC of 0.80. They permitted the use of two layers of 0.5-in. fiberboard or 1-in.-thick fiberglass panels to meet the specified NRC rating. Post-construction tests showed reverberation times longer than expected. Unrealistic sound-absorption coefficients for room finish materials had to be used with the Sabine equation to achieve agreement between the measured and predicted reverberation time. By employing the Fitzroy equation and generally published absorption coefficients for ceiling tile, carpet, and fiberboard, the model provided excellent agreement with the measured reverberation times. The NRC of the fiberboard was computed to be 0.35, agreeing with published data. Since this did not meet project specifications, the Fitzroy model was used to learn the type and quantity of material needed to meet design goals. Follow-up tests showed good agreement between the predicted and measured reverberation times with material added, and project specifications were met. Results are also compared with the requirements of ANSI 12.60.
Determination of optical absorption coefficient with focusing photoacoustic imaging.
Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R
2012-06-01
Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.
Effect of applied mechanical stress on absorption coefficient of compounds
Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.
2015-08-28
The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.
[Experimental determination of the absorption coefficients of biological tissues].
Kovtun, A V; Kondrat'ev, V S; Terekhov, D V
1980-01-01
Procedure is presented for studying the coefficient of biological tissue absorption of radiation with the wavelength lambda = 1.06 mkm. The absorption coefficient is determined by the temperature values of biological tissue experimentally measured with thermopairs. The coherent radiation current falls on the surface of biological tissue. A mathematical model is formulated for biological tissue heating with radiation. Solution of Furier equation obtained by means of Green function is given. Using the relationship found, the energy absorbed by the biological tissue was calculated and the absorption coefficient of radiation with lambda - 1.06 mkm was determined. The results were analysed and the error of the obtained values of absorption coefficients of biological tissues under study were determined.
Recursive prescription for logarithmic jet rate coefficients
NASA Astrophysics Data System (ADS)
Gerwick, Erik
2013-11-01
We derive a recursion relation for the analytic leading logarithmic coefficients of a final state gluon cascade. We demonstrate the potential of our method by analytically computing the rate coefficients for the emission of up to 80 gluons in both the exclusive-kt (Durham) and generalized inclusive-kt class of jet algorithms. There is a particularly simple form for the ratios of resolved coefficients. We suggest potential applications for our method including the efficient generation of shower histories.
Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.
Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K
2014-06-05
In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.
NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS
Leung, Po Kin; Gammie, Charles F.; Noble, Scott C. E-mail: gammie@illinois.edu
2011-08-10
Magnetobremsstrahlung (MBS) emission and absorption play a role in many astronomical systems. We describe a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function. Along the way we provide an accurate scheme for evaluating Bessel functions of high order. We use our scheme to evaluate the accuracy of earlier fitting formulae and approximations. We also provide an accurate fitting formula for mildly relativistic (kT/(m{sub e}c{sup 2}) {approx}> 0.5) thermal electron emission (and therefore absorption). Our scheme is too slow, at present, for direct use in radiative transfer calculations but will be useful for anyone seeking to fit emission or absorption coefficients in a particular regime.
Methane Absorption Coefficients for the Jovian Planets and Titan
NASA Astrophysics Data System (ADS)
Karkoschka, Erich; Tomasko, M. G.
2009-09-01
We combined 11 data sets of methane transmission measurements within 0.4-5.5 micrometer wavelength in order to better understand the variation of methane absorption with temperature and pressure for conditions in the atmospheres of the Jovian planets and Titan. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere (Tomasko et al. 2008, PSS 56, 624). We present the data with a refined analysis. The last data set consists of Hubble Space Telescope images of Jupiter taken in 2005 and 2007 as Ganymede started to be occulted by Jupiter. Using Ganymede as a light source, we probed Jupiter's stratosphere with large methane pathlengths. Below 1000 nm wavelength, we find methane absorption coefficients generally similar to those by Karkoschka (1998, Icarus 133, 134). We added descriptions of temperature and pressure dependence, which are typically small in this wavelength range. Data in this wavelength range are consistent with each other, except between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the Jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data are consistent with Irwin's model of the pressure dependence of methane absorption. However, when large extrapolations were needed, such as from laboratory data above 200 K to Titan's temperatures near 80 K, Irwin's model of temperature dependence predicts absorption coefficients up to 100 times lower than measured by Huygens. We combined Irwin's and Huygens' data to obtain more reliable methane absorption coefficients for the temperatures in the atmospheres of the Jovian planets and Titan. This research was supported by NASA grants NAG5-12014 and NNX08AE74G.
Vapor-Phase Infrared Absorptivity Coefficient of HN1
2013-08-01
infrared spectrometer GC gas chromatography HD sulfur mustard HeNe helium–neon (laser) HgCdTe mercury–cadmium–telluride detector HN1, HN2, HN3...coefficient of the compound. 15. SUBJECT TERMS Vapor phase Saturator cell Infrared (IR) HN1 Vapor pressure Nitrogen mustard Vesicant...9 1 VAPOR-PHASE INFRARED ABSORPTIVITY COEFFICIENT OF HN1 1. INTRODUCTION The nitrogen mustards (HN1, HN2, and HN3) are similar to
Ozone absorption coefficients' role in Dobson instrument ozone measurement accuracy
NASA Astrophysics Data System (ADS)
Basher, R. E.
1982-11-01
The differences of 10% or more between the laboratory measurements of UV absorption coefficients by different investigators indicate accuracies that are quite inadequate for current needs in the measurement of atmospheric ozone. The standard band-integrated set of coefficients now used with the Dobson instrument are mutually consistent to about 2%, but their absolute accuracy is still in question. The accurate calculation of band-integrated coefficients must take account of their dependence on source spectral irradiance, atmospheric spectral transmittance, mean ozone temperature, and instrument spectral transmittance. A careful examination shows that Komhyr's (1980) case for an error of about +5% in the standard Dobson AD ozone estimation is subject to large uncertainties and certain lacks of independence. The obvious solution to this accuracy problem lies in better laboratory measurements of ozone absorption.
González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José
2015-04-01
CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under
Li, Xiaoqi; Jiang, Huabei
2013-02-21
We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.
Temperature Dependent Rate Coefficients for the OH + Pinonaldehyde Reaction
NASA Astrophysics Data System (ADS)
Davis, M. E.; Talukdar, R.; Notte, G.; Ellison, G. B.; Ravishankara, A. R.; Burkholder, J. B.
2005-12-01
The biogenic emission of monoterpenes is an important source of volatile organic compounds (VOCs) to the atmosphere, approximately 10% of the biogenic hydrocarbons emitted yearly. The oxidation of alpha-pinene, the most abundant monoterpene in the atmosphere, by OH leads to the formation of pinonaldehyde (3-acetyl-2,2-dimethyl-cyclobutyl-ethanal) as a major oxidation product formed in yields > 50%. The atmospheric oxidation of pinonaldehyde will impact radical cycling, ozone formation and air quality on a regional scale. Previous laboratory studies of the OH + pinonaldehyde rate coefficient have used relative rate methods and were limited to room temperature. The reported rate coefficients are in poor agreement with values ranging from 4.0 to 9.1 × 10-11 cm#3 molecule-1 s-1. In this study we have measured absolute rate coefficients to resolve these discrepancies and have extended the measurements to include the temperature dependence. The rate coefficient for the gas phase reaction of OH with pinonaldehyde was measured over the temperature range 297 to 374 K and between 55 and 96 Torr under pseudo first order conditions in OH. Laser-induced fluorescence (LIF) was used to monitor the OH radical which was produced by pulsed laser photolysis. The pinonaldehyde concentration was determined in situ using Fourier transform infrared (FTIR) and UV (185 nm) absorption spectroscopy. The rate coefficient for the OH + pinonaldehyde reaction will be presented. Our results will be compared with previous rate coefficient measurements and the discrepancies and the atmospheric implications of these measurements will be discussed.
NASA Astrophysics Data System (ADS)
Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.
2016-08-01
The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.
Optimization of the acoustic absorption coefficients of certain functional absorbents
NASA Technical Reports Server (NTRS)
Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.
1974-01-01
The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.
A method for monitoring nuclear absorption coefficients of aviation fuels
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Shen, Chih-Ping
1989-01-01
A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.
Measurement of Acoustic Attenuation and Absorption Coefficients using Thermometry
NASA Astrophysics Data System (ADS)
Morris, Hugh; Rivens, Ian; Shaw, Adam; ter Haar, Gail
2007-05-01
Accurate knowledge of both the attenuation and the absorption coefficient of tissue are required when planning an optimal high intensity focused ultrasound treatment. A novel technique for simple measurement of this parameters has been developed in which a thin-film thermocouple (TFT) is placed between two layers of tissue of different thicknesses. The sample can be rotated about an axis through the junction of the TFT so that it can be insonated from either side leaving the tissue adjacent to the junction unchanged, but changing the overlying thickness. The attenuation and absorption coefficients can be calculated from the heating curves measured in the two orientations. Experiments have been carried out in both tissue mimicking material (TMM) and in ex vivo liver tissue. Weakly focused transducers, resonant at 1.05 MHz, 2.4 MHz and 3.55 MHz were used at free-field spatial peak intensities of 9-14 W/cm2. The temperature rise was measured as a function of time using a TFT. These thermocouples are not subject to the viscous heating artefact that is common to other thermocouple devices and so are advantageous for this purpose. Alignment was achieved with a 3D automated gantry system, which was controlled with specialised software. Timing and data acquisition were also controlled with this software. All experiments were carried out in degassed water. Results for TMM and degassed excised bovine liver are presented.
Measurements of the absorption coefficient of stratospheric aerosols
NASA Technical Reports Server (NTRS)
Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.
1981-01-01
The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and
NASA Astrophysics Data System (ADS)
Moseev, D.; Laqua, H. P.; Marsen, S.; Marushchenko, N.; Stange, T.; Braune, H.; Gellert, F.; Hirsch, M.; Hoefel, U.; Knauer, J.; Oosterbeek, J. W.; Turkin, Y.; The Wendelstein 7-X Team
2017-03-01
The efficiency of electron cyclotron heating is determined by the microwave absorption of the plasma. Good microwave absorption is also crucial for the machine safety. In this paper we present a method of evaluating the microwave absorption coefficient from stray radiation measurements. The discussed method is computationally simple and can be applied potentially in real time. Evolution of the second harmonic extraordinary mode (X2) microwave absorption coefficient in Wendelstein 7-X during the start-up phase is presented, as well as an estimate of the absorption coefficient for the second harmonic ordinary mode (O2) wave.
NASA Technical Reports Server (NTRS)
Molina, L. T.; Grant, W. B.
1984-01-01
The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.
Dynamic absorption coefficients of CAR and non-CAR resists at EUV
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-03-01
The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.
Study of the absorption coefficient in layers of a semiconductor laser heterostructure
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V; Nikolaev, D N; Slipchenko, S O; Sokolova, Z N; Shamakhov, V V; Shashkin, I S; Voronkova, N V; Tarasov, I S
2015-07-31
A method of studying the absorption coefficient in layers of semiconductor lasers is proposed. Using lasers based on MOVPE-grown separate-confinement heterostructures with a broadened waveguide, the absorption coefficient is investigated under pulsed current pumping. It is found that when the pump current flows through the laser in question, an additional internal optical absorption arises in the heterostructure layers. It is shown that an increase in the pump current density up to 20 kA cm{sup -2} leads to an increase in absorption up to 2.5 cm{sup -1}. The feasibility of studying free-carrier absorption in the active region is demonstrated. (lasers)
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria
NASA Astrophysics Data System (ADS)
de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald
2003-06-01
We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
NASA Astrophysics Data System (ADS)
Presser, Cary
2012-05-01
A laser-heating technique, referred as the laser-driven thermal reactor, was used in conjunction with laser transmissivity measurements to determine the absorption coefficient of particle-laden substrates (e.g., quartz-fiber filters). The novelty of this approach is that it analyzes a wide variety of specific samples (not just filtered samples) and overcomes measurement issues (e.g., absorption enhancement) associated with other filter-based particle absorption techniques. The absorption coefficient was determined for nigrosin-laden, quartz-fiber filters and the effect of the filter on the absorption measurements was estimated when compared to the isolated nigrosin results. The isolated nigrosin absorption coefficient compared favorably with Lorenz-Mie calculations for an idealized polydispersion of spherical particles (based on a measured nigronsin/de-ionized water suspension size distribution) dispersed throughout a volume equivalent to that of the nigrosin-laden filter. To validate the approach, the absorption coefficient of a nigrosin/de-ionized water suspension was in good agreement with results obtained from an ultraviolet/visible spectrometer. In addition, the estimated imaginary part of the refractive index from the Lorenz-Mie calculations compared well with literature values and was used to estimate the absorption coefficient of optically opaque packed nigrosin.
Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E
2001-01-01
In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds.
Visible and Near Infrared Absorption Coefficients of Kaolinite and Related Clays.
propagation of light. This work is intended to provide a quantitative estimate of the absorption coefficient of kaolinite clays by application of a method based on the Kubelka - Munk theory of diffuse reflectance.
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.
Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K
1999-12-20
Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the
Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.
ERIC Educational Resources Information Center
Ouseph, P. J.; And Others
1982-01-01
Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…
Determination of absorption coefficients in AlInP lattice matched to GaAs
NASA Astrophysics Data System (ADS)
Cheong, J. S.; Ng, J. S.; Krysa, A. B.; Ong, J. S. L.; David, J. P. R.
2015-10-01
The absorption properties of Al0.52In0.48P have been investigated near the fundamental absorption edge by measuring the photocurrent as a function of wavelength in a series of PIN and NIP diodes. Modelling of the photocurrent in these structures enables the absorption coefficients to be determined accurately over a wide dynamic range, which allows the direct and indirect band-gap to be determined.
ERIC Educational Resources Information Center
Cordon, Gabriela B.; Lagorio, M. Gabriela
2007-01-01
A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.
Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns
NASA Technical Reports Server (NTRS)
May, R. D.; Molina, L. T.; Webster, C. R.
1988-01-01
A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.
Determination of molar absorption coefficients of organic compounds adsorbed in porous media.
Ciani, Andrea; Goss, Kai-Uwe; Schwarzenbach, René P
2005-12-01
The kinetics of direct photochemical transformations of organic compounds in light absorbing and scattering media has been sparsely investigated. This is mostly due to the experimental difficulties to assess the major parameters: light intensity in porous media, the reaction quantum yield and the molar absorption coefficient of the adsorbed compound, epsilon(i) (lambda). Here, we propose a method for the determination of the molar absorption coefficient of compounds adsorbed to air-dry surfaces using the Kubelka-Munk model for the description of radiative transfer. To illustrate the method, the molar absorption coefficients of three compounds, i.e. 4-nitroanisole (PNA), the herbicide trifluralin and the flame retardant decabromodiphenyl ether (DecaBDE), were determined on air-dry kaolinite. The measured diffuse reflectance spectra were evaluated with the Kubelka-Munk model and with previously determined Kubelka-Munk absorption and scattering coefficients (k and s), for kaolinite. For all compounds the maximum absorption band was found to be red shifted and the corresponding epsilon(i) (lambda) values were significantly greater than those determined in solvents. Together with the absorption and scattering coefficient of the medium, the measured epsilon(i) (lambda) can be used to determine the quantum yield of the photochemical reaction in this medium from experimentally determined reaction kinetics.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
NASA Astrophysics Data System (ADS)
Fry, Patrick M.; Sromovsky, L. A.
2009-09-01
Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
Efficient calculation of atomic rate coefficients in dense plasmas
NASA Astrophysics Data System (ADS)
Aslanyan, Valentin; Tallents, Greg J.
2017-03-01
Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.
RECOMBINATION RATE COEFFICIENTS OF Be-LIKE Si
Orban, I.; Boehm, S.; Schuch, R.; Loch, S. D.
2010-10-01
Recombination of Be-like Si{sup 10+} over the 0-43 eV electron-ion energy range is measured at the CRYRING electron cooler. In addition to radiative and dielectronic recombination, the recombination spectrum also shows strong contributions from trielectronic recombination. Below 100 meV, several very strong resonances associated with a spin-flip of the excited electron dominate the spectrum and also dominate the recombination in the photoionized plasma. The resonant plasma rate coefficients corrected for the experimental field ionization are in good agreement with calculated results by Gu and with AUTOSTRUCTURE calculations. All other calculations significantly underestimate the plasma rate coefficients at low temperatures.
Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film
Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.
2015-06-24
We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.
ROVIBRATIONAL QUENCHING RATE COEFFICIENTS OF HD IN COLLISIONS WITH He
Nolte, J. L.; Stancil, P. C.; Lee, T.-G.; Balakrishnan, N.; Forrey, R. C. E-mail: stancil@physast.uga.edu E-mail: naduvala@unlv.nevada.edu
2012-01-01
Along with H{sub 2}, HD has been found to play an important role in the cooling of the primordial gas for the formation of the first stars and galaxies. It has also been observed in a variety of cool molecular astrophysical environments. The rate of cooling by HD molecules requires knowledge of collisional rate coefficients with the primary impactors, H, He, and H{sub 2}. To improve knowledge of the collisional properties of HD, we present rate coefficients for the He-HD collision system over a range of collision energies from 10{sup -5} to 5 Multiplication-Sign 10{sup 3} cm{sup -1}. Fully quantum mechanical scattering calculations were performed for initial HD rovibrational states of j = 0 and 1 for v = 0-17 which utilized accurate diatom rovibrational wave functions. Rate coefficients of all {Delta}v = 0, -1, and -2 transitions are reported. Significant discrepancies with previous calculations, which adopted a small basis and harmonic HD wave functions for excited vibrational levels, were found for the highest previously considered vibrational state of v = 3. Applications of the He-HD rate coefficients in various astrophysical environments are briefly discussed.
Mehnati, Parinaz; Jafari Tirtash, Maede; Zakerhamidi, Mohammad Sadegh; Mehnati, Parisa
2016-01-01
Background Blood concentrations and oxygen saturation levels are important biomarkers for breast cancer diagnosis. Objectives In this study, the absorption coefficient of hemoglobin (Hb) was used to distinguish between normal and abnormal breast tissue. Materials and Methods A near-infrared source (637 nm) was transmitted from major and minor vessels of a breast phantom containing 2×, 4× concentrations of oxy- and deoxy-Hb. The absorption coefficients were determined from spectrometer (SM) and powermeter (PM) data. Results The absorption coefficients were 0.075 ± 0.026 cm-1 for oxygenated Hb (normal) in major vessels and 0.141 ± 0.023 cm-1 at 4× concentration (abnormal) with SM, whereas the breast absorption coefficients were 0.099 ± 0.017 cm-1 for oxygenated Hb (normal) in minor vessels and 0.171 ± 0.005 cm-1 at 4× concentrations with SM. A comparison of the data obtained using a SM and a PM was not significant statistically. Conclusion The study of the absorption coefficient data of different concentrations of Hb in normal and abnormal breasts via the diffusion of near-infrared light is a valuable method and has the potential to aid in early detection of breast abnormalities with SM and PM in major and minor vessels. PMID:27895869
NASA Astrophysics Data System (ADS)
Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.
2011-04-01
Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.
Minority carrier diffusion lengths and absorption coefficients in silicon sheet material
NASA Technical Reports Server (NTRS)
Dumas, K. A.; Swimm, R. T.
1980-01-01
Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.
A supplementary approach for estimating reaeration rate coefficients
NASA Astrophysics Data System (ADS)
Jha, Ramakar; Ojha, C. S. P.; Bhatia, K. K. S.
2004-01-01
Different commonly used predictive equations for the reaeration rate coefficient (K2) have been evaluated using 231 data sets obtained from the literature and 576 data sets measured at different reaches of the River Kali in western Uttar Pradesh, India. The data sets include stream/channel velocity, bed slope, flow depth, cross-sectional area and reaeration rate coefficient (K2), obtained from the literature and generated during the field survey of River Kali, and were used to test the applicability of the predictive equations. The K2 values computed from the predictive equations have been compared with the corresponding K2 values measured in streams/channels. The performance of the predictive equations has been evaluated using different error estimation, namely standard error (SE), normal mean error (NME), mean multiplicative error (MME) and coefficient of determination (r2). The results show that the reaeration rate equation developed by Parkhurst and Pomeroy yielded the best agreement, with the values of SE, NME, MME and r2 as 33.387, 4.62, 3.58 and 0.95, respectively, for literature data sets (case 1) and 37.567, 3.57, 2.6 and 0.95, respectively, for all the data sets (literature data sets and River Kali data sets) (case 2). Further, to minimize error estimates and improve correlation between measured and computed reaeration rate coefficients, supplementary predictive equations have been developed based on Froude number criteria and a least-squares algorithm. The supplementary predictive equations have been verified using different error estimates and by comparing measured and computed reaeration rate coefficients for data sets not used in the development of the equations.
The absorption coefficient of the liquid N2 2.15-micron band and application to Triton
NASA Technical Reports Server (NTRS)
Grundy, William M.; Fink, Uwe
1991-01-01
The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.
Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak
Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang
2014-02-12
Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.
A numerical study of a method for measuring the effective in situ sound absorption coefficient.
Kuipers, Erwin R; Wijnant, Ysbrand H; de Boer, André
2012-09-01
The accuracy of a method [Wijnant et al., Proc. of ISMA 31, Leuven, Belgium (2010), Vol. 31] for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assumption, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields.
Measurement of optical absorption coefficient of bio-tissue at 532nm wavelength
NASA Astrophysics Data System (ADS)
Huang, Chuyun; Li, Zhengjia; Yao, Yucheng; He, Yanyan
2007-05-01
Laser technology has succeeded in medical application. High power 532nm laser has applied in prostate ablation and other clinic application. To understand optical property of bio-tissue at 532nm wavelength, a method of monitoring surface temperature was used to measure absorption coefficient of gall-stone, porcine liver and canine prostate. The absorption coefficient of gall-stone is about 62cm -1 at 532nm wavelength, and those of porcine liver and canine prostate are about 13cm -1 and 5.4cm -1, respectively. These results help to understand the optical property of bio-tissue and offer theoretic reference for optical dosimetry in clinic application.
NASA Astrophysics Data System (ADS)
Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.
2016-03-01
Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-07-01
The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.
NASA Astrophysics Data System (ADS)
Ladhaf, Bibifatima M.; Pawar, Pravina P.
2015-04-01
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
Determination of Absorption and Scattering Coefficients for Nonhomogeneous Media: II. Experiment.
prepared from a glass of known absorption coefficient variation. The new model produces an accuracy inprovement up to a factor of 2.5 over the Kubelka ... Munk theory. Off-axis scattering measurements were made with improved instrumentation between 0.33 and 2.7 micrometers. The model was then applied to
Nelson, N B; Prézelin, B B
1993-11-20
Measuring the absolute absorption of suspensions of absorbing particles with unknown scattering characteristics is not possible in conventional spectrophotometers or in integrating spheres that have the sample located outside the sphere. A method for the calibration and use of an integrating sphere with a centrally located sample to measure absolute absorption coefficients of scattering suspensions is presented. Under the tested conditions the integrating sphere used in this study was insensitive to changes in the scattering coefficient of the sample but had a nonlinear response to increasing absorption of the sample, which could be corrected with an empirically derived function. This response was analyzed by using a Monte Carlo simulation, and results indicated that amplification of the absorption signal was primarily due to photons reflected from the sphere surface and the baffle reentering the cuvette. The calibration procedure described here may be generally applicable to spheres of different configurati n. An example of the use of the sphere for determining the absorption and scattering coefficients of marine phytoplankton samples is presented.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
NASA Astrophysics Data System (ADS)
Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.
2014-09-01
Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.
Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming
2013-07-01
In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state.
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
NASA Astrophysics Data System (ADS)
Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.
2015-07-01
MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.
Karsten, A E; Singh, A; Karsten, P A; Braun, M W H
2013-02-01
An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.
NASA Astrophysics Data System (ADS)
Goela, P.; Icely, J.; Cristina, S.; Newton, A.
2010-12-01
Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.
Measurement of the absorption rate of carbon dioxide into aqueous diethanolamine
Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.
1998-05-01
Aqueous alkanolamine solutions are commonly used in natural gas sweetening processes to remove the acid gases CO{sub 2} and H{sub 2}S. Absorption rates of gaseous CO{sub 2} into aqueous diethanolamine (DEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate, protonated DEA, and carbamate ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. The diffusion coefficient of DEA in water was also measured using a Taylor dispersion apparatus. A numerical model was developed and used to regress diffusion coefficients of bicarbonate, carbamate, and protonated amine from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and protonated DEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % DEA in water.
Parameterization of the Mie Extinction and Absorption Coefficients for Water Clouds.
NASA Astrophysics Data System (ADS)
Mitchell, David L.
2000-05-01
It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: 1) internal reflection/refraction, 2) photon tunneling, and 3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR.The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Qabs and Qext, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, abs and ext. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for abs and ext were generally 10% for the effective radius range in water clouds of 5-30 m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.
Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.
Holm, R T; Palik, E D
1978-02-01
The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.
Measurement and calculation of the sound absorption coefficient of pine wood charcoal
NASA Astrophysics Data System (ADS)
Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo
2013-10-01
Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.
Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping
2016-01-01
A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418
Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.
1992-01-01
Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.
Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data
NASA Astrophysics Data System (ADS)
Karkoschka, Erich; Tomasko, Martin G.
2010-02-01
We use 11 data sets of methane transmission measurements within 0.4-5.5 μm wavelength to model the methane transmission for temperature and pressure conditions in the jovian planets. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere ( Tomasko et al., 2008b, PSS 56, 624), and we provide a refined analysis. The last data set is a set of new Jupiter images by the Hubble Space Telescope to measure atmospheric transmission with Ganymede as the light source. Below 1000 nm wavelength, our resulting methane absorption coefficients are generally close to those by Karkoschka (1998, Icarus 133, 134), but we add descriptions of temperature and pressure dependence. One remaining inconsistency occurs between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data also confirm Irwin's model of extrapolation to Titan's lower pressures. However, their model of extrapolation to Titan's lower temperatures predicts absorption coefficients up to 100 times lower than measured by Huygens. For each of ˜3700 wavelengths, we present a temperature dependence that is consistent with all laboratory data and the Huygens data. Since the Huygens data probe similar temperatures as many observations of Saturn, Uranus, Neptune, and Titan, our methane model will allow more reliable radiative transfer models for their atmospheres.
The influence of surface preparation on the absorption coefficient of laser radiation
NASA Astrophysics Data System (ADS)
Kurp, Piotr; Mucha, Zygmunt; Mulczyk, Krystian; Gradoń, Ryszard; Trela, Paweł
2016-12-01
The absorption coefficient of the surface of a workpiece is of importance in laser treatment, particularly in the treatment where the temperature of an element must be strictly controlled. Laser surface treatment (such as hardening, metallic glazing) and laser forming can be primarily included in this type of technology. In another case, surface temperature must be precisely controlled, especially if structural changes are to be avoided. There are a number of ways to increase the absorption coefficient of the surface of an element. Since the laser forming is the research subject of the authors of the presented paper, it was necessary to determine the absorption coefficient for the different surfaces preparation of workpieces. Raw surface, oxidized surface, sandblasted surface, black enamel covered surface and waterglass covered surface were examined, respectively. The experiment was performed using a CO2 laser with a head for a surface treatment which generates a rectangular beam of dimensions 2x20 mm, and the samples were made of X5CrNi18-10 stainless steel.
Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review
NASA Technical Reports Server (NTRS)
Grant, William B.
1990-01-01
Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.
Dependence of dose coefficients for inhaled 239Pu on absorption parameters.
Suzuki, K; Sekimoto, H; Ishigure, N
2001-01-01
With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less
Two-photon interband absorption coefficients in tungstate and molybdate crystals
NASA Astrophysics Data System (ADS)
Lukanin, V. I.; Karasik, A. Ya.
2015-02-01
Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θ_{D} of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.
Exercise, Insulin Absorption Rates, and Artificial Pancreas Control
NASA Astrophysics Data System (ADS)
Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.
2016-11-01
Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.
Cosmological Implications of the Uncertainty in Astrochemical Rate Coefficients
NASA Technical Reports Server (NTRS)
Glover, S. C. O.; Savin, D. W.; Jappsen, A.-K.
2006-01-01
The cooling of neutral gas of primordial composition, or with very low levels of metal enrichment, depends crucially on the formation of molecular coolants, such as H2 and HD within the gas. Although the chemical reactions involved in the formation and destruction of these molecules are well known, the same cannot be said for the rate coefficients of these reactions, some of which are uncertain by an order of magnitude. Here we discuss two reactions for which large uncertainties exist the formation of H2 by associative detachment of H- with H and the destruction of H- by mutual neutralization with protons. We show that these uncertainties can have a dramatic impact on the effectiveness of cooling during protogalactic collapse.
Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.
Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min
2017-02-09
The reaction of the simplest Criegee intermediate CH2OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10(-13) cm(3) s(-1). The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH2OO with H2S is 2-3 orders of magnitude faster than the reaction with H2O monomer. Though rates of CH2OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H2S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH2OO + H2S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.
Parameterization of the Mie extinction and absorption coefficients for water clouds
Mitchell, D.L.
2000-05-01
It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: (1) internal reflection/refraction, (2) photon tunneling, and (3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR. The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Q{sub abs} and Q{sub ext}, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, {beta}{sub abs} and {beta}{sub ext}. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for {beta}{sub abs} and {beta}{sub ext} were generally {le}10% for the effective radius range in water clouds of 5--30 {micro}m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.
Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Spilker, Thomas R.
1995-01-01
A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging
Parker, K; Morrison, G
2016-08-01
Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.
Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette
2012-01-01
The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592
Photolysis Rate Coefficient Calculations in Support of SOLVE II
NASA Technical Reports Server (NTRS)
Swartz, William H.
2005-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The primary objective of the present effort was the accurate calculation of j-values in the Arctic twilight along NASA DC-8 flight tracks during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II), based in Kiruna, Sweden (68 degrees N, 20 degrees E) during January-February 2003. The JHU/APL radiative transfer model was utilized to produce a large suite of j-values for photolysis processes (over 70 reactions) relevant to the upper troposphere and lower stratosphere. The calculations take into account the actual changes in ozone abundance and apparent albedo of clouds and the Earth surface along the aircraft flight tracks as observed by in situ and remote sensing platforms (e.g., EP-TOMS). A secondary objective was to analyze solar irradiance data from NCAR s Direct beam Irradiance Atmospheric Spectrometer (DIAS) on-board the NASA DC-8 and to start the development of a flexible, multi-species spectral fitting technique for the independent retrieval of O3,O2.02, and aerosol optical properties.
Learning rates of lq coefficient regularization learning with gaussian kernel.
Lin, Shaobo; Zeng, Jinshan; Fang, Jian; Xu, Zongben
2014-10-01
Regularization is a well-recognized powerful strategy to improve the performance of a learning machine and l(q) regularization schemes with 0 < q < ∞ are central in use. It is known that different q leads to different properties of the deduced estimators, say, l(2) regularization leads to a smooth estimator, while l(1) regularization leads to a sparse estimator. Then how the generalization capability of l(q) regularization learning varies with q is worthy of investigation. In this letter, we study this problem in the framework of statistical learning theory. Our main results show that implementing l(q) coefficient regularization schemes in the sample-dependent hypothesis space associated with a gaussian kernel can attain the same almost optimal learning rates for all 0 < q < ∞. That is, the upper and lower bounds of learning rates for l(q) regularization learning are asymptotically identical for all 0 < q < ∞. Our finding tentatively reveals that in some modeling contexts, the choice of q might not have a strong impact on the generalization capability. From this perspective, q can be arbitrarily specified, or specified merely by other nongeneralization criteria like smoothness, computational complexity or sparsity.
Sound absorption coefficient in situ: an alternative for estimating soil loss factors.
Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina
2015-01-01
The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.
NASA Astrophysics Data System (ADS)
Yin, Yan; Chen, Yu; Wang, Weiwei; Yan, Jiade; Qian, Ling; Tong, Yaoqing; Lin, Zhenyi
2008-08-01
The absorption and scattering coefficients of atmospheric aerosols were continuously measured with a Photoacoustic Soot Spectrometer (PASS, DMT Inc. USA) at a suburb site of Nanjing, one of the regions experiencing rapid industrialization in China. The measurements were carried out during autumn and winter 2007. A preliminary analysis of the data shows that, the scattering coefficient, Bscat, is two to ten times larger than the absorption coefficient, Babs, implying that the aerosols formed/emitted in this area are more scattering than previous assumed, and can be more important in cooling the Earth-atmosphere system. The results also indicate that the absolute values of both parameters are very much dependent on the meteorological conditions, such as wind speed and direction, fog, rain, etc. as well as the time of the day. Higher values often appear at nighttimes when wind is weak, especially when a temperature inverse layer is present near the surface. Higher values of Bscat and Babs were also observed under hazy and foggy weather conditions or when wind is blown from east, where a large industrial zone is located. Simultaneous measurements of the number concentrations, chemical compositions, and size distributions of aerosol particles are used to explain the characteristics of the changes in Bscat and Babs.
Further studies of human whole-body radiofrequency absorption rates.
Hill, D A
1985-01-01
Further studies of human whole-body radiofrequency (RF) absorption rates were carried out using a TEM-cell exposure system. Experiments were done at one frequency near the grounded resonance frequency (approximately 40 MHz), and at several below-resonance frequencies. Absorption rates are small for the K and H orientations of the body, even when grounded. For the body trunk in an E orientation, the absorption rate of a sitting person is about half of the rate for the same person standing with arms at the sides; the latter in turn is about half the rate for the same subject standing with arms over the head. Two-body interactions cause no increase in absorption rates for grounded people. They do, however, increase the absorption rates for subjects in an E orientation in free space; the largest interaction occurs when one subject is lambda/2 behind the other (as seen by the incident wave). When these results are applied to practical occupational exposure situations, the whole-body specific absorption rate does not exceed the ANSI limit of 0.4 W/kg for exposures permitted by the ANSI standard (C95.1-1982) at frequencies from 7 to 40 MHz.
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.
2016-11-01
The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.
Effect of sealants of the sound absorption coefficients of acoustical friable insulating materials
NASA Astrophysics Data System (ADS)
Wayman, J. L.; Lory, M. K.
1984-10-01
Acoustical friable insulating materials (AFIM), which often in the past contained asbestos, have been used for sound control since the mid 1930's. Because of their widespread use and the ease of fiber dissemination, friable asbestos materials are considered to be the major source of asbestos fiber contamination in the indoor environment. Encapsulation of asbestos materials with a commercial sealant product is one of several methods used to control potential asbestos exposure in rooms. A sealant product that preserves most of the acoustical properties of the material is preferred in this usage. AFIM sample materials were treated with 6 types of sealants and the effects on normally incident absorption coefficients from 100 to 2500 Hz were measured using a fixed, dual-microphone technique. Penetrating type sealants were found to have a less detrimental effect on sound absorption than those of a bridging type.
The effective air absorption coefficient for predicting reverberation time in full octave bands.
Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J
2014-12-01
A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.
The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.
Fornasini, P; Grisenti, R
2014-10-28
The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.
NASA Astrophysics Data System (ADS)
Thomas, S. M.
2015-12-01
Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior
2007-05-21
samples were collected with 1.7 L Niskin bottles mounted on a rosette equipped with a SBE19 CTD which provides temperature and salinity data. Samples were...21 November is 2002) on board R/V Yanping I1. Figure 1 shows the stations for CTD surveys and ab- sorption sampling . The 2001 cruise involved one...were sampled in both cruise legs for absorption coefficients (the second sampling is annotated as Sta. 6’ and Sta. 2’, respectively). 1559 Our sample
Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm
NASA Astrophysics Data System (ADS)
Bristow, Alan D.; Rotenberg, Nir; van Driel, Henry M.
2007-05-01
The degenerate two-photon absorption coefficient β and Kerr nonlinearity n2 are measured for bulk Si at 300K using 200fs pulses with carrier wavelength of 850<λ<2200nm for which indirect gap transitions occur. With a broad peak near the indirect gap and maximum value of 2±0.5cm/GW, the dispersion of β compares favorably with theoretical calculations of Garcia and Kalyanaraman [J. Phys. B 39, 2737 (2006)]. Within our wavelength range, n2 varies by a factor of 4 with a peak value of 1.2×10-13cm2/W at λ =1800nm.
Vapor-Phase Absorptivity Coefficient of Ethyl N,N-Dimethylphosphoramidocyanidate
2010-01-01
diluted in solvent by gas chromotography -mass spectrometry (GC-MS) indicated 3.4% triethyl phosphate (TEPO), as well ə% each of 0-ethyl-N,N-dimethyl...absorptivity coefficient of the chemical warfare agent ethyl N,N-dimethyl- phosphoramidocyanidate ( GA ) in the mid-infrared (4000-550 cm"’) at a...spectral resolution of 0.125 cm"’. The GA used in the feedstock was purified by fractional distillation and analyzed by nuclear magnetic resonance and
Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules
NASA Astrophysics Data System (ADS)
Brooke, G.; Popović, S.; Vušković, L.
2002-05-01
We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
NASA Astrophysics Data System (ADS)
Gaudette, Richard J.; Brooks, Dana H.; Di Marzio, Charles A.; Kilmer, Misha E.; Miller, Eric L.; Gaudette, Thomas; Boas, David A.
2000-04-01
We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two `object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.
Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum
NASA Technical Reports Server (NTRS)
Krascella, N. L.
1972-01-01
A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.
NASA Astrophysics Data System (ADS)
André, Frédéric; Solovjov, Vladimir; Vaillon, Rodolphe; Lemonnier, Denis
2013-07-01
The generalized k-moment method is formulated in terms of Cutteridge-Devyatov polynomials (CDP). In this novel approach, the moments involved are spectral averages of integer powers of the logarithm of the absorption coefficient. The technique to obtain k-distributions from those generalized moments is detailed both theoretically and from a practical point of view. Its outputs are afterward assessed against reference data in several test cases of increasing complexity. Indeed, the first ones involve single lines in the Lorentz, Doppler and Voigt regimes. The most sophisticated situations investigated in this work concern applications of the method to high resolution LBL data for pure CO2 at temperatures between 300K and 2300K and at atmospheric pressure. In any case, the CDP solution to the generalized k-moment problem is found to provide very accurate results. The present technique outperforms our previous approach to k-moment modeling of the cumulative distribution of absorption coefficients of gases that were based on first, second, first inverse and logarithmic moments, in all the situations investigated. Equations required to apply the model are provided in the paper, both over narrow bands and the full spectrum.
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.
Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.
Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt
2016-04-10
A method for measuring the absorption coefficient μ_{a} of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3 mm^{-1}<μ_{a}<1.55 mm^{-1}) and 1.0 vol.% (1.0 mm^{-1}<μ_{a}<4.0 mm^{-1}) concentrations with 1 vol.% (μs'≈1.4 mm^{-1}) and 10 vol.% (μs'≈14 mm^{-1}) Intralipid dilutions. The low concentrations give μ_{a} and μ_{s} values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μ_{a} values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μ_{a} values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.
De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger
2016-02-23
Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.
The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno
2015-06-01
A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.
Influence of collisional rate coefficients on water vapour excitation
NASA Astrophysics Data System (ADS)
Daniel, F.; Goicoechea, J. R.; Cernicharo, J.; Dubernet, M.-L.; Faure, A.
2012-11-01
Context. Water is a key molecule in many astrophysical studies that deal with star or planet forming regions, evolved stars, and galaxies. Its high dipole moment makes this molecule subthermally populated under the typical conditions of most astrophysical objects. This motivated calculation of various sets of collisional rate coefficients (CRC) for H2O (with He or H2), which are needed to model its rotational excitation and line emission. Aims: The most accurate set of CRC are the quantum rates that involve H2. However, they have been published only recently, and less accurate CRC (quantum with He or quantum classical trajectory (QCT) with H2) were used in many studies before that. This work aims to underline the impact that the new available set of CRC have on interpretations of water vapour observations. Methods: We performed accurate non-local, non-LTE radiative transfer calculations using different sets of CRC to predict the line intensities from transitions that involve the lowest energy levels of H2O (E < 900 K). The results obtained from the different CRC sets were then compared using line intensity ratio statistics. Results: For the whole range of physical conditions considered in this work, we find that the intensities based on the quantum and QCT CRC are in good agreement. However, at relatively low H2 volume density (n(H2) < 107 cm-3) and low water abundance (χ(H2O) < 10-6), which corresponds to physical conditions relevant when describing most molecular clouds, we find differences in the predicted line intensities of up to a factor of ~3 for the bulk of the lines. Most of the recent studies interpreting early Herschel Space Observatory spectra have used the QCT CRC. Our results show that, although the global conclusions from those studies will not be drastically changed, each case has to be considered individually, since depending on the physical conditions, the use of the QCT CRC may lead to a mis-estimate of the water vapour abundance of up to a
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei
2007-09-01
We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.
Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A
2012-01-31
We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.
Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water
NASA Astrophysics Data System (ADS)
Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.
1998-07-01
We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.
The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.
2017-01-01
In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.
Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric
2006-07-01
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.
NASA Astrophysics Data System (ADS)
Shori, Ramesh K.
, the laser was used to measure the optical transmission across water layers of known thicknesses. The data were used to develop a Dynamic Saturable Absorption (DSA) model to predict the dynamic changes in the absorption coefficient of water as a function of incident energy. The DSA model, based in part upon the homogeneous broadening of an atomic transition in a laser gain medium, accurately predicts the absorption coefficient of water over a wide range of incident fluences. One sees saturation of the absorption at both high and low fluence with a monotonic decrease in absorption with increasing fluence. Transmission measurements were also made at 9.6 and 10.6 μm using a TEA CO2 laser. The data show essentially no change in the absorption coefficient as the fluence is varied. The results from the experiments make a significant contribution towards an understanding of the relationship among the dynamic optical properties of water and clinically relevant properties such as ablation rate and residual thermal damage.
Measurement of acoustic absorption coefficient with phase-conjugate ultrasonic waves
NASA Astrophysics Data System (ADS)
Smagin, N. V.; Krutyansky, L. M.; Brysev, A. P.; Bunkin, F. V.
2011-07-01
Experimental results on measurements of the acoustic absorption coefficient in test objects that were obtained with two methods, i.e., a standard insert-substitution method and a modification thereof using phase-conjugate waves, are given. Samples of gelatin and biological tissue in vitro (porcine muscle fibers) were used as test objects. Gelatin objects were manufactured that were both homogeneous and with inhomogeneities in the form of a rough surface or inclusions (air bubbles) distributed over the volume. A rough surface leads mainly to phase distortions of a probe beam, while bubble inclusions cause additional field scattering. For all homogeneous samples, both compared methods produce identical results. In the case of inhomogeneous samples including biological tissues, absorption measurement by a standard method may lead to significant errors. It is demonstrated that the use of properties of phase-conjugate waves provides an opportunity to eliminate almost completely the measurement error connected with phase distortions and reduce the error in the case of a medium with scatterers.
Lee, Joong Seok; Kim, Yoon Young; Kim, Jung Soo; Kang, Yeon June
2008-04-01
Optimal shape design of a two-dimensional poroelastic acoustical foam is formulated as a topology optimization problem. For a poroelastic acoustical system consisting of an air region and a poroelastic foam region, two different physical regions are continuously changed in an iterative design process. To automatically account for the moving interfaces between two regions, we propose a new unified model to analyze the whole poroelastic acoustical foam system with one set of governing equations; Biot's equations are modified with a material property interpolation from a topology optimization method. With the unified analysis model, we carry out two-dimensional optimal shape design of a poroelastic acoustical foam by a gradient-based topology optimization setting. The specific objective is the maximization of the absorption coefficient in low and middle ranges of frequencies with different amounts of a poroelastic material. The performances of the obtained shapes are compared with those of well-known wedge shapes, and the improvement of absorption is physically interpreted.
Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K.
Rajakumar, B; Burkholder, James B; Portmann, R W; Ravishankara, A R
2005-06-21
The rate coefficient for the reaction OH + CFH2CH2OH --> products (k1) between 238 and 355 K was measured using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique to be (5.15 +/- 0.88)x 10(-12) exp[-(330 +/- 45)/T] cm3 molecule(-1) s(-1); k1(298 K)= 1.70 x 10(-12) cm3 molecule(-1) s(-1). The quoted uncertainties are 2sigma(95% confidence level) and include estimated systematic errors. The present results are discussed in relation to the measured rate coefficients for the reaction of OH with other fluorinated alcohols and those calculated using recently reported structure additivity relationships for fluorinated compounds (K. Tokuhashi, H. Nagai, A. Takahashi, M. Kaise, S. Kondo, A. Sekiya, M. Takahashi, Y. Gotoh and A. Suga, J. Phys. Chem. A, 1999, 103, 2664-2672, ). Infrared absorption cross sections for CFH2CH2OH are reported and they are used to calculate the global warming potentials (GWP) for CFH2CH2OH of approximately 8, approximately 2, and approximately 1, respectively, for the 20, 100 and 500 year horizons. A brief discussion of the atmospheric degradation of CFH2CH2OH is provided. It is concluded that CFH2CH2OH is an acceptable substitute for CFCs in terms of its impact on Earth's climate and the composition of the atmosphere. The room temperature rate coefficient for the reaction OH + CFH2CH2OH --> products (k10) was measured to be 3.26 x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recent measurements from this laboratory.
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the Ni
IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite
NASA Astrophysics Data System (ADS)
Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Smyth, J. R.; Frost, D. J.
2009-12-01
Raman spectroscopy, combined with the ‘Comparator technique’ has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the ‘Comparator technique’ to provide ɛ-values for a set of synthetic Fe-free and Fe-bearing (Fo90) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth’s lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth’s deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3127, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3172 cm-1 and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3109 cm-1 an ɛ-value of 170000 ± 51000 L cm-2 / molH2O was determined. For a Fo90 sample with the mean wavenumber of 3132 cm-1 the value was calculated to be 123000 ± 37000 L cm-2 / molH2O. The latter two values are in good agreement with the data from the linear calibration of ~159000 L cm-2 / molH2O and ~153000 L cm-2
NASA Astrophysics Data System (ADS)
Tamandani, Shahryar; Darvish, Ghafar
2017-02-01
We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.
2016-03-01
A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.
1996-05-01
The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.
NASA Astrophysics Data System (ADS)
Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.
2014-12-01
Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence
Goodman, W A; Goorsky, M S
1995-06-20
We engineered a factor-of-4 reduction in the bulk absorption coefficient over the 2.6-to-3.0-µm bandwidth in single-crystal Czochralski silicon optics for high-energy infrared lasers with high-temperature annealing treatments. Defect engineering adapted from the integrated circuit industry has been used to reduce the absorption coefficient across the 1.5-to-5-µm bandwidth for substrates up to 5 cm thick. A high-temperature oxygen-dispersion anneal dissolves precipitates and thermal donors that are present in the as-grown material. The process has been verified experimentally with Fourier transform infrared spectroscopy, infrared laser calorimetry, and Hall measurements. Reduction of the absorption coefficient results in less substrate heating and thermal distortion of the optical surface. The process is appropriate for other silicon infrared optics applications such as thermal-imaging systems, infrared windows, and spectrophotometers.
NASA Technical Reports Server (NTRS)
Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.
1990-01-01
A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.
Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )
1990-05-01
A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.
Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values
NASA Astrophysics Data System (ADS)
Khaksari, Kosar; Kirkpatrick, Sean J.
2015-03-01
Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.
Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients
Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki
2011-09-15
In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.
Noise-driven optical absorption coefficients of impurity doped quantum dots
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas
2016-01-01
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.
Effects of nanosilver on sound absorption coefficients in solid wood species.
Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib
2016-06-01
Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.
Temperature dependences of rate coefficients for electron catalyzed mutual neutralization
NASA Astrophysics Data System (ADS)
Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, Albert A.; Maeda, Satoshi; Morokuma, Keiji
2011-07-01
The flowing afterglow technique of variable electron and neutral density attachment mass spectrometry (VENDAMS) has recently yielded evidence for a novel plasma charge loss process, electron catalyzed mutual neutralization (ECMN), i.e., A+ + B- + e- → A + B + e-. Here, rate constants for ECMN of two polyatomic species (POCl3- and POCl2-) and one diatomic species (Br2-) each with two monatomic cations (Ar+and Kr+) are measured using VENDAMS over the temperature range 300 K-500 K. All rate constants show a steep negative temperature dependence, consistent with that expected for a three body process involving two ions and an electron. No variation in rate constants as a function of the cation type is observed outside of uncertainty; however, rate constants of the polyatomic anions (˜1 × 10-18 cm6 s-1 at 300 K) are measurably higher than that for Br2- [(5.5 ± 2) × 10-19 cm6 s-1 at 300 K].
Temperature dependences of rate coefficients for electron catalyzed mutual neutralization
Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, Albert A.; Maeda, Satoshi; Morokuma, Keiji
2011-07-14
The flowing afterglow technique of variable electron and neutral density attachment mass spectrometry (VENDAMS) has recently yielded evidence for a novel plasma charge loss process, electron catalyzed mutual neutralization (ECMN), i.e., A{sup +}+ B{sup -}+ e{sup -}{yields} A + B + e{sup -}. Here, rate constants for ECMN of two polyatomic species (POCl{sub 3}{sup -} and POCl{sub 2}{sup -}) and one diatomic species (Br{sub 2}{sup -}) each with two monatomic cations (Ar{sup +}and Kr{sup +}) are measured using VENDAMS over the temperature range 300 K-500 K. All rate constants show a steep negative temperature dependence, consistent with that expected for a three body process involving two ions and an electron. No variation in rate constants as a function of the cation type is observed outside of uncertainty; however, rate constants of the polyatomic anions ({approx}1 x 10{sup -18} cm{sup 6} s{sup -1} at 300 K) are measurably higher than that for Br{sub 2}{sup -}[(5.5 {+-} 2) x 10{sup -19} cm{sup 6} s{sup -1} at 300 K].
Refinement of the aeronomically determined rate coefficient for the reaction of N2/+/ with O
NASA Technical Reports Server (NTRS)
Torr, D. G.
1979-01-01
An earlier aeronomic determination of the rate coefficient for the reaction N2(+) + O yields NO(+) + N using Atmosphere Explorer data indicated a small increase in the rate coefficient with ion temperature, contrary to laboratory observations. This was incorrectly attributed to neglect of an increase in the N2(+) recombination rate with vibrational excitation. Recent aeronomical results have shown that the rate coefficient for charge exchange of O(+)(2D) with N2 is about an order of magnitude smaller at thermal temperatures than at energies greater than 0.5 eV (i.e., energies at which laboratory measurements have been made). It is shown that the use of the smaller charge exchange rate coefficient coupled with recent results on N2 quenching of O(+)(2D) yields a temperature dependence in excellent agreement with the laboratory results for the rate coefficient.
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Lewis, M.; Petre, R.
1983-01-01
Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.
Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...
Wang, J.; Zhang, X. Yu, L.; Zhao, X.
2014-12-15
In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.
Determination of 2p Excitation Transfer Rate Coefficient in Neon Gas Discharges
NASA Astrophysics Data System (ADS)
Smith, D. J.; Stewart, R. S.
2001-10-01
We will discuss our theoretical modelling and application of an array of four complementary optical diagnostic techniques for low-temperature plasmas. These are cw laser collisionally-induced fluorescence (LCIF), cw optogalvanic effect (OGE), optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS). We will briefly present an overview of our investigation of neon positive column plasmas for reduced axial electric fields ranging from 3x10-17 Vcm2 to 2x10-16 Vcm2 (3-20 Td), detailing our determination of five sets of important collisional rate coefficients involving the fifteen lowest levels, the 1S0 ground state and the 1s and 2p excited states (in Paschen notation), hence information on several energy regions of the electron distribution function (EDF). The discussion will be extended to show the new results obtained from analysis of the argon positive column over similar reduced fields. Future work includes application of our multi-diagnostic technique to more complex systems, including the addition of molecules for EDF determination. array of four complementary optical diagnostic techniques OGE LCIF determination of five sets of important collisional rate coefficients
Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems
Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.
2007-06-15
Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.
Temperature Dependence of the O + HO2 Rate Coefficient
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.
1997-01-01
A pulsed laser photolysis technique has been employed to investigate the kinetics of the radical-radical reaction O((sup 3)P) + HO2 OH + O2 over the temperature range 266-391 K in 80 Torr of N2 diluent gas. O((sup 3)P) was produced by 248.5-nm KrF laser photolysis of O3 followed by rapid quenching of O(1D) to O((sup 3)P) while HO2 was produced by simultaneous photolysis of H2O2 to create OH radicals which, in turn, reacted with H2O2 to yield HO2. The O((sup 3)P) temporal profile was monitored by using time-resolved resonance fluorescence spectroscopy. The HO2 concentration was calculated based on experimentally measured parameters. The following Arrhenius expression describes our experimental results: k(sub 1)(T) equals (2.91 +/- 0.70) x 10(exp -11) exp[(228 +/- 75)/T] where the errors are 2 sigma and represent precision only. The absolute uncertainty in k, at any temperature within the range 266-391 K is estimated to be +/- 22 percent. Our results are in excellent agreement with a discharge flow study of the temperature dependence of k(sub 1) in 1 Torr of He diluent reported by Keyser, and significantly reduce the uncertainty in the rate of this important stratospheric reaction at subambient temperatures.
Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro
2011-11-21
Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.
NASA Astrophysics Data System (ADS)
Millán-Núñez, Eduardo; Sieracki, Michael E.; Millán-Núñez, Roberto; Lara-Lara, José Rubén; Gaxiola-Castro, Gilberto; Trees, Charles C.
2004-03-01
In recent years, experts of optical hydrology have shown great interest in the variability of the specific absorption coefficient of light by phytoplankton (aph*). This parameter is important and necessary for comparing in situ bio-optical and satellite optical measurements. Such comparisons are needed for detecting primary productivity at a mesoscale level. At present, however, the parameters used in algorithms for predicting productivity are global averages. To avoid this bias, we measured the spatial-temporal variability of aph* as part of the Jan-01 Investigaciones Mexicanas de la Corriente de California cruise along the southern California Current. We observed median values of 0.041 m2 (mg chlorophyll a (Chl a))-1 at 440 nm and 0.015 at 674 nm, with significant differences between inshore and offshore stations. In general, the stations located in the area of Bahía Vizcaíno, with oceanographic conditions favorable for the growth of phytoplankton, showed lower values of the aph* . The nano-microphytoplankton (>5 μm) community comprised of 26 diatom genera with mean abundance values of the 19.5×103 cells l-1. Nitzschia closterium, a pennate diatom, was almost uniform throughout the study region. Flow cytometry measurements indicated that the picoplankton (<5 μm) community consisted of two prokaryotes, Prochlorococcus (mean 3.6×106 cells l-1) and Synechococcus (mean 10.4×106 cells l-1), and a mixture of picoeukaryotes (mean 6.5×106 cells l-1). Analyses of Chl and carotenoid pigments determined by high-performance liquid chromatographic confirmed the presence of the divinyl Chl a characteristic of Prochlorococcus. The nano-micro- and picoplankton were 82% and 18% of total phytoplankton biomass (μg C l-1), respectively. In general, we concluded that the phytoplankton community structure and biomass on this cruise showed conditions similar to oligotrophic systems.
Improvement of simple models for state-to-state and multi-temperature reaction rate coefficients
NASA Astrophysics Data System (ADS)
Kustova, E. V.; Savelev, A. S.; Sharafutdinov, I. Z.
2016-11-01
We propose a simple and accurate model for state-specific dissociation rate coefficients based on the widely used Treanor-Marrone model. It takes into account the dependence of the parameter in the Treanor-Marrone model on temperature and vibrational level and can be used with arbitrary vibrational ladder. The model is validated by comparisons with state-specific dissociation rate coefficients of O2 and N2 obtained using molecular dynamics, and its good accuracy is demonstrated. Two-temperature dissociation rate coefficients are derived averaging the state-specific non-equilibrium factors with different vibrational distributions. The two-temperature rate coefficients are compared with those given by the empirical Park model and coefficients extracted from shock-tube measurements.
NASA Astrophysics Data System (ADS)
Busch, T. A.; Nugent, R. E.
2003-10-01
In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed
Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A
2006-01-01
A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.
Navarro, Juan M; Escolano, José; Cobos, Maximo; López, José J
2013-03-01
The diffusion equation model was used for room acoustic simulations to predict the sound pressure level and the reverberation time. The technical literature states that the diffusion equation method accurately models the late portion of the room impulse response if the energy is sufficiently scattered. This work provides conclusions on the validity of the diffusion equation model for rooms with homogeneous dimensions in relation to the scattering coefficients of the boundaries. A systematic evaluation was conducted out to determine the ranges of the absorption and scattering coefficient values that result in low noticeable differences between the predictions from a geometrical acoustic model and those from the diffusion equation model.
NASA Astrophysics Data System (ADS)
Dowell, M.
2006-12-01
Chlorophyll-a specific absorption (aph*) is a parameter used in bio-optical and primary production models and its coefficients are usually assumed to be constant. However, it has been documented in previous studies that these coefficients vary significantly due to pigmentation and "the package effect" which are a function of the taxonomic composition and the physiological state of the algal population. As part of the Coastal Ocean Observing Center (COOC) at the University of New Hampshire, HPLC pigments and phytoplankton absorption measurements were taken from water samples collected within the Gulf of Maine from 2004-2006. These data were then partitioned spatially, temporally, seasonally, and by other classification criteria. Spectral aph* means were generated for all partitions within each classification method. The results were used to parameterize province-specific bio-optical models for a regional algorithm. The separation of aph* means into different classes captured the effects of taxonomy and the package effect by reducing aph* variability.
Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
New potential energy surface for the HCS(+)-He system and inelastic rate coefficients.
Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip
2015-07-28
A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS(+)-He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS(+) by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO(+)-He system. The HCS(+)-He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1992-01-01
Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.
NASA Technical Reports Server (NTRS)
Calvin, Wendy M.
1990-01-01
Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 microns. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO2 than can be obtained from the method used here.
NASA Astrophysics Data System (ADS)
Wojnárovits, László; Takács, Erzsébet
2014-03-01
Rate coefficients published in the literature on hydroxyl radical reactions with pesticides and related compounds are discussed together with the experimental methods and the basic reaction mechanisms. Recommendations are made for the most probable values. Most of the molecules whose rate coefficients are discussed have aromatic ring: their rate coefficients are in the range of 2×109-1×1010 mol-1 dm3 s-1. The rate coefficients show some variation with the electron withdrawing-donating nature of the substituent on the ring. The rate coefficients for triazine pesticides (simazine, atrazine, prometon) are all around 2.5×109 mol-1 dm3 s-1. The values do not show variation with the substituent on the s-triazine ring. The rate coefficients for the non-aromatic molecules which have C=C double bonds or several C-H bonds may also be above 1×109 mol-1 dm3 s-1. However, the values for molecules without C=C double bonds or several C-H bonds are in the 1×107-1×109 mol-1 dm3 s-1 range.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Fillius, W.
1976-01-01
The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.
HTO washout model: on the relationship between exchange rate and washout coefficient
Golubev, A.; Balashov, Y.; Mavrin, S.; Golubeva, V.; Galeriu, D.
2015-03-15
Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by a first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. The washout coefficient is a macroscopic parameter and we have considered in this paper its relationship with a microscopic rate K of HTO isotopic exchange in atmospheric humidity and drops of rainwater. We have shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships of molecular impact rate, rain intensity and specific rain water content while washout coefficient Λ can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.
Calculated diffusion coefficients and the growth rate of olivine in a basalt magma
NASA Technical Reports Server (NTRS)
Donaldson, C. H.
1975-01-01
Concentration gradients in glass adjacent to skeletal olivines in a basalt have been examined by electron probe. The glass is depleted in Mg, Fe, and Cr and enriched in Si, Al, Na, and Ca relative to that far from olivine. Ionic diffusion coefficients for the glass compositions are calculated from temperature, ionic radius and melt viscosity, using the Stokes-Einstein relation. At 1170 C, the diffusion coefficient of Mg(2+) ions in the basalt is 4.5 billionths sq cm per sec. Comparison with measured diffusion coefficients in a mugearite suggests this value may be 16 times too small. The concentration gradient data and the diffusion coefficients are used to calculate instantaneous olivine growth rates. Growth necessarily preceded emplacement such that the composition of the crystals plus the enclosing glass need not be that of a melt. The computed olivine growth rates are compatible with the rate of crystallization deduced for the Skaegaard intrusion.
Absolute rate coefficients for the recombination of open f-shell tungsten ions
NASA Astrophysics Data System (ADS)
Krantz, C.; Spruck, K.; Badnell, N. R.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.
2014-04-01
We have carried out direct measurements of the absolute recombination rate coefficients of four charge states of tungsten in the range from W18+ to W21+ in a heavy ion storage ring. We find that the rich atomic fine structure of the open f-shell leads to very high resonant enhancement of the recombination rate at energies below ~50 eV. Even in the higher energy domain relevant to fusion plasma this leads to a recombination rate coefficient that is more than four times higher than predicted by the commonly used ADAS database of recombination rates. In addition to the experimental measurements we have carried out theoretical calculations using Autostructure. For W20+ these predict a plasma recombination rate coefficient that agrees much better with the measurement than the ADAS model but still fail to reproduce the experimental data in detail.
NASA Astrophysics Data System (ADS)
Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.
2016-04-01
Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.
Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B
2011-09-29
Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.
2016-01-01
We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.
Chen, Sheng-Hui; Wang, Hsuan-Wen; Chang, Ting-Wei
2012-03-12
Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.
Ritter, André; Anton, Gisela; Weber, Thomas
2016-01-01
A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126
Inelastic rate coefficients for collisions of C6H- with H2 and He
NASA Astrophysics Data System (ADS)
Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard
2017-04-01
The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.
Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.
2005-03-01
The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.
Uranyl ion: A convenient standard for transient molar absorption coefficient measurements
Bakac, A.; Burrows, H.D.
1997-12-01
Transient absorption spectra of an aqueous solution of uranyl sulfate have been measured in the ultraviolet and visible spectra. The excited uranyl ion may be a convenient standard for actinometry and photoacoustic calorimetry. (AIP) {copyright} {ital 1997} {ital Society for Applied Spectroscopy}
Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong
2017-02-20
Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.
Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption
Hessler, J.P.
1993-12-01
The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.
NASA Astrophysics Data System (ADS)
Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.
2015-10-01
In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.
Recommended Thermal Rate Coefficients for the C + H3 + Reaction and Some Astrochemical Implications
NASA Astrophysics Data System (ADS)
Vissapragada, S.; Buzard, C. F.; Miller, K. A.; O'Connor, A. P.; de Ruette, N.; Urbain, X.; Savin, D. W.
2016-11-01
We incorporate our experimentally derived thermal rate coefficients for C + {{{H}}}3+ forming CH+ and CH2 + into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and instead we use a more versatile fitting formula. At a temperature of 10 K and a density of 104 cm-3, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. In addition, we find that the relatively small error on our thermal rate coefficients, ˜15%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; Veinot, Kenneth G.; Leggett, Richard Wayne; Eckerman, Keith F.; Easterly, Clay E.; Hertel, Nolan E.
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
NASA Astrophysics Data System (ADS)
Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.
2015-09-01
Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.
Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.
1998-12-01
Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.
NASA Astrophysics Data System (ADS)
Suzuki, Susumu; Itoh, Haruo
2009-10-01
It has already been investigated on the determination of the collisional quenching rate coefficients of the metastable nitrogen molecules N2(A^3σu^+ ) by some air pollutants [1] in our laboratory. In this report, we present the result on the collisional quenching rate coefficient of N2(A^3σu^+ ) by formaldehyde (CH2O) using a theoretical procedure that takes into account the reflection of metastables at the boundary. As far as we know, this report is the first result of the collisional quenching rate coefficients of N2(A^3σu^+ ) by CH2O. Formaldehyde is a colorless gas with the foul odor, and elements of the adhesive, paints, and preservative, etc. It is widely used for construction materials such as houses, because it is low cost. It is released from paint of construction materials in air, and, in that case, it is known as one of the causative agents of so-called ``Sick building syndrome'' to influence the human body harmfully even if it is a low concentration. The obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by CH2O is (4.7±0.4) x 10-12 cm^3/s. Because the collisional quenching rate coefficient by CH2O is large, it is understood that CH2O receives energy easily from N2(A^3σu^+ ). In addition, we reports on the obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by some air pollutants. [1] S. Suzuki, T.Suzuki and H.Itoh: Proc. of XXVIII ICPIG (Prague, Czech Republic), (2007) 1P01-40.
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.
2016-12-01
There has been intense interest for several decades by different research groups to accurately model the temperature dependence of a large number of nuclear reaction rate coefficients for both light and heavy nuclides. The rate coefficient, k(T) , is given by the Maxwellian average of the reactive cross section expressed in terms of the astrophysical factor, S(E) , which for nonresonant reactions is generally written as a power series in the relative energy E. A computationally efficient algorithm for the temperature dependence of nuclear reaction rate coefficients is required for fusion reactor research and for models of nucleosynthesis and stellar evolution. In this paper, an accurate analytical expression for the temperature dependence of nuclear reaction rate coefficients is provided in terms of τ = 3(b / 2) 2/3 or equivalently, T - 1/3 , where b = B /√{kB T }, B is the Gamow factor and kB is the Boltzmann constant. The methodology is appropriate for all nonresonant nuclear reactions for which S(E) can be represented as a power series in E. The explicit expression for the rate coefficient versus temperature is derived with the asymptotic expansions of the moments of w(E) = exp(- E /kB T - B /√{ E }) in terms of τ. The zeroth order moment is the familiar Gaussian approximation to the rate coefficient. Results are reported for the representative reactions D(d, p)T, D(d, n)3He and 7Li(p, α) α and compared with several different fitting procedures reported in the literature.
Neufeld, David A.
2010-01-01
An artificial neural network (ANN) is investigated as a tool for estimating rate coefficients for the collisional excitation of molecules. The performance of such a tool can be evaluated by testing it on a data set of collisionally induced transitions for which rate coefficients are already known: the network is trained on a subset of that data set and tested on the remainder. Results obtained by this method are typically accurate to within a factor of approx2.1 (median value) for transitions with low excitation rates and approx1.7 for those with medium or high excitation rates, although 4% of the ANN outputs are discrepant by a factor of 10 or more. The results suggest that ANNs will be valuable in extrapolating a data set of collisional rate coefficients to include high-lying transitions that have not yet been calculated. For the asymmetric top molecules considered in this paper, the favored architecture is a cascade-correlation network that creates 16 hidden neurons during the course of training, with three input neurons to characterize the nature of the transition and one output neuron to provide the logarithm of the rate coefficient.
NASA Astrophysics Data System (ADS)
Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.
2017-03-01
A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a
Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water.
Bellamy, M B; Veinot, K G; Hiller, M M; Dewji, S A; Eckerman, K F; Easterly, C E; Hertel, N E; Leggett, R W
2016-05-05
The Oak Ridge National Laboratory Center for Radiation Protection Knowledge (CRPK) has undertaken a number of calculations in support of a revision to the United States Environmental Protection Agency (US EPA) Federal Guidance Report on external exposure to radionuclides in air, water and soil (FGR 12). Age-specific mathematical phantom calculations were performed for the conditions of submersion in radioactive air and immersion in water. Dose rate coefficients were calculated for discrete photon and electron energies and folded with emissions from 1252 radionuclides using ICRP Publication 107 decay data to determine equivalent and effective dose rate coefficients. The coefficients calculated in this work compare favorably to those reported in FGR12 as well as by other authors that employed voxel phantoms for similar exposure scenarios.
Kabi, Sanjib; Perera, A. G. Unil
2015-03-28
The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.
Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).
NASA Astrophysics Data System (ADS)
Minimala, N. S.; Peter, A. John
2013-02-01
Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions
NASA Astrophysics Data System (ADS)
Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.
2016-04-01
We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.
Global rate coefficients for ionization and recombination of carbon, nitrogen, oxygen, and argon
NASA Astrophysics Data System (ADS)
Annaloro, Julien; Morel, Vincent; Bultel, Arnaud; Omaly, Pierre
2012-07-01
The flow field modeling of planetary entry plasmas, laser-induced plasmas, inductively coupled plasmas, arcjets, etc., requires to use Navier-Stokes codes. The kinetic mechanisms implemented in these codes involve global (effective) rate coefficients. These rate coefficients result from the excited states coupling during a quasi-steady state. In order to obtain these global rate coefficients over a wide electron temperature (Te) range for ionization and recombination of carbon, nitrogen, oxygen, and argon, the behavior of their excited states is investigated using a zero-dimensional (time-dependent) code. The population number densities of these electronic states are considered as independent species. Their relaxation is studied within the range 3000 K ≤Te≤20 000 K and leads to the determination of the ionization (ki) and recombination (kr) global rate coefficients. Comparisons with existing data are performed. Finally, the ratio ki/kr is compared with the Saha equilibrium constant. This ratio increases more rapidly than the equilibrium constant for Te>15 000 K.
Electron attachment to anthracene. A FALP measurement of the rate coefficient at room temperature
NASA Astrophysics Data System (ADS)
Canosa, A.; Parent, D. C.; Pasquerault, D.; Au; Gomet, J. C.; Laubé, S.; Rowe, B. R.
1994-09-01
The rate coefficient β for electron attachment to anthracene has been measured at room temperature using a flowing afterglow Langmuir probe mass spectrometer. A value of 1 × 10 -9 cm 3 s -1 (30% uncertainty) was found, indicating that an activation energy barrier might exist.
Global rate coefficients for ionization and recombination of carbon, nitrogen, oxygen, and argon
Annaloro, Julien; Morel, Vincent; Bultel, Arnaud; Omaly, Pierre
2012-07-15
The flow field modeling of planetary entry plasmas, laser-induced plasmas, inductively coupled plasmas, arcjets, etc., requires to use Navier-Stokes codes. The kinetic mechanisms implemented in these codes involve global (effective) rate coefficients. These rate coefficients result from the excited states coupling during a quasi-steady state. In order to obtain these global rate coefficients over a wide electron temperature (T{sub e}) range for ionization and recombination of carbon, nitrogen, oxygen, and argon, the behavior of their excited states is investigated using a zero-dimensional (time-dependent) code. The population number densities of these electronic states are considered as independent species. Their relaxation is studied within the range 3000 K{<=}T{sub e}{<=}20 000 K and leads to the determination of the ionization (k{sub i}) and recombination (k{sub r}) global rate coefficients. Comparisons with existing data are performed. Finally, the ratio k{sub i}/k{sub r} is compared with the Saha equilibrium constant. This ratio increases more rapidly than the equilibrium constant for T{sub e}>15 000 K.
Suleimanov, Yury V; Aoiz, F Javier; Guo, Hua
2016-11-03
This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.
Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua
2016-11-03
This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less
NASA Astrophysics Data System (ADS)
Fukutomi, D.; Ishii, K.; Awazu, K.
2015-12-01
Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.
NASA Astrophysics Data System (ADS)
Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.
2014-12-01
Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.
NASA Astrophysics Data System (ADS)
Barik, A. R.; Adarsh, K. V.; Naik, Ramakanta; Sandeep, C. S. Suchand; Philip, Reji; Zhao, Donghui; Jain, Himanshu
2011-05-01
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way.
NASA Astrophysics Data System (ADS)
McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex
2014-12-01
Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.
Effects of suspended sediment concentration on the absorption and scattering coefficients
NASA Astrophysics Data System (ADS)
Terrie, Gregory E.; Ladner, Sherwin; Gould, Richard A., Jr.
1997-02-01
The scattering coefficient (b) for the nearshore waters off the coast of North Carolina near Camp Lejeune is strongly influenced by suspended sediment concentration and total particulate cross-sectional area (xg). In-situ measurements of a and b were made using a WET Labs AC9 meter. Estimates of suspended sediment concentration and total particulate cross-sectional area were determined from laser particle size analyses of surface water samples. The SeaWiFS bio-optical algorithm was modified for Case II waters and used to estimate a and bb from remote sensing reflectance (Rrs). After conversion from backscattering (bb) to total scattering (b), modeled a and b values from the modified SeaWiFS algorithm were compared to the measured values. The differences between the measured and estimated values appear to be directly related to increases in suspended sediment concentration and xg. Correlations of about 0.90 were obtained for b vs xg and bb vs xg.
Li, Jun; Zhou, Xianming; Li, Jiabo
2008-12-01
An experimental method was developed to perform time-resolved, single-pass optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to approximately 200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.
Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients
NASA Astrophysics Data System (ADS)
Chen, Hang; Thill, Peter; Cao, Jianshu
2016-05-01
In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.
Determination of the Rate Coefficients of the SO2 plus O plus M yields SO3 plus M Reaction
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Cooke, J. A.; De Witt, K. J.; Rabinowitz, M. J.
2010-01-01
Rate coefficients of the title reaction R(sub 31) (SO2 +O+M yields SO3 +M) and R(sub 56) (SO2 + HO2 yields SO3 +OH), important in the conversion of S(IV) to S(VI),were obtained at T =970-1150 K and rho (sub ave) = 16.2 micro mol/cubic cm behind reflected shock waves by a perturbation method. Shock-heated H2/ O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k(sub 31) and k(sub 56) values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R(sub 56)). In the experimental conditions of this study, R(sub 31) is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k(sub 31,0)/[Ar] = 2.9 10(exp 35) T(exp ?6.0) exp(?4780 K/T ) + 6.1 10(exp 24) T(exp ?3.0) exp(?1980 K/T ) cm(sup 6) mol(exp ?2)/ s at T = 300-2500 K; k(sub 56) = 1.36 10(exp 11) exp(?3420 K/T ) cm(exp 3)/mol/s at T = 970-1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k(sub 31,0) and k(sub 56) expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (?1200 K) than that where the maximum k(sub 31,0) value is located (approximately 800 K). This is because the conversion yield is dependent upon not only the k(sup 31,0) and k(sup 56) values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux).
Friction coefficients and wear rates of different orthodontic archwires in artificial saliva.
Alfonso, M V; Espinar, E; Llamas, J M; Rupérez, E; Manero, J M; Barrera, J M; Solano, E; Gil, F J
2013-05-01
The aim of this paper is to analyze the influence of the nature of the orthodontic archwires on the friction coefficient and wear rate against materials used commonly as brackets (Ti-6Al-4V and 316L Stainless Steel). The materials selected as orthodontic archwires were ASI304 stainless steel, NiTi, Ti, TiMo and NiTiCu. The array archwire's materials selected presented very similar roughness but different hardness. Materials were chosen from lower and higher hardness degrees than that of the brackets. Wear tests were carried out at in artificial saliva at 37 °C. Results show a linear relationship between the hardness of the materials and the friction coefficients. The material that showed lower wear rate was the ASI304 stainless steel. To prevent wear, the wire and the brackets have high hardness values and in the same order of magnitude.
NASA Astrophysics Data System (ADS)
Wahnström, Göran; Carmeli, Benny; Metiu, Horia
1988-02-01
We propose and test a method for computing flux-flux correlation functions (and thermal rate coefficients) which divides the degrees of freedom in two groups, one treated classically and the other quantum mechanically. The method is tested by applying it to a simple model for which we can also obtain exact results. The approximate method gives good results if the mass associated with the classical degrees of freedom exceeds 16 a.u.
Observations on the relation between alcohol absorption and the rate of gastric emptying.
Holt, S
1981-01-01
Alcohol (ethanol) is absorbed slowly from the stomach and rapidly from the small intestine, and the rate of its absorption depends on the rate of gastric emptying. When gastric emptying is fast, the absorption of alcohol is fast. When gastric emptying is slow the absorption of alcohol is delayed and peak blood alcohol concentrations are reduced. Alterations of the gastric emptying rate, which may have a physiologic, pharmacologic or pathologic cause, markedly influence the rate of alcohol absorption. The gastric emptying rate makes an important contribution to inter- and intraindividual variations in the rate of alcohol absorption and therefore the timing and magnitude of the acute intoxicating effect of an oral dose of alcohol. PMID:7459787
NASA Astrophysics Data System (ADS)
Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio
2016-04-01
The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.
Factorization of the association rate coefficient in ligand rebinding to heme proteins
NASA Astrophysics Data System (ADS)
Young, Robert D.
1984-01-01
A stochastic theory of ligand migration in biomolecules is used to analyze the recombination of small ligands to heme proteins after flash photolysis. The stochastic theory is based on a generalized sequential barrier model in which a ligand binds by overcoming a series of barriers formed by the solvent protein interface, the protein matrix, and the heme distal histidine system. The stochastic theory shows that the association rate coefficient λon factorizes into three terms λon =γ12
NASA Technical Reports Server (NTRS)
Bogan, Denis
1999-01-01
Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.
NASA Astrophysics Data System (ADS)
Zhong, Min; Jang, Myoseon
2011-08-01
A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.
NASA Technical Reports Server (NTRS)
Jameson, A. R.
1990-01-01
The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.
Derivation of the chemical-equilibrium rate coefficient using scattering theory
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1977-01-01
Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.
Crawford, Charles G.
1985-01-01
The modified tracer technique was used to determine reaeration-rate coefficients in the Wabash River in reaches near Lafayette and Terre Haute, Indiana, at streamflows ranging from 2,310 to 7,400 cu ft/sec. Chemically pure (CP grade) ethylene was used as the tracer gas, and rhodamine-WT dye was used as the dispersion-dilution tracer. Reaeration coefficients determined for a 13.5-mi reach near Terre Haute, Indiana, at streamflows of 3,360 and 7,400 cu ft/sec (71% and 43% flow duration) were 1.4/day and 1.1/day at 20 C, respectively. Reaeration-rate coefficients determined for a 18.4-mile reach near Lafayette, Indiana, at streamflows of 2,310 and 3,420 cu ft/sec (70% and 53 % flow duration), were 1.2/day and 0.8/day at 20 C, respectively. None of the commonly used equations found in the literature predicted reaeration-rate coefficients similar to those measured for reaches of the Wabash River near Lafayette and Terre Haute. The average absolute prediction error for 10 commonly used reaeration equations ranged from 22% to 154%. Prediction error was much smaller in the reach near Terre Haute than in the reach near Lafayette. The overall average of the absolute prediction error for all 10 equations was 22% for the reach near Terre Haute and 128% for the reach near Lafayette. Confidence limits of results obtained from the modified tracer technique were smaller than those obtained from the equations in the literature.
Gaonkar, Harshavardhan Ashok; Kumar, Dinesh; Ramasubramaniam, Rajagopal; Roy, Arindam
2014-05-01
Efforts are underway to better understand the absorption properties of micro- and nano-sized particles due to their potential in various photonic applications. However, most of these particles exhibit strong scattering in the spectral regions of interest in addition to absorption. Due to strong interference from scattering, the absorption of these turbid samples cannot be directly measured using conventional spectroscopy techniques. The optical properties of these particles are also different from that of the bulk due to quantum confinement and plasmon resonance effects and cannot be inferred from their bulk properties. By measuring the total transmittance and total reflectance (diffuse and collimated) of turbid samples and using an empirical relation between the coefficients of the Kubelka-Munk and radiative transfer theories, we have demonstrated a method to calculate the absorption and reduced scattering coefficients of turbid samples. This method is capable of extracting the absorption coefficient of turbid samples with an error of 2%. Using this method, we have decoupled the specific absorption and specific reduced scattering coefficients of commercially available micro-sized iron oxide particles. The current method can be used to measure the optical properties of irregularly shaped particle dispersions, which are otherwise difficult to estimate theoretically.
Electron-Ion Recombination Rate Coefficient Measurements in a Flowing Afterglow Plasma
NASA Technical Reports Server (NTRS)
Gougousi, Theodosia; Golde, Michael F.; Johnsen, Rainer
1996-01-01
The flowing-afterglow technique in conjunction with computer modeling of the flowing plasma has been used to determine accurate dissociative-recombination rate coefficients alpha for the ions O2(+), HCO(+), CH5(+), C2H5(+), H3O(+), CO2(+), HCO2(+), HN2O(+), and N2O(+) at 295 K. We find that the simple form of data analysis that was employed in earlier experiments was adequate and we largely confirm earlier results. In the case of HCO(+) ions, published coefficients range from 1.1 X 10(exp -7) to 2.8 x 10(exp -7) cu cm/S, while our measurements give a value of 1.9 x 10(exp -7) cu cm/S.
Smith, Mica C; Chao, Wen; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min
2016-07-14
The unimolecular decomposition of (CH3)2COO and (CD3)2COO was measured by direct detection of the Criegee intermediate at temperatures from 283 to 323 K using time-resolved UV absorption spectroscopy. The unimolecular rate coefficient kd for (CH3)2COO shows a strong temperature dependence, increasing from 269 ± 82 s(-1) at 283 K to 916 ± 56 s(-1) at 323 K with an Arrhenius activation energy of ∼6 kcal mol(-1). The bimolecular rate coefficient for the reaction of (CH3)2COO with SO2, kSO2, was also determined in the temperature range 283 to 303 K. Our temperature-dependent values for kd and kSO2 are consistent with previously reported relative rate coefficients kd/kSO2 of (CH3)2COO formed from ozonolysis of tetramethyl ethylene. Quantum chemical calculations of kd for (CH3)2COO are consistent with the experiment, and the combination of experiment and theory for (CD3)2COO indicates that tunneling plays a significant role in (CH3)2COO unimolecular decomposition. The fast rates of unimolecular decomposition for (CH3)2COO measured here, in light of the relatively slow rate for the reaction of (CH3)2COO with water previously reported, suggest that thermal decomposition may compete with the reactions with water and with SO2 for atmospheric removal of the dimethyl-substituted Criegee intermediate.
Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru
2014-01-01
A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
Vinicius, Lucio; Mumby, Hannah S
2013-05-01
The comparative analysis of animal growth still awaits full integration into life-history studies, partially due to the difficulty of defining a comparable measure of growth rate across species. Using growth data from 50 primate species, we introduce a modified "general growth model" and a dimensionless growth rate coefficient β that controls for size scaling and phylogenetic effects in the distribution of growth rates. Our results contradict the prevailing idea that slow growth characterizes primates as a group: the observed range of β values shows that not all primates grow slowly, with galago species exhibiting growth rates similar or above the mammalian average, while other strepsirrhines and most New World monkeys show limited reduction in growth rates. Low growth rate characterizes apes and some papionines. Phylogenetic regressions reveal associations between β and life-history variables, providing tests for theories of primate growth evolution. We also show that primate slow growth is an exclusively postnatal phenomenon. Our study exemplifies how the dimensionless approach promotes the integration of growth rate data into comparative life-history analysis, and demonstrates its potential applicability to other cases of adaptive diversification of animal growth patterns.
The CH + CO reaction: Rate coefficient for carbon atom exchange at 294 K
Anderson, S.M.; McCurdy, K.E.; Kolb, C.E. )
1989-02-09
A fast-flow reactor equipped with isotope-specific laser-excited fluorescence detection of CH radicals has been used to study carbon atom exchange in the reaction between CH and CO at 294 K and 2 Torr of total pressure. The rate coefficient for exchange, k{sub 3} = (2.1 {times} 0.3) {times} 10{sup {minus}12} cm{sup 3} s{sup {minus}1}, is about an order of magnitude larger than the bimolecular rate for the addition reaction, k{sub 2} = (2.7 {plus minus} 0.4) {times} 10{sup {minus}13}. High-pressure limiting bimolecular and low-pressure termolecular recombination rate coefficients of 1.1 {times} 10{sup {minus}10} cm{sup 3} s{sup {minus}1} and 4.9 {times} 10{sup {minus}30} cm{sup 6} s{sup {minus}1} are derived. The results are discussed in the context of previous work on the title reaction and on the chemistry of singlet CH{sub 2}.
Parameterization of the level-resolved radiative recombination rate coefficients for the SPEX code
NASA Astrophysics Data System (ADS)
Mao, Junjie; Kaastra, Jelle
2016-03-01
The level-resolved radiative recombination (RR) rate coefficients for H-like to Na-like ions from H (Z = 1) up to and including Zn (Z = 30) are studied here. For H-like ions, the quantum-mechanical exact photoionization cross sections for nonrelativistic hydrogenic systems are usedto calculate the RR rate coefficients under the principle of detailed balance, while for He-like to Na-like ions, the archival data on ADAS are adopted. Parameterizations are made for the direct capture rates in a wide temperature range. The fitting accuracies are better than 5% for about 99% of the ~3 × 104 levels considered here. The ~1% exceptions include levels from low-charged many-electron ions, and/or high-shell (n ≳ 4) levels are less important in terms of interpreting X-ray emitting astrophysical plasmas. The RR data will be incorporated into the high-resolution spectral analysis package SPEX. Results of the parameterizations are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A84
NASA Technical Reports Server (NTRS)
Leone, Stephen R.
1992-01-01
The purpose of the project is to perform laboratory measurements of reaction rate coefficients at low temperature. The reactions and temperatures of interest are those that are important in the chemistry of the hydrocarbon rich atmospheres of the outer planets and their satellites. In this stage of the study we are investigating reactions of ethynyl radicals, C2H, with acetylene (C2H2), methane (CH4), and hydrogen (H2). In the previous status report from 24 Jan. 1992, we reported on the development of the experimental apparatus and the first, preliminary data for the C2H + C2H2 reaction.
Obliquity, precession rate, and nutation coefficients for a set of 100 asteroids
NASA Astrophysics Data System (ADS)
Lhotka, C.; Souchay, J.; Shahsavari, A.
2013-08-01
Context. Thanks to various space missions and the progress of ground-based observational techniques, the knowledge of asteroids has considerably increased in the recent years. Aims: Due to this increasing database that accompanies this evolution, we compute for a set of 100 asteroids their rotational parameters: the moments of inertia along the principal axes of the object, the obliquity of the axis of rotation with respect to the orbital plane, the precession rates, and the nutation coefficients. Methods: We select 100 asteroids for which the parameters for the study are well-known from observations or space missions. For each asteroid, we determine the moments of inertia, assuming an ellipsoidal shape. We calculate their obliquity from their orbit (instead of the ecliptic) and the orientation of the spin-pole. Finally, we calculate the precession rates and the largest nutation components. The number of asteroids concerned leads to some statistical studies of the output. Results: We provide a table of rotational parameters for our set of asteroids. The table includes the obliquity, their axes ratio, their dynamical ellipticity Hd, and the scaling factor K. We compute the precession rate ψ˙ and the leading nutation coefficients Δψ and Δɛ. We observe similar characteristics, as observed by previous authors that is, a significantly larger number of asteroids rotates in the prograde mode (≈ 60%) than in the retrograde one with a bimodal distribution. In particular, there is a deficiency of objects with a polar axis close to the orbit. The precession rates have a mean absolute value of 18″/y, and the leading nutation coefficients have an average absolute amplitude of 5.7″ for Δψ and 5.2″ for Δɛ. At last, we identify and characterize some cases with large precession rates, as seen in 25143 Itokawa, with has a precession rate of about - 475''/y. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130
Krska, Rudolf; Schubert-Ullrich, Patricia; Josephs, Ralf D; Emteborg, Håkan; Buttinger, Gerhard; Pettersson, Hans; van Egmond, Hans P; Schothorst, Ronald C; Macdonald, Susan; Chan, Danny
2007-07-01
This paper presents results from the European Commission-funded project Doncalibrant, the objective of which was to produce calibrators with certified mass fractions of the Fusarium toxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-Ac-DON), 15-acetyldeoxynivalenol (15-Ac-DON), and nivalenol (NIV), in acetonitrile. The calibrators, available in ampoules, were sufficiently homogeneous, with between-bottle variations (s (bb)) of less than 2%. Long-term stability studies performed at four different temperatures between -18 and 40 degrees C revealed no significant negative trends (at a confidence level of 95%). Molar absorptivity coefficients (in L mol(-1) cm(-1)) were determined for all four toxins (DON: 6805 +/- 126, NIV: 6955 +/- 205, 3-Ac-DON: 6983 +/- 141, 15-Ac-DON: 6935 +/- 142) on the basis of a mini-interlaboratory exercise. The overall uncertainty of the calibrators' target values for DON and NIV were evaluated on the basis of gravimetric preparation data and include uncertainty contributions from possible heterogeneity, storage, and transport. The Doncalibrant project resulted in the production of calibrators for DON (IRMM-315) and NIV (IRMM-316) in acetonitrile with certified mass fractions of 25.1 +/- 1.2 microg g(-1) and 24.0 +/- 1.1 microg g(-1), respectively. Both CRMs became commercially available from the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) at the beginning of 2007.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya
2015-03-01
Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.
Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework
Gong, R; Lu, C; Luo, Jian; Wu, Wei-min; Cheng, H.; Criddle, Craig; Kitanidis, Peter K.; Gu, Baohua; Watson, David B; Jardine, Philip M; Brooks, Scott C
2011-03-01
A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.
NASA Technical Reports Server (NTRS)
Leone, Stephen R.
1995-01-01
The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.
Estimating reaction rate coefficients within a travel-time modeling framework.
Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J
2011-01-01
A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.
Behavior of rate coefficients for ion-ion mutual neutralization, 300-550 K
Miller, Thomas M.; Shuman, Nicholas S.; Viggiano, A. A.
2012-05-28
Rate coefficients k{sub MN} have been measured for a number of anion neutralization reactions with Ar{sup +} and Kr{sup +} over the temperature range 300-550 K. For the first time, the data set includes anions of radicals and other short-lived species. In the present paper, we review these results and make note of correlations with reduced mass, electron binding energy of the anion (equivalent to the electron affinity of the corresponding neutral), and temperature, and compare with expectations from absorbing sphere models. An intriguing result is that the data for diatomic anions neutralized by Ar{sup +} and Kr{sup +} have k{sub MN} values close to 3 x 10{sup -8} cm{sup 3} s{sup -1} at 300 K, a figure which is lower than those for all of the polyatomic anions at 300 K except for SF{sub 5}{sup -}+ Kr{sup +}. For the polyatomic anions studied here, neutralized by Ar{sup +} and Kr{sup +}, the reduced mass dependence agrees with theory, on average, but we find a stronger temperature dependence of T{sup -0.9} than expected from the theoretical E{sup -0.5} energy dependence of the rate coefficient at thermal energies. The k{sub MN} show a weak dependence on the electron binding energy of the anion for the polyatomic species studied.
On the temperature dependence of the rate coefficient of formation of C2+ from C + CH+
NASA Astrophysics Data System (ADS)
Rampino, S.; Pastore, M.; Garcia, E.; Pacifici, L.; Laganà, A.
2016-08-01
We carry out quasi-classical trajectory calculations for the C + CH+→ C_2^+ + H reaction on an ad hoc computed high-level ab initio potential energy surface. Thermal rate coefficients at the temperatures of relevance in cold interstellar clouds are derived and compared with the assumed, temperature-independent estimates publicly available in kinetic data bases KIDA and UDfA. For a temperature of 10 K the data base value overestimates by a factor of 2 the one obtained by us (thus improperly enhancing the destruction route of CH+ in astrochemical kinetic models) which is seen to double in the temperature range 5-300 K with a sharp increase in the first 50 K. The computed values are fitted via the popular Arrhenius-Kooij formula and best-fitting parameters α = 1.32 × 10-9 cm3 s-1, β = 0.1 and γ = 2.19 K to be included in the online mentioned data bases are provided. Further investigation shows that the temperature dependence of the thermal rate coefficient better conforms to the recently proposed so-called `deformed Arrhenius' law by Aquilanti and Mundim.
Sandwich mixer-reactor: influence of the diffusion coefficient and flow rate ratios.
Abonnenc, Mélanie; Josserand, Jacques; Girault, Hubert H
2009-02-07
A sandwich mixer consists of mixing two solutions in a channel, one central laminar flow being sandwiched between two outer flow solutions. The present numerical study considers the convection-diffusion of two reacting species A and B, provided respectively by the two incoming solutions. The simulations show how the diffusion coefficient, flow rate and species concentration ratios influence, via the transversal diffusion length and reaction kinetics, the reaction extent at the end of the sandwich mixer. First, this extent can be enhanced up to 60% if the species with the lowest diffusion coefficient is located in the outer solutions where the flow velocity is small compared to that of the central part (higher residence time). Secondly, decreasing the outer flow rates (to confine the reaction close to the walls) and increasing the local concentration to keep the same flux ratio improve the extent by 300%. Comparison with a bi-lamination passive mixer, with an ideal mixer and an electro-osmotic driven flow mixer is presented. These conclusions are also demonstrated for consecutive reactions, showing an amplification of the effects described above. The results are also presented versus the residence time in the mixer-reactor to show the time window for which the gain is appreciable.
NASA Astrophysics Data System (ADS)
Zamorano, M.; Torres-Silva, H.
2006-04-01
A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.
NASA Astrophysics Data System (ADS)
Moreno, Alberto; Salgado, Sagrario; Taccone, Raul; Martín, Pilar; Cabañas, Beatriz
2014-10-01
Rate coefficients for the reactions of NO3 radicals with a series of saturated alcohols are reported here using the relative rate technique. Experiments were performed using air as bath gas in a 50 L glass-pyrex reaction chamber at room temperature (298 ± 2) K with long-path FTIR spectroscopy used to monitor the reaction at atmospheric pressure (708 ± 8) Torr. The reference compounds used and their rate coefficients are: propanal kNO3 = (6.0 ± 0.6) × 10-15, methyl methacrylate kNO3 = (3.55 ± 0.62) × 10-15, acetaldehyde kNO3 = (2.62 ± 0.29) × 10-15 and propene kNO3 = (9.50 ± 1.9) × 10-15, in cm3 molecule-1 s-1. Rate coefficients obtained were (in units cm3 molecule-1 s-1): (1.87 ± 0.14) × 10-15, (2.39 ± 0.20) × 10-15, (2.28 ± 0.17) × 10-15, (1.80 ± 0.13) × 10-15 and (3.52 ± 0.19) × 10-15 for 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanol respectively. Reactivity trend can be explained in terms of the different types of hydrogen inside the hydrocarbon chain. The reaction occurs by an initial H-atom abstraction mainly from C-H groups of the alcohols by the NO3 radical being NO3 more reactive towards an H atom attached to a tertiary carbon than that attached to a secondary or primary carbon. Reactivity trend is compared with their similar structural 2-butanol and with the corresponding alkanes. Atmospheric implications are also discussed calculating lifetimes of the saturated alcohols studied here due to the reaction with NO3 radicals in comparison to their reactions with the other major atmospheric oxidants.
Tillis, G.M.; Swain, E.D.
1998-01-01
Discharges through 10 selected coastal control structures in Broward and Palm Beach Counties, Florida, are presently computed using the theoretical discharge-coefficient ratings developed from scale modeling, theoretical discharge coefficients, and some field calibrations whose accuracies for specific sites are unknown. To achieve more accurate discharge-coefficient ratings for the coastal control structures, field discharge measurements were taken with an Acoustic Doppler Current Profiler at the coastal control structures under a variety of flow conditions. These measurements were used to determine computed discharge-coefficient ratings for the coastal control structures under different flow regimes: submerged orifice flow, submerged weir flow, free orifice flow, and free weir flow. Theoretical and computed discharge-coefficient ratings for submerged orifice and weir flows were determined at seven coastal control structures, and discharge ratings for free orifice and weir flows were determined at three coastal control structures. The difference between the theoretical and computed discharge-coefficient ratings varied from structure to structure. The theoretical and computed dischargecoefficient ratings for submerged orifice flow were within 10 percent at four of seven coastal control structures; however, differences greater than 20 percent were found at two of the seven structures. The theoretical and computed discharge-coefficient ratings for submerged weir flow were within 10 percent at three of seven coastal control structures; however, differences greater than 20 percent were found at four of the seven coastal control structures. The difference between theoretical and computed discharge-coefficient ratings for free orifice and free weir flows ranged from 5 to 32 percent. Some differences between the theoretical and computed discharge-coefficient ratings could be better defined with more data collected over a greater distribution of measuring conditions.
Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C
1995-01-01
The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.
Characterization of the reaction rate coefficient of DNA with the hydroxyl radical
Milligan, J.R.; Ward, J.F.; Aguilera, J.A.
1996-11-01
Using agarose gel electrophoresis, we have measured the yield of single-strand breaks (SSBs) induced by {sup 137}Cs {gamma} irradiation in a variety of plasmid DNA substrates ranging in size from 2.7 kb to 38 kb irradiated in aerobic aqueous solution in the presence of the hydroxyl radical scavenger dimethyl sulfoxide (DMSO). Under these conditions DNA SSBs are caused mainly by the hydroxyl radical. Using the competition between DMSO and DNA for the hydroxyl radical, we have estimated the rate coefficient for the reaction of the hydroxyl radical with DNA. The results cannot be characterized by conventional steady-state competition kinetics. However, it is possible to describe the second-order rate constant for the reaction as a function of the scavenging capacity of the solution. The second-order rate constant increases with increasing scavenging capacity, rising from about 5x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1} at 10{sup 5} s{sup -1} to about 10{sup 10} dm{sup 3} mol{sup -1} s{sup -1} at 10{sup 10} s{sup -1}. This dependence of the second-order rate constant on the scavenging capacity appears to be more pronounced for larger plasmids. 17 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Iacob, N.; Schinteie, G.; Palade, P.; Kuncser, V.
2015-04-01
A new methodology for the accurate determination of the specific absorption rate of ferrofluids with magnetite nanoparticles of average size of about 10 nm subjected to alternative current magnetic fields is proposed. A simple numerical compensation of the heating rates by the cooling rates obtained at similar temperatures is employed. Comparisons of the as-obtained adiabatic heating curves with theoretical evaluations are discussed.
NASA Astrophysics Data System (ADS)
Sharma, M. K.; Sharma, M.; Chandra, S.
2017-04-01
On realizing that the rate coefficients for rotational transitions in the H2CS, H2CO, H2CC, H2CSi, due to collisions with He atom, under the IOS approximation, increase with the increase of kinetic temperature, we have looked analytically for 9 transitions in a-type asymmetric top molecules, because the results of Green et al. (1978) for H2CO do not increase for all the transitions, though they also are calculated under the IOS approximation. We tried to understand the source of discrepancy, but could not succeed, as the details of the work of Green et al. (1978) are not available. Data for other three molecules (H2CS, H2CC, H2CSi) are not available in the literature. Since our investigation is analytical, there is no reason not to believe our results.
Carbonic anhydrase promotes the absorption rate of CO2 in post-combustion processes.
Vinoba, Mari; Bhagiyalakshmi, Margandan; Grace, Andrews Nirmala; Kim, Dae Hoon; Yoon, Yeoil; Nam, Sung Chan; Baek, Il Hyun; Jeong, Soon Kwan
2013-05-09
The rate of carbon dioxide (CO2) absorption by monoethanol amine (MEA), diethanol amine (DEA), N-methyl-2,2'-iminodiethanol (MDEA), and 2-amino-2-methyl 1-propanol (AMP) solutions was found to be enhanced by the addition of bovine carbonic anhydrase (CA), has been investigated using a vapor-liquid equilibrium (VLE) device. The enthalpy (-ΔHabs) of CO2 absorption and the absorption capacities of aqueous amines were measured in the presence and/or absence of CA enzyme via differential reaction calorimeter (DRC). The reaction temperature (ΔT) under adiabatic conditions was determined based on the DRC analysis. Bicarbonate and carbamate species formation mechanisms were elucidated by (1)H and (13)C NMR spectral analysis. The overall CO2 absorption rate (flux) and rate constant (kapp) followed the order MEA > DEA > AMP > MDEA in the absence or presence of CA. Hydration of CO2 by MDEA in the presence of CA directly produced bicarbonate, whereas AMP produced unstable carbamate intermediate, then underwent hydrolytic reaction and converted to bicarbonate. The MDEA > AMP > DEA > MEA reverse ordering of the enhanced CO2 flux and kapp in the presence of CA was due to bicarbonate formation by the tertiary and sterically hindered amines. Thus, CA increased the rate of CO2 absorption by MDEA by a factor of 3 relative to the rate of absorption by MDEA alone. The thermal effects suggested that CA yielded a higher activity at 40 °C.
Laporta, V.; Celiberto, R.; Tennyson, J.
2014-12-09
Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.
Papadimitriou, Vassileios C; Talukdar, Ranajit K; Portmann, R W; Ravishankara, A R; Burkholder, James B
2008-02-14
Rate coefficients over the temperature range 206-380 K are reported for the gas-phase reaction of OH radicals with 2,3,3,3-tetrafluoropropene (CF(3)CF=CH(2)), k(1)(T), and 1,2,3,3,3-pentafluoropropene ((Z)-CF(3)CF=CHF), k(2)(T), which are major components in proposed substitutes for HFC-134a (CF(3)CFH(2)) in mobile air-conditioning units. Rate coefficients were measured under pseudo-first-order conditions in OH using pulsed-laser photolysis to produce OH and laser-induced fluorescence to detect it. Rate coefficients were found to be independent of pressure between 25 and 600 Torr (He, N(2)). For CF(3)CF=CH(2), the rate coefficients, within the measurement uncertainty, are given by the Arrhenius expression k(1)(T)=(1.26+/-0.11) x 10(-12) exp[(-35+/-10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K)=(1.12+/-0.09) x 10(-12) cm(3) molecule(-1) s(-1). For (Z)-CF(3)CF=CHF, the rate coefficients are given by the non-Arrhenius expression k(2)(T)=(1.6+/-0.2) x 10(-18)T(2) exp[(655+/-50)/T] cm(3) molecule(-1) s(-1) where k(2)(296 K)=(1.29+/-0.06) x 10(-12) cm(3) molecule(-1) s(-1). Over the temperature range most relevant to the atmosphere, 200-300 K, the Arrhenius expression k(2)(T)=(7.30+/-0.7) x 10(-13) exp[(165+/-20)/T] cm(3) molecule(-1) s(-1) reproduces the measured rate coefficients very well and can be used in atmospheric model calculations. The quoted uncertainties in the rate coefficients are 2sigma (95% confidence interval) and include estimated systematic errors. The global warming potentials for CF(3)CF=CH(2) and (Z)-CF(3)CF=CHF were calculated to be <4.4 and <3.6, respectively, for the 100 year time horizon using infrared absorption cross sections measured in this work, and atmospheric lifetimes of 12 and 10 days that are based solely on OH reactive loss.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Gómez-Carrasco, Susana; Godard, Benjamin; Lique, François; Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio; Aguado, Alfredo; Aoiz, F. Javier; Castillo, Jesús F.; Goicoechea, Javier R.; Etxaluze, Mireya; Cernicharo, José
2014-10-10
The rate constants required to model the OH{sup +} observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H{sub 2}(v = 0, J = 0, 1) + O{sup +}({sup 4} S) → H + OH{sup +}(X {sup 3}Σ{sup –}, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to assess the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH{sup +} have been obtained for all astronomically significant rovibrational bands involving the X {sup 3}Σ{sup –} and/or A {sup 3}Π electronic states. For this purpose, the potential energy curves and electric dipole transition moments for seven electronic states of OH{sup +} are calculated with ab initio methods at the highest level, including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH{sup +}(X {sup 3}Σ{sup –}) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH{sup +}. In the models considered, the excitation resulting from the chemical formation of OH{sup +} increases the line fluxes by about 10% or less depending on the density of the gas.
NASA Astrophysics Data System (ADS)
Allali, Karima; Bricaud, Annick; Claustre, Hervé
1997-01-01
Chlorophyll-specific absorption coefficients of particles, a*p(λ), and of phytoplankton, a*ph(λ), were determined using the glass-fiber filter technique along 150°W in the equatorial Pacific (13°S-1°N). A site-specific algorithm for correcting the path length amplification effect was derived from field measurements. Then a decomposition technique using the high-performance liquid chromatography pigment information and taking into account the package effect was used to partition a*ph into the contributions of photosynthetic pigments (a*ps) and nonphotosynthetic pigments (a*nps). Both a*ph and a*nps values were observed to decrease from the oligotrophic waters of the subequatorial area (13°-1°S) to the mesotrophic waters of the equatorial area (1°S-1°N) and from the surface to deep waters. The a*ph variations were primarily, but not exclusively, caused by changes in the concentrations of nonphotosynthetic pigments. The level of pigment packaging was also variable both horizontally and vertically, as a result of changes in populations and photoacclimation. In comparison with a*ph, a*ps exhibited a reduced range of variation with depth and along the latitudinal gradient. The variations in a*ps originating from the package effect were partly compensated by variations in the concentrations of photosynthetic pigments. We extended this analysis to include data collected in other areas with different trophic states. The a*ps values varied over a factor of 4 at 440 nm, instead of 8 for a*ph, for chlorophyll a concentrations covering 2 orders of magnitude (0.02-2 mg m-3). In agreement with a previous study performed off California with a different method [Sosik and Mitchell, 1995], we conclude that a*ps is less dependent on environmental parameters than a*ph. In addition, our results provide evidence that the variability in a*ps cannot be neglected. The use of a*ps instead of a*ph in light-photosynthesis models (in conjunction with a quantum yield for carbon fixation
1951-10-01
The effect of rate of change of angle of attack on the maximum lift coefficient of a pursuit airplane equipped with a low-drag-type wing has been...lift coefficients were found to increase linearly with increasing rate of change of angle of attack per chord length of travel up to the maximum rate...indicated that the Mach and Reynolds numbers effects were of sufficient importance to produce more than a twofold variation in the increment of due to a given rate of change of angle of attack.
NASA Technical Reports Server (NTRS)
Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.
1982-01-01
Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.
Welz, Oliver; Eskola, Arkke J; Sheps, Leonid; Rotavera, Brandon; Savee, John D; Scheer, Adam M; Osborn, David L; Lowe, Douglas; Murray Booth, A; Xiao, Ping; Anwar H Khan, M; Percival, Carl J; Shallcross, Dudley E; Taatjes, Craig A
2014-04-25
Rate coefficients are directly determined for the reactions of the Criegee intermediates (CI) CH2 OO and CH3 CHOO with the two simplest carboxylic acids, formic acid (HCOOH) and acetic acid (CH3 COOH), employing two complementary techniques: multiplexed photoionization mass spectrometry and cavity-enhanced broadband ultraviolet absorption spectroscopy. The measured rate coefficients are in excess of 1×10(-10) cm(3) s(-1) , several orders of magnitude larger than those suggested from many previous alkene ozonolysis experiments and assumed in atmospheric modeling studies. These results suggest that the reaction with carboxylic acids is a substantially more important loss process for CIs than is presently assumed. Implementing these rate coefficients in global atmospheric models shows that reactions between CI and organic acids make a substantial contribution to removal of these acids in terrestrial equatorial areas and in other regions where high CI concentrations occur such as high northern latitudes, and implies that sources of acids in these areas are larger than previously recognized.
Welz, Oliver; Eskola, Arkke J; Sheps, Leonid; Rotavera, Brandon; Savee, John D; Scheer, Adam M; Osborn, David L; Lowe, Douglas; Murray Booth, A; Xiao, Ping; Anwar H Khan, M; Percival, Carl J; Shallcross, Dudley E; Taatjes, Craig A
2014-01-01
Rate coefficients are directly determined for the reactions of the Criegee intermediates (CI) CH2OO and CH3CHOO with the two simplest carboxylic acids, formic acid (HCOOH) and acetic acid (CH3COOH), employing two complementary techniques: multiplexed photoionization mass spectrometry and cavity-enhanced broadband ultraviolet absorption spectroscopy. The measured rate coefficients are in excess of 1×10−10 cm3 s−1, several orders of magnitude larger than those suggested from many previous alkene ozonolysis experiments and assumed in atmospheric modeling studies. These results suggest that the reaction with carboxylic acids is a substantially more important loss process for CIs than is presently assumed. Implementing these rate coefficients in global atmospheric models shows that reactions between CI and organic acids make a substantial contribution to removal of these acids in terrestrial equatorial areas and in other regions where high CI concentrations occur such as high northern latitudes, and implies that sources of acids in these areas are larger than previously recognized. PMID:24668781
Orlando, John J; Tyndall, Geoffrey S; Betterton, Eric A; Lowry, Joe; Stegall, Steve T
2005-03-15
Processes related to the tropospheric lifetime and fate of hydrazoic acid, HN3, have been studied. The ultraviolet absorption spectrum of HN3 is shown to possess a maximum near 262 nm with a tail extending to at least 360 nm. The photolysis quantum yield for HN3 is shown to be approximately 1 at 351 nm. Using the measured spectrum and assuming unity quantum yield throughout the actinic region, a diurnally averaged photolysis lifetime near the earth's surface of 2-3 days is estimated. Using a relative rate method, the rate coefficient for reaction of HO with HN3 was found to be (3.9 +/-0.8) x 10(-12) cm3 molecule(-1) s(-1), substantially larger than the only previous measurement. The atmospheric HN3 lifetime with respect to HO oxidation is thus about 2-3 days, assuming a diurnally averaged [HO] of 10(6) molecule cm(-3). Reactions of N3, the product of the reaction of HO with HN3, were studied in an environmental chamber using an FTIR spectrometer for end-product analysis. The N3 radical reacts efficiently with NO, producing N2O with 100% yield. Reaction of N3 with NO2 appears to generate both NO and N2O, although the rate coefficient for this reaction is slower than that for reaction with NO. No evidence for reaction of N3 with CO was observed, in contrast to previous literature data. Reaction of N3 with O2 was found to be extremely slow, k < 6 x 10(-20) cm3 molecule(-1) s(-1), although this upper limit does not necessarily rule out its occurrence in the atmosphere. Finally, the rate coefficient for reaction of Cl with HN3 was measured using a relative rate method, k = (1.0+/-0.2) x 10(-12) cm3 molecule(-1) s(-1).
Shaw, A; Takács, I; Pagilla, K R; Murthy, S
2013-10-15
The Monod equation is often used to describe biological treatment processes and is the foundation for many activated sludge models. The Monod equation includes a "half-saturation coefficient" to describe the effect of substrate limitations on the process rate and it is customary to consider this parameter to be a constant for a given system. The purpose of this study was to develop a methodology, and its use to show that the half-saturation coefficient for denitrification is not constant but is in fact a function of the maximum denitrification rate. A 4-step procedure is developed to investigate the dependency of half-saturation coefficients on the maximum rate and two different models are used to describe this dependency: (a) an empirical linear model and (b) a deterministic model based on Fick's law of diffusion. Both models are proved better for describing denitrification kinetics than assuming a fixed K(NO3) at low nitrate concentrations. The empirical model is more utilitarian whereas the model based on Fick's law has a fundamental basis that enables the intrinsic K(NO3) to be estimated. In this study data was analyzed from 56 denitrification rate tests and it was found that the extant K(NO3) varied between 0.07 mgN/L and 1.47 mgN/L (5th and 95th percentile respectively) with an average of 0.47 mgN/L. In contrast to this, the intrinsic K(NO3) estimated for the diffusion model was 0.01 mgN/L which indicates that the extant K(NO3) is greatly influenced by, and mostly describes, diffusion limitations.
3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel
NASA Astrophysics Data System (ADS)
Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi
2015-09-01
Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.
Hendrickson, Luke; Förster, Britta; Pogson, Barry J; Chow, Wah Soon
2005-06-01
A method of partitioning the energy in a mixed population of active and photoinactivated Photosystem II (PS II) complexes based on chlorophyll fluorescence measurements is presented. There are four energy fluxes, each with its quantum efficiency: a flux associated with photochemical electron flow in active PS II reaction centres (JPS II), thermal dissipation in photoinactivated, non-functional PS IIs (JNF), light-regulated thermal dissipation in active PS IIs (JNPQ) and a combined flux of fluorescence and constitutive, light-independent thermal dissipation (Jf,D). The four quantum efficiencies add up to 1.0, without the need to introduce an 'excess' term E, which in other studies has been claimed to be linearly correlated with the rate coefficient of photoinactivation of PS II (kpi). We examined the correlation of kpi with various fluxes, and found that the combined flux (JNPQ + Jf,D= Jpi) is as well correlated with kpi as is E. This combined flux arises from Fs/Fm ', the ratio of steady-state to maximum fluorescence during illumination, which represents the quantum efficiency of combined non-photochemical dissipation pathways in active PS IIs. Since Fs/Fm ' or its equivalent, Jpi, is a likely source of events leading to photoinactivation of PS II, we conclude that Fs/Fm ' is a simple predictor of kpi.
NASA Astrophysics Data System (ADS)
Yamaikina, Irene V.; Furmanchuk, Dmitryi A.
1998-06-01
Method of erythrocyte sedimentation rate (ESR) measurement is non-specific one. The ESR are tightly correlated to increase or decrease of aggregation coefficient (N). The variations of N could happen due to two main reasons: either changes in concentration of plasma proteins (first of all of fibrinogen) or changes of erythrocyte membrane characteristics (surface charge, transmembrane potential). The cross-method of ESR analysis has been proposed, using blood samples from patient and healthy donor of the same ABO blood groups and Rh-factors. The hematocrit (Ho)-ESR dependencies were measured in four variants: (1) patient's erythrocytes in patient's plasma; (2) patient's erythrocytes in donor's plasma; (3) donor's erythrocytes in donor's plasma; (4) donor's erythrocytes in patient's plasma. On presenting the ESR data for more than 100 patients with different bone marrow disorders after chemotherapy in the coordinates Ho-ESR three conventional zones could be marked out: high-ESR zone, medium zone and zone of low level of Ho. Proposed cross-method allows to estimate which of the two aforementioned reasons results in ESR variation. Some patients revealed not only changed fibrinogen level but additional changes in membrane affinity to fibrinogen. The modificated ESR cross-method opens us some new capacities in medical diagnostics.
NASA Astrophysics Data System (ADS)
Glosík, Juraj; Plasil, Radek
2000-10-01
The formation and recombination of a protonated acetone dimer with electrons was studied in the flowing afterglow. H3O+ ions were formed in the early post-discharge region. The subsequent addition of acetone leads to the formation of the protonated ions CH3COCH3H+. These ions further associate with acetone forming the cluster ions H+·(CH3COCH3)2 that react further with acetone, but very slowly. This facilitates the creation of an afterglow plasma with a dominant population of H+·(CH3COCH3)2. The evolution of electron number density (ne) and electron temperature (Te) is measured using the Langmuir probe. The recombination rate coefficients that are obtained indicate a negative temperature dependence: α = (3.4±1)×10-6 cm3 s-1 at Te = (580±150) K and α = (7±2.5)×10-6 cm3 s-1 at Te = (450±100) K.
Electron Impact Ionization Cross Sections and Rate Coefficients for Single Carbon Freon Molecules
NASA Astrophysics Data System (ADS)
Pal, Satyendra; Kumar, Neeraj
2015-09-01
Single carbon Freon molecules or chlorofluorocarbons (CFCs) are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. In the present work, we have extended and generalized the modified Jain-Khare (JK) semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of single carbon freon molecules, viz. CFCl3, CF2Cl2 and CF3Cl. The integral partial and the total ionization cross sections as function of incident electron energy are evaluated in the energy range varying from ionization threshold to 1000 eV. In absence of available differential cross sections, the corresponding derived partial and total ionization cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron temperature/energy. The work is supported by DST, New Delhi, India.
Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.
2009-01-01
To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.
Electron Impact Ionization cross sections and rate coefficients for α-tetra hydro furfuryl alcohol
NASA Astrophysics Data System (ADS)
Kumar, Neeraj; Pal, Satyendra
2013-09-01
α - tetrahydrofurfuryl alcohol (THFA; C5H10O2) is an aromatic compound having the molecular structure similar to that of 2-deoxy-D-ribose (deoxyribose). This molecule has attracted enormous interest in the field of research because its electron charge cloud possesses a quite significant spatial extent (dipole polarizability, α = 70.18 au) and has a relatively strong permanent dipole moment (μ ~ 2D). In the present work, we have extended and generalized the modified Jain-Khare semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of α-tetrahydrofurfuryl alcohol (THFA; C5H10O2) , in the energy range varying from ionization threshold to 1000 eV. The evaluated cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. We have also calculated the ionization rate coefficients as a function of electron energy, using the evaluated total ionization cross sections and the Maxwell-Boltzmann distribution.
2012-09-01
bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J
Gas-phase ozonolysis of β-ocimene: Temperature dependent rate coefficients and product distribution
NASA Astrophysics Data System (ADS)
Gaona-Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.
2016-12-01
Rate coefficients for the reaction of β-ocimene with O3 molecules have been determined over the temperature range 288-311 K at 750 Torr total pressure of nitrogen using the relative rate technique. The investigations were performed in a large volume reaction vessel using long-path in-situ Fourier transformed infrared (FTIR) spectroscopy to monitor the reactants and products. A value of k(β-ocimene + O3) = (3.74 ± 0.92) × 10-16 cm3 molecule-1 s-1 has been obtained for the reaction at 298 K. The temperature dependence of the reaction is best described by the Arrhenius expression k = (1.94 ± 0.02) × 10-14 exp [(-1181 ± 51)/T] cm3 molecule-1 s-1. In addition, a product study has been carried out at 298 K in 750 Torr of synthetic air and the following products with yields in molar % were observed: formaldehyde (36 ± 2), acetone (15 ± 1), methylglyoxal (9.5 ± 0.4) and hydroxyacetone (19 ± 1). The formation of formaldehyde can be explained by the addition of O3 to the C1sbnd C2 double bond of the β-ocimene. Addition of O3 to the C6sbnd C7 double bond leads to the formation of acetone and the CH3C·(OO·)CH3 biradical, which can through isomerization/stabilization form methylglyoxal (hydroperoxide channel) and hydroxyacetone. The formed products will contribute to the formation of PAN and derivatives in polluted environments and also the oxidation capacity of the atmosphere.
NASA Technical Reports Server (NTRS)
Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.
2008-01-01
At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.
NASA Technical Reports Server (NTRS)
Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.
2006-01-01
PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.
NASA Astrophysics Data System (ADS)
Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji
2012-02-01
A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.
Nader, Christelle Abou; Nassif, Rana; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie
2015-12-10
In this paper, we present the evolution of speckle pattern polarimetric parameters in response to controlled changes in scatterer sizes, proportions, and the absorption coefficient in media. The experimental study was performed on mixtures of polystyrene microspheres with dye in order to ensure biological medium-like properties. The speckle grain sizes and degrees of polarization for linear and circular light were monitored. We observed helicity flipping in the degree of circular polarization for small scatterer proportion around 25%. Furthermore, linear depolarization decreased slightly for media containing more small particles. Good agreement was shown with numerical results computed using a Monte Carlo simulation of polarized light taking into account our experimental configuration. Speckle grain size also evolves with the increase of small scatterers as well as the media absorption coefficient. Such variations of properties are encountered during fruit maturation, in tissues in precancerous stages, and any transformation that causes a modification in particle proportions and absorption coefficient in biological media. The computed parameters proved to be sensitive to these changes.
Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H
2012-12-21
For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.
A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system
NASA Astrophysics Data System (ADS)
Schindel, Daniel; Singh, Mahi R.
2015-09-01
We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.
Energy absorption at high strain rate of glass fiber reinforced mortars
NASA Astrophysics Data System (ADS)
Fenu, Luigi; Forni, Daniele; Cadoni, Ezio
2015-09-01
In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF) was finally evaluated.
NASA Astrophysics Data System (ADS)
Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh
2017-03-01
A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.
A review of lung-to-blood absorption rates for radon progeny.
Marsh, J W; Bailey, M R
2013-12-01
The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.
1975-07-01
coefficient. Diffuse reflectance spectroscopy, and in particular the Kubelka - Munk (K-M) theory, can provide such information. A convenient method for...34Uber Den Streukoeffizienten Der Kubelka - Munk -Theorie," Z. Naturforsch, 19a, 28. 3. J. B. Gillespie, J. D. Lindberg and L. S. Laude, 1975 " Kubelka ... Munk Optical Coefficients for a Barium Sulfate White Reflectance Standard," Appl. Opt. 14, 807. 4. F. Grum and G. W. Lucky, 1968, "Optical Sphere
Viggiano, Albert A; Friedman, Jeffrey F; Shuman, Nicholas S; Miller, Thomas M; Schaffer, Linda C; Troe, Jürgen
2010-05-21
Thermal electron attachment to C(60) has been studied by relative rate measurements in a flowing afterglow Langmuir probe apparatus. The rate coefficients of the attachment k(1) are shown to be close to 10(-6) cm(3) s(-1) with a small negative temperature coefficient. These results supersede measurements from the 1990s which led to much smaller values of k(1) with a large positive temperature coefficient suggesting an activation barrier. Theoretical modeling of k(1) in terms of generalized Vogt-Wannier capture theory shows that k(1) now looks more consistent with measurements of absolute attachment cross sections sigma(at) than before. The comparison of capture theory and experimental rate or cross section data leads to empirical correction factors, accounting for "intramolecular vibrational relaxation" or "electron-phonon coupling," which reduce k(1) below the capture results and which, on a partial wave-selected level, decrease with increasing electron energy.
NASA Astrophysics Data System (ADS)
Viggiano, Albert A.; Friedman, Jeffrey F.; Shuman, Nicholas S.; Miller, Thomas M.; Schaffer, Linda C.; Troe, Jürgen
2010-05-01
Thermal electron attachment to C60 has been studied by relative rate measurements in a flowing afterglow Langmuir probe apparatus. The rate coefficients of the attachment k1 are shown to be close to 10-6 cm3 s-1 with a small negative temperature coefficient. These results supersede measurements from the 1990s which led to much smaller values of k1 with a large positive temperature coefficient suggesting an activation barrier. Theoretical modeling of k1 in terms of generalized Vogt-Wannier capture theory shows that k1 now looks more consistent with measurements of absolute attachment cross sections σat than before. The comparison of capture theory and experimental rate or cross section data leads to empirical correction factors, accounting for "intramolecular vibrational relaxation" or "electron-phonon coupling," which reduce k1 below the capture results and which, on a partial wave-selected level, decrease with increasing electron energy.
Homayoon, Zahra; Jambrina, Pablo G; Aoiz, F Javier; Bowman, Joel M
2012-07-14
In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (∼0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.
B1-based specific energy absorption rate determination for nonquadrature radiofrequency excitation.
Katscher, Ulrich; Findeklee, Christian; Voigt, Tobias
2012-12-01
The current gold standard to estimate local and global specific energy absorption rate for MRI involves numerically modeling the patient and the transmit radiofrequency coil. Recently, a patient-individual method was presented, which estimated specific energy absorption rate from individually measured B(1) maps. This method, however, was restricted to quadrature volume coils due to difficulties distinguishing phase contributions from radiofrequency transmission and reception. In this study, a method separating these two phase contributions by comparing the electric conductivity reconstructed from different transmit channels of a parallel radiofrequency transmission system is presented. This enables specific energy absorption rate estimation not only for quadrature excitation but also for the nonquadrature excitation of the single elements of the transmit array. Though the contributions of the different phases are known, unknown magnetic field components and tissue boundary artifacts limit the technique. Nevertheless, the high agreement between simulated and experimental results found in this study is promising. B(1)-based specific energy absorption rate determination might become possible for arbitrary radiofrequency excitation on a patient-individual basis.
Napier, Kathryn R; McWhorter, Todd J; Fleming, Patricia A
2008-11-01
Efficient mechanisms of glucose absorption are necessary for volant animals as a means of reducing mass during flight: they speed up gut transit time and require smaller volume and mass of gut tissue. One mechanism that may be important is absorption via paracellular (non-mediated) pathways. This may be particularly true for nectarivorous species which encounter large quantities of sugar in their natural diet. We investigated the extent of mediated and non-mediated glucose absorption in red wattlebirds Anthochaera carunculata (Meliphagidae) and rainbow lorikeets Trichoglossus haematodus (Loriidae) to test the hypothesis that paracellular uptake accounts for a significant proportion of total glucose uptake in these species. We found that routes of glucose absorption are highly dynamic in both species. In lorikeets, absorption of L-glucose (non-mediated uptake) is slower than that of D-glucose (mediated and non-mediated uptake), with as little as 10% of total glucose absorbed by the paracellular pathway initially (contrasting previous indirect estimates of approximately 80%). Over time, however, more glucose may be absorbed via the paracellular route. Glucose absorption by both mediated and non-mediated mechanisms in wattlebirds occurred at a faster rate than in lorikeets, and wattlebirds also rely substantially on paracellular uptake. In wattlebirds, we recorded higher bioavailability of L-glucose (96+/-3%) compared with D-glucose (57+/-2%), suggesting problems with the in vivo use of radiolabeled d-glucose. Further trials with 3-O-methyl-D-glucose revealed high bioavailability in wattlebirds (90+/-5%). This non-metabolisable glucose analogue remains the probe of choice for measuring uptake rates in vivo, especially in birds in which absorption and metabolism occur extremely rapidly.
Guo, Zijian; Hu, Song; Wang, Lihong V
2010-06-15
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.
NASA Astrophysics Data System (ADS)
Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.
2016-06-01
Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.
Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C
2016-06-15
Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.
NASA Astrophysics Data System (ADS)
Sheng, Wang; Yun, Kang; Xianli, Li
2016-11-01
Within the quasi-one-dimensional effective potential model and effective mass approximation, we obtain the wavefunctions and energy eigenvalues of the ground (j = 1) and first 2 excited states (j = 2 and 3) of a donor impurity in a rectangular GaAs quantum dot in the presence of electric field. The donor impurity-related linear and nonlinear optical absorption as well as refractive index changes for the transitions j = 1-2 and j = 2-3 are investigated. The results show that the impurity position, incident optical intensity and electric field play important roles in the optical absorption coefficients and refractive index changes. We find that the impurity effect induces the blueshift for j = 1-2 and redshift for j = 3-2 in the absence of the electric field, but it leads to redshift for j = 1-2 and blueshift for j = 3-2 in the existence of the field. Also, the optical coefficient for the higher energy transitions j = 2-3 is insensitive to variation of impurity positions, while that for the low energy transition j = 1-2 depends significantly on the positions of impurity. In addition, the saturation and splitting phenomenon of the optical absorption are observed as the incident optical intensity increases. Project supported by the Science and Technology Project of Education Department of Heilongjiang Province of China (No. 12541070).
NASA Astrophysics Data System (ADS)
Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.
2015-01-01
Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.
Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K.
Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten
2015-05-07
The rate coefficients of the reaction of ozone with the four atmospherically relevant sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and isolongifolene were investigated at 295 ± 2 K and atmospheric pressure by at least two independent experimental investigations for each reaction. Relative rate experiments were carried out in a flow tube using two different experimental approaches with GC-MS detection (RR 1) and PTR-MS analysis (RR 2) as the analytical techniques. Absolute rate coefficients were determined in a stopped-flow experiment following the ozone depletion by means of UV spectroscopy. The average rate coefficients from the combined investigations representing the mean values of the different experimental methods are (unit: cm(3) molecule(-1) s(-1)): k(O3+β-caryophyllene) = (1.1 ± 0.3) × 10(-14) (methods: RR 1, RR 2, absolute), k(O3+α-humulene) = (1.2 ± 0.3) × 10(-14) (RR 1, RR 2), k(O3+α-cedrene) = (1.7 ± 0.5) × 10(-16) (RR 2, absolute) and k(O3+isolongifolene) = (1.1 ± 0.5) × 10(-17) (RR 2, absolute). The high ozonolysis rate coefficients for β-caryophyllene and α-humulene agree well with the results by Shu and Atkinson (Int. J. Chem. Kinet., 1994, 26) and lead to short atmospheric lifetimes of about two minutes with respect to the ozone reaction. The relatively small rate coefficients for α-cedrene and isolongifolene differ from the available literature values by a factor of about 2.5-6. Possible reasons for the deviations are discussed. Finally, calibrated sesquiterpene FT-IR spectra were recorded for the first time.
NASA Technical Reports Server (NTRS)
Torr, M. R.; Torr, D. G.
1980-01-01
Using a data base of aeronomical parameters measured on board the Atmosphere Explorer-C satellite, temperature dependence of the reaction rate coefficient is deduced for the charge exchange of O(+)(2D) with N2. The results indicate the Explorer values determined over the temperature range from 700 to 1900 K are not in conflict with laboratory measurements made at higher temperatures.
NASA Technical Reports Server (NTRS)
Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.
1983-01-01
The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.
NASA Technical Reports Server (NTRS)
Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.
2002-01-01
Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.
Gierczak, Tomasz; Jiménez, Elena; Riffault, Veronique; Burkholder, James B; Ravishankara, A R
2005-02-03
Rate coefficients for the gas-phase thermal decomposition of HO(2)NO(2) (peroxynitric acid, PNA) are reported at temperatures between 331 and 350 K at total pressures of 25 and 50 Torr of N(2). Rate coefficients were determined by measuring the steady-state OH concentration in a mixture of known concentrations of HO(2)NO(2) and NO. The measured thermal decomposition rate coefficients k(-)(1)(T,P) are used in combination with previously published rate coefficient data for the HO(2)NO(2) formation reaction to yield a standard enthalpy for reaction 1 of Delta(r)H degrees (298K) = -24.0 +/- 0.5 kcal mol(-1) (uncertainties are 2sigma values and include estimated systematic errors). A HO(2)NO(2) standard heat of formation, Delta(f)H degrees (298K)(HO(2)NO(2)), of -12.6 +/- 1.0 kcal mol(-1) was calculated from this value. Some of the previously reported data on the thermal decomposition of HO(2)NO(2) have been reanalyzed and shown to be in good agreement with our reported value.
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Carder, Kendall L.
2001-01-01
A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.
Baba, Justin S; Koju, Vijay; John, Dwayne O
2016-01-01
The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.
NASA Astrophysics Data System (ADS)
Hollenbeck, K. J.; Harvey, C. F.; Haggerty, R.; Werth, C. J.
1999-04-01
Mass transfer between aquifer material and groundwater is often modeled as first-order rate-limited sorption or diffusive exchange between mobile zones and immobile zones with idealized geometries. Recent improvements in experimental techniques and advances in our understanding of pore-scale heterogeneity demonstrate that two (or even a few) rate coefficients are insufficient in many cases. Here, we investigate a piece-wise linear model for a continuous distribution of rate coefficients, that has several advantages over previously used `statistical' distribution models (with functional form from gamma or lognormal PDF's): (1) distributions of arbitrary, even bimodal, shapes can be represented; (2) linear estimation methods can be applied to determine the distribution from experimental data; (3) the uncertainty in the distribution can be determined for each of its sections; and (4) the relationship between the time scales of available data and those of estimatable mass transfer processes can be investigated. A statistical model refinement algorithm is presented that reduces the number of parameters (sections of the piece-wise linear model) to the admissible minimum. We show that purging experiments allow estimation of a wider zone of the rate distribution than do batch experiments, and hence will provide predictions that are accurate over a wider range of time scales. Finally, in an application to TCE gas-purging desorption data, the piece-wise linear rate-distribution model has a higher probability of being adequate than those using a gamma or lognormal distribution or a single rate coefficient.
Ghysels, M; Durry, G; Amarouche, N
2013-04-15
By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.
Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru
2016-02-22
The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.
Park, Hyunjin; Green, Michael H
2014-03-28
In the existing compartmental models of human vitamin A metabolism, parameters related to the absorption of the isotopic oral dose have not been well identified. We hypothesised that fixing some poorly identified parameters related to vitamin A absorption would improve parameter identifiability and add statistical certainty to such models. In the present study, data for serum vitamin A kinetics in nine subjects given [2H8]retinyl acetate orally and a model with absorption fixed at 75 % were used to test this hypothesis. In addition to absorption efficiency, we fixed two other fractional transfer coefficients: one representing the initial processing of the ingested dose and the other representing the direct secretion of retinol bound to retinol-binding protein (RBP) from enterocytes into the plasma. The Windows version of Simulation, Analysis and Modeling software (WinSAAM) was used to fit serum tracer data v. time for each subject. Then, a population model was generated by WinSAAM's Extended Multiple Studies Analysis. All the parameters had fractional standard deviations < 0·5, and none of the pairs of parameters had a correlation coefficient >0·8 (accepted criteria for well-identified parameters). Similar to the values predicted by the original model, total traced mass for retinol was 1160 (sd 468) μmol, and the time for retinol to appear in the plasma bound to RBP was 31·3 (sd 4·4) h. In conclusion, we suggest that this approach holds promise for advancing compartmental modelling of vitamin A kinetics in humans when the dose must be administered orally.
Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
NASA Astrophysics Data System (ADS)
Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
NASA Astrophysics Data System (ADS)
Carbone, E. A. D.; Hübner, S.; van der Mullen, J. J. A. M.; Kroesen, G. M. W.; Sadeghi, N.
2013-10-01
In a microwave argon plasma, the electron-impact population transfers between the first four excited states of argon are studied by time-resolved laser pump-probe technique. Metastable atoms in the 1s5 state (in Paschen's notation) are selectively pumped up to the 2p3 state, with a nanosecond pulsed dye laser tuned to the 706 nm argon transition and the temporal response of the densities in the 1s3, 1s4 and 1s5 states are monitored by time-resolved laser diode absorption. The electron density and temperature are also measured by Thomson scattering along the plasma column for different pressures. The rate coefficient measured for the 1s3 to 1s2 state transfer, for which only rough estimations exist in the literature is found to be 9 × 10-13 m3 s-1, almost five times larger than the value commonly assumed.
NASA Technical Reports Server (NTRS)
Hoobler, Ray J.; Leone, Stephen R.
1997-01-01
Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.
Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M
2011-05-01
For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.
Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial
NASA Astrophysics Data System (ADS)
Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2016-03-01
This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.
NASA Astrophysics Data System (ADS)
Coïsson, M.; Barrera, G.; Celegato, F.; Martino, L.; Vinai, F.; Martino, P.; Ferraro, G.; Tiberto, P.
2016-10-01
An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2016-12-01
Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.
Bai, Shirong; Davis, Michael J; Skodje, Rex T
2015-11-12
The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of how that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux.
Cinque, G; Croce, R; Holzwarth, A; Bassi, R
2000-01-01
The energy transfer rates between chlorophylls in the light harvesting complex CP29 of higher plants at room temperature were calculated ab initio according to the Förster mechanism (Förster T. 1948, Ann. Physik. 2:55-67). Recently, the transition moment orientation of CP29 chlorophylls was determined by differential linear dichroism and absorption spectroscopy of wild-type versus mutant proteins in which single chromophores were missing (Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., and Bassi R. 1999. Biochemistry. 38:12974-12983). In this way the Q(y) transition energy and chlorophyll a/b affinity of each binding site was obtained and their characteristics supported by reconstruction of steady-state linear dichroism and absorption spectra at room temperature. In this study, the spectral form of individual chlorophyll a and b ligands within the protein environment was experimentally determined, and their extinction coefficients were also used to evaluate the absolute overlap integral between donors and acceptors employing the Stepanov relation for both the emission spectrum and the Stokes shift. This information was used to calculate the time-dependent excitation redistribution among CP29 chlorophylls on solving numerically the Pauli master equation of the complex: transient absorption measurements in the (sub)picosecond time scale were simulated and compared to pump-and-probe experimental data in the Q(y) region on the native CP29 at room temperature upon selective excitation of chlorophylls b at 640 or 650 nm. The kinetic model indicates a bidirectional excitation transfer over all CP29 chlorophylls a species, which is particularly rapid between the pure sites A1-A2 and A4-A5. Chlorophylls b in mixed sites act mostly as energy donors for chlorophylls a, whereas site B5 shows high and bidirectional coupling independent of the pigment hosted. PMID:11023879
Payne, Walter A.; Harding, Lawrence B.; Stief, Louis J.; Parker, James F. , 1925-; Klippenstein, Stephen J.; Nesbitt, Fred L.; Cody, Regina J.
2004-10-01
The rate coefficient has been measured under pseudo-first-order conditions for the Cl + CH{sub 3} association reaction at T = 202, 250, and 298 K and P = 0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH{sub 3} were generated rapidly and simultaneously by reaction of F with HCl and CH{sub 4}, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F{sub 2} in He. The decay of CH{sub 3} was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH{sub 3} concentration ([Cl]{sub 0}/[CH{sub 3}]{sub 0} = 9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T = 202 K, the rate coefficient increases from 8.4 x 10{sup -12} at P = 0.30 Torr He to 1.8 x 10{sup -11} at P = 2.00 Torr He, both in units of cm{sup 3} molecule{sup -1} s{sup -1}. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k{sub 2} = 6.0 x 10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1}, independent of temperature in the range from 200 to 300 K.
2012-01-01
The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497
NASA Astrophysics Data System (ADS)
Vartanian, A. L.; Asatryan, A. L.; Vardanyan, L. A.
2017-03-01
We have investigated the influence of an image charge effect (ICE) on the energies of the ground and first few excited states of a hydrogen-like impurity in a spherical quantum dot (QD) in the presence of an external electric field. The oscillator strengths of transitions from the 1 s -like state to excited states of 2px and 2pz symmetries are calculated as the functions of the strengths of the confinement potential and the electric field. Also, we have studied the effect of image charges on linear and third-order nonlinear optical absorption coefficients and refractive index changes (RICs). The results show that image charges lead to the decrease of energies for all the hydrogen-like states, to the significant enhancement of the oscillator strengths of transitions between the impurity states, and to comparatively large blue shifts in linear, nonlinear, and total absorption coefficients and refractive index changes. Our results indicate that the total optical characteristics can be controlled by the strength of the confinement and the electric field.
Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M
2006-10-21
For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.
CASCADE CALCULATION OF EXOTIC HELIUM ATOMS -- s-orbit vs. p-orbit absorption rates
NASA Astrophysics Data System (ADS)
Koike, T.; Akaishi, Y.
2000-09-01
We construct a new model for the Stark-mixing process of exotic helium atoms using the impact-parameter method, and compared it with a phenomenological one used so far (sliding transition model). It turns out that the sliding transition model is justified only for low-n states and largely overestimates the Stark-mixing transition rate at high-n states. As a result of the atomic-cascade calculation, the s-(p-)orbit absorption rates in our new model are considerably smaller (larger) than those in the phenomenological one, although both our new model and old one well reproduce the experimental x-ray yields.
NASA Astrophysics Data System (ADS)
Conny, J. M.; Norris, G.
2007-12-01
In thermal-optical transmission analysis (TOT), laser light passing through a particle-laden filter is monitored while carbonaceous material is removed in several heating steps and measured by flame ionization detection. In a helium atmosphere, the laser signal is attenuated by the pyrolysis of organic carbon (OC). Later, while carbon is removed in an oxidizing atmosphere, the laser signal returns to its value prior to pyrolysis (split point), whereupon the amount of carbon equivalent to the native BC is measured. Since pyrolyzed OC may actually evolve beyond the split point, the specific absorption cross sections of pyrolyzed OC and native BC must be equivalent. Moreover, OC pyrolysis must be sufficient so that unpyrolyzed OC is not measured as BC beyond the split point. Using response surfaces models of the apparent specific absorption cross sections for pyrolyzed OC and what the instrument measures as native BC, we determined the thermal conditions for establishing the equivalence of the apparent cross sections while insuring sufficient pyrolysis of OC. In this way, we have optimized TOT for BC mass based on the Beer-Lambert Law but without the need for an absolute mass absorption coefficient (or an absolute attenuation coefficient) for BC. Optimal thermal conditions for the equivalence of the cross sections were indicated by the intersection of the response surfaces. Concurrently, optimal conditions for sufficient pyrolysis of OC were indicated by a plateau in the response surface for the BC cross section. Modeling was based on extensive analyses of PM2.5 samples collected from Atlanta, Los Angeles, and Seattle. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Esteves, Freddy; Moutinho, Carla; Matos, Carla
2013-06-01
Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.
NASA Technical Reports Server (NTRS)
Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.
2008-01-01
Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.
Kandilian, Razmig; Pruvost, Jérémy; Legrand, Jack; Pilon, Laurent
2014-07-01
This study aims to understand the role of light transfer in triglyceride fatty-acid (TG-FA) cell content and productivity from microalgae during nitrogen starvation. Large amounts of TG-FA can be produced via nitrogen starvation of microalgae in photobioreactors exposed to intense light. First, spectral absorption and scattering cross-sections of N. oculata were measured at different times during nitrogen starvation. They were used to relate the mean volumetric rate of energy absorption (MVREA) per unit mass of microalgae to the TG-FA productivity and cell content. TG-FA productivity correlated with the MVREA and reached a maximum for MVREA of 13 μmol hν/gs. This indicated that TG-FA synthesis was limited by the photon absorption rate in the PBR. A minimum MVREA of 13 μmol hν/gs was also necessary at the onset of nitrogen starvation to trigger large accumulation of TG-FA in cells. These results will be instrumental in defining protocols for TG-FA production in scaled-up photobioreactors.
Caravan, Rebecca L; Shannon, Robin J; Lewis, Thomas; Blitz, Mark A; Heard, Dwayne E
2015-07-16
The low temperature kinetics of the reactions of OH with ethanol and propan-2-ol have been studied using a pulsed Laval nozzle apparatus coupled with pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) spectroscopy. The rate coefficients for both reactions have been found to increase significantly as the temperature is lowered, by approximately a factor of 18 between 293 and 54 K for ethanol, and by ∼10 between 298 and 88 K for OH + propan-2-ol. The pressure dependence of the rate coefficients provides evidence for two reaction channels: a zero pressure bimolecular abstraction channel leading to products and collisional stabilization of a weakly bound OH-alcohol complex. The presence of the abstraction channel at low temperatures is rationalized by a quantum mechanical tunneling mechanism, most likely through the barrier to hydrogen abstraction from the OH moiety on the alcohol.
NASA Astrophysics Data System (ADS)
Allmendinger, Pitt; Deiglmayr, Johannes; Höveler, Katharina; Schullian, Otto; Merkt, Frédéric
2016-12-01
The energy dependence of the rate coefficient of the H2 + + H 2 → H3 + + H reaction has been measured in the range of collision energies between k B ṡ 10 K and k B ṡ 300 mK . A clear deviation of the rate coefficient from the value expected on the basis of the classical Langevin-capture behavior has been observed at collision energies below k B ṡ 1 K , which is attributed to the joint effects of the ion-quadrupole and Coriolis interactions in collisions involving ortho-H2 molecules in the j = 1 rotational level, which make up 75% of the population of the neutral H2 molecules in the experiments. The experimental results are compared to very recent predictions by Dashevskaya et al. [J. Chem. Phys. 145, 244315 (2016)], with which they are in agreement.
NASA Technical Reports Server (NTRS)
Fang, Z.; Kwong, Victor H. S.
1997-01-01
The charge transfer rate coefficient for the reaction N(2+)(2p(sup 2)P(sup 0)) + He yields products is measured by recording the time dependence of the N(2+) ions stored in an ion trap. A cylindrical radio-frequency ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The decay of the ion signals was analyzed by single exponential least-squares fits to the data. The measured rate coefficient is 8.67(0.76) x 10(exp -11)sq cm/s. The N(2+) ions were at a mean energy of 2.7 eV while He gas was at room temperature, corresponding to an equivalent temperature of 3.9 x 10(exp 3) K. The measured value is in good agreement with a recent calculation.
Sensitivity of the atmospheric lapse rate to solar cloud absorption in a radiative-convective model
NASA Astrophysics Data System (ADS)
Erlick, Carynelisa; Ramaswamy, V.
2003-08-01
Previous radiative-convective model studies of the radiative forcing due to absorbing aerosols such as soot and dust have revealed a strong dependence on the vertical distribution of the absorbers. In this study, we extend this concept to absorption in cloud layers, using a one-dimensional radiative-convective model employing high, middle, and low cloud representations to investigate the response of the surface temperature and atmospheric lapse rate to increases in visible cloud absorption. The visible single-scattering albedo (ssa) of the clouds is prescribed, ranging from 1.0 to 0.6, where 0.99 is the minimum that would be expected from the presence of absorbing aerosols within the cloud drops on the basis of recent Monterey Area Ship Track (MAST) Experiment case studies. Simulations are performed with respect to both a constant cloud optical depth and an increasing cloud optical depth and as a function of cloud height. We find that increases in solar cloud absorption tend to warm the troposphere and surface and stabilize the atmosphere, while increases in cloud optical depth cool the troposphere and surface and slightly stabilize the atmosphere between the low cloud top and surface because of the increase in surface cooling. In the absence of considerations involving microphysical or cloud-climate feedbacks, we find that two conditions are required to yield an inversion from a solar cloud absorption perturbation: (1) The solar absorption perturbation must be included throughout the tropospheric clouds column, distributing the solar heating to higher altitudes, and (2) the ssa of the clouds must be ≤0.6, which is an unrealistically low value. The implication is that there is very little possibility of significant stabilization of the global mean atmosphere due to perturbation of cloud properties given current ssa values.
NASA Astrophysics Data System (ADS)
Buchachenko, A. A.; Kroupnov, A. A.; Kovalev, V. L.
2015-08-01
Elementary stage rate coefficients of the full system of kinetic equations describing heterogeneous catalytic recombination of the dissociated air on the surfaces of thermal protective ceramic coatings of β-cristobalite and α-Al2O3 are determined using the quantum-mechanical calculations within the framework of cluster models and literature data. Both the impact and associative recombination processes of adsorbed oxygen and nitrogen atoms are taken into account.
New constraints in absorptive capacity and the optimum rate of petroleum output
El Mallakh, R
1980-01-01
Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)
Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa
2016-01-01
A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.
Yan, Hong-mei; Chen, Xiao-yun; Xia, Hai-jian; Liu, Dan; Jia, Xiao-bin; Zhang, Zhen-hai
2015-02-01
The difference between three representative components of total salvianolic acids in pharmacodynamic activity were compared by three different pharmacological experiments: HUVECs oxidative damage experiment, 4 items of blood coagulation in vitro experiment in rabbits and experimental myocardial ischemia in rats. And the effects of contribution rate of each component were calculated by multi index comprehensive evaluation method based on CRITIC weights. The contribution rates of salvianolic acid B, rosmarinic acid and Danshensu were 28.85%, 30.11%, 41.04%. Apparent oil/water partition coefficient of each representative components of total salvianolic acids in n-octyl alcohol-buffer was tested and the total salvianolic acid components were characterized based on a combination of the approach of self-defined weighting coefficient with effects of contribution rate. Apparent oil/water partition coefficient of total salvianolic acids was 0.32, 1.06, 0.89, 0.98, 0.90, 0.13, 0.02, 0.20, 0.56 when in octanol-water/pH 1.2 dilute hydrochloric acid solution/ pH 2.0, 2.5, 5.0, 5.8, 6.8, 7.4, 7.8 phosphate buffer solution. It provides a certain reference for the characterization of components.
Shalashilin, Dmitrii V; Beddard, Godfrey S; Paci, Emanuele; Glowacki, David R
2012-10-28
Molecular dynamics (MD) methods are increasingly widespread, but simulation of rare events in complex molecular systems remains a challenge. We recently introduced the boxed molecular dynamics (BXD) method, which accelerates rare events, and simultaneously provides both kinetic and thermodynamic information. We illustrate how the BXD method may be used to obtain high-resolution kinetic data from explicit MD simulations, spanning picoseconds to microseconds. The method is applied to investigate the loop formation dynamics and kinetics of cyclisation for a range of polypeptides, and recovers a power law dependence of the instantaneous rate coefficient over six orders of magnitude in time, in good agreement with experimental observations. Analysis of our BXD results shows that this power law behaviour arises when there is a broad and nearly uniform spectrum of reaction rate coefficients. For the systems investigated in this work, where the free energy surfaces have relatively small barriers, the kinetics is very sensitive to the initial conditions: strongly non-equilibrium conditions give rise to power law kinetics, while equilibrium initial conditions result in a rate coefficient with only a weak dependence on time. These results suggest that BXD may offer us a powerful and general algorithm for describing kinetics and thermodynamics in chemical and biochemical systems.
Hernández S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.
2014-11-07
Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.
INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE
Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.
2009-10-01
The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H{sup +} {sub 3}), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He{sup +} chemistry reveals that only a small fraction of He{sup +} will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find zeta{sub He} < 1.2 x 10{sup -15} s{sup -1}, an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H{sup +} {sub 3}. While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H{sup +} {sub 3} in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.
NASA Astrophysics Data System (ADS)
Pfrang, C.; Kasyutich, V. L.; Canosa-Mas, C. E.; Vaughan, S.; Wayne, R. P.
2003-04-01
The nitrate radical, NO_3, is a key species in the night-time tropospheric oxidation of a variety of volatile organic compounds (VOCs), including those emitted by living vegetation. In addition to the VOC emissions from intact plants, it is well known that wounding induces the release of a series of C_6 aldehydes and C_6 alcohols, as can be readily sensed in the odour of freshly mown grass. Large emissions of the "leaf alcohol", (Z)-3-hexenol, have been observed after wounding, during drying, and following pathogen attack, while (Z)-2-hexenol has been reported as an emission from clipped clover. Rate coefficients for the gas-phase reactions of the nitrate radical with these two isomeric compounds have been measured using the discharge-flow technique at room temperature. Because of the relatively low volatility of these compounds, it is necessary to employ low concentrations of NO_3 in order to determine the kinetics satisfactorily. To this end, we used a technique not hitherto applied in kinetic experiments on NO_3: that of off-axis continuous-wave cavity-enhanced absorption spectroscopy (CW CEAS) for the detection of NO_3, using a broadband absorption line at λ = 662 nm. A noise-equivalent detection sensitivity of 5.5 × 10^9 molecule cm-3 for the nitrate radical (Kasyutich et al., Appl. Phys. B, 2002, 75, 755--761) enabled us to work with the hexenol compounds in excess over NO_3. The rate coefficients were determined to be (2.80 ± 0.12) × 10-13 cm^3 molecule-1 s-1 and (1.36 ± 0.08) × 10-13 cm^3 molecule-1 s-1, respectively, for (Z)-3-hexenol and (Z)-2-hexenol. The rate constant for reaction with (Z)-3-hexenol lies within the combined error limits of the single measurement of the rate coefficient using relative rate methods of (2.72 ± 0.83) × 10-13 cm^3 molecule-1 s-1 (Atkinson et al., Int. J. Chem. Kinetics, 1995, 27, 941--955). However, for (Z)-3-hexenol there is some evidence for upward curvature of the second-order plot at longer contact times, and
A Review of Rate Coefficients in the H2-F2 Chemical Laser System
1976-04-15
JO, II dHlotonl Horn o’«po>i; II. SUPPLEMENTARY NOTES IV KEY WORDS (Contlnuo on fvorio au# // n»(»mry and td »r>’tty jy block...predicted relaxation rates for HCl, HBr , and HI that substantially agree with experimental data above 700 K. Applying the same theory to HF-HF and DF...contributions indicr* td by varying n is a refined perturbation on the total disappearance rate; therefore, »hc values for k1/w . ... are subject
Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup
NASA Astrophysics Data System (ADS)
Natividad, Eva; Castro, Miguel; Mediano, Arturo
2008-03-01
Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.
NASA Astrophysics Data System (ADS)
Huestis, D. L.; Pejaković, D. A.; Copeland, R. A.; Kalogerakis, K. S.
2004-12-01
In the atmospheres of Earth, Venus, and Mars photodissociation of O2 and CO2 produces oxygen atoms that eventually undergo three-body recombination: O + O + M -> O2* + M. The competition between photodissociation, recombination, and diffusive vertical transport controls the atomic and molecular composition of the mesosphere and lower thermosphere. Knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. The most recent measurement of O-atom recombination rate coefficient is over thirty years old [1]. The published values of this rate coefficient have large divergence for both M = O2 and M = N2. For N2 as the third body, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value recommended in the combustion science community, and 5 × 10-33 cm6s-1, a value used in the atmospheric modeling community. Previous laboratory investigations [2] of the process O + O + N2 -> O2* + N2 shared the same basic approach, which was to use N2 discharge flow system with NO added downstream to generate O-atoms in the absence of O2 through the reaction N + NO -> O + N2. This approach is vulnerable to heterogeneous recombination and other processes that may obscure the reaction of interest, mostly due to the low O-atom densities and, consequently, long reaction times. We employ an F2 laser with up to 50 mJ of 157 nm pulsed output to achieve nearly complete photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the oxygen atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by detecting 845-nm fluorescence, which is induced by the 226 nm output of the second laser via a two-photon process O(2p4 3P) + 2hν -> O(2p33p ^3P). Our measurements give a preliminary value for the O + O + N_2 recombination rate coefficient of approximately 3 \\times 10^{-33} cm^6s^{-1}, which favors the value recommended in the combustion community
NASA Astrophysics Data System (ADS)
Wagner, N. L.; Riedel, T. P.; Young, C. J.; Bahreini, R.; Brock, C. A.; Dubé, W. P.; Kim, S.; Middlebrook, A. M.; Öztürk, F.; Roberts, J. M.; Russo, R.; Sive, B.; Swarthout, R.; Thornton, J. A.; VandenBoer, T. C.; Zhou, Y.; Brown, S. S.
2013-08-01
Heterogeneous N2O5 uptake onto aerosol is the primary nocturnal path for removal of NOx (= NO + NO2) from the atmosphere and can also result in halogen activation through production of ClNO2. The N2O5 uptake coefficient has been the subject of numerous laboratory studies; however, only a few studies have determined the uptake coefficient from ambient measurements, and none has been focused on winter conditions, when the portion of NOx removed by N2O5 uptake is the largest. In this work, N2O5 uptake coefficients are determined from ambient wintertime measurements of N2O5 and related species at the Boulder Atmospheric Observatory in Weld County, CO, a location that is highly impacted by urban pollution from Denver, as well as emissions from agricultural activities and oil and gas extraction. A box model is used to analyze the nocturnal nitrate radical chemistry and predict the N2O5 concentration. The uptake coefficient in the model is iterated until the predicted N2O5 concentration matches the measured concentration. The results suggest that during winter, the most important influence that might suppress N2O5 uptake is aerosol nitrate but that this effect does not suppress uptake coefficients enough to limit the rate of NOx loss through N2O5 hydrolysis. N2O5 hydrolysis was found to dominate the nocturnal chemistry during this study consuming ~80% of nocturnal gas phase nitrate radical production. Typically, less than 15% of the total nitrate radical production remained in the form of nocturnal species at sunrise when they are photolyzed and reform NO2.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
NASA Astrophysics Data System (ADS)
Plašil, Radek; Dohnal, Petr; Kálosi, Ábel; Roučka, Štěpán; Johnsen, Rainer; Glosík, Juraj
2017-03-01
We report measurements of the binary and ternary recombination rate coefficients of deuterated isotopologues of {{{H}}}3+. A cavity ring-down absorption spectrometer was used to monitor the fractional abundances of {{{H}}}3+, {{{H}}}2{{{D}}}+, {{HD}}2+ and {{{D}}}3+ during the decay of a plasma in He/Ar/{{{H}}}2/{{{D}}}2 mixtures. A dependence of the measured effective recombination rate coefficients on the helium buffer gas density was observed and hence both the binary and the ternary recombination rate coefficients for {{{H}}}2{{{D}}}+ and {{HD}}2+ were obtained in the temperature range 80–145 K.
Baba, Justin S; Allegood, Marcus S
2008-01-01
Light interaction with biological tissue can be described using three parameters: the scattering and absorption coefficients (us and ua), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specific wavelengths, and simultaneously, would be beneficial for a variety of different biomedical applications. The goal of this project was to take a user-defined g-value and determine the remaining two parameters for a specified wavelength range for an integrating sphere with a collimated white light input source system. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW was used to write programs to automate: raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl's Inverse Adding-Doubling (IAD) C code execution, and computation of the optical properties based on the output from the IAD code. To allow data to be passed efficiently between LabVIEW and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms and determination of the absorption and scattering coefficients showed excellent agreement with theory for wavelengths were the user inputted single g-value was sufficiently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete system multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to study actual biological tissues for the purpose of deriving and refining models for light-tissue interactions.
Jubb, Aaron M; Gierczak, Tomasz; Baasandorj, Munkhbayar; Waterland, Robert L; Burkholder, James B
2014-05-06
Mixtures of methyl-perfluoroheptene-ethers (CH3OC7F13, MPHEs) are currently in use as replacements for perfluorinated alkanes (PFCs) and poly-ether heat transfer fluids, which are persistent greenhouse gases with lifetimes >1000 years. At present, the atmospheric processing and environmental impact from the use of MPHEs is unknown. In this work, rate coefficients at 296 K for the gas-phase reaction of the OH radical with six key isomers (including stereoisomers and enantiomers) of MPHEs used commercially were measured using a relative rate method. Rate coefficients for the six MPHE isomers ranged from ∼ 0.1 to 2.9 × 10(-12) cm(3) molecule(-1) s(-1) with a strong stereoisomer and -OCH3 group position dependence; the (E)-stereoisomers with the -OCH3 group in an α- position relative to the double bond had the greatest reactivity. Rate coefficients measured for the d3-MPHE isomer analogues showed decreased reactivity consistent with a minor contribution of H atom abstraction from the -OCH3 group to the overall reactivity. Estimated atmospheric lifetimes for the MPHE isomers range from days to months. Atmospheric lifetimes, radiative efficiencies, and global warming potentials for these short-lived MPHE isomers were estimated based on the measured OH rate coefficients along with measured and theoretically calculated MPHE infrared absorption spectra. Our results highlight the importance of quantifying the atmospheric impact of individual components in an isomeric mixture.
The absorption efficiency and respiration rate of the Florida lancelet, Branchiostoma floridae.
Nash, Troy R; Ruppert, Edward E; Colacino, James M
2009-12-01
The present study investigates some aspects of the digestive biology and physiological energetics of the Florida lancelet, Branchiostoma floridae. Florida lancelets are able to remove 47.2-56.9% of the energy from a diet of mixed algae. The respiration rate is 0.100mL O(2) (STPD) h(-1) g(-1) (wet), which estimates a metabolic rate of 0.248 J h(-1), at an average body mass of 0.125 g (wet). Published values of the chlorophyll a concentration in its natural habitat indicate that a 125 mg lancelet would need to filter 0.018-0.031 L h(-1) to remove sufficient food to support its resting metabolism. The filtration rate of lancelets has been reported as 0.138 L h(-1), indicating that the actual filtration rate is 4-7 times greater than the filtration rate needed to meet resting metabolic demands. It appears that lancelets have the potential to be raised in aquaculture, because their absorption efficiency and respiration rate are comparable to suspension-feeding invertebrates that have been successfully aquacultured.
Simons, Andrean L; Renouf, Mathieu; Murphy, Patricia A; Hendrich, Suzanne
2010-01-13
It was hypothesized that 5,7,4'-OH-flavonoids disappeared more rapidly from human fecal incubations and were less absorbable by humans than flavonoids without 5-OH moieties. Anaerobic fecal disappearance rates over 24 h were determined for 15 flavonoids in samples from 20 men and 13 women. In these anaerobic fecal mixtures, flavonoids with 5,7,4'-OH groups, genistein, apigenin, naringenin, luteolin, kaempferol, and quercetin (disappearance rate, k=0.46+/-0.10 h(-1)), and methoxylated flavonoids, hesperetin and glycitein (k=0.24+/-0.21 h(-1)), disappeared rapidly compared with flavonoids lacking 5-OH (e.g., daidzein, k=0.07+/-0.03 h(-1)). Apparent absorption of flavonoids that disappeared rapidly from in vitro fecal incubations, genistein, naringenin, quercetin, and hesperetin, was compared with that of daidzein, a slowly disappearing flavonoid, in 5 men and 5 women. Subjects ingested 104 micromol of genistein and 62 micromol of daidzein (soy milk), 1549 micromol of naringenin and 26 micromol of hesperetin (grapefruit juice), and 381 micromol of quercetin (onions) in three test meals, each separated by 1 week. Blood and urine samples were collected over 24 h after each test meal. Plasma flavonoid concentrations ranged from 0.01 to 1 microM. The apparent absorption, expressed as percentage of ingested dose excreted in urine, was significantly less for naringenin (3.2+/-1.7%), genistein (7.2+/-4.6%), hesperetin (7.3+/-3.2%), and quercetin (5.6+/-3.7%) compared with daidzein (43.4+/-15.5%, p=0.02). These data affirmed the hypothesis that the 5,7,4'-OH of flavonoids limited apparent absorption of these compounds in humans.
Gao, Feifei; Wang, Yuan; Shi, Dong; Zhang, Jing; Wang, Mingkui; Jing, Xiaoyan; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael
2008-08-13
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.
Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko
2013-09-01
Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.
NASA Astrophysics Data System (ADS)
Lhotka, C.; Reimond, S.; Souchay, J.; Baur, O.
2016-02-01
The aim of this study is first to determine the gravity field of the comet 67P/Churyumov-Gerasimenko and second to derive the solar component of the precession rate and nutation coefficients of the spin-axis of the comet nucleus, i.e. without the direct, usually larger, effect of outgassing. The gravity field and related moments of inertia are obtained from two polyhedra, which are provided by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) and NAVigation CAMera (NAVCAM) experiments on Rosetta, and are based on the assumption of uniform density for the comet nucleus. We also calculate the forced precession rate as well as the nutation coefficients on the basis of Kinoshita's theory of rotation of the rigid Earth and adapted it to be able to indirectly include the effect of outgassing on the rotational parameters. The second degree denormalized Stokes coefficients of comet 67P/C-G turn out to be (bracketed numbers refer to second shape model) C20 ≃ -6.74 [-7.93] × 10-2, C22 ≃ 2.60 [2.71] × 10-2, consistent with normalized principal moments of inertia A/MR2 ≃ 0.13 [0.11], B/MR2 ≃ 0.23 [0.22], with polar moment c = C/MR2 ≃ 0.25, depending on the choice of the polyhedron model. The obliquity between the rotation axis and the mean orbit normal is ε ≃ 52°, and the precession rate only due to solar torques becomes dot{ψ }in [20,30] arcsec yr^{-1}. Oscillations in longitude caused by the gravitational pull of the Sun turn out to be of the order of Δψ ≃ 1 arcmin, and oscillations in obliquity can be estimated to be of the order of Δε ≃ 0.5 arcmin.
Anders, R.; Chrysikopoulos, C.V.
2006-01-01
Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.
Onel, L; Blitz, M A; Seakins, P W
2012-04-05
Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.
Cheung, Cecilia Y; Beardall, Michael K; Anderson, Debra F; Brace, Robert A
2014-08-01
We hypothesized that prostaglandin E2 (PGE2) stimulates amniotic fluid transport across the amnion by upregulating vascular endothelial growth factor (VEGF) expression in amnion cells and that amniotic PGE2 concentration correlates positively with intramembranous (IM) absorption rate in fetal sheep. The effects of PGE2 at a range of concentrations on VEGF 164 and caveolin-1 gene expressions were analyzed in cultured ovine amnion cells. IM absorption rate, amniotic fluid (AF) volume, and PGE2 concentration in AF were determined in late-gestation fetal sheep during control conditions, isovolumic fetal urine replacement (low IM absorption rate), or intra-amniotic fluid infusion (high IM absorption rate). In ovine amnion cells, PGE2 induced dose- and time-dependent increases in VEGF 164 mRNA levels and reduced caveolin-1 mRNA and protein levels. VEGF receptor blockade abolished the caveolin-1 response, while minimally affecting the VEGF response to PGE2. In sheep fetuses, urine replacement reduced amniotic PGE2 concentration by 58%, decreased IM absorption rate by half, and doubled AF volume (P < 0.01). Intra-amniotic fluid infusion increased IM absorption rate and AF volume (P < 0.01), while amniotic PGE2 concentration was unchanged. Neither IM absorption rate nor AF volume correlated with amniotic PGE2 concentration under each experimental condition. Although PGE2 at micromolar concentrations induced dose-dependent responses in VEGF and caveolin-1 gene expression in cultured amnion cells consistent with a role of PGE2 in activating VEGF to mediate AF transport across the amnion, amniotic PGE2 at physiological nanomolar concentrations does not appear to regulate IM absorption rate or AF volume.
C (max) and t (max) verification using Fibonacci sequence and absorption rate.
Grabowski, Tomasz; Jaroszewski, Jerzy J; Borucka, Beata; Ziółkowski, Hubert
2013-06-01
The aim of this study was to verify the values of maximal observed concentration (C max,obs) and the time, at which maximum concentration is observed (t max,obs) using the analysis of the absorption rate constant (k ab). It focused on the changes in concentration over time (C-T) for drugs, for which several peaks of concentration occur. In addition, the attempt was made to use Fibonacci sequence to facilitate the visual analysis of the dynamics in changes of concentration on C-T graphs. The analyses were conducted with the use of three hypothetical data groups (groups I, II and III), which had distinct C-T profiles, and with the in vivo data form healthy subjects (n = 10) taking part in a bioequivalence study, who was given a single oral dose of topiramate (100 mg). The comparison of hypothetical and real in vivo data demonstrated that for the C-T curves, in which there are several peaks of concentration C max,obs and t max,obs values can easily be miscalculated when the increase in concentration is not properly related to the appropriate absorption phase (63.2, 87.50, 96.88 %). It was also demonstrated that the data transformation with the use of Fibonacci sequence exposes slight differences in the observed concentration values in a semi-logarithmic scale. The results of this study show that in case of C-T curves with several peaks of concentration, the verification of C max and t max data obtained taking into account different absorption phases enables more precise evaluation of these parameters.
Diau, E.W.; Lee, Yuanpern )
1991-01-10
The reaction between OH and CS{sub 2} has been studied in He in the pressure range 9-270 Torr and the temperature range 249-298 K by means of the laser-photolysis/laser-induced-fluorescence technique. Analysis of the temporal profile of (OH) yielded the rate coefficients for the forward and reverse reactions for the equilibrium OH + CS{sub 2} + M {r equilibrium} HOCS{sub 2} + M and hence the equilibrium constant. Study of the temperature dependence of the equilibrium constant leads to the standard enthalpy of reaction {Delta}H{degree} = {minus}43.9 {plus minus} 5.3 kJ mol{sup {minus}1} and the standard entropy of reaction {Delta}S{degree} = {minus}102.9 {plus minus} 15.4 J K{sup {minus}1} mol{sup {minus}1}. The termolecular rate coefficients for the forward reaction at 298 K have also been determined to be k{sub He}{sup III} = (5.04 {plus minus} 1.01) {times} 10{sup {minus}32} cm{sup 6} molecule{sup {minus}2} s{sup {minus}1} and k{sub CS{sub 2}}{sup III} = (4.28 {plus minus} 1.07) {times} 10{sup {minus}31} cm{sup 6} molecule{sup {minus}2} s{sup {minus}1}.
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Lukzen, Nikita N.; Doktorov, Alexander B.
2016-08-01
Time dependence of the rate coefficients of sterically specific reactions is analyzed theoretically. Generally, such reactions exhibit a non-trivial dependence of their rate constant on the steric factor, f < 1, which is defined as the fraction of reactive surface area. Notably, the rate constant of a diffusion-controlled reaction is proportional not to f but, counter-intuitively, to √{ f } due to partial averaging of the reaction anisotropy by translational diffusion. Here we demonstrate that the effective steric factor of a diffusion-influenced reaction is strongly time-dependent, increasing from f to √{ f } . When reactants have several active sites, these sites "interfere" each other in the sense that the rate constant depends on their relative positions. We demonstrate that such an interference effect is strongly time-dependent as well: it is absent at t = 0 but builds up with time. We argue that the outlined effects are also of importance for calculating the fluorescence quenching rate constants.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco
2014-01-01
Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.
Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field
Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.
2015-01-01
This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816
Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids
NASA Astrophysics Data System (ADS)
Natividad, Eva; Castro, Miguel; Mediano, Arturo
2009-05-01
The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/ m MNP) C(Δ T/Δ t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR≈ Cβ/ m MNP, where β is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.
MRI-based anatomical model of the human head for specific absorption rate mapping
Makris, Nikos; Angelone, Leonardo; Tulloch, Seann; Sorg, Scott; Kaiser, Jonathan; Kennedy, David
2009-01-01
In this study, we present a magnetic resonance imaging (MRI)-based, high-resolution, numerical model of the head of a healthy human subject. In order to formulate the model, we performed quantitative volumetric segmentation on the human head, using T1-weighted MRI. The high spatial resolution used (1 × 1 × 1 mm3), allowed for the precise computation and visualization of a higher number of anatomical structures than provided by previous models. Furthermore, the high spatial resolution allowed us to study individual thin anatomical structures of clinical relevance not visible by the standard model currently adopted in computational bioelectromagnetics. When we computed the electromagnetic field and specific absorption rate (SAR) at 7 Tesla MRI using this high-resolution model, we were able to obtain a detailed visualization of such fine anatomical structures as the epidermis/dermis, bone structures, bone-marrow, white matter and nasal and eye structures. PMID:18985401
Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head
Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2014-01-01
In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone. PMID:25350398
NASA Astrophysics Data System (ADS)
Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus
2016-04-01
Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m
NASA Astrophysics Data System (ADS)
Coral, D. F.; Mendoza Zélis, P.; de Sousa, M. E.; Muraca, D.; Lassalle, V.; Nicolás, P.; Ferreira, M. L.; Fernández van Raap, M. B.
2014-01-01
In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (˜10-10 s and 10-4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i
Collisional quenching reaction rate coefficients of N2 (A3Σu+) by C2F6 and C3F8
NASA Astrophysics Data System (ADS)
Suzuki, Susumu; Kuboaki, Masaru; Itoh, Haruo
2015-09-01
The collisional quenching reaction rate coefficient of N2 (A3Σu+) by various air pollutant gases were determined from the measurement of the effective lifetime of N2 (A3Σu+) in pure N2 (5-nine) with a small amount of air pollutant gases as an admixture. Derivation of the rate coefficient was performed the waveform analysis of the transient ionization current after turning off the UV light in the Townsend discharge. In this paper, we report that the obtained collisional quenching reaction rate coefficients of N2 (A3Σu+) by C2F6 and C3F8 are (2.3 +/- 1.8) × 10-15 cm3/s and (1.6 +/- 0.8) × 10-14 cm3/s, respectively. Furthermore, we investigate the relationship between the rate coefficient and the mass number of their quenching molecular gases. Firstly, it is confirmed that the rate coefficient take large value with an increase in the mass number of the quenching gases. Secondly, if H atom is included in the gas molecules such as CH4, C2F6 and C3F8 the rate coefficient take large value, but if the molecules including F atom such as C2F6 and C3F8 instead of H atom in this study, more smaller values of the collisional quenching reaction rate coefficient are observed.
Scheibe, Timothy D.; Dong, Hailiang; Xie, YuLong
2007-06-01
It has been widely observed in field experiments that the apparent rate of bacterial attachment, particularly as parameterized by the collision efficiency in filtration-based models, decreases with transport distance (i.e., exhibits scale-dependency). This effect has previously been attributed to microbial heterogeneity; that is, variability in cell-surface properties within a single monoclonal population. We demonstrate that this effect could also be interpreted as a field-scale manifestation of local-scale correlation between physical heterogeneity (hydraulic conductivity variability) and reaction heterogeneity (attachment rate coefficient variability). A field-scale model of bacterial transport developed for the South Oyster field research site located near Oyster, Virginia, and observations from field experiments performed at that site, are used as the basis for this study. Three-dimensional Monte Carlo simulations of bacterial transport were performed under four alternative scenarios: 1) homogeneous hydraulic conductivity (K) and attachment rate coefficient (Kf), 2) heterogeneous K, homogeneous Kf, 3) heterogeneous K and Kf with local correlation based on empirical and theoretical relationships, and 4) heterogeneous K and Kf without local correlation. The results of the 3D simulations were analyzed using 1D model approximations following conventional methods of field data analysis. An apparent decrease with transport distance of effective collision efficiency was observed only in the case where the local properties were both heterogeneous and correlated. This effect was observed despite the fact that the local collision efficiency was specified as a constant in the 3D model, and can therefore be interpreted as a scale effect associated with the local correlated heterogeneity as manifested at the field scale.
NASA Astrophysics Data System (ADS)
Gibilisco, Rodrigo G.; Santiago, Ana N.; Teruel, Mariano A.
2013-10-01
The kinetics of the reactions of OH radicals with three C6 unsaturated alcohols at 298 K and atmospheric pressure were investigated using solid phase microextraction (SPME) with GC-FID detection of organic compounds. Rate coefficients (in cm3 molecule-1 s-1) of k1(OH + (E)-CH2OHCHdbnd CH(CH2)2CH3) = (1.0 ± 0.3) × 10-10, k2(OH + (E)-CH2OHCH2CHdbnd CHCH2CH3) = (1.2 ± 0.2) × 10-10 and k3(OH + (Z)-CH2OHCH2CHdbnd CHCH2CH3) = (1.4 ± 0.3) × 10-10 were obtained by the relative rate method using methyl methacrylate and (E)-2-buten-1-ol as references. Rate coefficients were compared with previous determinations and reactivity trends were developed and rationalized in terms of the effect and position of substituents in the unsaturated alcohol. A correlation between the reactivity of unsaturated alcohols toward OH radicals and the energy of the HOMO of the unsaturated alcohol is presented. Additionally, product identification under atmospheric conditions was performed for the first time for these unsaturated C6 alcohols by the GC-MS technique. Butanal was observed as the main degradation product of OH with (E)-2-hexen-1-ol, in accordance with the decomposition of the 2,3-hydroxyalcoxy radicals formed. On the basis of our kinetic measurements, tropospheric lifetimes of the studied unsaturated compounds are estimated.
Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A
2009-09-30
A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)
NASA Technical Reports Server (NTRS)
Gray, Vernon H.
1958-01-01
An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.
Pekkala, Nina; Knott, K Emily; Kotiaho, Janne S; Nissinen, Kari; Puurtinen, Mikael
2014-01-01
Understanding the effects of inbreeding and genetic drift within populations and hybridization between genetically differentiated populations is important for many basic and applied questions in ecology and evolutionary biology. The magnitudes and even the directions of these effects can be influenced by various factors, especially by the current and historical population size (i.e. inbreeding rate). Using Drosophila littoralis as a model species, we studied the effect of inbreeding rate over a range of inbreeding levels on (i) mean fitness of a population (relative to that of an outbred control population), (ii) within-population inbreeding depression (reduction in fitness of offspring from inbred versus random mating within a population) and (iii) heterosis (increase in fitness of offspring from interpopulation versus within-population random mating). Inbreeding rate was manipulated by using three population sizes (2, 10 and 40), and fitness was measured as offspring survival and fecundity. Fast inbreeding (smaller effective population size) resulted in greater reduction in population mean fitness than slow inbreeding, when populations were compared over similar inbreeding coefficients. Correspondingly, populations with faster inbreeding expressed more heterosis upon interpopulation hybridization. Inbreeding depression within the populations did not have a clear relationship with either the rate or the level of inbreeding. PMID:25553071
Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru
2006-12-21
Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the
Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José
2015-04-01
As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed
Chicheportiche, Alexandre; Stachoň, Martin; Benhenni, Malika; Gadéa, Florent Xavier; Kalus, René; Yousfi, Mohammed
2014-10-07
Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar 2 (+) mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar 2 (+) mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar 2 (+)/Ar collisions is also provided.
Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C
2015-01-01
Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.
Bémer, D; Callé, S; Godinot, S; Régnier, R; Dessagne, J M
2000-12-01
A measuring method of the emission rate of an atmospheric pollutant source, based on the use of a tracer gas (helium) and developed in the case of a gaseous source, was tested for an aerosol source. The influence of both particle sedimentation and wall depositions was studied. The transport coefficients of the tracer gas and of alumina particles of various particle sizes (MMAD from 8 to 36 microns) were measured on a vertical axis close to the source, in a 71 m3 room swept by a piston flow. The measurements clearly demonstrated the predominant influence of sedimentation in the case of particles with aerodynamic diameters greater than 10 microns. Particle wall deposition was determined by measuring the gas and particle concentration decay in the ventilated room. To do this, a new tracing method using a fluorescent aerosol was developed. The measured aerosol deposition rates are much higher than those calculated from the formula of Corner for a cubical volume. Aerosol sedimentation and wall deposition are two phenomena limiting the use of a tracer gas to measure the aerosol emission rate. The chemical substances and materials used in work premises are likely to be released into the atmosphere and lead to the formation of pollutants. These emissions stem from either physical or chemical processes (evaporation of a solvent) or from mechanical processes (dispersion of oil droplets at the source of mists).
Rate coefficients for the OH + pinonaldehyde (C10H16O2) reaction between 297 and 374 K.
Davis, Maxine E; Talukdar, Ranajit K; Notte, Gregory; Ellison, G Barney; Burkholder, James B
2007-06-01
The rate coefficientforthe reaction of OH with pinonaldehyde (C10H16O2, 3-acetyl-2,2-dimethyl-cyclobutyl-ethanal), a product of the atmospheric oxidation of alpha-pinene, was measured under pseudo-first-order conditions in OH at temperatures between 297 and 374 K at 55 and 96 Torr (He). Laser induced fluorescence (LIF) was used to monitor OH in the presence of pinonaldehyde following its production by 248 nm pulsed laser photolysis of H2O2. The reaction exhibits a negative temperature dependence with an Arrhenius expression of k1(T) = (4.5 +/- 1.3) x 10(-12) exp((600 +/- 100)/ 7) cm3 molecule(-1) s(-1); k1(297 K) = (3.46 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). There was no observed dependence of the rate coefficient on pressure. Our results are compared with previous relative rate determinations of k1 near 297 K and the discrepancies are discussed. The state of knowledge for the atmospheric processing of pinonaldehyde is reviewed, and its role as a marker for alpha-pinene (monoterpene) chemistry in the atmosphere is discussed.
NASA Astrophysics Data System (ADS)
Dorian, Matthew; Seitaridou, Effrosyni
2014-03-01
Understanding the rate of biofilm growth is essential for studying genes and preventing unwanted biofilms. In this study, the diffusion coefficient (D) of polystyrene microspheres was used to quantify biofilm growth rates of Sinorhizobia meliloti, a nitrogen fixing bacteria that forms a symbiotic relationship with alfalfa plants. Five strains were studied, two wild types (8530 expR+ and 1021) and three mutants in the exopolysaccharide (EPS I, EPS II) synthesis (8530 exoY , 9034 expG , and 9030-2 expA 1); 1021 and 9030-2 expA 1 are known to be unable to form biofilms. Each strain was inserted into a microfluidic channel with the microspheres. As the cultures grew, the spheres' D values were obtained every 24 hours for 4 days using fluorescence microscopy. Although the D values for 9030-2 expA 1 were inconclusive, 8530 expR+ , 8530 exoY , and 9034 expG showed significant decreases in D between 3 days of growth (| z | > 2 . 25 , p < 0 . 025). The data also indicated that 8530 expR+ and 8530 exoY grew at similar rates. There was no significant change in D for 1021 (χ2(2) = 5 . 76 , p > 0 . 05), which shows the lack of a structured biofilm community. Thus, D can be used as an indicator of the presence of a biofilm and its development.
Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene.
Vasu, Subith S; Hong, Zekai; Davidson, David F; Hanson, Ronald K; Golden, David M
2010-11-04
Reaction rates of hydroxyl (OH) radicals with ethylene (C₂H₄) and propene (C₃H₆) were studied behind reflected shock waves. OH + ethylene → products (rxn 1) rate measurements were conducted in the temperature range 973-1438 K, for pressures from 2 to 10 atm, and for initial concentrations of ethylene of 500, 751, and 1000 ppm. OH + propene → products (rxn 2) rate measurements spanned temperatures of 890-1366 K, pressures near 2.3 atm, and initial propene concentrations near 300 ppm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH₃)₃-CO-OH, and monitored by laser absorption near 306.7 nm. Rate constants for the reactions of OH with ethylene and propene were extracted by matching modeled and measured OH concentration time-histories in the reflected shock region. Current data are in excellent agreement with previous studies and extend the temperature range of OH + propene data. Transition state theory calculations using recent ab initio results give excellent agreement with our measurements and other data outside our temperature range. Fits (in units of cm³/mol/s) to the abstraction channels of OH + ethylene and OH + propene are k₁ = 2.23 × 10⁴ (T)(2.745) exp(-1115 K/T) for 600-2000 K and k₂ = 1.94 × 10⁶ (T)(2.229) exp(-540 K/T) for 700-1500 K, respectively. A rate constant determination for the reaction TBHP → products (rxn 3) was also obtained in the range 745-1014 K using OH data from behind both incident and reflected shock waves. These high-temperature measurements were fit with previous low-temperature data, and the following rate expression (0.6-2.6 atm), applicable over the temperature range 400-1050 K, was obtained: k₃ (1/s) = 8.13 × 10⁻¹² (T)(7.83) exp(-14598 K/T).
Quasiclassical trajectory study of the N(4S)+NO(X2Π)→N2(X1Σ+ g)+O(3P) reaction rate coefficient
NASA Astrophysics Data System (ADS)
Duff, J. W.; Sharma, R. D.
Rate coefficients for the N+NO→N2+O reaction are calculated over the temperature range 100-1000 K by a quasiclassical trajectory calculation on the ³A″ potential energy surface (PES) based on the semiempirical London-Eyring-Polanyi-Sato (LEPS) formalism, neglecting spin-orbit coupling. The calculated results are only slightly temperature dependent and are in excellent agreement with available experimental data and the JPL recommended rate coefficient [DeMore et al., 1994] at room temperature. The present results do not support either the rate coefficient arrived at by Siskind and Rusch [1992] from modeling of the terrestrial thermosphere or the one arrived at by Fox [1994] from modeling of the Martian thermosphere. Possible causes of the discrepancies between the calculated rate coefficients and those arrived at from modeling studies may be additional NO production (loss or loss and production) mechanisms in the Martian (terrestrial) thermosphere.
Qian, Qinfang; Chai, Zhifang; Feng, Weiyu; Chen, Jidi; Zhang, Peiqun; Pan, Jianxiang
2002-09-01
Activable enriched stable isotopes can play a unique role in studies of nutritional status, metabolism, absorption rates, and bioavailability of minerals. As a practical example, eight juvenile athletes were selected to test the absorption rates of iron during training and non-training periods by enriched stable isotope of Fe-58 (enriched degree: 51.1%) via activation analysis Fe-58 (n, gamma) Fe-59 of the collected feces samples. The results indicated that the average iron absorption rates of the juvenile athletes with and without training are 9.1 +/- 2.8 and 11.9 +/- 4.7%, respectively, which implies that the long-term endurance training with high intensity makes the iron absorption rate of athletes lower. In the meantime, the comparison of the activable enriched isotope technique with atomic absorption spectrometry was performed, which showed that the former was better than the latter in reliability and sensitivity. It is because this nuclear method can distinguish the exogenous and endogenous iron in the samples, but not for non-nuclear methods.
NASA Technical Reports Server (NTRS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-01-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
NASA Astrophysics Data System (ADS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-11-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
G. WOOD
2000-12-01
Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times {tau}, which are useful for determining elution orders of mixture components. We also calculated adsorption rate coefficients k{sub v} of the Wheeler (or, more general Reaction Kinetic) breakthrough curve equation, when not reported, from breakthrough times and {tau}. Ninety-five k{sub v} (in mixture)/ k{sub v} (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (0.21 standard deviation) than unity, so that we recommend using the single-vapor k{sub v} for such. Forty-seven second-eluting vapor ratios averaged 0.85 (0.24 standard deviation), also not significantly different from unity; however, other evidence and considerations lead us recommend using k{sub v} (in mixture) = 0.85 k{sub v} (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (0.16 standard deviation) for a recommended k{sub v} (in mixture) = 0.56 k{sub v} (single vapor) for such.
NASA Astrophysics Data System (ADS)
Anders, R.; Chrysikopoulos, C. V.
2004-12-01
Batch experiments were conducted under both static and dynamic conditions to study the effects of temperature and the presence of sand on the inactivation process of viruses. The male--specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1, were used as model viruses for this study. Over 100 oven--baked borosilicate glass bottles with or without Monterey sand were filled with a low--ionic--strength phosphate buffered saline solution containing both bacteriophage and incubated at temperatures of 4o, 15o, or 25oC. The results of the batch experiments indicate that the inactivation process can be represented by a pseudo first-order expression with time--dependent rate coefficients. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, for PRD1, the lower activation energies derived from Arrhenius plots indicate a weaker dependence of the inactivation rate on temperature. Furthermore, the presence of an air--liquid--solid interface in the dynamic batch experiment containing sand produces the greatest damage to specific viral components of PRD1 that are required for infection. These results indicate the use of thermodynamic parameters based on the pseudo first--order inactivation expression allows better prediction of the inactivation of viruses in the environment.
NASA Astrophysics Data System (ADS)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-08-01
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.
Jambrina, P G; Lara, Manuel; Menéndez, M; Launay, J-M; Aoiz, F J
2012-10-28
Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S((1)D) + H(2) → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002)] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009)]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S((1)D).
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; ...
2015-08-04
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less
Kockler, Katrin B; Haehnel, Alexander P; Junkers, Thomas; Barner-Kowollik, Christopher
2016-01-01
Detailed knowledge of the polymerization mechanisms and kinetics of academically and industrially relevant monomers is mandatory for the precision synthesis of tailor-made polymers. The IUPAC-recommended pulsed-laser polymerization-size exclusion chromatography (PLP-SEC) approach is the method of choice for the determination of propagation rate coefficients and the associated Arrhenius parameters for free radical polymerization processes. With regard to specific monomer classes-such as acrylate-type monomers, which are very important from a materials point of view-high laser frequencies of up to 500 Hz are mandatory to prevent the formation of mid-chain radicals and the occurrence of chain-breaking events by chain transfer, if industrially relevant temperatures are to be reached and wide temperature ranges are to be explored (up to 70 °C). Herein the progress and state-of-the-art of high-frequency PLP-SEC with pulse repetition rates of 500 Hz is reported, with a critical collection of to-date investigated 500 Hz data as well as future perspectives for the field.
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-08-04
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.
CHBr3 (bromoform): Revised UV Absorption Spectrum and Atmospheric Photolysis Rates
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Papanastasiou, D.; McKeen, S. A.
2013-12-01
CHBr3 (bromoform) is a short-lived atmospheric trace compound primarily of natural origin that is a source of reactive bromine in both the troposphere and stratosphere. Estimating the impact of CHBr3 on the environment and its transport to the stratosphere requires a thorough understanding of its atmospheric loss processes, which are primarily UV photolysis and reaction with the OH radical. In this presentation, new measurements of the UV absorption spectrum of CHBr3 will be presented. Spectra were measured at wavelengths between 300 and 345 nm at temperatures between 260 and 330 K using cavity ring-down spectroscopy. The present results will be compared with currently recommended values for use in atmospheric modeling taken from Moortgat et al. [The tropospheric chemistry of ozone in the polar regions, edited by H. Niki and K. H. Becker, Springer-Verlag Berlin Heidelberg, 1993]. The discrepancies and impact on CHBr3 photolysis lifetime will be discussed. A parameterization of the CHBr3 UV spectrum for use in atmospheric models will be presented and local photolysis rate calculations used to highlight the impact of the revised cross section data on local lifetimes and the relative importance of photolysis loss versus reaction with the OH radical. The results from the present study will contribute to a better understanding (and accuracy) of estimates of stratospheric ozone loss due to very short-lived brominated substances.
Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.
NASA Astrophysics Data System (ADS)
Kirillov, Andrey
We apply Landau-Zener and Rosen-Zener approximations to obtain analytical formulas for the calculation of quenching rate coefficients of electronically excited states of N2 and O2. This method has allowed us to estimate contributions of intramolecular and intermolecular electron energy transfer processes in the quenching. Using a modified Treanor distribution on vibrational levels for in ground state molecules we have investigated an influence of the vibrational excitation on the rate coefficients. Special attention is paid to energy transfer processes related with the afterglow in laboratory discharges. It is found that there is the influence of vibrational temperature on the coefficients. A dependence of the rate coefficients on translational temperature is studied for few states of N2 and O2. It is shown that for some states there is good agreement of results of theoretical calculations with available experimental data.
Cometto, Pablo M; Daële, Véronique; Idir, Mahmoud; Lane, Silvia I; Mellouki, Abdelwahid
2009-10-08
Kinetics of the reactions of OH radicals and Cl atoms with four saturated esters have been investigated. Rate coefficients for the gas-phase reactions of OH radicals with ethyl propanoate (k(1)), n-propyl propanoate (k(2)), methyl 2-methylpropanoate (k(3)), and ethyl n-butanoate (k(4)) were measured using a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. At (296 +/- 2) K, the rate coefficients obtained by the two methods were in good agreement. Significant curvatures in the Arrhenius plots have been observed in the temperature range 243-372 K for k(1), k(3), and k(4). The rate coefficients for the reactions of the four esters with Cl atoms were determined using the relative rate method at (296 +/- 2) K and atmospheric pressure. The values obtained are presented, compared with the literature values when they exist, and discussed. Reactivity trends and atmospheric implications for these esters are also presented.
Garland, N.L.; Medhurst, L.J.; Nelson, H.H.
1993-12-20
The authors measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF{sub 2}OCHF{sub 2} (E 134), k(T) = (5.4 {+-} 3.5) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}3.1 {+-} 0.4 kcal mol{sup {minus}1})/RT]; CF{sub 3}CH{sub 2}CF{sub 3} (FC 236fa), k(T) = (2.0 {+-} 1.0) x 10{sup {minus}14} cm{sup 3} s{sup {minus}1} exp [({minus}1.8 {+-} 0.3 kcal mol{sup {minus}1})/RT]; CF{sub 3}CHFCHF{sub 2} (FC 236ea), k(T) = (2.0 {+-} 0.9) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.0 {+-} 0.3 kcal mol{sup {minus}1})/RT]; and CF{sub 3}CF{sub 2}CH{sub 2}F (FC 236cb), k(T) = (2.6 {+-} 1.6) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.2 {+-} 0.4 kcal mol{sup {minus}1})/RT]. The measured activation energies (2-3 kcal mol{sup {minus}1}) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm{sup {minus}1} suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not. 17 refs., 4 figs., 3 tabs.
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; She, C. Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.
2009-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(V2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we used a synergy of a ground based lidar and satellite infrared radiometer to make a further step in understanding of the physics of the region. In this study we apply the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado for retrieving the product of k(CO2-O) x [O] from the limb radiances in the 15 micron channel measured by the SABER/TIMED instrument for nearly simultaneous common volume measurements of both instruments within +/-1 degree in latitude, +/-2 degrees in longitude and +/-10 minutes in time. We derive k(CO2-O) and its possible variation range from the retrieved product by utilizing the [O] values measured by the SABER and other instruments.
Miller, J.A.; Parrish, C.; Brown, N.J.
1986-07-17
Using the BAC-MP4 potential surface parameters of Melius and Binkley, we have predicted the thermal rate coefficients for the two reactions: O + HCN ..-->.. NCO + H (a) and O + HCN ..-->.. NH + CO (b). Several levels of approximation are used in the theoretical treatment: a, canonical theory; b, canonical theory with Wigner tunneling correction; c, microcanonical theory (energy conserving); d, microcanonical/J-conservative theory (conserves both energy and angular momentum); e, microcanonical/J-conservative theory with one-dimensional tunneling. At high temperature the available experimental results are predicted accurately by even the crudest theoretical treatment (canonical theory). At lower temperature the theoretical predictions using the basic BAC-MP4 parameters are too low. However, adjustments to the BAC-MP4 energy barriers within their stated error limits lead to satisfactory agreement with experiment over the entire temperature range where experimental results are available (500 to 2500 K). The most important results of the investigation concern the dependence of the predictions on the level of approximation. Each successive refinement in the theory produces larger values of k/sub b/. The details of the theoretical treatment and comparisons with experiment are described in detail.
Saville, Steven L; Qi, Bin; Baker, Jonathon; Stone, Roland; Camley, Robert E; Livesey, Karen L; Ye, Longfei; Crawford, Thomas M; Mefford, O Thompson
2014-06-15
The design and application of magnetic nanoparticles for use as magnetic hyperthermia agents has garnered increasing interest over the past several years. When designing these systems, the fundamentals of particle design play a key role in the observed specific absorption rate (SAR). This includes the particle's core size, polymer brush length, and colloidal arrangement. While the role of particle core size on the observed SAR has been significantly reported, the role of the polymer brush length has not attracted as much attention. It has recently been reported that for some suspensions linear aggregates form in the presence of an applied external magnetic field, i.e. chains of magnetic particles. The formation of these chains may have the potential for a dramatic impact on the biomedical application of these materials, specifically the efficiency of the particles to transfer magnetic energy to the surrounding cells. In this study we demonstrate the dependence of SAR on magnetite nanoparticle core size and brush length as well as observe the formation of magnetically induced colloidal arrangements. Colloidally stable magnetic nanoparticles were demonstrated to form linear aggregates in an alternating magnetic field. The length and distribution of the aggregates were dependent upon the stabilizing polymer molecular weight. As the molecular weight of the stabilizing layer increased, the magnetic interparticle interactions decreased therefore limiting chain formation. In addition, theoretical calculations demonstrated that interparticle spacing has a significant impact on the magnetic behavior of these materials. This work has several implications for the design of nanoparticle and magnetic hyperthermia systems, while improving understanding of how colloidal arrangement affects SAR.
Zhang, Rongfei; Zhang, Liujun; Jiang, Dongsheng; Zheng, Kai; Cui, Yibin; Li, Mei; Wu, Bing; Cheng, Shupei
2014-05-01
Organ coefficients (including kidney, testis, liver and spleen coefficient) and abnormal sperm rate were used in our study to reflect the exposure to the Yangzte River water. The concentrations of total dissolved metals and semi-volatile organic compounds in tap and source water were measured by ICP-OES and GC-MS, respectively. After mice were fed with purified water (CK), Nanjing tap water (NJT) and Nanjing source water (NJS) for 90 day, the individual and organs (including kidney, testis, liver and spleen) of each mouse were weighted. And abnormal sperm types (such as hook less, banana-like form, amorphous, folded and two tails) were determined by microscope. The results showed that significant differences of liver coefficient between experimental group (NJT, NJS) and control group (CK) were observed; furthermore liver coefficient is positive correlation with the concentrations of total dissolved metals. However, no significant differences of abnormal sperm rates between experimental group (NJT, NJS) and control group (CK) were noted. So liver coefficient might be more sensitive than other organ coefficients to reflect the exposure to tap water and source water, while abnormal sperm rate could not be used to reveal the exposure to them.
NASA Astrophysics Data System (ADS)
Pamboundom, Mama; Tchakoua, Théophile; Nsangou, Mama
2016-04-01
In this work, inelastic rotational collision of AlCl with helium was studied. The CCSD(T) method was used for the computation of an accurate two dimensional potential energy surface (PES). In the calculation of the PES, Al-Cl bond was frozen at the experimental value 4.02678 a0. The aug-cc-pVQZ basis sets of Dunning was used throughout the computational process. This basis was completed with a set of 3s3p2d2f1g bond functions placed at mid-distance between the center of mass of AlCl and He atom for a better description of the van der Waals interaction energy. The PES of AlCl-He was found to have a global minimum at (R=8.65 a0, θ=0 degree), a local minimum at (R=7.45 a0, θ=82 degree) and a saddle point at (R=7.9 a0, θ=56 degree). The depths of the minima were 20.2 cm^{-1} and 19.8 cm^{-1} respectively for θ=0 and 84 degrees. The height of the saddle point with respect to the global minimum was 1.3 cm^{-1}. The PES, the result of an analytical fit, was expanded in terms of Legendre polynomials, then used for the evaluation of state-to-state rotational integral cross sections for the collision of AlCl with He in the close coupling approach. The collisional cross sections for the transitions occurring among the 17 first rotational levels of AlCl were calculated for kinetic energies up to 4000 cm^{-1}. Collisional rate coefficients between these rotational levels were computed for low and moderate kinetic temperatures ranging from 30 to 500 K. A propensity rule that favors odd Δ j transitions was found.
Parker, James K; Payne, Walter A; Cody, Regina J; Nesbitt, Fred L; Stief, Louis J; Klippenstein, Stephen J; Harding, Lawrence B
2007-02-15
The rate coefficient has been measured under pseudo-first-order conditions for the Cl+CH3 association reaction at T=202, 250, and 298 K and P=0.3-2.0 Torr helium using the technique of discharge-flow mass spectrometry with low-energy (12-eV) electron-impact ionization and collision-free sampling. Cl and CH3 were generated rapidly and simultaneously by reaction of F with HCl and CH4, respectively. Fluorine atoms were produced by microwave discharge in an approximately 1% mixture of F2 in He. The decay of CH3 was monitored under pseudo-first-order conditions with the Cl-atom concentration in large excess over the CH3 concentration ([Cl]0/[CH3]0=9-67). Small corrections were made for both axial and radial diffusion and minor secondary chemistry. The rate coefficient was found to be in the falloff regime over the range of pressures studied. For example, at T=202 K, the rate coefficient increases from 8.4x10(-12) at P=0.30 Torr He to 1.8x10(-11) at P=2.00 Torr He, both in units of cm3 molecule-1 s-1. A combination of ab initio quantum chemistry, variational transition-state theory, and master-equation simulations was employed in developing a theoretical model for the temperature and pressure dependence of the rate coefficient. Reasonable empirical representations of energy transfer and of the effect of spin-orbit interactions yield a temperature- and pressure-dependent rate coefficient that is in excellent agreement with the present experimental results. The high-pressure limiting rate coefficient from the RRKM calculations is k2=6.0x10(-11) cm3 molecule-1 s-1, independent of temperature in the range from 200 to 300 K.
Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam
2016-09-01
The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.
Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam
2016-01-01
The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169
NASA Technical Reports Server (NTRS)
Torr, D. G.; Orsini, N.
1978-01-01
The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).
NASA Astrophysics Data System (ADS)
Kir'yanov, Alexander V.; Barmenkov, Yuri O.
2006-07-01
We reply to the comment [R. Paschotta and A.C. Tropper, Opt. Express, to be published (2006)] on our recent work reporting a study of the cooperative absorption and emission in heavily-doped Ytterbium silica fibers and mechanisms of the fiber nonlinear transmission coefficient reduction due to the Ytterbium ion-pairs’ effect [A.V. Kir’yanov et al., Opt. Express, 14 (9), 3981 (2006)]. We provide some additional evidences for that our work hypotheses and conclusions.
Heating from free-free absorption and the mass-loss rate of the progenitor stars to supernovae
Björnsson, C.-I.; Lundqvist, P. E-mail: peter@astro.su.se
2014-06-01
An accurate determination of the mass-loss rate of the progenitor stars to core-collapse supernovae is often limited by uncertainties pertaining to various model assumptions. It is shown that under conditions when the temperature of the circumstellar medium is set by heating due to free-free absorption, observations of the accompanying free-free optical depth allow a direct determination of the mass-loss rate from observed quantities in a rather model-independent way. The temperature is determined self-consistently, which results in a characteristic time dependence of the free-free optical depth. This can be used to distinguish free-free heating from other heating mechanisms. Since the importance of free-free heating is quite model dependent, this also makes possible several consistency checks of the deduced mass-loss rate. It is argued that the free-free absorption observed in SN 1993J is consistent with heating from free-free absorption. The deduced mass-loss rate of the progenitor star is, approximately, 10{sup –5} M {sub ☉} yr{sup –1} for a wind velocity of 10 km s{sup –1}.
Mathias, Paul M.; Zheng, Feng; Heldebrant, David J.; Zwoster, Andy; Whyatt, Greg; Freeman, Charles M.; Bearden, Mark D.; Koech, Phillip
2015-09-17
The kinetics of the absorption of CO_{2} into two nonaqueous CO_{2}-binding organic liquid (CO_{2}BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO_{2} loadings were run with a so-called “first-generation” CO_{2}BOL, comprising an independent base and alcohol, and a “second-generation” CO_{2}BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of the k'g value was also observed, which suggests that the physical solubility of CO_{2} in organic liquids may be making CO_{2} mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO_{2} absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2BOL solvents. Previous work established the thermodynamic properties related to CO_{2} capture. The present paper quantitatively studies the kinetics of CO_{2} capture and develops a rate-based model.
Mathias, Paul M; Zheng, Feng; Heldebrant, David J; Zwoster, Andy; Whyatt, Greg; Freeman, Charles M; Bearden, Mark D; Koech, Phillip
2015-11-01
The kinetics of the absorption of CO2 into two nonaqueous CO2-binding organic liquid (CO2 BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO2 loadings were run with a so-called "first-generation" CO2 BOL, comprising an independent base and alcohol, and a "second-generation" CO2 BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g ) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of the k'g value was also observed, which suggests that the physical solubility of CO2 in organic liquids may be making CO2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2 BOL solvents. Previous work established the thermodynamic properties related to CO2 capture. The present paper quantitatively studies the kinetics of CO2 capture and develops a rate-based model.
Papadimitriou, Vassileios C; Burkholder, James B
2016-08-25
Rate coefficients, k(T), for the OH radical + (E)-(CF3)2CFCH═CHF ((E)-1,3,4,4,4-pentafluoro-3-(trifluoromethyl)-1-butene, HFO-1438ezy(E)) gas-phase reaction were measured using pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) between 214 and 380 K and 50 and 450 Torr (He or N2 bath gas) and with a relative rate method at 296 K between 100 and 400 Torr (synthetic air). Over the range of pressures included in this study, no pressure dependence in k(T) was observed. k(296 K) obtained using the two techniques agreed to within ∼3% with (3.26 ± 0.26) × 10(-13) cm(3) molecule(-1) s(-1) (2σ absolute uncertainty) obtained using the PLP-LIF technique. k(T) displayed non-Arrhenius behavior that is reproduced by (7.34 ± 0.30) × 10(-19)T(2) exp[(481 ± 10)/T) cm(3) molecule(-1) s(-1). With respect to OH reactive loss, the atmospheric lifetime of HFO-1438ezy(E) is estimated to be ∼36 days and HFO-1438ezy(E) is considered a very short-lived substance (VSLS) (the actual lifetime will depend on the time and location of the HFO-1438ezy(E) emission). On the basis of the HFO-1438ezy(E) infrared absorption spectrum measured in this work and its estimated lifetime, a radiative efficiency of 0.306 W m(-2) ppb(-1) (well-mixed gas) was calculated and its 100-year time-horizon global warming potential, GWP100, was estimated to be 8.6. CF3CFO, HC(O)F, and CF2O were identified using infrared spectroscopy as stable end products in the oxidation of HFO-1438ezy(E) in the presence of O2. Two additional fluorinated products were observed and theoretical calculations of the infrared spectra of likely degradation products are presented. The photochemical ozone creation potential of HFO-1438ezy(E) was estimated to be ∼2.15.
Shannon, R J; Tomlin, A S; Robertson, S H; Blitz, M A; Pilling, M J; Seakins, P W
2015-07-16
Statistical rate theory calculations, in particular formulations of the chemical master equation, are widely used to calculate rate coefficients of interest in combustion environments as a function of temperature and pressure. However, despite the increasing accuracy of electronic structure calculations, small uncertainties in the input parameters for these master equation models can lead to relatively large uncertainties in the calculated rate coefficients. Master equation input parameters may be constrained further by using experimental data and the relationship between experiment and theory warrants further investigation. In this work, the CH3OCH2 + O2 system, of relevance to the combustion of dimethyl ether (DME), is used as an example and the input parameters for master equation calculations on this system are refined through fitting to experimental data. Complementing these fitting calculations, global sensitivity analysis is used to explore which input parameters are constrained by which experimental conditions, and which parameters need to be further constrained to accurately predict key elementary rate coefficients. Finally, uncertainties in the calculated rate coefficients are obtained using both correlated and uncorrelated distributions of input parameters.
Sen'chuk, V; Adamska, T
1977-01-01
An investigation of the rate of the 2,4-dinitrophenol absorption from the digestive tract into the blood with the use of an antidote and its components (activated charcoal, tannin, magnesium oxide), stach water and paraffin oil demonstrated the activated charcoal and magnesium oxide to be the best antidotes among the ones studied. The antidote exerts a somewhat less marked, but still quite a strong action.
Inhaled histamine increases the rate of absorption of sodium cromoglycate from the lung.
Richards, R; Fowler, C; Simpson, S; Renwick, A G; Holgate, S T
1992-01-01
Since many factors may alter lung epithelial permeability (LEP) to water soluble molecules, the effect of histamine on the absorption and clearance of inhaled sodium cromoglycate was examined in seven mildly asthmatic patients with hyperresponsive airways and eight normal subjects. The subjects underwent histamine challenge to determine the provocative concentration of histamine required to reduce the forced expiratory volume in one second (FEV1) by 20% (PC20) from baseline. On two further visits they inhaled either saline placebo or histamine and 5 min later inhaled an aerosol containing sodium cromoglycate. Measurements of FEV1 were made and blood samples taken for analysis of plasma sodium cromoglycate concentration at intervals for 3 h. In the asthmatic group histamine inhalation led to a 24 +/- 4% reduction in FEV1 but had no effect on the normal subjects. When compared with inhaled saline, histamine increased the initial pulmonary absorption of SCG without influencing the total amount of drug absorbed in both asthmatics and normals. These observations suggest that the pharmacokinetics of inhaled sodium cromoglycate may be altered significantly by inflammatory mediators present at the site of drug absorption from the airways. PMID:1576060
Sajonz, P. ||; Guan-Sajonz, H.; Zhong, G.; Guiochon, G. |
1997-03-01
The extension of the shock layer theory to systems having a slow mass transfer kinetics and a concentration-dependent rate coefficient is discussed. Experiments were carried out with bovine serum albumin on two anion exchanges, TSK-GEL-DEAE-5PW and Resource-Q. The adsorption isotherm data, determined by single-step frontal analysis, could be fitted to simplified bi-Langmuir equations with vary small residuals. A lumped kinetic model (solid film linear driving force model, with rate coefficient k{sub f}) was used to account for the mass transfer kinetics. The profile of each breakthrough curve (BC) was fitted to the curve calculated with this transport model and the rate coefficient k{sub f} obtained by identification. A linear dependence of k{sub f} on the average concentration of the step of the BC was found. The shock layer thicknesses (SLT) calculated for different relative concentrations agreed very well with the experimental results. This justifies the use of the SLT for the direct determination of rate coefficients. 19 refs., 9 figs., 2 tabs.
Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei
2015-01-01
Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.
Wenn, Benjamin; Junkers, Thomas
2016-05-01
For the first time, a 1000 Hz pulse laser has been applied to determine detailed kinetic rate coefficients from pulsed laser polymerization-size exclusion chromatography experiments. For the monomer tert-butyl acrylate, apparent propagation rate coefficients kp (app) have been determined in the temperature range of 0-80 °C. kp (app) in the range of few hundreds to close to 50 000 L·mol(-1) ·s(-1) are determined for low and high pulse frequencies, respectively. The apparent propagation coefficients show a distinct pulse-frequency dependency, which follows an S-shape curve. From these curves, rate coefficients for secondary radial propagation (kp (SPR) ), backbiting (kbb ), midchain radical propagation (kp (tert) ), and the (residual) effective propagation rate (kp (eff) ) can be deduced via a herein proposed simple Predici fitting procedure. For kp (SPR) , the activation energy is determined to be (17.9 ± 0.6) kJ·mol(-1) in excellent agreement with literature data. For kbb , an activation energy of (25.9 ± 2.2) kJ·mol(-1) is deduced.
ERIC Educational Resources Information Center
Liu, Yan; Wu, Amery D.; Zumbo, Bruno D.
2010-01-01
In a recent Monte Carlo simulation study, Liu and Zumbo showed that outliers can severely inflate the estimates of Cronbach's coefficient alpha for continuous item response data--visual analogue response format. Little, however, is known about the effect of outliers for ordinal item response data--also commonly referred to as Likert, Likert-type,…
NASA Astrophysics Data System (ADS)
Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry
2015-09-01
The observed abundances of the methylidyne cation, CH+, in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH+ in the interstellar medium with the most abundant species H, H2, and e-. In this work, we address the destruction process of CH+ by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH+. The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.
NASA Astrophysics Data System (ADS)
Gerhardt, D.
2003-05-01
Using cellular phones the specific absorption rate (SAR) as a physical value must observe established and internationally defined levels to guarantee human protection. To assess human protection it is necessary to guarantee safety under worst-case conditions (especially maximum transmitting power) using cellular phones. To evaluate the exposure to electromagnetic fields under normal terms of use of cellular phones the limitations of the specific absorption rate must be pointed out. In a mobile radio network normal terms of use of cellular phones, i.e. in interconnection with a fixed radio transmitter of a mobile radio network, power control of the cellular phone as well as the antenna diagram regarding a head phantom are also significant for the real exposure. Based on the specific absorption rate, the antenna diagram regarding a head phantom and taking into consideration the power control a new parameter, the typical absorption rate (SARtyp), is defined in this contribution. This parameter indicates the specific absorption rate under average normal conditions of use. Constant radio link attenuation between a cellular phone and a fixed radio transmitter for all mobile models tested was assumed in order to achieve constant field strength at the receiving antenna of the fixed radio transmitter as a result of power control. The typical specific absorption rate is a characteristic physical value of every mobile model. The typical absorption rate was calculated for 16 different mobile models and compared with the absorption rate at maximum transmitting power. The results confirm the relevance of the definition of this parameter (SARtyp) as opposed to the specific absorption rate as a competent and applicable method to establish the real mean exposure from a cellular phone in a mobile radio network. The typical absorption rate provides a parameter to assess electromagnetic fields of a cellular phone that is more relevant to the consumer.
Sutherland, Donna L; Montemezzani, Valerio; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J
2015-03-01
The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.
Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei
2015-01-01
Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613
Graham, Matt W; Shi, Su-Fei; Wang, Zenghui; Ralph, Daniel C; Park, Jiwoong; McEuen, Paul L
2013-01-01
Using transient absorption (TA) microscopy as a hot electron thermometer, we show that disorder-assisted acoustic-phonon supercollisions (SCs) best describe the rate-limiting relaxation step in graphene over a wide range of lattice temperatures (Tl = 5-300 K), Fermi energies (E(F) = ± 0.35 eV), and optical probe energies (~0.3-1.1 eV). Comparison with simultaneously collected transient photocurrent, an independent hot electron thermometer, confirms that the rate-limiting optical and electrical response in graphene are best described by the SC-heat dissipation rate model, H = A(T(e)(3) - T(l)(3)). Our data further show that the electron cooling rate in substrate-supported graphene is twice as fast as in suspended graphene sheets, consistent with SC model prediction for disorder.
NASA Technical Reports Server (NTRS)
Dean, D. C.; Goldstein, J. I.
1984-01-01
The interdiffusion coefficient of FeNi in fcc taenite (gamma) of Fe-Ni and Fe-Ni-0.2 P alloys was measured as a function of temperature between 600 and 900 C. This temperature range is directly applicable to the nucleation and growth of the Widmanstatten pattern in iron meteorites and metal regions of stony and stony-iron meteorites. Diffusion couples were made from FeNi or FeNiP alloys which ensured that the couples were in the taenite phase at the diffusion temperature. The presence or absence of grain boundary diffusion was determined by measuring the Ni profile normal to the existing grain boundaries with the AEM. Ignoring any variation of interdiffusion coefficient with composition, the measured data was plotted versus the reciprocal of the diffusion temperature. The FeNi data generally follow the extrapolated Goldstein, et al. (1965) data from high temperatures. The FeNiP data indicates that small additions of P (0.2 wt%) cause a 3 to 10 fold increase in the FeNi interdifussion coefficient increasing with decreasing temperature. This increase is about the same as that predicted by Narayan and Goldstein (1983) at the Widmanstatten growth temperature.
NASA Astrophysics Data System (ADS)
Daneshvar, L.; Földes, T.; Buldyreva, J.; Vander Auwera, J.
2014-12-01
High resolution Fourier transform spectra of the 21102-00001 band of 12C16O2 near 3340 cm-1 have been recorded and analyzed to extract isolated-line intensities and collisional parameters, and first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The line-mixing coefficients measured for the three branches have also been evaluated using an Energy-Corrected Sudden approach employing a symmetric metric in the Liouville space. These coefficients compare very favorably with the experimental results and estimations with an algorithm available in the literature. Results of straightforward ECS-modeling of complete band shapes have been compared to the recorded spectra and future improvements of this model required at subatmospheric pressures have been outlined.
NASA Astrophysics Data System (ADS)
Cometto, Pablo M.; Daële, Véronique; Idir, Mahmoud; Lane, Silvia I.; Mellouki, Abdelwahid
2009-09-01
Kinetics of the reactions of OH radicals and Cl atoms with four saturated esters have been investigated. Rate coefficients for the gas-phase reactions of OH radicals with ethyl propanoate (k1), n-propyl propanoate (k2), methyl 2-methylpropanoate (k3), and ethyl n-butanoate (k4) were measured using a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. At (296 ± 2) K, the rate coefficients obtained by the two methods were in good agreement. Significant curvatures in the Arrhenius plots have been observed in the temperature range 243-372 K for k1, k3, and k4. The rate coefficients for the reactions of the four esters with Cl atoms were determined using the relative rate method at (296 ± 2) K and atmospheric pressure. The values obtained are presented, compared with the literature values when they exist, and discussed. Reactivity trends and atmospheric implications for these esters are also presented.
Egelhaaf, Hans-Joachim; Rademann, Jörg
2005-01-01
A general algorithm allowing the numerical modeling of the time and space dependence of product formation in spherical reaction volumes is described. The algorithm is described by the complete set of mass balance equations. On the basis of these equations, the effects of the diffusion coefficient, reaction rate, bead size, reagent excess, and packing density of the resin beads on the overall reaction rates are determined for second-order reactions. Experimental data of reaction progress are employed to calculate reaction rates and diffusion coefficients in polymer-supported reactions. In addition, the conditions for shell-like product formation are determined, and various strategies for the radial patterning of resin beads are compared. The effect of diffusion on polymer-supported enzyme-catalyzed reactions of the Michaelis-Menten type is treated, as well. Finally, the effects of typical nonideal solid-phase phenomena, namely, the inhomogeneity of rate constants and the concentration dependence of diffusion coefficients, on overall rates are discussed.
Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois
2010-11-15
A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.
Karr, Jennifer I; Speaker, Tycho J; Kasting, Gerald B
2012-06-28
N,N-diethyl-3-methylbenzamide (DEET) is popular insect repellent which is considered safe and effective, yet is subject to considerable skin absorption. Skin absorption decreases effective repellency since less DEET is available for evaporation. We have investigated the extent to which DEET skin absorption can be reduced and evaporation sustained through encapsulation. DEET permeation through human skin in vitro was measured for an ethanolic solution standard and for two novel topical controlled-release formulations in which the DEET active material was temporarily sequestered within a permeable, charged-film microcapsule. Evaporation measurements were gathered using Tenax TA cartridges and a sampling pump drawing air over the skin. Three formulations were studied: a previously reported microcapsule formulation (Formulation A); a newly-developed microcapsule formulation (Formulation B); and a non-encapsulated ethanol control solution. Formulation B led to a 30% reduction in DEET permeation versus control. The two microcapsule DEET formulations exhibited 36-40% higher cumulative evaporation from the skin than did the control. The vapor trapping measurements in vitro show that Formulation B provided more than 48h of effective evaporation rate for repellency, while Formulation A provided less than 35h and the ethanol control less than 15h. This establishes a technical advantage for the controlled-release approach.
Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji
2013-01-01
Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.
Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara
2011-07-04
When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.
Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu
2014-08-28
The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.
Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua
2014-08-28
The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.
Miller, Thomas M; Friedman, Jeffrey F; Caples, Connor M; Shuman, Nicholas S; Van Doren, Jane M; Bardaro, Michael F; Nguyen, Pho; Zweiben, Cindy; Campbell, Matthew J; Viggiano, A A
2010-06-07
Electron attachment to SOF(2), SOCl(2), SO(2)F(2), SO(2)FCl, and SO(2)Cl(2) was studied with two flowing-afterglow Langmuir-probe apparatuses over the temperature range 300-900 K. Attachment rate coefficients at 300 K are k(a) = 2.6+/-0.8x10(-10)(SOF(2)), 1.8+/-0.5x10(-8)(SOCl(2)), 4.8+/-0.7x10(-10)(SO(2)F(2)), 2.4+/-0.7x10(-9)(SO(2)Cl(2)), and 2.0+/-0.6x10(-7) cm(3) s(-1)(SO(2)FCl). Arrhenius plots of the data imply activation energies of 56+/-22 meV(SOF(2)), 92+/-40(SO(2)F(2)), 44+/-22 meV(SOCl(2)), and 29+/-15 meV(SO(2)Cl(2)). The rate coefficients for SO(2)FCl decrease slightly with temperature, commensurate with the decrease in the capture rate coefficient. Electron attachment to SOF(2) and SO(2)F(2) is nondissociative, while reaction with SOCl(2), SO(2)FCl, and SO(2)Cl(2) is dissociative. Dissociative attachment is dominated by channels arising from S-Cl bond cleavage but also includes a minor channel forming a dihalide product ion. Branching fraction data are reported for the dissociative attachment channels.
NASA Astrophysics Data System (ADS)
Miller, Thomas M.; Friedman, Jeffrey F.; Caples, Connor M.; Shuman, Nicholas S.; Van Doren, Jane M.; Bardaro, Michael F.; Nguyen, Pho; Zweiben, Cindy; Campbell, Matthew J.; Viggiano, A. A.
2010-06-01
Electron attachment to SOF2, SOCl2, SO2F2, SO2FCl, and SO2Cl2 was studied with two flowing-afterglow Langmuir-probe apparatuses over the temperature range 300-900 K. Attachment rate coefficients at 300 K are ka=2.6±0.8×10-10(SOF2), 1.8±0.5×10-8(SOCl2), 4.8±0.7×10-10(SO2F2), 2.4±0.7×10-9(SO2Cl2), and 2.0±0.6×10-7 cm3 s-1(SO2FCl). Arrhenius plots of the data imply activation energies of 56±22 meV(SOF2), 92±40(SO2F2), 44±22 meV(SOCl2), and 29±15 meV(SO2Cl2). The rate coefficients for SO2FCl decrease slightly with temperature, commensurate with the decrease in the capture rate coefficient. Electron attachment to SOF2 and SO2F2 is nondissociative, while reaction with SOCl2, SO2FCl, and SO2Cl2 is dissociative. Dissociative attachment is dominated by channels arising from S-Cl bond cleavage but also includes a minor channel forming a dihalide product ion. Branching fraction data are reported for the dissociative attachment channels.
Demeter, Attila
2014-10-30
The fluorescence quantum yield of 9,10-bis(phenylethynyl)anthracene (BPEA) is almost unity in every examined solvent. Using different hydrocarbons, one can make a convenient and sufficiently accurate experimental test for determination of the extent of the refractive index correction needed in fluorescence quantum yield determination on a given fluorometer. By comparison of the measurements in n-pentane-cis-decaline or n-hexane-toluene solvent pairs, the requirement of the n(2) correction is confirmed for most of the fluorometers; however, for one of the examined pieces of equipment the necessary correction proved to be slightly lower. By excited state's lifetime measurements, the refractive index dependence of the fluorescence rate coefficient was reexamined. At 25 °C for BPEA the relationship is in agreement with Bakhshiev's prediction: the experimentally determined exponent of n in the rate coefficient deriving equation is around 1.32 using different paraffins as solvents. The negative temperature coefficient of the radiative rate in part originates from the temperature dependence of the refractive index, while also a small intrinsic contribution has been found.
Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption
Schwahn, Scott O.
2015-10-01
Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.
High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar
NASA Technical Reports Server (NTRS)
Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.
2009-01-01
High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.
NASA Technical Reports Server (NTRS)
Banks, M.; Bridges, N. T.; Benzit, M.
2005-01-01
Knowledge of the rates at which rocks abrade from the impact of saltating sand provides important input into estimating the age and degree of modification of arid surfaces on Earth and Mars. Previous work has relied on measuring mass loss rates in the field and the laboratory. The susceptibility of rocks and other natural materials has been quantified on a relative scale from laboratory studies.
NASA Astrophysics Data System (ADS)
Phadatare, M. R.; Meshram, J. V.; Gurav, K. V.; Hyeok Kim, Jin; Pawar, S. H.
2016-03-01
Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic thermal induction by NPs. To increase the efficiency of magnetic thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe2O4) has been coupled to a soft material (Ni0.5Zn0.5Fe2O4). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.
NASA Technical Reports Server (NTRS)
Savin, D. W.; Badnell, N. R.; Bartsch, T.; Brandau, C.; Chen, M. H.; Grieser, M.; Gwinner, G.; Hoffknecht, A.; Kahn, S. M.; Linkemann, J.
2000-01-01
Iron L-shell ions (Fe XVII to Fe XXIV) play an important role in determining the line emission and thermal and ionization structures of photoionized gases. Existing uncertainties in the theoretical low temperature dielectronic recombination (DR) rate coefficients for these ions significantly affects our ability to model and interpret observations of photoionized plasmas. To help address this issue, we have initiated a laboratory program to produce reliable low temperature DR rates. Here, we present some of our recent results and discuss some of their astrophysical implications.
Manaka, Mitsuo; Kawasaki, Manabu; Honda, Akira
2000-05-01
The redox condition of the near field is expected to affect the performance of engineered barrier systems. In particular, the oxygen initially existing in the pore spaces of compacted bentonites strongly affects the redox condition of the near field. To assess the influence of the oxygen, research was done to assess its transport parameters in the compacted bentonite and consumption process. To understand the diffusion of dissolved oxygen (DO) in compacted bentonite and to predict the effect of the DO, the measurements of the effective diffusion coefficient of DO in compacted sodium bentonite were made by electro-chemistry. As a result, the following relationship between the dry density of compacted sodium bentonite and the effective diffusion coefficient of DO in compacted sodium bentonite was derived: D{sub e} = 3.0 {+-} 0.5 {times} 10{sup {minus}9} exp({minus}3.7 {+-} 0.2 {times} 10{sup -3}p), where D{sub e} is the effective diffusion coefficient (m{sup 2}s{sup -1}) of DO in compacted sodium bentonite and p is the dry density (kg m{sup -3})of compacted sodium bentonite. The oxygen concentration in the bentonite is expected to be controlled by the oxidation of pyrite as an impurity in the bentonite. To investigate this idea, the rates of pyrite oxidation by DO in compacted sodium bentonite were estimated from the experimental data in pyrite-bentonite systems using the obtained effective diffusion coefficient of DO. The results show that the average of the rate constants of pyrite oxidation by DO in compacted sodium bentonite was 1.16 {+-} 0.35 {times} 10{sup {minus}8}m s{sup {minus}1}, whereas the rate constant in a carbonate-buffered solution (pH = 9.24) was 1.46 {+-} 0.09 {times}10{sup {minus}9}m s{sup {minus}1}.
Heating rates in furnace atomic absorption using the L'vov platform
Koirtyohann, S.R.; Giddings, R.C.; Taylor, H.E.
1984-01-01
Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
2012-01-01
In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.
Dakhlaoui, Hassen
2015-04-07
In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)
Tillmann, Ralf; Saathoff, Harald; Brauers, Theo; Kiendler-Scharr, Astrid; Mentel, Thomas F
2009-04-07
The absolute rate coefficient for the reaction of alpha-pinene with ozone was determined in the temperature range between 243 K and 303 K at atmospheric pressure. In total, 30 experiments were performed in the large (85 m3) temperature-controlled simulation chamber AIDA, where the concentrations of the reactants ozone and alpha-pinene were measured directly. An Arrhenius expression for the alpha-pinene + ozone reaction was derived with a pre-exponential factor of (1.4 +/- 0.4) x 10(-15) cm3 s(-1) and a temperature coefficient of (833 +/- 86) K. This rate coefficient is in good agreement (-5%) with the current IUPAC (IUPAC 2007) recommendation at 298 K. The IUPAC recommendation is significantly larger (+27%), around 243 K where the recommended values were extrapolated from higher temperatures. This finding is relevant for tropical regions where strong updrafts can rapidly transport reactive hydrocarbons like alpha-pinene from the boundary layer into the cold regions of the free troposphere.
Fourmaux, S; Lecherbourg, L; Harmand, M; Servol, M; Kieffer, J C
2007-11-01
Recent progress in high intensity ultrafast laser systems provides the opportunity to produce laser plasma x-ray sources exhibiting broad spectrum and high average x-ray flux that are well adapted to x-ray absorption measurements. In this paper, the development of a laser based x-ray absorption near edge structure (XANES) beamline exhibiting high repetition rate by using the Advanced Laser Light Source (ALLS) facility 100 Hz laser system (100 mJ, 35 fs at 800 nm) is presented. This system is based on a broadband tantalum solid target soft x-ray source and a grazing incidence grating spectrometer in the 1-5 nm wavelength range. To demonstrate the high potential of this laser based XANES technique in condensed matter physics, material science, or biology, measurements realized with several samples are presented: VO2 vanadium L edge, Si3N4 nitrogen K edge, and BPDA/PPD polyimide carbon K edge. The characteristics of this laser based beamline are discussed in terms of brightness, signal to noise ratio, and compared to conventional synchrotron broadband x-ray sources which allow achieving similar measurements. Apart from the very compact size and the relative low cost, the main advantages of such a laser based soft x-ray source are the picosecond pulse duration and the perfect synchronization between this x-ray probe and a laser pulse excitation which open the way to the realization of time resolved x-ray absorption measurements with picosecond range time resolution to study the dynamics of ultrafast processes and phase transition.
Allegood, M.S.; Baba, J.S.
2008-01-01
Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.
Valente, Angelica; Carrillo, Andres E; Tzatzarakis, Manolis N; Vakonaki, Elena; Tsatsakis, Aristidis M; Kenny, Glen P; Koutedakis, Yiannis; Jamurtas, Athanasios Z; Flouris, Andreas D
2015-12-01
We investigated the absorption and metabolism pharmacokinetics of a single L-menthol oral versus skin administration and the effects on human thermogenesis and metabolic rate. Twenty healthy adults were randomly distributed into oral (capsule) and skin (gel) groups and treated with 10 mg kg(-1) L-menthol (ORALMENT; SKINMENT) or control (lactose capsule: ORALCON; water application: SKINCON) in a random order on two different days. Levels of serum L-menthol increased similarly in ORALMENT and SKINMENT (p > 0.05). L-menthol glucuronidation was greater in ORALMENT than SKINMENT (p < 0.05). Cutaneous vasoconstriction, rectal temperature and body heat storage showed greater increase following SKINMENT compared to ORALMENT and control conditions (p < 0.05). Metabolic rate increased from baseline by 18% in SKINMENT and 10% in ORALMENT and respiratory exchange ratio decreased more in ORALMENT (5.4%) than SKINMENT (4.8%) compared to control conditions (p < 0.05). Levels of plasma adiponectin and leptin as well as heart rate variability were similar to control following either treatment (p > 0.05). Participants reported no cold, shivering, discomfort, stress or skin irritation. We conclude that a single L-menthol skin administration increased thermogenesis and metabolic rate in humans. These effects are minor following L-menthol oral administration probably due to faster glucuronidation and greater blood menthol glucuronide levels.
NASA Astrophysics Data System (ADS)
Lu, Mai; Ueno, Shoogo
2012-04-01
The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Scheibe, Timothy D.
2002-10-28
In granular porous media, bacterial transport is often modeled using the advection-dispersion transport equation, modified to account for interactions between the bacteria and grain surfaces (attachment and detachment) using a linear kinetic reaction model. In this paper we examine the relationships among the parameters of the above model in the context of bacterial transport for bioaugmentation. In this context, we wish to quantify the distance to which significant concentrations of bacteria can be transported, as well as the uniformity with which they can be distributed within the subsurface. Because kinetic detachment rates (Kr) are typically much smaller than corresponding attachment rates (Kf), the attachment rate exerts primary control on the distance of bacterial transport. Hydraulic conductivity (K) also plays a significant role because of its direct relationship to the advective velocity and its typically high degree of spatial variability at field scales. Because Kf is related to the velocity, grain size, and porosity of the medium, as is K, we expect that there exists correlation between these two parameters. Previous investigators have assumed a form of correlation between Kf and ln(K) based in part on reparameterization of clean-bed filtration equations in terms of published relations between grain size, effective porosity, and ln(K). The hypotheses examined here are that (1) field-scale relationships between K and Kf can be developed by combining a number of theoretical and empirical results in the context of a heterogeneous aquifer flow model (following a similar approach to previous investigators with some extensions), and (2) correlation between K and Kf will enhance the distance of field-scale bacterial transport in granular aquifers. We test these hypotheses using detailed numerical models and observations of field-scale bacterial transport in a shallow sandy aquifer within the South Oyster Site near Oyster, Virginia, USA.
Corman, Gregory Scot; Dean, Anthony John; Tognarelli, Leonardo; Pecchioli, Mario
2005-06-28
A structure for attaching together or sealing a space between a first component and a second component that have different rates or amounts of dimensional change upon being exposed to temperatures other than ambient temperature. The structure comprises a first attachment structure associated with the first component that slidably engages a second attachment structure associated with the second component, thereby allowing for an independent floating movement of the second component relative to the first component. The structure can comprise split rings, laminar rings, or multiple split rings.
NASA Astrophysics Data System (ADS)
Górecki, Kamil; Bala, Piotr; Cios, Grzegorz; Koziel, Tomasz; Stępień, Milena; Wieczerzak, Krzysztof
2016-07-01
An influence of two different cooling rates on the microstructure and dispersion of the components of high-entropy alloy from Al-Ti-Co-Ni-Fe system has been examined. For investigated alloys, the effective partitioning coefficient has been calculated. This factor indicates the degree of segregation of elements and allows for the specification of the differences between dendrites and interdendritic regions. The obtained results allow for the conclusion that the cooling rate substantially affect the growth of dendrites and the volume fraction of interdendritic regions as well as the partitioning of elements in the alloy. Furthermore, the obtained results made it possible to compare the influence of the cooling rate and the chemical composition on the dispersion of the alloying elements.
Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.
2011-01-01
An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.
Hsu, Irving; Mills, Bernice E.
2010-08-01
A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate of the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Cui, Tie Jun
2005-12-01
An enhancement of the specific absorption rate (SAR) inside a lossy dielectric object has been investigated theoretically based on a slab of left-handed medium (LHM). In order to make an accurate analysis of SAR distribution, a proper Green’s function involved in the LHM slab is proposed, from which an integral equation for the electric field inside the dielectric object is derived. Such an integral equation has been solved accurately and efficiently using the conjugate gradient method and the fast Fourier transform. We have made a lot of numerical experiments on the SAR distributions inside the dielectric object excited by a line source with and without the LHM slab. Numerical experiments show that SAR can be enhanced tremendously when the LHM slab is involved due to the proper usage of strong surface waves, which will be helpful in the potential biomedical applications for hyperthermia. The physical insight for such a phenomenon has also been discussed.
Qassem, M; Kyriacou, P A
2013-05-01
The importance of determining skin hydration has over the years prompt the development of many instruments and methods, specifically designed to assess this parameter or water contents especially in the stratum corneum, and have greatly matured to suit different anatomical sites and measure multiple attributes. Of those, Near Infrared Spectroscopy (NIRS) has gained wide interest as a precise, safe, fast and noninvasive technique for determining skin hydration due to its high sensitivity to hydrogen bonding and ability to measure the amount of water in skin directly using the intensities of overtone and combination bands of OH and HOH water bonds occurring in the NIR region, that are good indicators of the state of skin hydration. This paper reports near infrared spectrophotometric measurements using a highly sophisticated spectrophotometer in the region of 1000-2500 nm to study the water uptake and dehydration properties of skin in vitro using samples of porcine skin. Initial results of pure liquid water and skin samples have clearly displayed the prominent bands associated with water content, and desorption tests have been able to verify changes in these bands associated with water content, although a clear correlation between the rates of weight loss and absorbance loss at various hydration periods has not yet been established. These preliminary results are expected to further explain the relationship between water and skin, and its role within, in hope to aid the future development of a portable instrument based on near infrared spectroscopy that would be capable of directly measuring skin hydration and/or water content in a fast and noninvasive manner.
Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P
2001-10-01
We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian
2015-03-07
Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.
NASA Astrophysics Data System (ADS)
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian
2015-03-01
Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.
Stigliano, Robert; Baker, Ian
2015-01-01
Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545
Li, Yongle; Suleimanov, Yury V; Guo, Hua
2014-02-20
The thermal rate constants of two prototypical insertion-type reactions, namely, N/O + H2 → NH/OH + H, are investigated with ring polymer molecular dynamics (RPMD) on full-dimensional potential energy surfaces using recently developed RPMDrate code. It is shown that the unique ability of the RPMD approach among the existing theoretical methods to capture the quantum effects, e.g., tunneling and zero-point energy, as well as recrossing dynamics quantum mechanically with ring-polymer trajectories leads to excellent agreement with rigorous quantum dynamics calculations. The present result is encouraging for future applications of the RPMD method and the RPMDrate code to complex-forming chemical reactions involving polyatomic reactants.
NASA Astrophysics Data System (ADS)
Urpi, Luca; Rinaldi, Antonio Pio; Rutqvist, Jonny; Cappa, Frédéric; Spiers, Christopher J.
2016-04-01
Poro-elastic stress and effective stress reduction associated with deep underground fluid injection can potentially trigger shear rupture along pre-existing faults. We modeled an idealized CO2 injection scenario, to assess the effects on faults of the first phase of a generic CO2 aquifer storage operation. We used coupled multiphase fluid flow and geomechanical numerical modeling to evaluate the stress and pressure perturbations induced by fluid injection and the response of a nearby normal fault. Slip-rate dependent friction and inertial effects have been aken into account during rupture. Contact elements have been used to take into account the frictional behavior of the rupture plane. We investigated different scenarios of injection rate to induce rupture on the fault, employing various fault rheologies. Published laboratory data on CO2-saturated intact and crushed rock samples, representative of a potential target aquifer, sealing formation and fault gouge, have been used to define a scenario where different fault rheologies apply at different depths. Nucleation of fault rupture takes place at the bottom of the reservoir, in agreement with analytical poro-elastic stress calculations, considering injection-induced reservoir inflation and the tectonic scenario. For the stress state here considered, the first triggered rupture always produces the largest rupture length and slip magnitude, correlated with the fault rheology. Velocity weakening produces larger ruptures and generates larger magnitude seismic events. Heterogeneous faults have been considered including velocity-weakening or velocity strengthening sections inside and below the aquifer, while upper sections being velocity-neutral. Nucleation of rupture in a velocity strengthening section results in a limited rupture extension, both in terms of maximum slip and rupture length. For a heterogeneous fault with nucleation in a velocity-weakening section, the rupture may propagate into the overlying velocity
Van Doren, Jane M; Miller, Thomas M; Williams, Skip; Viggiano, A A
2003-11-28
Attachment of thermal electrons to O3 was studied in 133 Pa He between 300-550 K; the process is extremely inefficient. The rate coefficient increases sharply with temperature from 0.9 to 5 x 10(-11) cm(3) s(-1) (+/-30%) and comparison to kinetic energy measurements suggests internal energy can drive the reaction. These determinations account for competing processes of diffusion, recombination, and electron detachment reactions, and imply that no significant zero-energy resonance cross section exists, contradicting recent electron-beam results that call for substantial revision of ionospheric models.
NASA Astrophysics Data System (ADS)
Dahiya, M. S.; Khasa, S.; Agarwal, A.
2015-04-01
Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).
Altitude Variation of the CO2 (V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Feofilovi, Artem; Kutepov, Alexander; She, Chiao-Yao; Smith, Anne K.; Pesnell, William Dean; Goldberg, Richard A.
2010-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (mlt), the quenching of CO2(N2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12) cubic centimeters per second through 9.0 x 10(exp -12) cubic centimeters per second that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate K(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the colorado state university narrow-band sodium (Na) lidar located at fort collins, colorado (41N, 255E) as ground truth of the saber/timed nearly simultaneous (plus or minus 10 minutes) and common volume (within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an "optimal" value of K(CO2-O) needed to minimize the discrepancy between the simulated 15 mm CO2 radiance and that measured by the saber/timed instrument. The K(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12) cubic centimeters per second at 80 km to 5.2 x 10(exp -12) cubic centimeters pers second for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 mm radiance measurements and on the energy budget of mlt.
Altitude Variation of the CO2(V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Feofilov, A.; Kutepov, A.; She, C.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.
2010-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(v2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12)cu cm/s through 9.0 x 10(exp -12)cu cm/s that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate k(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado (41 N, 255E) as ground truth of the SABER/TIMED nearly simultaneous ( +/-10 minutes) and common volume (within +/-1 degree in latitude, +/-2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an 'optimal" value of k(CO2-O) needed to minimize the discrepancy between the simulated 15 micron CO2 radiance and that measured by the SABER/TIMED instrument. The k(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12)cu cm/s at 80 km to 5.2 x 10(exp -12)cu cm/s for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 pm radiance measurements and on the energy budget of MLT.
Osone, Yoko; Ishida, Atsushi; Tateno, Masaki
2008-07-01
Close correlations between specific leaf area (SLA) and relative growth rate (RGR) have been reported in many studies. However, theoretically, SLA by itself has small net positive effect on RGR because any increase in SLA inevitably causes a decrease in area-based leaf nitrogen concentration (LNCa), another RGR component. It was hypothesized that, for a correlation between SLA and RGR, SLA needs to be associated with specific nitrogen absorption rate of roots (SAR), which counteracts the negative effect of SLA on LNCa. Five trees and six herbs were grown under optimal conditions and relationships between SAR and RGR components were analyzed using a model based on balanced growth hypothesis. SLA varied 1.9-fold between species. Simulations predicted that, if SAR is not associated with SLA, this variation in SLA would cause a47% decrease in LNCa along the SLA gradient, leading to a marginal net positive effect on RGR. In reality, SAR was positively related to SLA, showing a 3.9-fold variation, which largely compensated for the negative effect of SLA on LNCa. Consequently, LNCa values were almost constant across species and a positive SLA-RGR relationship was achieved. These results highlight the importance of leaf-root interactions in understanding interspecific differences in RGR.
Meng, Qingyong; Chen, Jun; Zhang, Dong H
2016-04-21
To fast and accurately compute rate coefficients of the H/D + CH4 → H2/HD + CH3reactions, we propose a segmented strategy for fitting suitable potential energy surface (PES), on which ring-polymer molecular dynamics (RPMD) simulations are performed. On the basis of recently developed permutation invariant polynomial neural-network approach [J. Li et al., J. Chem. Phys. 142, 204302 (2015)], PESs in local configuration spaces are constructed. In this strategy, global PES is divided into three parts, including asymptotic, intermediate, and interaction parts, along the reaction coordinate. Since less fitting parameters are involved in the local PESs, the computational efficiency for operating the PES routine is largely enhanced by a factor of ∼20, comparing with that for global PES. On interaction part, the RPMD computational time for the transmission coefficient can be further efficiently reduced by cutting off the redundant part of the child trajectories. For H + CH4, good agreements among the present RPMD rates and those from previous simulations as well as experimental results are found. For D + CH4, on the other hand, qualitative agreement between present RPMD and experimental results is predicted.
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.
2012-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Chen, Jun; Zhang, Dong H.
2016-04-01
To fast and accurately compute rate coefficients of the H/D + CH4 → H2/HD + CH3 reactions, we propose a segmented strategy for fitting suitable potential energy surface (PES), on which ring-polymer molecular dynamics (RPMD) simulations are performed. On the basis of recently developed permutation invariant polynomial neural-network approach [J. Li et al., J. Chem. Phys. 142, 204302 (2015)], PESs in local configuration spaces are constructed. In this strategy, global PES is divided into three parts, including asymptotic, intermediate, and interaction parts, along the reaction coordinate. Since less fitting parameters are involved in the local PESs, the computational efficiency for operating the PES routine is largely enhanced by a factor of ˜20, comparing with that for global PES. On interaction part, the RPMD computational time for the transmission coefficient can be further efficiently reduced by cutting off the redundant part of the child trajectories. For H + CH4, good agreements among the present RPMD rates and those from previous simulations as well as experimental results are found. For D + CH4, on the other hand, qualitative agreement between present RPMD and experimental results is predicted.
Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto
2014-04-05
The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom.
NASA Technical Reports Server (NTRS)
Georgevic, R. M.
1973-01-01
Closed-form analytic expressions for the time variations of instantaneous orbital parameters and of the topocentric range and range rate of a spacecraft moving in the gravitational field of an oblate large body are derived using a first-order variation of parameters technique. In addition, the closed-form analytic expressions for the partial derivatives of the topocentric range and range rate are obtained, with respect to the coefficient of the second harmonic of the potential of the central body (J sub 2). The results are applied to the motion of a point-mass spacecraft moving in the orbit around the equatorially elliptic, oblate sun, with J sub 2 approximately equal to .000027.
Rate Coefficients for O-Atom Three-Body Recombination in N2 at Temperatures in the Range 170--320 K
NASA Astrophysics Data System (ADS)
Pejakovic, D. A.; Kalogerakis, K. S.; Copeland, R. A.; Huestis, D. L.; Robertson, R. M.; Smith, G. P.
2005-12-01
Three-body recombination of O-atoms, O + O + M → O_2* + M is one of the most important reactions in the upper atmospheres of Earth, Venus, and Mars. It is the only source for O2 nightglow, and the resulting emissions of electronically excited O2 are key tracers for photochemical and wave activity near the mesopause. Thus, knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. However, there exists a large discrepancy in the published estimates for this rate coefficient. For M = N2, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value used in the combustion science community, and 5 × 10-33 cm6s-1, a value adopted in the atmospheric modeling community. We report measurements of the rate coefficient for O-atom recombination with N2 as the third body by two different experimental approaches. In the first experiment, we employ the pulsed output of a F2 laser at 157 nm to achieve high levels of photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the produced O-atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by observing fluorescence at 845 nm, induced by the output of a second laser near 226 nm. In the second experiment, the focused output of a KrF excimer laser at 248 nm is used to achieve complete photodissociation of measured amounts of ozone (0.2--0.9 Torr) in a background of ~500 Torr of N2, producing known initial concentrations of O-atoms. Their population decay is monitored by laser-induced fluorescence excited by the 226 nm radiation from a delayed frequency-doubled OPO system. The reaction cell can be cooled by dry ice or liquid nitrogen baths. The preliminary results of the O2 photolysis experiments give a room-temperature value for the rate coefficient of about 2.8 × 10-33 cm6s-1. The ozone photolysis experiments at 316 K (including effects of laser and kinetic heating of the
The emission coefficient of uranium plasmas
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.
Kok, H. Petra; Ciampa, Silvia; Kroon-Oldenhof, Rianne de; Steggerda-Carvalho, Eva J.; Stam, Gerard van; Zum Vörde Sive Vörding, Paul J.; Stalpers, Lukas J.A.; Geijsen, Elisabeth D.; Bardati, Fernando; Bel, Arjan; Crezee, Johannes
2014-10-01
Purpose: Hyperthermia is the clinical application of heat, in which tumor temperatures are raised to 40°C to 45°C. This proven radiation and chemosensitizer significantly improves clinical outcome for several tumor sites. Earlier studies of the use of pre-treatment planning for hyperthermia showed good qualitative but disappointing quantitative reliability. The purpose of this study was to investigate whether hyperthermia treatment planning (HTP) can be used more reliably for online adaptive treatment planning during locoregional hyperthermia treatments. Methods and Materials: This study included 78 treatment sessions for 15 patients with non-muscle-invasive bladder cancer. At the start of treatments, temperature rise measurements were performed with 3 different antenna settings optimized for each patient, from which the absorbed power (specific absorption rate [SAR]) was derived. HTP was performed based on a computed tomography (CT) scan in treatment position with the bladder catheter in situ. The SAR along the thermocouple tracks was extracted from the simulated SAR distributions. Correlations between measured and simulated (average) SAR values were determined. To evaluate phase steering, correlations between the changes in simulated and measured SAR values averaged over the thermocouple probe were determined for all 3 combinations of antenna settings. Results: For 42% of the individual treatment sessions, the correlation coefficient between measured and simulated SAR profiles was higher than 0.5, whereas 58% showed a weak correlation (R of <0.5). The overall correlation coefficient between measured and simulated average SAR was weak (R=0.31; P<.001). The measured and simulated changes in average SAR after adapting antenna settings correlated much better (R=0.70; P<.001). The ratio between the measured and simulated quotients of maximum and average SARs was 1.03 ± 0.26 (mean ± SD), indicating that HTP can also correctly predict the relative amplitude of
NASA Astrophysics Data System (ADS)
Feofilov, A.; Kutepov, A.; Chu, X.; Smith, A. K.
2012-12-01
Infrared emission in 15 μm CO2 band (I15 μm) is the dominant cooling mechanism in the Earth's mesosphere and lower thermosphere (MLT). On Earth, the magnitude of the MLT cooling affects both the mesopause temperature and height; the stronger the cooling, the colder and higher is the mesopause. This process is also important for the energy budgets of Martian and, especially, Venusian atmospheres, where CO2 cooling compensates for the EUV heating of the dayside upper atmosphere. The I15 μm radiation is used to retrieve vertical temperature distributions T(z) in Earth's atmosphere by a number of satellite instruments. Both the cooling efficiency and I15 μm strongly depend on the rate coefficient of the quenching of the CO2(ν2) vibrational levels by collisions with oxygen atoms. However, there is a factor of 3-4 discrepancy between the laboratory measurements of this rate coefficient, kVT, and its value estimated from the atmospheric observations. In this study, we retrieve kVT in the altitude region 85-105 km from the coincident SABER/TIMED and ground-based lidar observations in different locations by minimizing the difference between measured and simulated broadband limb 15 μm radiation. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 μm radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the "non-thermal" oxygen atoms with CO2 molecules.
Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L.; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L.; Guerin, Bastien
2016-01-01
Purpose A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. Methods The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors (“worst-case SAR”) is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Results Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled “worst-case SAR” in the presence of errors of this magnitude at minor cost of the excitation profile quality. Conclusion Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. PMID:26147916
Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari
2009-05-01
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm.
Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando
2015-01-09
Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m(-1) in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.
NASA Astrophysics Data System (ADS)
Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando
2015-01-01
Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.
Chicheportiche, Alexandre; Benhenni, Malika; Yousfi, Mohammed; Stachoň, Martin; Kalus, René; Gadéa, Florent Xavier
2014-10-07
Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar{sub 2}{sup +} mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar{sub 2}{sup +} mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar{sub 2}{sup +}/Ar collisions is also provided.
Collisional rate coefficients of SiH(X2 Π) open-shell molecule induced by its collision with He(1 S)
NASA Astrophysics Data System (ADS)
Tchakoua, T.; Nsangou, M.; Motapon, O.
2017-01-01
New adiabatic potential energy surfaces (PESs) for 2A‧ and 2A″ states of SiH(X2 Π)-He(1 S) complex have been calculated at the restricted coupled cluster level of theory including single, double and triple excitation [RCCSD(T)]. The RKHS method was used for the analytic fit of these PESs. The resulting PESs were employed later in the close-coupling approach for the computation of the inelastic integral cross sections which take into account the fine-structure of the SiH radical. Scattering calculations, are done on a grid of collision energies large enough to ensure converged state-to-state rate coefficients for the temperature ranging from 8 K up to 300 K.
NASA Astrophysics Data System (ADS)
Ng, Maggie; Mok, Daniel K. W.; Lee, Edmond P. F.; Dyke, John M.
2015-07-01
The Cl + HCOOH reaction is important in the atmosphere, as the chlorine (Cl) atom is an important oxidant, especially in the marine boundary layer, and formic acid (HCOOH) is one of the most abundant organic acids in the troposphere. The reaction surfaces of the two H abstraction channels were computed by second-order unrestricted Møller-Plesset perturbation theory (UMP2) and density functional theory (DFT) calculations. Relative electronic energies were improved to the RCCSD(T)/CBS and UCCSD(T)-F12/CBS levels. The barrier of the C-H hydrogen abstraction channel was found to be lower by about 10 kcal mol-1. Rate coefficients (k) of this channel were calculated at different temperatures at various variational transition state theory (VTST) levels including tunnelling. For single-level direct dynamics VTST calculations, the computed k (2.5 × 10-13 cm3 molecule-1 s-1) using the BMK (Boese and Martin meta hybrid) functional at the highest level (ICVT/SCT) agrees the best with experimental values at 298 K (1.8 and 2.0 × 10-13 cm3 molecule-1 s-1). For dual-level direct dynamics calculations (RCCSD(T)/CBS//MP2 MEP), an adjusted barrier height of 3.1 kcal mol-1 is required to match the ICVT/SCT k with the experimental values. The computed rate coefficients of the Cl + HCOOH reaction is reported for the first time with a temperature range of 200-1500 K. The implications of the results obtained to atmospheric chemistry are discussed.
Measurement of the rate coefficient for collisional removal of O2(X3Sigma- g, upsilon=1) by O(3P).
Kalogerakis, Konstantinos S; Copeland, Richard A; Slanger, Tom G
2005-11-15
We report a laboratory measurement of the rate coefficient for the collisional removal of O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms. In the experiments, 266-nm laser light photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O(2)(a(1)Delta(g)) that is rapidly converted to O(2)(X(3)Sigma(g) (-),upsilon=1-3) in a near-resonant electronic energy-transfer process with ground-state O(2). In parallel, a large amount of O((1)D) atoms is generated that promptly relaxes to O((3)P). Under the conditions of the experiments, only collisions with the photolytically produced O((3)P) atoms control the lifetime of O(2)(X(3)Sigma(g) (-),upsilon=1), because its removal by molecular oxygen at room temperature is extremely slow. Tunable 193-nm laser light monitors the temporal evolution of the O(2)(X(3)Sigma(g) (-),upsilon=1) population by detection of laser-induced fluorescence near 360 nm. The removal rate coefficient for O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is (3.2+/-1.0)x10(-12) cm(3) s(-1) (2sigma) at a temperature of 315+/-15 K (2sigma). This result is essential for the analysis and correct interpretation of the 6.3-mum H(2)O(nu(2)) band emission in the Earth's mesosphere and indicates that the deactivation of O(2)(X (3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is significantly faster than the nominal values recently used in atmospheric models.
Portolés, Antonio; Puerro, Miguel; Terleira, Ana; Rodríguez, Angel; Caturla, Maria-Cruz; Fernández, Nieves; Vargas, Emilio
2003-01-01
Background: Paracetamol is often the analgesic or antipyretic of choice, especially for patients for whom salicylates or other nonsteroidal anti-inflammatory drugs are contraindicated. Objective: The aim of this study was to compare the absorption rate of a new tablet formulation of paracetamol (500 mg) with a reference formulation of paracetamol at the same dose. Methods: This was a single-center, Phase I, open-label, randomized, 2-period, crossover, single-dose, comparative bioavailability clinical trial. During both study periods, healthy volunteers were given a single oral dose of a more hydrophilic test formulation of paracetamol, or a reference formulation. Fifteen plasma samples were obtained to determine paracetamol concentrations and to calculate kinetic parameters. Results: The study participants comprised 24 healthy volunteers (12 men, 12 women; mean [SD] age, 22.8 [1.5] years). The pharmacokinetic parameters calculated for the test versus the reference formulation were as follows: median time to maximum concentration (Tmax), 0.42 versus 0.75 hour; mean (SD) maximum plasma drug concentration (Cmax), 9.85 (2.40) μg/mL versus 8.33 (2.22) μg/mL; and mean (SD) area under the plasma concentration–time curve from time 0 to infinity (AUC0–∞), 30.16 (8.87) μg·h/mL versus 28.49 (8.57) μg · h/mL. The 90% CIs of the ratios were as follows: base e logarithm (Ln)-transformed Cmax, 105.08% to 137.59%; Ln-AUC0–∞, 102.02% to 110.43%; and the difference in Tmax, −0.375 to −0.085 hours. Conclusions: The speed of release and absorption was statistically significantly higher with the test formulation compared with the reference one (evaluated using Tmax, Cmax, and Cmax/AUC parameters). This speed is especially important for a rapid analgesic or antipyretic effect. PMID:24944391
Absorption Coefficient of Alkali Halides. Part I.
1979-03-01
442 LIAY OF ~:S42.~SON T111 ALiSON ,’FlON CU12rCIUNT OF .l~i~ FLUORIVIl: (iviunLvr Iiepcndcncu) (cort .i.j) S’t .~Ue Rne uhr~) ~clo Wvna,br n rt...al. [134j reported their results for the region from 0.170 to 0.197 um and Handi et al. [24] reported results for the range of 35 to 770 pm. Li (331...lection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5 (1968). L, __ 243 26. Vergnat, P., Claudel, J., Handi
NASA Astrophysics Data System (ADS)
Trakic, A.; Jin, J.; Li, M. Y.; McClymont, D.; Weber, E.; Liu, F.; Crozier, S.
2013-11-01
While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field - tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.
Trakic, A; Jin, J; Li, M Y; McClymont, D; Weber, E; Liu, F; Crozier, S
2013-11-01
While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.
Angelone, Leonardo M; Ahveninen, Jyrki; Belliveau, John W; Bonmassar, Giorgio
2010-04-01
Magnetic resonance imaging (MRI) on patients with implanted deep brain stimulators (DBSs) can be hazardous because of the antenna-effect of leads exposed to the incident radio-frequency field. This study evaluated electromagnetic field and specific absorption rate (SAR) changes as a function of lead resistivity on an anatomically precise head model in a 3T system. The anatomical accuracy of our head model allowed for detailed modeling of the path of DBS leads between epidermis and the outer table. Our electromagnetic finite difference time domain (FDTD) analysis showed significant changes of 1 g and 10 g averaged SAR for the range of lead resistivity modeled, including highly conductive leads up to highly resistive leads. Antenna performance and whole-head SAR were sensitive to the presence of the DBS leads only within 10%, while changes of over one order of magnitude were observed for the peak 10 g averaged SAR, suggesting that local SAR values should be considered in DBS guidelines. With rho(lead) = rho(copper) , and the MRI coil driven to produce a whole-head SAR without leads of 3.2 W/kg, the 1 g averaged SAR was 1080 W/kg and the 10 g averaged SAR 120 W/kg at the tip of the DBS lead. Conversely, in the control case without leads, the 1 g and 10 g averaged SAR were 0.5 W/kg and 0.6 W/kg, respectively, in the same location. The SAR at the tip of lead was similar with electrically homogeneous and electrically heterogeneous models. Our results show that computational models can support the development of novel lead technology, properly balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the system battery.
NASA Astrophysics Data System (ADS)
Dimbylow, Peter
2005-09-01
Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.
Angelone, Leonardo M.; Ahveninen, Jyrki; Belliveau, John W.; Bonmassar, Giorgio
2011-01-01
Magnetic resonance imaging (MRI) on patients with implanted deep brain stimulators (DBSs) can be hazardous because of the antenna-effect of leads exposed to the incident radio-frequency field. This study evaluated electromagnetic field and specific absorption rate (SAR) changes as a function of lead resistivity on an anatomically precise head model in a 3T system. The anatomical accuracy of our head model allowed for detailed modeling of the path of DBS leads between epidermis and the outer table. Our electromagnetic finite difference time domain (FDTD) analysis showed significant changes of 1 g and 10 g averaged SAR for the range of lead resistivity modeled, including highly conductive leads up to highly resistive leads. Antenna performance and whole-head SAR were sensitive to the presence of the DBS leads only within 10%, while changes of over one order of magnitude were observed for the peak 10 g averaged SAR, suggesting that local SAR values should be considered in DBS guidelines. With ρlead = ρcopper, and the MRI coil driven to produce a whole-head SAR without leads of 3.2 W/kg, the 1 g averaged SAR was 1080 W/kg and the 10 g averaged SAR 120 W/kg at the tip of the DBS lead. Conversely, in the control case without leads, the 1 g and 10 g averaged SAR were 0.5 W/kg and 0.6 W/kg, respectively, in the same location. The SAR at the tip of lead was similar with electrically homogeneous and electrically heterogeneous models. Our results show that computational models can support the development of novel lead technology, properly balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the system battery. PMID:20335090
Monitoring of MOCVD reactants by UV absorption
Baucom, K.C.; Killeen, K.P.; Moffat, H.K.
1995-07-01
In this paper, we describe how UV absorption measurements can be used to measure the flow rates of metal organic chemical vapor deposition (MOCVD) reactants. This method utilizes the calculation of UV extinction coefficients by measuring the total pressure and absorbance in the neat reactant system. The development of this quantitative reactant flow rate monitor allows for the direct measurement of the efficiency of a reactant bubbler. We demonstrate bubbler efficiency results for TMGa, and then explain some discrepancies found in the TMAl system due to the monomer to dimer equilibrium. Also, the UV absorption spectra of metal organic and hydride MOCVD reactants over the wavelength range 185 to 400 nm are reported.
Anigbogu, Chikodi N; Williams, Daniel T; Brown, David R; Silcox, Dennis L; Speakman, Richard O; Brown, Laura C; Karounos, Dennis G; Randall, David C
2011-01-01
Circadian changes in cardiovascular function during the progression of diabetes mellitus in the diabetes prone rat (BBDP) (n = 8) were studied. Age-matched diabetes-resistant rats (BBDR) served as controls. BP was recorded via telemetry in contiguous 4 hr time periods over 24 hours starting with 12 midnight to 4 am as period zero (P0). Prior to onset of diabetes BP was high at P0, peaked at P2, and then fell again at P3; BP and heart rate (HR) then increased gradually at P4 and leveled off at P5, thereby exhibiting a bipodal rhythm. These patterns changed during long-term diabetes. The cross-correlation coefficient of BP and HR was not significantly different across groups at onset, but it fell significantly at 9 months of duration of diabetes (BBDP: 0.39 ± 0.06; BBDR: 0.65 ± 0.03; P < .05). These results show that changes in circadian cardiovascular rhythms in diabetes mellitus became significant at the late stage of the disease.
Miyabe, Kanji; Guiochon, G. |
1999-07-01
The experimental results of a previous study of the mass transfer kinetics of bovine serum albumin (BSA) in ion-exchange chromatography under nonlinear conditions are reevaluated. The analysis of the concentration dependence of the lumped mass-transfer rate coefficient (k{sub m,L}) provides information on the kinetics of axial dispersion, fluid-to-particle mass transfer, intraparticle mass transfer, and adsorption/desorption. The new analysis shows that the contribution of intraparticle mass transfer is the dominant one. Similar to k{sub m,L}, the surface diffusivity (D{sub s}) of BSA increases with increasing concentration. The linear concentration dependence of k{sub m,L} seems to originate in a similar dependence of D{sub s}. The use of a heterogeneous-surface model for the anion-exchange resin provides an explanation of the positive concentration dependence of D{sub s}. This work illustrates how frontal analysis data can be used for a detailed investigation of the kinetics of mass transfer between the phases of a chromatographic column, in addition to its conventional use in the determination of the thermodynamic characteristics of the phase equilibrium.
Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R
2010-01-01
The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere.
Vranckx, Stijn; Peeters, Jozef; Carl, Shaun
2010-08-28
The rate coefficients for the crucial atmospheric reactions of O((1)D) with H(2)O and H(2), k(1) and k(2), were measured over a wide temperature range using O((1)D) detection based on the chemiluminescence reaction of O((1)D) with C(2)H. Analyzing the decays of the chemiluminescence intensities yielded a value for k(1)(T) of (1.70 x 10(-10)exp[36 K/T]) cm(3) s(-1). Multiplying or dividing k(1)(T) by a factor f(T) = 1.04 exp(5.59(|1 K/T- 1/287|)), gives the 95% confidence limits; our new determination, in good agreement with previous studies, further reduces the uncertainty in k(1). An extended study of k(2) yielded a temperature independent rate constant of (1.35 +/- 0.05) x 10(-10) cm(3) s(-1). This precise value, based on an extended set of determinations with very low scatter, is significantly larger than the current recommendations, as were two other recent k(2) determinations. Secondly, the fractions of O((1)D) quenched to O((3)P) by H(2)O and H(2), k(1b)/k(1) and k(2b)/k(2), were precisely determined from fits to chemiluminescence decays. A temperature-independent value for k(1b)/k(1) of 0.010 +/- 0.003 was found. For the quenching fraction k(2b)/k(2) a value of 0.007 +/- 0.007 was obtained at room temperature. Both determinations are significantly smaller than values and upper limits from previous studies.
Anomalous absorption of laser light on ion acoustic fluctuations
NASA Astrophysics Data System (ADS)
Rozmus, Wojciech; Bychenkov, Valery Yu.
2016-10-01
Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.
NASA Astrophysics Data System (ADS)
Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.
2009-10-01
In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.
NASA Astrophysics Data System (ADS)
Pfrang, Christian; King, Martin D.; Braeckevelt, Mareike; Canosa-Mas, Carlos E.; Wayne, Richard P.
Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO 3, OH, O 3 and O( 3P), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models.
Manaka, Mitsuo
2003-09-15
Immediately after the geological disposal of high-level radioactive waste, the oxygen initially existing in the repository is expected to strongly affect the redox condition of the near field. The oxygen dissolves in the groundwater, is transported by diffusion through it, and is consumed by the oxidation of pyrite as an impurity in bentonite. To assess the influence of the oxygen, this study was conducted to estimate the diffusion of dissolved oxygen (DO) and the rate of pyrite oxidation by DO in compacted purified and crude sodium bentonites (SBs) in more detail than the Manaka et al. study. The effective diffusion coefficient (De) of DO in the compacted purified SB was measured in low ionic strength solution (carbonate buffered solution with pH {approx} 9) using the electrochemical method. The empirical equation between De value of DO and dry density (0.5 x 10{sup 3}-1.8 x 10{sup 3} kg m{sup -3}) of purified SB was obtained as follows:De{sub DO}{sup Kunipia-F} = 8.2 {+-} 1.5 x 10{sup -10}x exp(-2.6 {+-} 0.2 x10{sup -3}{rho},where De{sub DO}{sup Kunipia-F} is the De of DO in compacted purified SB (Kunipia F) (m{sup 2} s{sup -1}) and {rho} is the dry density of the SB (kg m{sup -3}).On the other hand, the De value of DO in the compacted crude SB was estimated using the relationship between De values of tritiated water in compacted purified and crude SBs. The empirical equation between the De value of DO and dry density (0.5 x 10{sup 3}-1.8 x 10{sup 3} kg m{sup -3}) of crude SB was derived as follows:De{sub DO}{sup Kunigel-V1} = 2.04 x 10{sup -9} exp(-2.6 x 10{sup -3}{rho}),where De{sub DO}{sup Kunigel-V1} is the De of DO in compacted crude SB (Kunigel V1) (m{sup 2} s{sup -1}) and {rho} is the dry density of the SB (kg m{sup -3}).The rates of pyrite oxidation by DO were estimated from the experimental data in pyrite-purified SB systems using the obtained De values of DO. The relation between rate constant (k') of pyrite oxidation by DO and dry density ({rho}) of
Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )
1993-09-23
At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Tao, Jiangchuan; Zhao, Chunsheng
2016-04-01
Hygroscopic growth of aerosol particles can significantly affect their single-scattering albedo (ω), and consequently alters the aerosol effect on tropospheric photochemistry. In this study, the impact of aerosol hygroscopic growth on ω and its application to the NO2 photolysis rate coefficient (JNO2) are investigated for a typical aerosol particle population in the North China Plain (NCP). The variations of aerosol optical properties with relative humidity (RH) are calculated using a Mie theory aerosol optical model, on the basis of field measurements of number-size distribution and hygroscopic growth factor (at RH values above 90 %) from the 2009 HaChi (Haze in China) project. Results demonstrate that ambient ω has pronouncedly different diurnal patterns from ω measured at dry state, and is highly sensitive to the ambient RHs. Ambient ω in the NCP can be described by a dry state ω value of 0.863, increasing with the RH following a characteristic RH dependence curve. A Monte Carlo simulation shows that the uncertainty ofω from the propagation of uncertainties in the input parameters decreases from 0.03 (at dry state) to 0.015 (RHs > 90 %). The impact of hygroscopic growth on ω is further applied in the calculation of the radiative transfer process. Hygroscopic growth of the studied aerosol particle population generally inhibits the photolysis of NO2 at the ground level, whereas accelerates it above the moist planetary boundary layer. Compared with dry state, the calculated JNO2 at RH of 98 % at the height of 1 km increases by 30.4 %, because of the enhancement of ultraviolet radiation by the humidified scattering-dominant aerosol particles. The increase of JNO2 due to the aerosol hygroscopic growth above the upper boundary layer may affect the tropospheric photochemical processes and this needs to be taken into account in the atmospheric chemical models.
Comprehensive analysis of the optical Kerr coefficient of graphene
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-25
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.
Comprehensive analysis of the optical Kerr coefficient of graphene
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-25
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less
Comprehensive analysis of the optical Kerr coefficient of graphene
NASA Astrophysics Data System (ADS)
Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo
2016-08-01
We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S -matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.
NASA Astrophysics Data System (ADS)
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
Cabral, R G; Kent, E J; Haines, D M; Erickson, P S
2012-06-01
Forty Holstein dairy calves were blocked by birth date and sex, and randomly assigned to 1 of 4 treatments within each block to elucidate the effect of feeding regimen and sodium bicarbonate (NaHCO₃) supplementation on absorption of IgG from colostrum replacer (CR). Calves received CR containing 191.4 g of IgG fed either in 1 feeding at 0 h (within 45 min of birth), with or without 30 g of NaHCO₃, or in 2 feedings (127.6 g of IgG at 0 h, with or without 20 g of NaHCO₃, and 63.8 g of IgG at 6 h, with or without 10 g of NaHCO₃). The treatments were (1) 1 feeding of CR+0 g of NaHCO₃; (2) 1 feeding of CR+30 g of NaHCO₃; (3) 2 feedings of CR+0 g of NaHCO₃; and (4) 2 feedings of CR+30 g total of NaHCO₃. Only calves born with no dystocia were used on this study. Blood samples were taken at 0, 6, 12, 18, and 24h postpartum and were analyzed for IgG using a radial immunoassay. Results indicated that, individually, feeding regimen and NaHCO₃ treatments had no effect. However, the interaction was significant for 24-h IgG and area under the curve, and showed a trend for apparent efficiency of absorption. Absorption rate data indicated that, for calves fed within 45 min of birth, most IgG absorption occurred in the first 6 h after birth. From 6 to 12 h postpartum, IgG absorption started to decrease; however, IgG absorption remained higher for calves fed in a single feeding than in 2 feedings. These data indicated that NaHCO₃ may increase IgG absorption when calves are fed colostrum in a single feeding but is not beneficial when colostrum is fed in 2 feedings.
Van Hoogdalem, E J; Wackwitz, A T; De Boer, A G; Cohen, A F; Breimer, D D
1989-01-01
1. The effects of sodium octanoate and sodium salicylate on the rectal absorption of cefoxitin were investigated in healthy volunteers. Drug solutions were given either as a bolus or as a zero-order infusion. 2. On rectal infusion sodium octanoate and sodium salicylate both enhanced mean cefoxitin bioavailability (+/- s.d.) from 5.0 +/- 1.2% to 9.1 +/- 1.3% and 9.2 +/- 1.5%, respectively. After rectal bolus delivery octanoate increased the mean cefoxitin bioavailability from 7 +/- 3% to 17 +/- 3%, whereas bolus salicylate did not produce a statistically significant effect. All formulations were well tolerated by the volunteers. 3. It is concluded that both octanoate and salicylate are capable of enhancing rectal cefoxitin absorption in man; rate of delivery seems to be an important factor. PMID:2706190
Acoustic Absorption Characteristics of People.
ERIC Educational Resources Information Center
Kingsbury, H. F.; Wallace, W. J.
1968-01-01
The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.
1987-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)
Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W.; Akens, Margarete K.; Lilge, Lothar; Marjoribanks, Robin S.
2016-01-01
High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948
Werfelli, Ghofran; Halvick, Philippe; Stoecklin, Thierry; Honvault, Pascal; Kerkeni, Boutheïna
2015-09-21
The observed abundances of the methylidyne cation, CH{sup +}, in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH{sup +} in the interstellar medium with the most abundant species H, H{sub 2}, and e{sup −}. In this work, we address the destruction process of CH{sup +} by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH{sup +}. The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K–800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.