Science.gov

Sample records for absorption rate constant

  1. OH reaction rate constants and UV absorption cross-sections of unsaturated esters

    NASA Astrophysics Data System (ADS)

    Teruel, M. A.; Lane, S. I.; Mellouki, A.; Solignac, G.; Le Bras, G.

    Absolute rate coefficients have been determined for the gas-phase reactions of hydroxyl radicals with methyl acrylate ( k1), methyl methacrylate ( k2) and ethyl acrylate ( k3). Experiments were performed using two different techniques, the relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The kinetic data obtained were used to derive the following Arrhenius expressions in the temperature range 253-374 K (in units of cm 3 molecule -1 s -1): k1=(2.0±0.8)×10exp[(553±51)/T], k2=(2.5±0.8)×10exp[(821±55)/T], k3=(2.3±0.8)×10exp[(580±65)/T]. At 298 K, the reaction rate constants obtained by the two methods were in good agreement. In addition, the UV absorption spectra for the three unsaturated esters have been determined at (298±2) K and the absorption cross-sections in the wavelength region 215-298 nm were reported. The results are presented, discussed and used to estimate the atmospheric lifetimes for the studied esters.

  2. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    SciTech Connect

    Garland, N.L.; Medhurst, L.J.; Nelson, H.H.

    1993-12-20

    The authors measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF{sub 2}OCHF{sub 2} (E 134), k(T) = (5.4 {+-} 3.5) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}3.1 {+-} 0.4 kcal mol{sup {minus}1})/RT]; CF{sub 3}CH{sub 2}CF{sub 3} (FC 236fa), k(T) = (2.0 {+-} 1.0) x 10{sup {minus}14} cm{sup 3} s{sup {minus}1} exp [({minus}1.8 {+-} 0.3 kcal mol{sup {minus}1})/RT]; CF{sub 3}CHFCHF{sub 2} (FC 236ea), k(T) = (2.0 {+-} 0.9) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.0 {+-} 0.3 kcal mol{sup {minus}1})/RT]; and CF{sub 3}CF{sub 2}CH{sub 2}F (FC 236cb), k(T) = (2.6 {+-} 1.6) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.2 {+-} 0.4 kcal mol{sup {minus}1})/RT]. The measured activation energies (2-3 kcal mol{sup {minus}1}) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm{sup {minus}1} suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not. 17 refs., 4 figs., 3 tabs.

  3. Determination of the magnetocrystalline anisotropy constant from the frequency dependence of the specific absorption rate in a frozen ferrofluid

    NASA Astrophysics Data System (ADS)

    Mosher, Nathaniel; Perkins-Harbin, Emily; Aho, Brandon; Wang, Lihua; Kumon, Ronald; Rablau, Corneliu; Vaishnava, Prem; Tackett, Ronald; Therapeutic Biomaterials Group Team

    2015-03-01

    Colloidal suspensions of superparamagnetic nanoparticles, known as ferrofluids, are promising candidates for the mediation of magnetic fluid hyperthermia (MFH). In such materials, the dissipation of heat occurs as a result of the relaxation of the particles in an applied ac magnetic field via the Brownian and Neel mechanisms. In order to isolate and study the role of the Neel mechanism in this process, the sample can be frozen, using liquid nitrogen, in order to suppress the Brownian relaxation. In this experiment, dextran-coated Fe3O4 nanoparticles synthesized via co-precipitation and characterized via transmission electron microscopy and dc magnetization are used as MFH mediators over the temperature range between -70 °C to -10 °C (Brownian-suppressed state). Heating the nanoparticles using ac magnetic field (amplitude ~300 Oe), the frequency dependence of the specific absorption rate (SAR) is calculated between 150 kHz and 350 kHz and used to determine the magnetocrystalline anisotropy of the sample. We would like to thank Fluxtrol, Inc. for their help with this project

  4. Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-07-21

    We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 10(16) exp(-42 200 K/T) cm(3)/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data. PMID:27380878

  5. High-accuracy measurements of OH(•) reaction rate constants and IR and UV absorption spectra: ethanol and partially fluorinated ethyl alcohols.

    PubMed

    Orkin, Vladimir L; Khamaganov, Victor G; Martynova, Larissa E; Kurylo, Michael J

    2011-08-11

    Rate constants for the gas phase reactions of OH(•) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(•) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.

  6. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    SciTech Connect

    Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  7. Photochemical properties of trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3): OH reaction rate constant, UV and IR absorption spectra, global warming potential, and ozone depletion potential.

    PubMed

    Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J

    2014-07-17

    Measurements of the rate constant for the gas-phase reactions of OH radicals with trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3) were performed using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The reaction rate constant exhibits a noticeable curvature of the temperature dependence in the Arrhenius plot, which can be represented by the following expression: kt-CFP (220-370 K) = 1.025 × 10(-13) × (T/298)(2.29) exp(+384/T) cm(3 )molecule(-1) s(-1). The room-temperature rate constant was determined to be kt-CFP (298 K) = (3.29 ± 0.10) × 10(-13) cm(3) molecule(-1) s(-1), where the uncertainty includes both two standard errors (statistical) and the estimated systematic error. For atmospheric modeling purposes, the rate constant below room temperature can be represented by the following expression: kt-CFP (220-298 K) = (7.20 ± 0.46) × 10(-13) exp[-(237 ± 16)/T] cm(3) molecule(-1) s(-1). There was no difference observed between the rate constants determined at 4 kPa (30 Torr) and 40 kPa (300 Torr) at both 298 and 370 K. The UV and IR absorption cross sections of this compound were measured at room temperature. The atmospheric lifetime, global warming potential, and ozone depletion potential of trans-CHCl═CHCF3 were estimated. PMID:24955760

  8. Determination of the rate constants of molecular processes regulating the level of induced absorption in a laser based on an aqueous-micellar solution of rhodamine 6G with lamp pumping

    SciTech Connect

    Levin, M.B.; Snegov, M.I.; Cherkasov, A.S.

    1987-03-01

    A method of determining the average lifetime tau of the products responsible for inverse induced absorption in aqueous--micellar solutions of rhodamine 6G (R6G) on lamp pumping based on a comparison of threshold intensities of excitation (W/sub th/) in the resonators of a laser with a different Q is proposed. Using the value of tau found (0.2 ..mu..sec) and experimental data on the change in W/sub th/ with the concentration of cyclooctatetraene (COT) added to the solution the rate constant of quenching of the absorbing products by COT molecules (K/sub q/ = 2.6 x 10/sup 7/ M/sup -1/sec/sup -1/) was determined. In the assumption that the absorbing products are triplet dye molecules, the value of the rate constant of interconversion (K/sub 32/) of R6G into an aqueous--micellar solution (K/sub 32/ = 1.3 x 10/sup 7/ sec/sup -1/) was determined. A comparison was made of the values of the constants found with the corresponding values known from the literature.

  9. Quasar absorption lines with a nonzero cosmological constant

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.; Ikeuchi, Satoru

    1992-01-01

    Quasar absorption lines in flat universes with nonzero cosmological constant Lambda are examined and compared with more conventional zero Lambda universes. Various evolution effects for intergalactic absorbers and the observed number density evolution of each absorption system are examined in order to discriminate between evolution effects and the cosmological models. An interesting interaction between Lambda effects and cosmic absorption phenomena is explored. Equations describing IGM absorption statistics are developed for nonzero Lambda cosmologies, both for unevolving absorber populations and some of the more popular physical models for the IGM and intergalactic clouds which include the effects of the absorber evolution.

  10. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  11. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  12. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  13. Rate constants, timescales, and free energy barriers

    NASA Astrophysics Data System (ADS)

    Salamon, Peter; Wales, David; Segall, Anca; Lai, Yi-An; Schön, J. Christian; Hoffmann, Karl Heinz; Andresen, Bjarne

    2016-01-01

    The traditional connection between rate constants and free energy landscapes is extended to define effective free energy landscapes relevant on any chosen timescale. Although the Eyring-Polanyi transition state theory specifies a fixed timescale of τ=h/kBT}, we introduce instead the timescale of interest for the system in question, e.g. the observation time. The utility of drawing such landscapes using a variety of timescales is illustrated by the example of Holliday junction resolution. The resulting free energy landscapes are easier to interpret, clearly reveal observation time dependent effects like coalescence of short-lived states, and reveal features of interest for the specific system more clearly.

  14. Theophylline: constant-rate infusion predictions.

    PubMed

    Mesquita, C A; Sahebjami, H; Imhoff, T; Thomas, J P; Myre, S A

    1984-01-01

    This study was undertaken to evaluate a method of prospectively estimating appropriate aminophylline infusion rates in acutely ill, hospitalized patients with bronchospasm. Steady-state serum theophylline concentrations (Css), clearances (Cl), and half-lives (t1/2) were estimated by the Chiou method using serum concetrantions obtained 1 and 6 h after the start of a constant-rate intravenous aminophylline infusion in 10 male patients averaging 57 years of age. Using an enzyme-multiplied immunoassay (EMIT) system for theophylline analysis, pharmacokinetic estimations were excellent for Css (r = 0.9103, p less than 0.01) and Cl (r = 0.9750, p less than 0.01). The mean estimation errors were 9.4% (range 0.8-21.5) for Css and 12.3% (range 1.3-28.0) for Cl. There was no correlation between patient age and Cl. This method is useful for rapidly individualizing aminophylline therapy in patients with acute bronchospasm. PMID:6740734

  15. Constant optimization of oral drug absorption kinetics in the compartment absorption and transit models using particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Prabowo, K.; Sumaryada, T.; Kartono, A.

    2016-01-01

    Simulation of predictive modeling oral drug namely Compartment Absorption and Transit (CAT) using Particle Swarm Optimization (PSO) algorithm has been performed. This research will be carried out optimization of kinetic constant value oral drug use PSO algorithm to obtain the best global transport constant values for CAT equation that can predict drug concentration in plasma. The value of drug absorption rate constant for drug atenolol 25 mg is k10, k12, k21, k13 and k31 with each value is 0.8562, 0.3736, 0.2191, 0.4334 and 1.000 have been obtained thus raising the value of the coefficient of determination of a model CAT. From the experimental data plasma drug concentrations used are Atenolol, the coefficient of determination (R2) obtained from simulations atenolol 25 mg (PSO) was 81.72% and 99.46%. Better correlation between the dependent variable as the drug concentration and explanatory variables such as mass medication, plasma volume, and rate of absorption of the drug has increased in CAT models using PSO algorithm. Based on the results of CAT models fit charts can predict drug concentration in plasma.

  16. Microfabricated microengine with constant rotation rate

    SciTech Connect

    Romero, L.A.; Dickey, F.M.

    1999-09-21

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  17. Microfabricated microengine with constant rotation rate

    DOEpatents

    Romero, Louis A.; Dickey, Fred M.

    1999-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  18. Biased Brownian dynamics for rate constant calculation.

    PubMed

    Zou, G; Skeel, R D; Subramaniam, S

    2000-08-01

    An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampling of trajectories is then biased, but the sampling is unbiased when the trajectory outcomes are multiplied by their weights. With a suitable choice of the biasing force, more reacted trajectories are sampled. As a consequence, the variance of the estimate is reduced. In our test case, biased Brownian dynamics gives a sevenfold improvement in central processing unit (CPU) time with the choice of a simple centripetal biasing force.

  19. Biased Brownian dynamics for rate constant calculation.

    PubMed

    Zou, G; Skeel, R D; Subramaniam, S

    2000-08-01

    An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampling of trajectories is then biased, but the sampling is unbiased when the trajectory outcomes are multiplied by their weights. With a suitable choice of the biasing force, more reacted trajectories are sampled. As a consequence, the variance of the estimate is reduced. In our test case, biased Brownian dynamics gives a sevenfold improvement in central processing unit (CPU) time with the choice of a simple centripetal biasing force. PMID:10919998

  20. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  2. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  3. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...

  4. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...

  5. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...

  6. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...

  7. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...

  8. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  9. Measurements of the rate constant of HOsub2 + NOsub2 + Nsub2 --> HOsub2NOsub2 + Nsub2 using near-infrared wavelength-modulation spectroscopy and UV-visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Christensen, L. E.; Okumura, M.; Sander, S. P.; Friedl, R. R.; Miller, C. E.; Sloan, J. J.

    2004-01-01

    Rate coefficients for the reaction HO(sub 2)+ NO(sub 2) + N(sub 2) --> HO(sub 2)NO(sub 2) + N(sub 2) (reaction 1) were measured using simultaneous near-IR and UV spectroscopy from 220 to 298 K and from 45 to 200 Torr.

  10. Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)

    2001-01-01

    Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.

  11. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part I: theory.

    PubMed

    Broeckhoven, K; Verstraeten, M; Choikhet, K; Dittmann, M; Witt, K; Desmet, G

    2011-02-25

    We report on a general theoretical assessment of the potential kinetic advantages of running LC gradient elution separations in the constant-pressure mode instead of in the customarily used constant-flow rate mode. Analytical calculations as well as numerical simulation results are presented. It is shown that, provided both modes are run with the same volume-based gradient program, the constant-pressure mode can potentially offer an identical separation selectivity (except from some small differences induced by the difference in pressure and viscous heating trajectory), but in a significantly shorter time. For a gradient running between 5 and 95% of organic modifier, the decrease in analysis time can be expected to be of the order of some 20% for both water-methanol and water-acetonitrile gradients, and only weakly depending on the value of V(G)/V₀ (or equivalently t(G)/t₀). Obviously, the gain will be smaller when the start and end composition lie closer to the viscosity maximum of the considered water-organic modifier system. The assumptions underlying the obtained results (no effects of pressure and temperature on the viscosity or retention coefficient) are critically reviewed, and can be inferred to only have a small effect on the general conclusions. It is also shown that, under the adopted assumptions, the kinetic plot theory also holds for operations where the flow rate varies with the time, as is the case for constant-pressure operation. Comparing both operation modes in a kinetic plot representing the maximal peak capacity versus time, it is theoretically predicted here that both modes can be expected to perform equally well in the fully C-term dominated regime (where H varies linearly with the flow rate), while the constant pressure mode is advantageous for all lower flow rates. Near the optimal flow rate, and for linear gradients running from 5 to 95% organic modifier, time gains of the order of some 20% can be expected (or 25-30% when accounting for

  12. Theoretical Evaluation of the Transient Response of Constant Head and Constant Flow-Rate Permeability Tests

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.

    1998-01-01

    A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.

  13. VMATc: VMAT with constant gantry speed and dose rate

    NASA Astrophysics Data System (ADS)

    Peng, Fei; Jiang, Steve B.; Romeijn, H. Edwin; Epelman, Marina A.

    2015-04-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units.

  14. Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.

    PubMed

    Catlow, C Richard A

    2016-08-01

    Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources.

  15. Computer Calculation of First-Order Rate Constants

    ERIC Educational Resources Information Center

    Williams, Robert C.; Taylor, James W.

    1970-01-01

    Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…

  16. Oxygen uptake in maximal effort constant rate and interval running.

    PubMed

    Pratt, Daniel; O'Brien, Brendan J; Clark, Bradley

    2013-01-01

    This study investigated differences in average VO2 of maximal effort interval running to maximal effort constant rate running at lactate threshold matched for time. The average VO2 and distance covered of 10 recreational male runners (VO2max: 4158 ± 390 mL · min(-1)) were compared between a maximal effort constant-rate run at lactate threshold (CRLT), a maximal effort interval run (INT) consisting of 2 min at VO2max speed with 2 minutes at 50% of VO2 repeated 5 times, and a run at the average speed sustained during the interval run (CR submax). Data are presented as mean and 95% confidence intervals. The average VO2 for INT, 3451 (3269-3633) mL · min(-1), 83% VO2max, was not significantly different to CRLT, 3464 (3285-3643) mL · min(-1), 84% VO2max, but both were significantly higher than CR sub-max, 3464 (3285-3643) mL · min(-1), 76% VO2max. The distance covered was significantly greater in CLRT, 4431 (4202-3731) metres, compared to INT and CR sub-max, 4070 (3831-4309) metres. The novel finding was that a 20-minute maximal effort constant rate run uses similar amounts of oxygen as a 20-minute maximal effort interval run despite the greater distance covered in the maximal effort constant-rate run. PMID:24288501

  17. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    PubMed

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  18. Rate constant for the reaction NH2 + NO from 216 to 480 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Brobst, W. D.; Nava, D. F.; Borkowski, R. P.; Michael, J. V.

    1982-01-01

    The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically.

  19. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  20. Reaction rate constant for radiative association of CF(.).

    PubMed

    Öström, Jonatan; Bezrukov, Dmitry S; Nyman, Gunnar; Gustafsson, Magnus

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C(+)) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1(1)Π → X(1)Σ(+) and rovibrational transitions on the X(1)Σ(+) and a(3)Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit-Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius-Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10-250 K, the rate constant is about 10(-21) cm(3) s(-1), rising toward 10(-16) cm(3) s(-1) for a temperature of 30,000 K.

  1. Why Not a Constant Early Lunar Impact Rate?

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.

    1985-01-01

    Two distinct episodes of impacting are recorded on the Moon's surface. An early episode marked by an intense barrage that included basin-forming projectiles ended about 3.8 aeons ago when the Orientale basin was created. The second episode, after 3.2 or 3.3 aeons ago, was marked by a much lower impact rate. These very different rates are separated by a short transition period during the Late Imbrian Epoch. It is found that a constant preImbrian impact rate is consistent with all the relevant observations and with the following lunar historical scenario: (1) crustal solidification between about 4.3 and 4.25 aeons ago; (2) formation of Procellarum, South Pole-Aitken, about 22 now-obliterated basins, and about 2,850 now-obliterated 30 to 300 km craters between 4.25 and 4.1 aeons ago; and (3) formation of 39 still-preserved basins, 1,200 still-perserved craters, and 2,200 now-obliterated craters between 4.1 and 3.85 aeons ago. At the constant rate, the amount of mass that impacted the Moon since crustal solidification would not greatly exceed the amount that has left a permanent visible record.

  2. Divided Saddle Theory: A New Idea for Rate Constant Calculation.

    PubMed

    Daru, János; Stirling, András

    2014-03-11

    We present a theory of rare events and derive an algorithm to obtain rates from postprocessing the numerical data of a free energy calculation and the corresponding committor analysis. The formalism is based on the division of the saddle region of the free energy profile of the rare event into two adjacent segments called saddle domains. The method is built on sampling the dynamics within these regions: auxiliary rate constants are defined for the saddle domains and the absolute forward and backward rates are obtained by proper reweighting. We call our approach divided saddle theory (DST). An important advantage of our approach is that it requires only standard computational techniques which are available in most molecular dynamics codes. We demonstrate the potential of DST numerically on two examples: rearrangement of alanine-dipeptide (CH3CO-Ala-NHCH3) conformers and the intramolecular Cope reaction of the fluxional barbaralane molecule.

  3. Quantum instanton approximation for thermal rate constants of chemical reactions

    NASA Astrophysics Data System (ADS)

    Miller, William H.; Zhao, Yi; Ceotto, Michele; Yang, Sandy

    2003-07-01

    A quantum mechanical theory for chemical reaction rates is presented which is modeled after the [semiclassical (SC)] instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the (SC approximation to the) Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by the quantum Boltzmann operator, exp(-βĤ). Since a calculation of the quantum Boltzmann operator is feasible for quite complex molecular systems (by Monte Carlo path integral methods), having an accurate rate theory that involves only the Boltzmann operator could be quite useful. The application of this quantum instanton approximation to several one- and two-dimensional model problems illustrates its potential; e.g., it is able to describe thermal rate constants accurately (˜10-20% error) from high to low temperatures deep in the tunneling regime, and applies equally well to asymmetric and symmetric potentials.

  4. Balanced anesthesia and constant-rate infusions in horses.

    PubMed

    Valverde, Alexander

    2013-04-01

    Balanced anesthetic techniques are commonly used in equine patients, and include the combination of a volatile anesthetic with at least one injectable anesthetic throughout the maintenance period. Injectable anesthetics used in balanced anesthesia include the α2-agonists, lidocaine, ketamine, and opioids, and those with muscle-relaxant properties such as benzodiazepines and guaifenesin. Administration of these injectable anesthetics is best using constant-rate infusions based on the pharmacokinetics of the drug, which allows steady-state concentrations and predictable pharmacodynamic actions. This review summarizes the different drug combinations used in horses, and provides calculated recommended doses based on the pharmacokinetics of individual drugs. PMID:23498047

  5. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  6. Extracting kinetic rate constants from surface plasmon resonance array systems.

    PubMed

    Rich, Rebecca L; Cannon, Michelle J; Jenkins, Jerry; Pandian, Prabhakar; Sundaram, Shankar; Magyar, Rachelle; Brockman, Jennifer; Lambert, Jeremy; Myszka, David G

    2008-02-01

    Surface plasmon resonance imaging systems, such as Flexchip from Biacore, are capable of monitoring hundreds of reaction spots simultaneously within a single flow cell. Interpreting the binding kinetics in a large-format flow cell presents a number of potential challenges, including accounting for mass transport effects and spot-to-spot sample depletion. We employed a combination of computer simulations and experimentation to characterize these effects across the spotted array and established that a simple two-compartment model may be used to accurately extract intrinsic rate constants from the array under mass transport-limited conditions. Using antibody systems, we demonstrate that the spot-to-spot variability in the binding kinetics was <9%. We also illustrate the advantage of globally fitting binding data from multiple spots within an array for a system that is mass transport limited.

  7. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-12-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of 0.4 ≤ zabs ≤ 2.3 observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of Δα/α = (0.22 ± 0.23) × 10-5, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular, we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of Δα/α measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of Δα/α measurements, and in addition causes Δα/α error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.

  8. Determination of the apparent transport constants for urate absorption in the rat proximal tubule.

    PubMed

    Sansom, S C; Senekjian, H O; Knight, T F; Babino, H; Steplock, D; Weinman, E J

    1981-05-01

    Using continuous-flow luminal microperfusion techniques, the influence of the intraluminal urate concentration on urate absorption was determined in the rat proximal tubule. When the estimated contribution of passive permeation was accounted for, the "active" component of urate absorption demonstrated saturation kinetics. The apparent Km was 0.17 mM and the Vmax 0.31 pmol.min-1.mm-1. These transport constants were similar when derived from either a water-absorbing or steady-state equilibrium perfusion solution. The reflection coefficient was determined in studies employing the techniques of simultaneous capillary and luminal microperfusion. Both perfusion solutions contained p-chloromercuribenzoate to inhibit active urate transport. In the presence or absence of an osmole gradient imposed across the tubule, the reflection coefficient for urate averaged 0.94. These studies provide evidence that urate absorption in the rat proximal tubule is a carrier-mediated process. They also provide independent confirmation of the passive flux coefficient derived in prior studies. Finally, the results suggest that solvent drag would have little effect on urate absorption.

  9. Rate Constant for the OH + CO Reaction at Low Temperatures.

    PubMed

    Liu, Yingdi; Sander, Stanley P

    2015-10-01

    Rate constants for the reaction of OH + CO → products (1) have been measured using laser photolysis/laser-induced fluorescence (LP/LIF) over the temperature range 193–296 K and at pressures of 50–700 Torr of Ar and N2. The reaction was studied under pseudo-first-order conditions, monitoring the decay of OH in the presence of a large excess of CO. The rate constants can be expressed as a combination of bimolecular and termolecular components. The bimolecular component was found to be temperature-independent with an expression given by kbi(T) = (1.54 ± 0.14) × 10(–13)[e(–(13±17)/T)] cm(3) molecule(–1) s(–1), with an error of one standard deviation. The termolecular component was fitted to the expression, kter = k0(T)[M]/[1 + (k0(T)[M]/k∞(T)] × 0.6({1+[log10(k0(T)[M]/k∞(T))]2}−1) where k0(T) = k0(300)(T/300)(−n) and k∞(T) = k∞(300)(T/300)(−m). The parameters for k0(T) were determined to be k0(300) = (6.0±0.5) × 10(−33) cm(6) molecule(–2) s(–1) in N2 and k0(300) = (3.4 ± 0.3) × 10(–33) cm(6) molecule(–2) s(–1) in Ar, with n = 1.9±0.5 and 2.0±0.4 in N2 and Ar, respectively. These parameters were determined using k0(T) and m from the NASA kinetics data evaluation (JPL Publication No. 10-6) since the experimental pressure range was far from the high-pressure limit. Addition of low concentrations of O2 had no discernible effect on the mechanism of the OH + CO reaction but resulted in secondary reactions which regenerated OH.

  10. Study on Absorption Heat transfer of Two-Dimensionally Constant Curvature Surface Tubes-1

    NASA Astrophysics Data System (ADS)

    Ogawa, Kiyoshi; Isshiki, Naotsugu

    In order to get better heat transfer coefficient of absorption in actual apparatus, it is considered that the wettability of the surface should be high, and that the thickness of liquid film should not be too thin or too thick all over the surface. So, new conception of two-dimensionally constant curvature surface (CCS) for absorption heat transfer has been introduced for the first time by the authors. First, theoretical CCS section curves of CCS tubes were calculated, and some of them were manufactured for the test. The wettability of CCS is tested and compared to the other finned tubes (radial fin tubes of triangular and rectangular profiles). As may be seen from photographs and compared to the other finned tubes, on the CCS surface, the thickness of liquid has shown to be even all over the surface without creating paticulary thick or thin place, so that, liquid films are very wettable on the CCS surface.

  11. Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Churchill, C. W.; Prochaska, J. X.

    2001-11-01

    Comparison of quasar (QSO) absorption spectra with laboratory spectra allows us to probe possible variations in the fundamental constants over cosmological time-scales. In a companion paper we present an analysis of Keck/HIRES spectra and report possible evidence suggesting that the fine-structure constant, α, may have been smaller in the past: [formmu2]Δα/α=(-0.72+/-0.18)×10-5 over the redshift range [formmu3]0.5

  12. Measurement of both the equilibrium constant and rate constant for electronic energy transfer by control of the limiting kinetic regimes.

    PubMed

    Vagnini, Michael T; Rutledge, W Caleb; Wagenknecht, Paul S

    2010-02-01

    Electronic energy transfer can fall into two limiting cases. When the rate of the energy transfer back reaction is much faster than relaxation of the acceptor excited state, equilibrium between the donor and acceptor excited states is achieved and only the equilibrium constant for the energy transfer can be measured. When the rate of the back reaction is much slower than relaxation of the acceptor, the energy transfer is irreversible and only the forward rate constant can be measured. Herein, we demonstrate that with trans-[Cr(d(4)-cyclam)(CN)(2)](+) as the donor and either trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) or trans-[Cr(cyclam)(CN)(2)](+) as the acceptor, both limits can be obtained by control of the donor concentration. The equilibrium constant and rate constant for the case in which trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) is the acceptor are 0.66 and 1.7 x 10(7) M(-1) s(-1), respectively. The equilibrium constant is in good agreement with the value of 0.60 determined using the excited state energy gap between the donor and acceptor species. For the thermoneutral case in which trans-[Cr(cyclam)(CN)(2)](+) is the acceptor, an experimental equilibrium constant of 0.99 was reported previously, and the rate constant has now been measured as 4.0 x 10(7) M(-1) s(-1).

  13. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J.V.

    2009-05-15

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three

  14. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-05-01

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the

  15. Isothermal titration calorimetry determination of individual rate constants of trypsin catalytic activity.

    PubMed

    Aguirre, César; Condado-Morales, Itzel; Olguin, Luis F; Costas, Miguel

    2015-06-15

    Determination of individual rate constants for enzyme-catalyzed reactions is central to the understanding of their mechanism of action and is commonly obtained by stopped-flow kinetic experiments. However, most natural substrates either do not fluoresce/absorb or lack a significant change in their spectra while reacting and, therefore, are frequently chemically modified to render adequate molecules for their spectroscopic detection. Here, isothermal titration calorimetry (ITC) was used to obtain Michaelis-Menten plots for the trypsin-catalyzed hydrolysis of several substrates at different temperatures (278-318K): four spectrophotometrically blind lysine and arginine N-free esters, one N-substituted arginine ester, and one amide. A global fitting of these data provided the individual rate constants and activation energies for the acylation and deacylation reactions, and the ratio of the formation and dissociation rates of the enzyme-substrate complex, leading also to the corresponding free energies of activation. The results indicate that for lysine and arginine N-free esters deacylation is the rate-limiting step, but for the N-substituted ester and the amide acylation is the slowest step. It is shown that ITC is able to produce quality kinetic data and is particularly well suited for those enzymatic reactions that cannot be measured by absorption or fluorescence spectroscopy.

  16. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  17. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  18. Estimating hydraulic properties of volcanic aquifers using constant-rate and variable-rate aquifer tests

    USGS Publications Warehouse

    Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.

    2007-01-01

    In recent years the ground-water demand of the population of the island of Maui, Hawaii, has significantly increased. To ensure prudent management of the ground-water resources, an improved understanding of ground-water flow systems is needed. At present, large-scale estimations of aquifer properties are lacking for Maui. Seven analytical methods using constant-rate and variable-rate withdrawals for single wells provide an estimate of hydraulic conductivity and transmissivity for 103 wells in central Maui. Methods based on constant-rate tests, although not widely used on Maui, offer reasonable estimates. Step-drawdown tests, which are more abundantly used than other tests, provide similar estimates as constant-rate tests. A numerical model validates the suitability of analytical solutions for step-drawdown tests and additionally provides an estimate of storage parameters. The results show that hydraulic conductivity is log-normally distributed and that for dike-free volcanic rocks it ranges over several orders of magnitude from 1 to 2,500 m/d. The arithmetic mean, geometric mean, and median values of hydraulic conductivity are respectively 520, 280, and 370 m/d for basalt and 80, 50, and 30 m/d for sediment. A geostatistical approach using ordinary kriging yields a prediction of hydraulic conductivity on a larger scale. Overall, the results are in agreement with values published for other Hawaiian islands. ?? 2007 American Water Resources Association.

  19. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  20. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  1. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers

    SciTech Connect

    Debreczeny, M.F.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.

  2. Reaction rate constant for uranium in water and water vapor

    SciTech Connect

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  3. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    NASA Technical Reports Server (NTRS)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  4. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    SciTech Connect

    Guberman, Steven L.

    2014-11-28

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller than 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.

  5. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  6. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  7. Metal bioaccumulation in aquatic species: quantification of uptake and elimination rate constants using physicochemical properties of metals and physiological characteristics of species.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Van Kolck, Maurits; Wang, Wen-Xiong; Hendriks, A Jan

    2008-02-01

    Mechanistic bioaccumulation models are powerful tools in environmental risk assessment as they provide insight in varying accumulation patterns across species, contaminants, and conditions, and they are applicable beyond tested cases. In these models key parameters, as absorption and elimination rate constants, are predicted based on chemical specific properties and physiological characteristics. However, due to the complex environmental behavior of metals, the development of mechanistic bioaccumulation models has lagged behind that for organic chemicals. Absorption and elimination rate constants of organic substances have long been linked to their octanol-water partition coefficient, yet no equivalent quantitative relationships exist for metals. In the present study, we successfully related metal absorption rate constants to a metal specific property, the covalent index, and a species-characteristic, the ventilation rate. This quantitative relationship holds for a wide range of organisms and metals, i.e., 17 aquatic species and 10 metals, suggesting that a generic modeling approach of metal uptake kinetics is feasible for aquatic organisms. In contrast, elimination rate constants show no metal - specific character. Average, weight-corrected elimination rate constants are relatively similar among metals and species, suggesting that a single weight-corrected elimination rate constant can be used in bioaccumulation studies on aquatic species.

  8. Algebraic methods for deriving steady-state rate equations. Practical difficulties with mechanisms that contain repeated rate constants.

    PubMed Central

    Cornish-Bowden, A

    1976-01-01

    Methods of deriving rate equations that rely on repetition of terms for identification of redundant or invalid terms give incorrect results if used with mechanisms in which some rate constants appear more than once. PMID:999635

  9. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  10. Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2.

    PubMed

    Sorvajärvi, Tapio; Viljanen, Jan; Toivonen, Juha; Marshall, Paul; Glarborg, Peter

    2015-04-01

    The addition reaction of potassium atoms with oxygen has been studied using the collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) method. KCl vapor was photolyzed with 266 nm pulses and the absorbance by K atoms at 766.5 nm was measured at various delay times with a narrow line width diode laser. Experiments were carried out with O2/N2 mixtures at a total pressure of 1 bar, over 748-1323 K. At the lower temperatures single exponential decays of [K] yielded the third-order rate constant for addition, kR1, whereas at higher temperatures equilibration was observed in the form of double exponential decays of [K], which yielded both kR1 and the equilibrium constant for KO2 formation. kR1 can be summarized as 1.07 × 10(-30)(T/1000 K)(-0.733) cm(6) molecule(-2) s(-1). Combination with literature values leads to a recommended kR1 of 5.5 × 10(-26)T(-1.55) exp(-10/T) cm(6) molecule(-2) s(-1) over 250-1320 K, with an error limit of a factor of 1.5. A van't Hoff analysis constrained to fit the computed ΔS298 yields a K-O2 bond dissociation enthalpy of 184.2 ± 4.0 kJ mol(-1) at 298 K and ΔfH298(KO2) = -95.2 ± 4.1 kJ mol(-1). The corresponding D0 is 181.5 ± 4.0 kJ mol(-1). This value compares well with a CCSD(T) extrapolation to the complete basis set limit, with all electrons correlated, of 177.9 kJ mol(-1). PMID:25775408

  11. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori

    2003-10-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a ``damped-oscillator'' fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.

  12. Calculation of reaction rate constants using approximate evolution of quantum trajectories in imaginary and real time

    NASA Astrophysics Data System (ADS)

    Garashchuk, Sophya

    2010-05-01

    Reaction rate constants can be directly obtained from evolution of the flux operator eigenvectors under the Boltzmann and Hamiltonian operators. This is achieved by evolving the quantum trajectory ensemble, representing a wavefunction, in imaginary time seamlessly switching to the real-time dynamics. Quantum-mechanical effects are incorporated through the quantum potential dependent on the trajectory momenta or on the derivatives of the wavefunction amplitude. For practicality the quantum potential and wavefunction nodes are described using linear basis, which is exact for Gaussian wavefunctions. For the Eckart barrier approximate rate constants show significant improvement over the parabolic barrier rate constants.

  13. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO*) reaction rate constants.

    PubMed

    Minakata, Daisuke; Li, Ke; Westerhoff, Paul; Crittenden, John

    2009-08-15

    The hydroxyl radical (HO*) is a strong oxidant that reacts with electron-rich sites of organic compounds and initiates complex chain mechanisms. In order to help understand the reaction mechanisms, a rule-based model was previously developed to predict the reaction pathways. For a kinetic model, there is a need to develop a rate constant estimator that predicts the rate constants for a variety of organic compounds. In this study, a group contribution method (GCM) is developed to predict the aqueous phase HO* rate constants for the following reaction mechanisms: (1) H-atom abstraction, (2) HO* addition to alkenes, (3) HO* addition to aromatic compounds, and (4) HO* interaction with sulfur (S)-, nitrogen (N)-, or phosphorus (P)-atom-containing compounds. The GCM hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving HO*, which can be estimated using the Arrhenius activation energy, E(a), and temperature. Each E(a) for those elementary reactions can be comprised of two parts: (1) a base part that includes a reactive bond in each reaction mechanism and (2) contributions from its neighboring functional groups. The GCM includes 66 group rate constants and 80 group contribution factors, which characterize each HO* reaction mechanism with steric effects of the chemical structure groups and impacts of the neighboring functional groups, respectively. Literature-reported experimental HO* rate constants for 310 and 124 compounds were used for calibration and prediction, respectively. The genetic algorithms were used to determine the group rate constants and group contribution factors. The group contribution factors for H-atom abstraction and HO* addition to the aromatic compounds were found to linearly correlate with the Taft constants, sigma*, and electrophilic substituent parameters, sigma+, respectively. The best calibrations for 83% (257 rate constants) and predictions for 62% (77

  14. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    SciTech Connect

    Osborne, David; Lawson, Patrick; Adams, Nigel

    2014-01-21

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.

  15. Improved constraints on possible variation of physical constants from H i 21-cm and molecular QSO absorption lines

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Drinkwater, M. J.; Combes, F.; Wiklind, T.

    2001-11-01

    Quasar (QSO) absorption spectra provide an extremely useful probe of possible cosmological variation in various physical constants. Comparison of Hi 21-cm absorption with corresponding molecular (rotational) absorption spectra allows us to constrain variation in [formmu2]y≡α2gp, where α is the fine-structure constant and gp is the proton g-factor. We analyse spectra of two QSOs, PKS 1413+135 and TXS 0218+357, and derive values of [formmu3]Δy/y at absorption redshifts of [formmu4]z=0.2467 and 0.6847 by simultaneous fitting of the Hi 21-cm and molecular lines. We find [formmu5]Δy/y=(-0.20+/-0.44)×10-5 and [formmu6]Δy/y=(-0.16+/-0.54)×10-5 respectively, indicating an insignificantly smaller y in the past. We compare our results with other constraints from the same two QSOs given recently by Drinkwater et al. and Carilli et al., and with our recent optical constraints, which indicated a smaller α at higher redshifts.

  16. Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

    NASA Technical Reports Server (NTRS)

    DeMore, W.B.

    1996-01-01

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

  17. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  18. Rate constant and mechanism of the reaction between Cl and CH{sub 3}OCl at 295 K

    SciTech Connect

    Carl, S.A.; Roehl, C.M.; Moortgat, G.K.; Crowley, J.N.; Mueller, C.M. |

    1996-10-24

    The reaction between Cl atoms and CH{sub 3}OCl was investigated at 295 K in both air and N{sub 2} bath gases at total pressures between 100 and 850 Torr by the relative rate method. The rate constant of the title reaction was found to be a factor 1.07{+-}0.02 (2{sigma}) greater than that of Cl+C{sub 2}H{sub 6} at room temperature and independent of pressure between 100 and 750 Torr. This yields a rate constant of (6.1{+-}0.6)x10{sup -11} cm{sup 3} molecule{sup -1} s{sup -1}. The products of the reaction were detected by FTIR and UV absorption spectroscopy. Analysis of Cl{sub 2} and HCl products allowed branching ratios of 0.2{+-}0.1 for HCl+CH{sub 2}OCl formation and 0.8{+-}0.2 for Cl{sub 2}+CH{sub 3}O formation to be determined. The high rate constant implies that reaction with Cl atoms is an important loss process for CH{sub 3}OCl in the polar stratosphere. 37 refs., 9 figs., 3 tabs.

  19. Rate constants for the reactions of hydroxyl and hydroperoxyl radicals with ozone.

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1973-01-01

    Chain decomposition of ozone by hydroxyl and hydroperoxyl radicals has been observed. The rate constant at 300 K for OH + O3 yielding HO2 + O2 is eight times ten to the -14th power cubic centimeters per second. The rate constant for HO2 + O3 yielding OH + 2O2 is three times ten to the -15th power cubic centimeters per second. These results have implications concerning stratospheric ozone.

  20. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    NASA Technical Reports Server (NTRS)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  1. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    PubMed

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately.

  2. Correlation between nasal membrane permeability and nasal absorption rate.

    PubMed

    Zhang, Hefei; Lin, Chih-Wei; Donovan, Maureen D

    2013-03-01

    The objective of this study was to investigate the relationship between in vitro permeability (Papp) values obtained from isolated nasal tissues and the absorption rates (ka) of the same compounds following nasal administration in animals and humans. The Papp of a set of 11 drug compounds was measured using animal nasal explants and plasma time-concentration profiles for each of the same compounds following intravenous (IV) and intranasal (IN) administration were experimentally determined or obtained from literature reports. The plasma clearance was estimated from the IV plasma time-concentration profiles, and ka was determined from the IN plasma time-concentration profiles using a deconvolution approach. The level of correlation between Papp and ka was established using Pearson correlation analysis. A good correlation (r=0.77) representing a point-to-point relationship for each of the compounds was observed. This result indicates that the nasal absorption for many drug candidates can be estimated from a readily measured in vitro Papp value. PMID:23225081

  3. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-06

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.

  4. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-01

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  5. In vivo Target Residence Time and Kinetic Selectivity: The Association Rate Constant as Determinant.

    PubMed

    de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; de Lange, Elizabeth C M

    2016-10-01

    It is generally accepted that, in conjunction with pharmacokinetics, the first-order rate constant of target dissociation is a major determinant of the time course and duration of in vivo target occupancy. Here we show that the second-order rate constant of target association can be equally important. On the basis of the commonly used mathematical models for drug-target binding, it is shown that a high target association rate constant can increase the (local) concentration of the drug, which decreases the rate of decline of target occupancy. The increased drug concentration can also lead to increased off-target binding and decreased selectivity. Therefore, the kinetics of both target association and dissociation need to be taken into account in the selection of drug candidates with optimal pharmacodynamic properties.

  6. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day.

  7. In vivo Target Residence Time and Kinetic Selectivity: The Association Rate Constant as Determinant.

    PubMed

    de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; de Lange, Elizabeth C M

    2016-10-01

    It is generally accepted that, in conjunction with pharmacokinetics, the first-order rate constant of target dissociation is a major determinant of the time course and duration of in vivo target occupancy. Here we show that the second-order rate constant of target association can be equally important. On the basis of the commonly used mathematical models for drug-target binding, it is shown that a high target association rate constant can increase the (local) concentration of the drug, which decreases the rate of decline of target occupancy. The increased drug concentration can also lead to increased off-target binding and decreased selectivity. Therefore, the kinetics of both target association and dissociation need to be taken into account in the selection of drug candidates with optimal pharmacodynamic properties. PMID:27394919

  8. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. PMID:24759644

  9. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  10. Further constraints on variation of the fine-structure constant from alkali-doublet QSO absorption lines

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Prochaska, J. X.; Wolfe, A. M.

    2001-11-01

    Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a precise probe for variability of the fine-structure constant, α, over cosmological time-scales. We constrain variation in α in 21 Keck/HIRES Siiv absorption systems using the alkali-doublet (AD) method in which changes in α are related to changes in the doublet spacing. The precision obtained with the AD method has been increased by a factor of 3: Δα/α=(-0.5+/-1.3)×10-5. We also analyse potential systematic errors in this result. Finally, we compare the AD method with the many-multiplet method, which has achieved an order of magnitude greater precision, and we discuss the future of the AD method.

  11. A new approach using coagulation rate constant for evaluation of turbidity removal

    NASA Astrophysics Data System (ADS)

    Al-Sameraiy, Mukheled

    2015-09-01

    Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.

  12. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5

  13. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation.

    PubMed

    Stenback, Greg A; Ong, Say Kee; Rogers, Shane W; Kjartanson, Bruce H

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day(-1) for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant-highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  14. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation.

    PubMed

    Stenback, Greg A; Ong, Say Kee; Rogers, Shane W; Kjartanson, Bruce H

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day(-1) for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant-highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  15. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    PubMed Central

    Zhao, Jiao; Ridgway, Douglas; Broderick, Gordon; Kovalenko, Andriy; Ellison, Michael

    2008-01-01

    Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty

  16. Accurate quantum thermal rate constants for the three-dimensional H+H2 reaction

    NASA Astrophysics Data System (ADS)

    Park, Tae Jun; Light, J. C.

    1989-07-01

    The rate constants for the three-dimensional H+H2 reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface are calculated using Pack-Parker hyperspherical (APH) coordinates and a C2v symmetry adapted direct product discrete variable representation (DVR). The C2v symmetry decomposition and the parity decoupling on the basis are performed for the internal coordinate χ. The symmetry decomposition results in a block diagonal representation of the flux and Hamiltonian operators. The multisurface flux is introduced to represent the multichannel reactive flux. The eigenvalues and eigenvectors of the J=0 internal Hamiltonian are obtained by sequential diagonalization and truncation. The individual symmetry blocks of the flux operator are propagated by the corresponding blocks of the Hamiltonian, and the J=0 rate constant k0(T) is obtained as a sum of the rate constants calculated for each block. k0(T) is compared with the exact k0(T) obtained from thermal averaging of the J=0 reaction probabilities; the errors are within 5%-20% up to T=1500 K. The sequential diagonalization-truncation method reduces the size of the Hamiltonian greatly, but the resulting Hamiltonian matrix still describes the time evolution very accurately. For the J≠0 rate constant calculations, the truncated internal Hamiltonian eigenvector basis is used to construct reduced (JKJ) blocks of the Hamiltonian. The individual (JKJ) blocks are diagonalized neglecting Coriolis coupling and treating the off-diagonal KJ±2 couplings by second order perturbation theory. The full wave function is parity decoupled. The rate constant is obtained as a sum over J of (2J+1)kJ(T). The time evolution of the flux for J≠0 is again very accurately described to give a well converged rate constant.

  17. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    NASA Technical Reports Server (NTRS)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  18. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation

    NASA Astrophysics Data System (ADS)

    Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  19. Rationalizing 5000-fold differences in receptor-binding rate constants of four cytokines.

    PubMed

    Pang, Xiaodong; Qin, Sanbo; Zhou, Huan-Xiang

    2011-09-01

    The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as k(a)=k(a0)exp(-ΔG(el)(∗)/k(B)T) where k(a0) is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (k(a0)) of EPO, IL4, hGH, and PRL were similar (5.2 × 10(5) M(-1)s(-1), 2.4 × 10(5) M(-1)s(-1), 1.7 × 10(5) M(-1)s(-1), and 1.7 × 10(5) M(-1)s(-1), respectively). However, the average electrostatic free energies (ΔG(e1)(∗)) were very different (-4.2 kcal/mol, -2.4 kcal/mol, -0.1 kcal/mol, and -0.5 kcal/mol, respectively, at ionic strength=160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 10(8) M(-1)s(-1), 1.3 × 10(7) M(-1)s(-1), 2.0 × 10(5) M(-1)s(-1), and 7.6 × 10(4) M(-1)s(-1), respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps

  20. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    PubMed

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  1. THEORETICAL ANALYSIS OF THE TRANSIENT PRESSURE RESPONSE FROM A CONSTANT FLOW RATE HYDRAULIC CONDUCTIVITY TEST.

    USGS Publications Warehouse

    Morin, Roger H.; Olsen, Harold W.

    1987-01-01

    Incorporating a flow pump into a conventional triaxial laboratory system allows fluid to be supplied to or withdrawn from the base of a sediment sample at small and constant rates. An initial transient record of hydraulic head versus time is observed which eventually stabilizes to a constant steady state gradient across the sample; values of hydraulic conductivity can subsequently be determined from Darcy's law. In this paper, analytical methods are presented for determining values of specific storage and hydraulic conductivity from the initial transient phase of such a constant flow rate test. These methods are based on a diffusion equation involving pore pressure and are analogous to those used to describe the soil consolidation process and also to interpret aquifer properties from pumping tests.

  2. Proximal femur elastic behaviour is the same in impact and constant displacement rate fall simulation.

    PubMed

    Gilchrist, S; Nishiyama, K K; de Bakker, P; Guy, P; Boyd, S K; Oxland, T; Cripton, P A

    2014-11-28

    Understanding proximal femur fracture may yield new targets for fracture prevention screening and treatment. The goal of this study was to characterize force-displacement and failure behaviours in the proximal femur between displacement control and impact loading fall simulations. Twenty-one human proximal femurs were tested in two ways, first to a sub-failure load at a constant displacement rate, then to fracture in an impact fall simulator. Comparisons of sub-failure energy and stiffness were made between the tests at the same compressive force. Additionally, the impact failure tests were compared with previous, constant displacement rate failure tests (at 2 and 100mm/s) in terms of energy, yield force, and stiffness. Loading and displacement rates were characterized and related to specimen stiffness in the impact tests. No differences were observed between the sub-failure constant displacement and impact tests in the aforementioned metrics. Comparisons between failure tests showed that the impact group had the lowest absorbed energy, 24% lower maximum force and 160% higher stiffness than the 100mm/s group (p<0.01 for all), but suffered from low statistical power to differentiate the donor age and specimen BMD. Loading and displacement rates for the specimens tested using impact varied during each test and between specimens and did not show appreciable viscoelasticity. These results indicate that constant displacement rate testing may help understand sub-failure mechanical behaviour, but may not elucidate failure behaviours. The differences between the impact and constant displacement rate fall simulations have important ramifications for interpreting the results of previous experiments.

  3. The rate constant for radiative association of HF: Comparing quantum and classical dynamics

    SciTech Connect

    Gustafsson, Magnus Monge-Palacios, M.; Nyman, Gunnar

    2014-05-14

    Radiative association for the formation of hydrogen fluoride through the A{sup 1}Π → X{sup 1}Σ{sup +} and X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transitions is studied using quantum and classical dynamics. The total thermal rate constant is obtained for temperatures from 10 K to 20 000 K. Agreement between semiclassical and quantum approaches is observed for the A{sup 1}Π → X{sup 1}Σ{sup +} rate constant above 2000 K. The agreement is explained by the fact that the corresponding cross section is free of resonances for this system. At temperatures below 2000 K we improve the agreement by implementing a simplified semiclassical expression for the rate constant, which includes a quantum corrected pair distribution. The rate coefficient for the X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transition is calculated using Breit–Wigner theory and a classical formula for the resonance and direct contributions, respectively. In comparison with quantum calculations the classical formula appears to overestimate the direct contribution to the rate constant by about 12% for this transition. Below about 450 K the resonance contribution is larger than the direct, and above that temperature the opposite holds. The biggest contribution from resonances is at the lowest temperature in the study, 10 K, where it is more than four times larger than the direct. Below 1800 K the radiative association rate constant due to X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transitions dominates over A{sup 1}Π → X{sup 1}Σ{sup +}, while above that temperature the situation is the opposite.

  4. Properties of human motor units after prolonged activity at a constant firing rate.

    PubMed

    Johnson, K V B; Edwards, S C; Van Tongeren, C; Bawa, P

    2004-02-01

    The primary purpose of this study was to examine if there are changes in the intrinsic properties of spinal motoneurons after prolonged submaximal contractions. To do this, we assessed whether or not the synaptic drive to motoneurons needs to increase in order to maintain a constant firing rate of a motor unit. Recruitment of new units and an increase in total electromyographic (EMG) activity of the muscle of interest were taken as estimates of an increase in synaptic drive. Subjects were asked to maintain a constant firing rate of a clearly identifiable (targeted) motor unit from the first dorsal interosseous muscle for approximately 10 min, while surface EMG and force were recorded simultaneously. For the 60 units studied, the duration of the constant-firing-rate period ranged from 73 to 1,140 s (448 +/- 227 s; mean +/- SD). There was a significant increase ( t-test, p<0.001) in the magnitude of mean surface EMG, and DC force while the targeted motoneuron maintained a constant rate suggesting an increase in the net excitatory input to the motoneuron pool. Changes occurring simultaneously in other parameters, namely, variability in interspike interval, magnitude of force fluctuations, the duration of motor unit action potentials, and the median power frequency of surface EMG were also computed. The firing rates of 16 concurrently firing motoneurons, not controlled by the subject, remained constant. The key finding of this study is that after prolonged activity, a motoneuron requires a stronger excitatory input to maintain its firing rate. Additional results are indicative of significant changes in the characteristics of the synaptic inputs, changes at the neuromuscular junction (both pre- and postsynaptic regions) and the sarcolemma.

  5. Estimation of the reaction rate constant of HOCl by SMILES observation

    NASA Astrophysics Data System (ADS)

    Kuribayashi, Kouta; Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo

    2012-07-01

    Hypochlorous acid, HOCl plays an important role to link the odd ClOx and the odd HOx in the atmospheric chemistry with the reaction: {ClO} + {HO_{2}} \\longrightarrow {HOCl} + {O_{2}} Quantitative understanding of the rate constant of the reaction (1.1) is essential for understanding the ozone loss in the mid-latitude region because of a view point of its rate controlling role in the ozone depletion chemistry. Reassessment of the reaction rate constant was pointed out from MIPAS/Envisat observations (von Clarmann et al., 2011) and balloon-borne observations (Kovalenko et al., 2007). Several laboratory studies had been reported, although the reaction rate constants have large uncertainties, as k{_{HOCl}} = (1.75 ± 0.52) × 10^{-12} exp[(368 ± 78)/T] (Hickson et al., 2007), and large discrepancies (Hickson et al., 2007;Stimpfle et al., 1979). Moreover, theoretical ab initio studies pointed out the pressure dependence of the reaction (1.1) (Xu et al., 2003). A new high-sensitive remote sensing technology named Superconducting SubMillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS) had observed diurnal variations of HOCl in the upper stratosphere/lower mesosphere (US/LM) region for the first time. ClO and HO_{2} were slso observed simultaneously with HOCl. SMILES performed the observations between 12^{{th}} October 2009 and 21^{{th}} April 2010. The latitude coverage of SMILES observation is normally 38°S-65°N. The altitude region of HOCl observation is about 28-70 km. We estimated the time period in which the reaction (1.1) becomes dominant in the ClO_{y} diurnal chemistry in US/LM. The reaction rate constant was directly estimated by decay of [ClO] and [HO_{2}] amounts in that period. The derived reaction rate constant represented well the increase of [HOCl] amount.

  6. Effect of oxygen reduction rate and constant low dissolved oxygen concentrations on two estuarine fish

    SciTech Connect

    Burton, D.T.; Richardson, L.B.; Moore, C.J.

    1980-09-01

    The relationship between mean lethal oxygen concentration and rate of reduction of dissolved oxygen that induces fish kills was determined for Atlantic menhaden (Brevoortia tyrannus). Reduction of dissolved oxygen at hourly rates of 1.00 to 0.08 mg/liter had no effect on the mean lethal oxygen concentrations. There was an inverse relationship between the median time to death (LT50) and rate of oxygen reduction that can be used to estimate how quickly a fish kill may occur when oxygen concentrations decrease at a constant rate. Atlantic menhaden were less resistant than spot (Leiostomus xanthurus) when both species were exposed to constant low concentrations of oxygen. The lethal threshold concentrations for Atlantic menhaden and spot at 28/sup 0/C were approximately 1.1 and 0.7 mg/liter, respectively, whereas, the 96-hour, 5% lethal concentrations were approximately 1.6 and 0.8 mg/liter, respectively.

  7. Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.

    PubMed

    Wang, P-H; De Sancho, D; Best, R B; Blumberger, J

    2016-01-01

    The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates.

  8. Computation of Rate Constants for Diffusion of Small Ligands to and from Buried Protein Active Sites.

    PubMed

    Wang, P-H; De Sancho, D; Best, R B; Blumberger, J

    2016-01-01

    The diffusion of ligands to actives sites of proteins is essential to enzyme catalysis and many cellular signaling processes. In this contribution we review our recently developed methodology for calculation of rate constants for diffusion and binding of small molecules to buried protein active sites. The diffusive dynamics of the ligand obtained from molecular dynamics simulation is coarse grained and described by a Markov state model. Diffusion and binding rate constants are then obtained either from the reactive flux formalism or by fitting the time-dependent population of the Markov state model to a phenomenological rate law. The method is illustrated by applications to diffusion of substrate and inhibitors in [NiFe] hydrogenase, CO-dehydrogenase, and myoglobin. We also discuss a recently developed sensitivity analysis that allows one to identify hot spots in proteins, where mutations are expected to have the strongest effects on ligand diffusion rates. PMID:27497172

  9. Predicting organic hydrogen atom transfer rate constants using the Marcus cross relation

    PubMed Central

    Warren, Jeffrey J.; Mayer, James M.

    2010-01-01

    Chemical reactions that involve net hydrogen atom transfer (HAT) are ubiquitous in chemistry and biology, from the action of antioxidants to industrial and metalloenzyme catalysis. This report develops and validates a procedure to predict rate constants for HAT reactions of oxyl radicals (RO•) in various media. Our procedure uses the Marcus cross relation (CR) and includes adjustments for solvent hydrogen-bonding effects on both the kinetics and thermodynamics of the reactions. Kinetic solvent effects (KSEs) are included by using Ingold’s model, and thermodynamic solvent effects are accounted for by using an empirical model developed by Abraham. These adjustments are shown to be critical to the success of our combined model, referred to as the CR/KSE model. As an initial test of the CR/KSE model we measured self-exchange and cross rate constants in different solvents for reactions of the 2,4,6-tri-tert-butylphenoxyl radical and the hydroxylamine 2,2′-6,6′-tetramethyl-piperidin-1-ol. Excellent agreement is observed between the calculated and directly determined cross rate constants. We then extend the model to over 30 known HAT reactions of oxyl radicals with OH or CH bonds, including biologically relevant reactions of ascorbate, peroxyl radicals, and α-tocopherol. The CR/KSE model shows remarkable predictive power, predicting rate constants to within a factor of 5 for almost all of the surveyed HAT reactions. PMID:20215463

  10. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  11. DISSOCIATION OF ARSENITE-PEPTIDE COMPLEXES: TRIPHASIC NATURE, RATE CONSTANTS, HALF LIVES AND BIOLOGICAL IMPORTANCE

    EPA Science Inventory

    We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...

  12. The effect of receptor clustering on diffusion-limited forward rate constants.

    PubMed Central

    Goldstein, B; Wiegel, F W

    1983-01-01

    The effect of receptor clustering on the diffusion-limited forward rate constant (k+) is studied theoretically by modeling cell surface receptors by hemispheres distributed on a plane. We give both exact results and bounds. The exact results are obtained using an electrostatic analogue and applying the method of the images. Accurate upper bounds on k+ are found from a variational principle. PMID:6309261

  13. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    EPA Science Inventory

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  14. Product distributions, rate constants, and mechanisms of LiH +H reactions

    NASA Astrophysics Data System (ADS)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  15. A pumpless perfusion cell culture cap with two parallel channel layers keeping the flow rate constant.

    PubMed

    Lee, Dong Woo; Yi, Sang Hyun; Ku, Bosung; Kim, Jhingook

    2012-01-01

    This article presents a novel pumpless perfusion cell culture cap, the gravity-driven flow rate of which is kept constant by the height difference of two parallel channel layers. Previous pumpless perfusion cell culture systems create a gravity-driven flow by means of the hydraulic head difference (Δh) between the source reservoir and the drain reservoir. As more media passes from the source reservoir to the drain reservoir, the source media level decreases and the drain media level increases. Thus, previous works based on a gravity-driven flow were unable to supply a constant flow rate for the perfusion cell culture. However, the proposed perfusion cell culture cap can supply a constant flow rate, because the media level remains unchanged as the media moves laterally through each channel having same media level. In experiments, using the different fluidic resistances, the perfusion cap generated constant flow rates of 871 ± 27 μL h(-1) and 446 ± 11 μL h(-1) . The 871 and 446 μL h(-1) flow rates replace the whole 20 mL medium in the petri dish with a fresh medium for days 1 and 2, respectively. In the perfusion cell (A549 cell line) culture with the 871 μL h(-1) flow rate, the proposed cap can maintain a lactate concentration of about 2200 nmol mL(-1) and an ammonia concentration of about 3200 nmol mL(-1) . Moreover, although the static cell culture maintains cell viability for 5 days, the perfusion cell culture with the 871 μL h(-1) flow rate can maintain cell viability for 9 days. PMID:22927366

  16. Comparison of radiative-convective models with constant and pressure-dependent lapse rates

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Kuhn, W. R.

    1981-01-01

    One of the most commonly used models for studying climatic processes is the convective adjustment radiation model. In current radiation models, stable temperature profiles are maintained with a convective adjustment in which the temperature lapse rate is set equal to a critical lapse rate whenever the computed lapse rates exceed the critical value. First introduced by Manabe and Strickler (1964), a variety of convective adjustment models are now in use. It is pointed out that on a global scale, moist adiabatic processes, and thus moist adiabatic lapse rates, approximate the atmospheric temperature profile. Comparisons of profiles from a one-dimensional-radiative-convective model have been made using the conventional 6.5 K/km as the critical lapse rate and the pressure-dependent moist adiabatic lapse rates. For a clear sky and a single effective cloud the surface temperatures are 1 to 3 K higher with the constant 6.5 K/km critical lapse rate.

  17. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  18. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  19. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  20. Constant-load versus heart rate-targeted exercise - Responses of systolic intervals

    NASA Technical Reports Server (NTRS)

    Lance, V. Q.; Spodick, D. H.

    1975-01-01

    Various systolic intervals were measured prior to and during heart rate-targeted bicycle ergometer exercise. There were striking similarities within each matched exercise set for Q-Im, isovolumetric contraction time, preejection period (PEP), and PEP/left ventricular ejection time (LVET). LVET was significantly shorter for rate-targeted exercise. It is concluded that either constant-load or rate-targeted bicycle ergometry may be used with the choice of method determined by the purpose of the protocol, and that systolic intervals (except LVET) should not be much altered owing to the method chosen.

  1. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    SciTech Connect

    Andreeva, M. A.; Repchenko, Yu. L.; Smekhova, A. G.; Dumesnil, K.; Wilhelm, F.; Rogalev, A.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  2. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    NASA Astrophysics Data System (ADS)

    Andreeva, M. A.; Repchenko, Yu. L.; Smekhova, A. G.; Dumesnil, K.; Wilhelm, F.; Rogalev, A.

    2015-06-01

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L 3 absorption edge of yttrium in a single-crystal YFe2 film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe2(40 nm<110>)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  3. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  4. Ab-Initio Based Computation of Rate Constants for Spin Forbidden Metalloprotein-Substrate Reactions

    NASA Astrophysics Data System (ADS)

    Ozkanlar, Abdullah; Rodriguez, Jorge H.

    2007-03-01

    Some chemical and biochemical reactions are non-adiabatic processes whereby the total spin angular momentum, before and after the reaction, is not conserved. These are named spin- forbidden reactions. The application of ab-initio methods, such as spin density functional theory (SDFT), to the prediction of rate constants is a challenging task of fundamental and practical importance. We apply non-adiabatic transition state theory (NA-TST) in conjuntion with SDFT to predict the rate constant of the spin- forbidden recombination of carbon monoxide with iron tetracarbonyl. To model the surface hopping probability between singlet and triplet states, the Landau-Zener formalism is used. The lowest energy point for singlet-triplet crossing, known as minimum energy crossing point (MECP), was located and used to compute, in a semi-quantum approach, reaction rate constants at 300 K. The predicted rates are in very good agreement with experiment. In addition, we present results for the spin- forbidden ligand binding reactions of iron-containing heme proteins such as myoglobin.

  5. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  6. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  7. Kinetic rate constant prediction supports the conformational selection mechanism of protein binding.

    PubMed

    Moal, Iain H; Bates, Paul A

    2012-01-01

    The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.

  8. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    PubMed

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. PMID:22421957

  9. Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.

    PubMed

    Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim

    2016-04-18

    The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude).

  10. Determination of surfaces of constant inelastic strain rate at elevated temperature

    NASA Technical Reports Server (NTRS)

    Battiste, R. L.; Ball, S. J.

    1986-01-01

    An experimental effort to perform special exploratory multiaxial deformation tests on tubular specimens of type 316 stainless steel at 650 C (1200 F) is described. One test specimen was subjected to a time-independent torsional shear strain test history, and surfaces of constant inelastic strain rate (SCISRs) in an axial/torsional stress space were measured at various predetermined points during the test. A second specimen was subjected to a 14-week time-dependent (creep-recovery-creep periods) torsional shear stress histogram SCISRs determinations made at 17 points during the test. The tests were conducted in a high temperature, computer controlled axial/torsional test facility using high-temperature multiaxial extensometer. The effort was successful, and for the first time the existence of surfaces of constant inelastic strain rate was experimentally demonstrated.

  11. Rate constant for the reaction of O(3P) with diacetylene from 210 to 423 K

    NASA Technical Reports Server (NTRS)

    Mitchell, M. B.; Nava, D. F.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction of O(3P) with diacetylene (C4H2) has been measured as a function of pressure and temperature by the flash-photolysis/resonance-fluorescence method. At 298 K and below, no pressure dependence of the rate constant was observed, but at 423 K a moderate (factor-of-2) increase was detected in the range 3 to 75 torr Ar.Results at or near the high-pressure limit are represented by an Arrhenius expression over the temperature range 210 to 423 K. The results are compared with previous determinations, all of which employed the discharge-flow/mass-spectrometry technique. The mechanism of the reaction is considered, including both primary and secondary processes. The heats of formation of the reactants, adducts, and products for the O(3P) + C4H2 reaction are discussed and contrasted with those for O(3P) + C2H2.

  12. Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy

    PubMed Central

    Piccini, GiovanniMaria; Alessio, Maristella

    2016-01-01

    Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460

  13. Absolute rate constants for the reaction of atomic hydrogen with ketene from 298 to 500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.

    1979-01-01

    Rate constants for the reaction of atomic hydrogen with ketene have been measured at room temperature by two techniques, flash photolysis-resonance fluorescence and discharge flow-resonance fluorescence. The measured values are (6.19 + or - 1.68) x 10 to the -14th and (7.3 + or - 1.3) x 10 to the -14th cu cm/molecule/s, respectively. In addition, rate constants as a function of temperature have been measured over the range 298-500 K using the FP-RF technique. The results are best represented by the Arrhenius expression k = (1.88 + or - 1.12) x 10 to the -11th exp(-1725 + or - 190/T) cu cm/molecule/s, where the indicated errors are at the two standard deviation level.

  14. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis.

    PubMed

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-05-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.

  15. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  16. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. PMID:26056765

  17. A method for computing association rate constants of atomistically represented proteins under macromolecular crowding

    NASA Astrophysics Data System (ADS)

    Qin, Sanbo; Cai, Lu; Zhou, Huan-Xiang

    2012-12-01

    In cellular environments, two protein molecules on their way to form a specific complex encounter many bystander macromolecules. The latter molecules, or crowders, affect both the energetics of the interaction between the test molecules and the dynamics of their relative motion. In earlier work (Zhou and Szabo 1991 J. Chem. Phys. 95 5948-52), it has been shown that, in modeling the association kinetics of the test molecules, the presence of crowders can be accounted for by their energetic and dynamic effects. The recent development of the transient-complex theory for protein association in dilute solutions makes it possible to easily incorporate the energetic and dynamic effects of crowders. The transient complex refers to a late on-pathway intermediate, in which the two protein molecules have near-native relative separation and orientation, but have yet to form the many short-range specific interactions of the native complex. The transient-complex theory predicts the association rate constant as ka = ka0exp( - ΔG*el/kBT), where ka0 is the ‘basal’ rate constant for reaching the transient complex by unbiased diffusion, and the Boltzmann factors captures the influence of long-range electrostatic interactions between the protein molecules. Crowders slow down the diffusion, therefore reducing the basal rate constant (to kac0), and induce an effective interaction energy ΔGc. We show that the latter interaction energy for atomistic proteins in the presence of spherical crowders is ‘long’-ranged, allowing the association rate constant under crowding to be computed as kac = kac0exp[ - (ΔG*el + ΔG*c)/kBT]. Applications demonstrate that this computational method allows for realistic modeling of protein association kinetics under crowding.

  18. Revealing equilibrium and rate constants of weak and fast noncovalent interactions.

    PubMed

    Mironov, Gleb G; Okhonin, Victor; Gorelsky, Serge I; Berezovski, Maxim V

    2011-03-15

    Rate and equilibrium constants of weak noncovalent molecular interactions are extremely difficult to measure. Here, we introduced a homogeneous approach called equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM) to determine k(on), k(off), and K(d) of weak (K(d) > 1 μM) and fast kinetics (relaxation time, τ < 0.1 s) in quasi-equilibrium for multiple unlabeled ligands simultaneously in one microreactor. Conceptually, an equilibrium mixture (EM) of a ligand (L), target (T), and a complex (C) is prepared. The mixture is introduced into the beginning of a capillary reactor with aspect ratio >1000 filled with T. Afterward, differential mobility of L, T, and C along the reactor is induced by an electric field. The combination of differential mobility of reactants and their interactions leads to a change of the EM peak shape. This change is a function of rate constants, so the rate and equilibrium constants can be directly determined from the analysis of the EM peak shape (width and symmetry) and propagation pattern along the reactor. We proved experimentally the use of ECEEM for multiplex determination of kinetic parameters describing weak (3 mM > K(d) > 80 μM) and fast (0.25 s ≥ τ ≥ 0.9 ms) noncovalent interactions between four small molecule drugs (ibuprofen, S-flurbiprofen, salicylic acid and phenylbutazone) and α- and β-cyclodextrins. The affinity of the drugs was significantly higher for β-cyclodextrin than α-cyclodextrin and mostly determined by the rate constant of complex formation.

  19. Shock Tube Measurement for the Dissociation Rate Constant of Acetaldehyde Using Sensitive CO Diagnostics.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-09-01

    The rate constant of acetaldehyde thermal dissociation, CH3CHO = CH3 + HCO, was measured behind reflected shock waves at temperatures of 1273-1618 K and pressures near 1.6 and 0.34 atm. The current measurement utilized sensitive CO diagnostics to track the dissociation of CH3CHO via oxygen atom balance and inferred the title rate constant (k1) from CO time histories obtained in pyrolysis experiments of 1000 and 50 ppm of CH3CHO/Ar mixtures. By using dilute test mixtures, the current study successfully suppressed the interferences from secondary reactions and directly determined the title rate constant as k1(1.6 atm) = 1.1 × 10(14) exp(-36 700 K/T) s(-1) over 1273-1618 K and k1(0.34 atm) = 5.5 × 10(12) exp(-32 900 K/T) s(-1) over 1377-1571 K, with 2σ uncertainties of approximately ±30% for both expressions. Example simulations of existing reaction mechanisms updated with the current values of k1 demonstrated substantial improvements with regards to the acetaldehyde pyrolysis chemistry. PMID:27523494

  20. QSPR prediction of the hydroxyl radical rate constant of water contaminants.

    PubMed

    Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun

    2016-07-01

    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. PMID:27124124

  1. Rate constant calculations of H-atom abstraction reactions from ethers by HȮ2 radicals.

    PubMed

    Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J

    2014-02-27

    In this work, we detail hydrogen atom abstraction reactions from six ethers by the hydroperoxyl radical, including dimethyl ether, ethyl methyl ether, propyl methyl ether, isopropyl methyl ether, butyl methyl ether, and isobutyl methyl ether, in order to test the effect of the functional group on the rate constant calculations. The Møller-Plesset (MP2) method with the 6-311G(d,p) basis set has been employed in the geometry optimizations and frequency calculations of all of the species involved in the above reaction systems. The connections between each transition state and the corresponding local minima have been determined by intrinsic reaction coordinate calculations. Energies are reported at the CCSD(T)/cc-pVTZ level of theory and include the zero-point energy corrections. As a benchmark in the electronic energy calculations, the CCSD(T)/CBS extrapolation was used for the reactions of dimethyl ether + HȮ2 radicals. A systematic calculation of the high-pressure limit rate constants has been performed using conventional transition-state theory, including asymmetric Eckart tunneling corrections, in the temperature range of 500-2000 K. The one dimensional hindrance potentials obtained at MP2/6-311G(d,p) for the reactants and transition states have been used to describe the low frequency torsional modes. Herein, we report the calculated individual, average, and total rate constants. A branching ratio analysis for every reaction site has also been performed. PMID:24483837

  2. Solvation effect on kinetic rate constant of reactions in supercritical solvents

    SciTech Connect

    Chialvo, A.A.; Cummings, P.T. |; Kalyuzhnyi, Yu.V.

    1998-03-01

    A statistical mechanical analysis of the solvation effects on the kinetic rate constants of reactions in near and supercritical solvents is presented to understand the experimental findings regarding the thermodynamic pressure effects. This is an extension of the solvation formalism of Chialvo and Cummings to the analysis of the microscopic basis for the macroscopic pressure and temperature effects on the kinetic rate constants of reactions conducted in the compressible region of the solvent phase diagram. This analysis is illustrated with integral equations calculations involving Lennard-Jones infinitely dilute quaternary systems to describe the species in solution during the reaction of triplet benzophenone ({sup 3}BP) with a cosolvent (either O{sub 2} or 1,4-cyclohexadiene) in supercritical CO{sub 2} along the supercritical isotherms T{sub r} = 1.01 and 1.06. The role of the species molecular asymmetries and consequently their solvation behavior in determining the thermodynamic pressure and temperature effects on the kinetic rate constant of reactions at near-critical conditions are discussed.

  3. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  4. Cross Section of OH Radical Overtone Transition near 7028 cm(-1) and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals.

    PubMed

    Assaf, Emmanuel; Fittschen, Christa

    2016-09-15

    The absorption cross section of an overtone transition of OH radicals at 7028.831 cm(-1) has been measured using an improved experimental setup coupling laser photolysis to three individual time-resolved detection techniques. Time-resolved relative OH radical profiles were measured by laser-induced fluorescence (LIF), and their absolute profiles have been obtained by cw-cavity ring-down spectroscopy (cw-CRDS). HO2 radicals were quantified simultaneously at the well-characterized absorption line at 6638.21 cm(-1) by a second cw-CRDS absorption path. Initial OH concentrations and thus their absorption cross sections have been deduced from experiments of 248 nm photolysis of H2O2: OH and HO2 profiles have been fitted to a simple kinetic model using well-known rate constants. The rate constant of the reaction between OH and HO2 radicals turned out to be sensitive to the deduction of the initial OH concentration and has been revisited in this work: OH decays have been observed in the presence of varying excess HO2 concentrations. A rate constant of (1.02 ± 0.06) × 10(-10) cm(3) s(-1) has been obtained, in good agreement with previous measurements and recent recommendations. An absorption cross section of σOH = (1.54 ± 0.1) × 10(-19) cm(2) at a total pressure of 50 Torr helium has been obtained from consistent fitting of OH and HO2 profiles in a large range of concentrations.

  5. Cross Section of OH Radical Overtone Transition near 7028 cm(-1) and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals.

    PubMed

    Assaf, Emmanuel; Fittschen, Christa

    2016-09-15

    The absorption cross section of an overtone transition of OH radicals at 7028.831 cm(-1) has been measured using an improved experimental setup coupling laser photolysis to three individual time-resolved detection techniques. Time-resolved relative OH radical profiles were measured by laser-induced fluorescence (LIF), and their absolute profiles have been obtained by cw-cavity ring-down spectroscopy (cw-CRDS). HO2 radicals were quantified simultaneously at the well-characterized absorption line at 6638.21 cm(-1) by a second cw-CRDS absorption path. Initial OH concentrations and thus their absorption cross sections have been deduced from experiments of 248 nm photolysis of H2O2: OH and HO2 profiles have been fitted to a simple kinetic model using well-known rate constants. The rate constant of the reaction between OH and HO2 radicals turned out to be sensitive to the deduction of the initial OH concentration and has been revisited in this work: OH decays have been observed in the presence of varying excess HO2 concentrations. A rate constant of (1.02 ± 0.06) × 10(-10) cm(3) s(-1) has been obtained, in good agreement with previous measurements and recent recommendations. An absorption cross section of σOH = (1.54 ± 0.1) × 10(-19) cm(2) at a total pressure of 50 Torr helium has been obtained from consistent fitting of OH and HO2 profiles in a large range of concentrations. PMID:27556141

  6. Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations

    NASA Astrophysics Data System (ADS)

    Föller, K.; Stelbrink, B.; Hauffe, T.; Albrecht, C.; Wilke, T.

    2015-12-01

    Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four types are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or there may be a pronounced lag phase between colonization and subsequent diversification. As understanding the tempo of diversification in ancient lake environments may help reveal the underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model taxon to study changes in diversification rates over time together with the respective drivers. Based on phylogenetic, molecular-clock, lineage-through-time plot, and diversification-rate analyses we found that this potentially monophyletic group is comparatively old and that it most likely evolved with a constant diversification rate. Preliminary data of the SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) deep-drilling program do indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far there is no evidence for the occurrence of catastrophic environmental events. We therefore propose that the constant diversification rate observed in endemic gastropods has been caused by two factors: (i) a potential lack of catastrophic environmental events in Lake Ohrid and/or (ii) a probably high ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the lake's high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst hydrology. The current study not only

  7. Relative rate constants for the reactions of OH with methane and methyl chloroform

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1992-01-01

    Atmospheric lifetimes of methane and methyl chloroform are largely determined by the rates of their reactions with hydroxyl radical. The relative lifetimes for this loss path are inversely proportional to the ratio of the corresponding rate coefficients. The relative rate constants were measured in a slow-flow, temperature-controlled photochemical reactor, and were based on rates of disappearance of the parent compounds as measured by FTIR spectroscopy. The temperature range was 277-356 K. Hydroxyl radicals were generated by 254 nm photolysis of O3 in the presence of water vapor. The preferred Arrhenius expression for the results is k(CH3CCl3)/k(CH4) = 0.62 exp (291/T), corresponding to a value of 1.65 at 298 K and 1.77 at 277 K. The respective uncertainties are 5 and 7 percent.

  8. A Method for Achieving Constant Rotation Rates in a Micro-Orthogonal Linkage System

    SciTech Connect

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-05-12

    Silicon micromachine designs include engines that consist of orthog- onally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {micro}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Generally, these en- gines will run with non-uniform rotation rates if the drive signals are not properly designed and maintained over a range of system parameters. We present a method for producing constant rotation rates in a micro-engine driven by an orthogonal linkage system. We show that provided the val- ues of certain masses, springs, damping factors, and lever arms are in the right proportions, the system behaves as though it were symmetrical. We will refer to systems built in this way as being quasi-symmetrical. We show that if a system is built quasi-symmetrically , then it is possible to achieve constant rotation rates even if one does not know the form of the friction function, or the value of the friction. We analyze this case in some detail.

  9. Laser Measurements of the H Atom + Ozone Rate Constant at Mesospheric Temperatures.

    PubMed

    Liu, Yingdi; Peng, Jian; Reppert, Kelsey; Callahan, Sara; Smith, Gregory P

    2016-06-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We remeasured its rate constant to reduce its uncertainty and extended the measurements to lower mesospheric temperatures using modern laser-induced fluorescence (LIF) techniques. H atoms were produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O((1)D) with added H2. A second, delayed, frequency-mixed dye laser measured the reaction decay rate with the remaining ozone using LIF. We monitored either the H atom decay by two photon excitation at 205 nm and detection of red fluorescence, or the OH (v = 9) product time evolution with excitation of the B(2)Σ(+)-X(2)Π (0,9) band at 237 nm and emission in the blue B(2)Σ(+)-A(2)Σ(+) (0,7) band. By cooling the enclosed low pressure flow cell we obtained measurements from 140 to 305 K at 20 to 200 Torr in Ar. Small kinetic modeling corrections were made for secondary regeneration of H atoms. The results are consistent with the current NASA JPL recommendation for this rate constant and establish its extrapolation down to the lower temperatures of the mesosphere. PMID:27193050

  10. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  11. Electromyographic, mechanomyographic, and metabolic responses during cycle ergometry at a constant rating of perceived exertion.

    PubMed

    Cochrane, Kristen C; Housh, Terry J; Jenkins, Nathaniel D M; Bergstrom, Haley C; Smith, Cory M; Hill, Ethan C; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2015-11-01

    Ten subjects performed four 8-min rides (65%-80% peak oxygen consumption) to determine the physical working capacity at the OMNI rating of perceived exertion (RPE) threshold (PWCOMNI). Polynomial regression analyses were used to examine the patterns of responses for surface electromyographic (EMG) amplitude (EMG AMP), EMG mean power frequency (EMG MPF), mechanomyographic (MMG) AMP, and MMG MPF of the vastus lateralis as well as oxygen consumption rate, respiratory exchange ratio (RER), and power output (PO) were examined during a 1-h ride on a cycle ergometer at a constant RPE that corresponded to the PWCOMNI. EMG AMP and MMG MPF tracked the decreases in oxygen consumption rate, RER, and PO, while EMG MPF and MMG AMP tracked RPE. The decreases in EMG AMP and MMG MPF were likely attributable to decreases in motor unit (MU) recruitment and firing rate, while the lack of change in MMG AMP may have resulted from a balance between MU de-recruitment as PO decreased, and an increase in the ability of activated fibers to oscillate. The current findings suggested that during submaximal cycle ergometry at a constant RPE, MU de-recruitment and mechanical changes within the muscle may influence the perception of effort via feedback from group III and IV afferents.

  12. Measurement of biodegradation rate constants of a water extract from petroleum-contaminated soil

    SciTech Connect

    Li, K.Y.; Kane, A.J.; Wang, J.J.; Cawley, W.A. . Chemical Engineering Dept.)

    1993-01-01

    The study of biodegradation rate constants of petroleum products in water extract from contaminated soil presents an important component in the evaluation of bioremediation process. In this study, soil samples were gathered from an industrial site which was used for maintenance and storage of heavy equipment used in the oil and gas exploration and production industry. The petroleum contaminants were extracted from the soil using distilled water. This water extract was used as the substrate to acclimate a microbial community and also for the biological kinetic studies. Kinetic studies were carried out in batch reactors, and the biodegradation rates were monitored by a computer-controlled respirometer. The BOD data were analyzed by using the Monod equation. Experimental results give the average value of the maximum rate constant as 0.038 mg BOD/(mg VSS hr) and the average value of the substrate concentration of half rate as 746 mg BOD/l. A GC/MS analysis on the sample of the test solutions before and after 5 days of biological oxidation indicates that the hydrocarbons initially present in the solution were degraded.

  13. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant*

    PubMed Central

    Li, Ting-Feng; Painter, Richard G.; Ban, Bhupal; Blake, Robert C.

    2015-01-01

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s−1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment. PMID:26041781

  14. The Multicenter Aerobic Iron Respiratory Chain of Acidithiobacillus ferrooxidans Functions as an Ensemble with a Single Macroscopic Rate Constant.

    PubMed

    Li, Ting-Feng; Painter, Richard G; Ban, Bhupal; Blake, Robert C

    2015-07-24

    Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm(2) in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s(-1). The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.

  15. Size dependence of surface thermodynamic properties of nanoparticles and its determination method by reaction rate constant

    NASA Astrophysics Data System (ADS)

    Li, Wenjiao; Xue, Yongqiang; Cui, Zixiang

    2016-08-01

    Surface thermodynamic properties are the fundamental properties of nanomaterials, and these properties depend on the size of nanoparticles. In this paper, relations of molar surface thermodynamic properties and surface heat capacity at constant pressure of nanoparticles with particle size were derived theoretically, and the method of obtaining the surface thermodynamic properties by reaction rate constant was put forward. The reaction of nano-MgO with sodium bisulfate solution was taken as a research system. The influence regularities of the particle size on the surface thermodynamic properties were discussed theoretically and experimentally, which show that the experimental regularities are in accordance with the corresponding theoretical relations. With the decreasing of nanoparticle size, the molar surface thermodynamic properties increase, while the surface heat capacity decreases (the absolute value increases). In addition, the surface thermodynamic properties are linearly related to the reciprocal of nanoparticle diameter, respectively.

  16. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.

    PubMed

    Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F

    2012-11-20

    Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.

  17. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Murphy, Michael T.; Malec, Adrian L.; Prochaska, J. Xavier

    2016-09-01

    The strongest transitions of Zn and Cr II are the most sensitive to relative variations in the fine-structure constant (Δα/α) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 Å of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of Δα/α: long-range distortions of the wavelength calibration. While Zn and Cr II absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of nine rare systems where it is strong enough to constrain Δα/α from these species alone. These provide 12 independent measurements (three quasars were observed with both telescopes) at redshifts 1.0-2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with Δα/α = 0 within their individual uncertainties of 3.5-13 parts per million (ppm), with a weighted mean Δα/α = 0.4 ± 1.4stat ± 0.9sys ppm (1σ statistical and systematic uncertainties), indicating no significant cosmological variations in α. This is the first statistical sample of absorbers that is resistant to long-range calibration distortions (at the <1 ppm level), with a precision comparable to previous large samples of ˜150 (distortion-affected) absorbers. Our systematic error budget is instead dominated by much shorter range distortions repeated across echelle orders of individual spectra.

  18. Constant diversification rates of endemic gastropods in ancient Lake Ohrid: ecosystem resilience likely buffers environmental fluctuations

    NASA Astrophysics Data System (ADS)

    Föller, K.; Stelbrink, B.; Hauffe, T.; Albrecht, C.; Wilke, T.

    2015-08-01

    Ancient lakes represent key ecosystems for endemic freshwater species. This high endemic biodiversity has been shown to be mainly the result of intra-lacustrine diversification. Whereas the principle role of this mode of diversification is generally acknowledged, actual diversification rates in ancient lakes remain little understood. At least four modes are conceivable. Diversification rates may be constant over time, they may fluctuate, rates may be higher in the initial phase of diversification, or there may be a pronounced lag phase between colonization and subsequent diversification. As understanding the tempo of diversification in ancient lake environments may help unrevealing the underlying processes that drive speciation and extinction, we here use the Balkan Lake Ohrid as a model system and the largest species flock in the lake, the non-pyrgulinid Hydrobiidae, as a model taxon to study changes in diversification rates over time together with the respective drivers. Based on phylogenetic, molecular-clock, lineage-through-time plot and diversification-rate analyses we found that this monophyletic group is comparatively old and that it most likely evolved with a constant diversification rate. Preliminary data of the SCOPSCO deep-drilling program do indicate signatures of severe environmental/climatic perturbations in Lake Ohrid. However, so far there is no evidence for the occurrence of catastrophic environmental events. We therefore propose that the rate homogeneity observed in endemic gastropods has been caused by two factors: (i) a potential lack of catastrophic environmental events in Lake Ohrid and/or (ii) a high ecosystem resilience, buffering environmental changes. Parameters potentially contributing to the lake's high ecosystem resilience are its distinct bathymetry, ongoing tectonic activities, and karst hydrology. The current study not only contributes to one of the overall goals of the SCOPSCO deep-drilling program - inferring the driving forces for

  19. Determination of the rate constant of hydroperoxyl radical reaction with phenol

    NASA Astrophysics Data System (ADS)

    Kozmér, Zsuzsanna; Arany, Eszter; Alapi, Tünde; Takács, Erzsébet; Wojnárovits, László; Dombi, András

    2014-09-01

    The rate constant of HO2rad reaction with phenol (kHO2rad +phenol) was investigated. The primary radical set produced in water γ radiolysis (rad OH, eaq- and Hrad ) was transformed to HO2rad /O2rad - by using dissolved oxygen and formate anion (in the form of either formic acid or sodium formate). The concentration ratio of HO2rad /O2rad - was affected by the pH value of the solution: under acidic conditions (using HCOOH) almost all radicals were converted to HO2rad , while under alkaline conditions (using HCOONa) to O2rad -. The degradation rate of phenol was significantly higher using HCOOH. From the ratio of reaction rates under the two reaction conditions kHO2rad +phenol was estimated to be (2.7±1.2)×103 L mol-1 s-1.

  20. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Miller, William H.

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within ˜20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods.

  1. Effects of stress rate and calculation method on subcritical crack growth parameters deduced from constant stress-rate flexural testing

    PubMed Central

    Griggs, Jason A.; Alaqeel, Samer M.; Zhang, Yunlong; Miller, Amp W.; Cai, Zhuo

    2011-01-01

    Objectives To more efficiently determine the subcritical crack growth (SCG) parameters of dental ceramics, the effects of stressing rate and choice of statistical regression model on estimates of SCG parameters were assessed. Methods Two dental ceramic materials, a veneering material having a single critical flaw population (S) and a framework material having partially concurrent flaw populations (PC), were analyzed using constant stress-rate testing, or “dynamic fatigue”, with a variety of testing protocols. For each material, 150 rectangular beam specimens were prepared and tested in four-point flexure according to ISO6872 and ASTM1368. A full-factorial study was conducted on the following factors: material, stress rate assumed vs. calculated, number of stress rates, and statistical regression method. Results The proportion of specimens for which the statistical models over-estimated reliability was not significantly different based on regression method for Material S (P = 0.96, power = 94%) and was significantly different based on regression method for Material PC (P < 0.001). The standard method resulted in SCG parameters, n and ln B, of 35.9 and -11.1 MPa2s for Material S and 12.4 and 9.61 MPa2s for Material PC. Significance The method of calculation that uses only the median strength value at each stress rate provided the most robust SCG parameter estimates. Using only two stress rates resulted in fatigue parameters comparable to those estimated using four stress rates having the same range. The stress rate of each specimen can be assumed to be the target stress rate with negligible difference in SCG parameter estimates. PMID:21167586

  2. Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila

    PubMed Central

    Bai, Yongsheng; Casola, Claudio; Feschotte, Cédric; Betrán, Esther

    2007-01-01

    Background Processed copies of genes (retrogenes) are duplicate genes that originated through the reverse-transcription of a host transcript and insertion in the genome. This type of gene duplication, as any other, could be a source of new genes and functions. Using whole genome sequence data for 12 Drosophila species, we dated the origin of 94 retroposition events that gave rise to candidate functional genes in D. melanogaster. Results Based on this analysis, we infer that functional retrogenes have emerged at a fairly constant rate of 0.5 genes per million years per lineage over the last approximately 63 million years of Drosophila evolution. The number of functional retrogenes and the rate at which they are recruited in the D. melanogaster lineage are of the same order of magnitude as those estimated in the human lineage, despite the higher deletion bias in the Drosophila genome. However, unlike primates, the rate of retroposition in Drosophila seems to be fairly constant and no burst of retroposition can be inferred from our analyses. In addition, our data also support an important role for retrogenes as a source of lineage-specific male functions, in agreement with previous hypotheses. Finally, we identified three cases of functional retrogenes in D. melanogaster that have been independently retroposed and recruited in parallel as new genes in other Drosophila lineages. Conclusion Together, these results indicate that retroposition is a persistent mechanism and a recurrent pathway for the emergence of new genes in Drosophila. PMID:17233920

  3. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site

    NASA Astrophysics Data System (ADS)

    Bockelmann, Alexander; Ptak, Thomas; Teutsch, Georg

    2001-12-01

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day -1, whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day -1 were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds.

  4. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site.

    PubMed

    Bockelmann, A; Ptak, T; Teutsch, G

    2001-12-15

    A new integral groundwater investigation approach was used for the first time to quantify natural attenuation rates at field scale. In this approach, pumping wells positioned along two control planes were operated at distances of 140 and 280 m downstream of a contaminant source zone at a former gasworks site polluted with BTEX- (benzene, toluene, ethyl-benzene, o-, p-xylene) and PAH- (polycyclic aromatic hydrocarbons) compounds. Based on the quantified changes in total contaminant mass fluxes between the control planes, first-order natural attenuation rate constants could be estimated. For BTEX-compounds, these ranged from 1.4e-02 to 1.3e-01 day(-1) whereas for PAH-compounds natural attenuation rate constants of 3.7e-04 to 3.1e-02 day(-1) were observed. Microbial degradation activity at the site was indicated by an increase in dissolved iron mass flux and a reduction in sulphate mass flux between the two investigated control planes. In addition to information about total contaminant mass fluxes and average concentrations, an analysis of the concentration-time series measured at the control planes also allowed to semi-quantitatively delineate the aquifer regions most likely contaminated by the BTEX- and PAH-compounds. PMID:11820481

  5. Rate constants of hydroperoxyl radical addition to cyclic nitrones: a DFT study.

    PubMed

    Villamena, Frederick A; Merle, John K; Hadad, Christopher M; Zweier, Jay L

    2007-10-01

    Nitrones are potential synthetic antioxidants against the reduction of radical-mediated oxidative damage in cells and as analytical reagents for the identification of HO2* and other such transient species. In this work, the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) and PCM/mPW1K/6-31+G(d,p) density functional theory (DFT) methods were employed to predict the reactivity of HO2* with various functionalized nitrones as spin traps. The calculated second-order rate constants and free energies of reaction at both levels of theory were in the range of 100-103 M-1 s-1 and 1 to -12 kcal mol-1, respectively, and the rate constants for some nitrones are on the same order of magnitude as those observed experimentally. The trend in HO2* reactivity to nitrones could not be explained solely on the basis of the relationship of the theoretical positive charge densities on the nitronyl-C, with their respective ionization potentials, electron affinities, rate constants, or free energies of reaction. However, various modes of intramolecular H-bonding interaction were observed at the transition state (TS) structures of HO2* addition to nitrones. The presence of intramolecular H-bonding interactions in the transition states were predicted and may play a significant role toward a facile addition of HO2* to nitrones. In general, HO2* addition to ethoxycarbonyl- and spirolactam-substituted nitrones, as well as those nitrones without electron-withdrawing substituents, such as 5,5-dimethyl-pyrroline N-oxide (DMPO) and 5-spirocyclopentyl-pyrroline N-oxide (CPPO), are most preferred compared to the methylcarbamoyl-substituted nitrones. This study suggests that the use of specific spin traps for efficient trapping of HO2* could pave the way toward improved radical detection and antioxidant protection. PMID:17845014

  6. Reproducible voluntary muscle performance during constant work rate dynamic leg exercise.

    PubMed

    Fulco, C S; Rock, P B; Muza, S R; Lammi, E; Cymerman, A; Lewis, S F

    2000-02-01

    During constant intensity treadmill or cycle exercise, progressive muscle fatigue is not readily quantified and endurance time is poorly reproducible. However, integration of dynamic knee extension (DKE) exercise with serial measurement of maximal voluntary contraction (MVC) force of knee extensor muscles permits close tracking of leg fatigue. We studied reproducibility of four performance indices: MVC force of rested muscle (MVC(rest)) rate of MVC force fall, time to exhaustion, and percentage of MVC(rest) (%MVC(rest)) at exhaustion in 11 healthy women (22+/-1 yrs) during identical constant work rate 1-leg DKE (1 Hz) on 2 separate days at sea level (30 m). Means+/-SD for the two test days, and the correlations (r), standard estimate errors and coefficients of variation (CV%) between days were, respectively: a) MVC(rest)(N), 524+/-99 vs 517+/-111, 0.91, 43.0, 4.9%; b) MVC force fall (N x min(-1)), -10.77+/-9.3 vs -11.79+/-12.1, 0.94, 3.6, 26.5 %; c) Time to exhaustion (min), 22.6+/-12 vs 23.9+/-14, 0.98, 2.7, 7.5 %; and d) %MVC(rest) at exhaustion, 65+/-13 vs 62+/-14, 0.85, 7.8, 5.6%. There were no statistically significant mean differences between the two test days for any of the performance measures. To demonstrate the potential benefits of evaluating multiple effects of an experimental intervention, nine of the women were again tested within 24hr of arriving at 4,300 m altitude using the identical force, velocity, power output, and energy requirement during constant work rate dynamic leg exercise. Low variability of each performance index enhanced the ability to describe the effects of acute altitude exposure on voluntary muscle function.

  7. Monte Carlo method for determining free-energy differences and transition state theory rate constants

    SciTech Connect

    Voter, A.F.

    1985-02-15

    We present a new Monte Carlo procedure for determining the Helmholtz free-energy difference between two systems that are separated in configuration space. Unlike most standard approaches, no integration over intermediate potentials is required. A Metropolis walk is performed for each system, and the average Metropolis acceptance probability for a hypothetical step along a probe vector into the other system is accumulated. Either classical or quantum free energies may be computed, and the procedure is also ideally suited for evaluating generalized transition state theory rate constants. As an application we determine the relative free energies of three configurations of a tungsten dimer on the W(110) surface.

  8. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  9. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    NASA Astrophysics Data System (ADS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-12-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature.

  10. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  11. Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved

    PubMed Central

    Kiel, Christina; Aydin, Dorothee; Serrano, Luis

    2008-01-01

    Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks. PMID:19096503

  12. GROUND WATER ISSUE - CALCULATION AND USE OF FIRST-ORDER RATE CONSTANTS FOR MONITORED NATURAL ATTENUATION STUDIES

    EPA Science Inventory

    This issue paper explains when and how to apply first-order attenuation rate constant calculations in monitored natural attenuation (MNA) studies. First-order attenuation rate constant calculations can be an important tool for evaluating natural attenuation processes at ground-wa...

  13. Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)

    NASA Technical Reports Server (NTRS)

    Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.

    1990-01-01

    The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.

  14. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  15. Rate constant for the reaction Cl + HO2NO2 yielding products. [in stratospheric chemistry

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Leu, M. T.

    1985-01-01

    The rates for the reaction of Cl atoms iwth HO2NO2 were calculated from data obtained by the use of the discharge flow/resonance fluorescence (DF/RF) and the discharge flow/mass spectrometric (DF/MS) techniques. The total rate constant, k1, for the overall reaction: 1a (Cl + HO2NO2 yielding HCl + NO2 +O2), 1b (yielding HO2 + ClNO2), and the two possible additional channels was found to be less than 1.0 x 10 to the -13th cu cm/s at 296 K. The value of (k1a + k1b) was found to be 3.4 + or - 1.4) x 10 to the -14th cu cm/s. Thus, the reaction of Cl with peroxynitric acid is too slow, by a factor of 100, to contribute significantly to the hydrogen abstraction by Cl in the stratosphere.

  16. Airfoil stall penetration at constant pitch rate and high Reynolds number

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Carta, Franklin O.

    1989-01-01

    The model wing consists of a set of fiberglass panels mounted on a steel spar that spans the 8 ft test section of the UTRC Large Subsonic Wind Tunnel. The first use of this system was to measure surface pressures and flow conditions for a series of constant pitch rate ramps and sinusoidal oscillations a Mach number range, a Reynolds number range, and a pitch angle range. It is concluded that an increased pitch rate causes stall events to be delayed, strengthening of the stall vortex, increase in vortex propagation, and increase in unsteady airloads. The Mach number range causes a supersonic zone near the leading edge, stall vortex to be weaker, and a reduction of unsteady airloads.

  17. Aggregate size distribution evolution for Brownian coagulation-sensitivity to an improved rate constant.

    PubMed

    Zurita-Gotor, M; Rosner, D E

    2004-06-15

    Brownian motion causes small aggregates to encounter one another and grow in gaseous environments, often under conditions in which the coalescence rate (say, spheroidization by "sintering") cannot compete. The polydisperse nature of the aerosol population formed by this mechanism is typically accounted for by formulating an evolution equation for the joint PDF of the state variables needed for describing individual particles. In the simple case of fractal-like aggregates (prescribed morphology and state, characterized just by the number of aggregated spherules, or total aggregate volume), we use the quadrature method of moments and Monte Carlo simulations to show that recent improvements in the laws governing free molecule regime coagulation frequency (rate "constant") of these aggregates cause systematic changes in the shape of the asymptotic aggregate size distribution, with significant implications for the light-scattering power and inertial impaction behavior of such aggregate populations.

  18. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  19. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines.

    PubMed

    Gansäuer, Andreas; Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca; Grimme, Stefan

    2013-01-01

    The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol(-1) and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG (‡) and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  20. Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells.

    PubMed

    Pydzińska, Katarzyna; Karolczak, Jerzy; Kosta, Ivet; Tena-Zaera, Ramon; Todinova, Anna; Idígoras, Jesus; Anta, Juan A; Ziółek, Marcin

    2016-07-01

    A simple protocol to study the dynamics of charge transfer to selective contacts in perovskite solar cells, based on time-resolved laser spectroscopy studies, in which the effect of bimolecular electron-hole recombination has been eliminated, is proposed. Through the proposed procedure, the interfacial charge-transfer rate constants from methylammonium lead iodide perovskite to different contact materials can be determined. Hole transfer is faster for CuSCN (rate constant 0.20 ns(-1) ) than that for 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD; 0.06 ns(-1) ), and electron transfer is faster for mesoporous (0.11 ns(-1) ) than that for compact (0.02 ns(-1) ) TiO2 layers. Despite more rapid charge separation, the photovoltaic performance of CuSCN cells is worse than that of spiro-OMeTAD cells; this is explained by faster charge recombination in CuSCN cells, as revealed by impedance spectroscopy. The proposed direction of studies should be one of the key strategies to explore efficient hole-selective contacts as an alternative to spiro-OMeTAD. PMID:27253726

  1. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  2. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  3. Rate constant for the OH + CO reaction - Pressure dependence and the effect of oxygen

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1984-01-01

    The effect of pressure on the rate constant of the OH + CO reaction has been measured for Ar, N2, and SF6 over the pressure range 200-730 torr. All experiments were at room temperature. The method involved laser-induced fluorescence to measure steady-state OH concentrations in the 184.9 nm photolysis of H2O-CO mixtures in the three carrier gases, combined with supplementary measurements of the CO depletion in these same carrier gases in the presence and absence of competing reference reactants. The effect of O2 on the pressure effect was determined. A pressure enhancement of the rate constant was observed for N2 and SF6, but not for Ar, within an experimental error of about 10 percent. The pressure effect for N2 was somewhat lower than previous literature reports, being about 40 percent at 730 torr. For SF6 a factor of two enhancement was seen at 730 torr. In each case it was found that O2 had no effect on the pressure enhancement. The roles of the radical species HCO and HOCO were evaluated.

  4. Prediction of viscoelastic material functions from constant stress- or strain-rate experiments

    NASA Astrophysics Data System (ADS)

    Saprunov, Ivan; Gergesova, Marina; Emri, Igor

    2014-05-01

    To predict durability of polymeric structures an information on polymer's long-term properties in the form of relaxation modulus and/or creep compliance is required. It is well known that determination of relaxation or creep properties from experimental data is an inverse problem, which, due to presence of experimental errors in input data, becomes ill-posed. To find a stable solution using standard integration schemes is practically impossible. In this paper we propose a "hands-on" methodology which bypasses the solution of ill-posed integral equation and allows finding long-term relaxation or creep properties from simple constant strain rate or constant stress-rate experiments performed at different temperatures. The proposed approach can be applied not only for characterization of viscoelastic materials in solid state but can also be used for prediction of time-dependent properties of polymer melts. The paper presents the detailed steps of the proposed method as well as its validation on several simulated and real experimental data. It has been shown that the proposed approach can accurately reconstruct the desired long-term time-dependent properties obtained in traditional way (i.e., from step loading).

  5. Chronic, constant-rate, gastric drug infusion in nontethered rhesus macaques (Macaca mulatta).

    PubMed

    Strait, Karen R; Orkin, Jack L; Anderson, Daniel C; Muly, E Chris

    2010-03-01

    As part of a study of antipsychotic drug treatment in monkeys, we developed a technique to provide chronic, constant-rate, gastric drug infusion in nontethered rhesus macaques. This method allowed us to mimic the osmotic release oral delivery system currently used in humans for continuous enteral drug delivery. Rhesus macaques (n = 5) underwent gastric catheter placement by laparotomy. After the catheters were secured to the stomach, the remaining catheter length was exited through the lateral abdomen, tunneled subcutaneously along the back, and connected to a 2-mL osmotic pump enclosed in a subcutaneous pocket. Osmotic pumps were changed every 2 to 4 wk for 1 y and remained patent for the duration of the study. Four complications (including cutting of the catheter, incisional dehiscence at the pump site, and loss of 1 catheter into the abdominal cavity requiring catheter replacement) occurred among the 80 pump changes performed during the year-long study. At necropsy, histopathologic examination of the catheter implant sites revealed mild changes consistent with a foreign-body reaction. Our results indicate that the gastric catheter and osmotic pump system was well tolerated in rhesus macaques for as long as 12 mo after placement and suggest that this system will be an attractive option for use in studies that require chronic, constant-rate, gastric drug infusion in nontethered monkeys. PMID:20353697

  6. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    NASA Astrophysics Data System (ADS)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-06-01

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  7. Mechanics of constant-rate filter pressing of highly flocculated slurries

    SciTech Connect

    Kellett, B.J.; Lin, C.Y.

    1997-02-01

    The growth of a powder compact from a highly flocculated slurry has been simulated by a computer program that models non-steady-state Darcian flow. Computer simulations have been compared with filter-pressing experiments. Constant-rate filter-pressing experiments are divided into two regimes of piston stress-displacement behavior: an initial, almost-linear, but concave-up, regime during cake growth, followed by a second region of rapidly increasing piston stress when the piston comes into contact with the cake. Linear piston stress-displacement behavior is expected, from theory based on a uniform cake model. Highly flocculated slurries show highly nonlinear behavior. Nonlinear behavior is shown to be consistent with nonuniform growth of the cake. The permeability and consolidation behavior of the cake has been determined by a consolidometer experiment. Computer simulations indicate that the particle-packing density profiles during cake build-up are surprisingly similar during cake growth. Conditions for uniform consolidation can be determined from a general equation for non-steady-state Darcian flow. Results are directly applicable to constant-flow-rate pressure casting or slip casting.

  8. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    PubMed Central

    Seddiqzai, Meriam; Dahmen, Tobias; Sure, Rebecca

    2013-01-01

    Summary The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG ‡ and ΔG R) are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically. PMID:24062821

  9. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  10. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    PubMed

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  11. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase.

    PubMed

    Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P

    2015-07-28

    The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the

  12. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  13. Toward Improving Atmospheric Models and Ozone Projections: Laboratory UV Absorption Cross Sections and Equilibrium Constant of ClOOCl

    NASA Astrophysics Data System (ADS)

    Wilmouth, D. M.; Klobas, J. E.; Anderson, J. G.

    2015-12-01

    Thirty years have now passed since the discovery of the Antarctic ozone hole, and despite comprehensive international agreements being in place to phase out CFCs and halons, polar ozone losses generally remain severe. The relevant halogen compounds have very long atmospheric lifetimes, which ensures that seasonal polar ozone depletion will likely continue for decades to come. Changes in the climate system can further impact stratospheric ozone abundance through changes in the temperature and water vapor structure of the atmosphere and through the potential initiation of solar radiation management efforts. In many ways, the rate at which climate is changing must now be considered fast relative to the slow removal of halogens from the atmosphere. Photochemical models of Earth's atmosphere play a critical role in understanding and projecting ozone levels, but in order for these models to be accurate, they must be built on a foundation of accurate laboratory data. ClOOCl is the centerpiece of the catalytic cycle that accounts for more than 50% of the chlorine-catalyzed ozone loss in the Arctic and Antarctic stratosphere every spring, and so uncertainties in the ultraviolet cross sections of ClOOCl are particularly important. Additionally, the equilibrium constant of the dimerization reaction of ClO merits further study, as there are important discrepancies between in situ measurements and lab-based models, and the JPL-11 recommended equilibrium constant includes high error bars at atmospherically relevant temperatures (~75% at 200 K). Here we analyze available data for the ClOOCl ultraviolet cross sections and equilibrium constant and present new laboratory spectroscopic results.

  14. Extension of the master sintering curve for constant heating rate modeling

    NASA Astrophysics Data System (ADS)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  15. The Influence of Photolysis Rate Constants in Ozone Production for the Paso del Norte Region

    NASA Astrophysics Data System (ADS)

    Becerra, Fernando; Fitzgerald, Rosa

    2012-03-01

    In this research work we are focusing on understanding the relationship between photolysis rates and the photochemical ozone changes observed in the Paso del Norte region. The city of El Paso, Texas together with Ciudad Juarez, Mexico, forms the largest contiguous bi-national metropolitan area. This region suffers year-round ozone pollution events, and a better understanding is needed to mitigate them. Previous studies have found that ambient ozone concentrations tend to be higher on weekends rather than on weekdays, this phenomenon being referred to, as the ``weekend effect.'' If the ozone standard is exceeded more frequently on weekends, then this phenomenon must be considered in the design of ozone control strategies. In this work we investigate some of the most representative weekend ozone episodes at El Paso, TX, during the years 2009, 2010 and 2011 using the ozone photolysis rates. In this research the TUV radiative-transfer model is used to calculate the local photolysis rates and a UV MFRSR instrument is used to obtain experimental parameters. Seasonal variations and the weekday-weekend effect is studied. The results of this research will help to understand the underlying behavior of the photolysis rate constants when different atmospheric conditions are present.

  16. Pharmacokinetics of cyclosporin: influence of rate of constant intravenous infusion in renal transplant patients.

    PubMed

    Gupta, S K; Legg, B; Solomon, L R; Johnson, R W; Rowland, M

    1987-10-01

    1 The pharmacokinetics of cyclosporin were studied in 12 renal transplant patients. Five patients received a constant rate (7 mg kg-1 day-1) intravenous infusion over 72 h and the remainder received rates of 7, 4 and 10 mg kg-1 day-1, consecutively each for at least 24 h. 2 Plasma, separated at 37 degrees C, was analysed by h.p.l.c. 3 The data were best described by a biexponential model. 4 Following the 72 h infusion, a plateau was reached by 24 h and clearance was 0.60 l h-1 kg-1. 5 Clearance associated with the 10 mg kg-1 day-1 infusion rate (0.43 l h-1 kg-1) was estimated to be lower than that following the 4 and 7 mg kg-1 day-1 rates (0.52 and 0.54 l h-1 kg-1 respectively) but the difference is unlikely to be of clinical significance. PMID:3318898

  17. Rate constant measurement of the recombination reaction C[sub 3]H[sub 3] + C[sub 3]H[sub 3

    SciTech Connect

    Morter, C.L.; Farhat, S.K.; Adamson, J.D.; Glass, G.P.; Curl, R.F. )

    1994-07-14

    Using the technique of infrared kinetic absorption spectroscopy, the second-order rate constant for the recombination reaction of the propargyl radical (C[sub 3]H[sub 3] + C[sub 3]H[sub 3]) has been measured and found to have the value (1.2 [+-] 0.2) x 10[sup [minus]10] cm[sup 3] molecule[sup [minus]1] s[sup [minus]1] at 295 K. The radical was produced in a flow cell by excimer laser flash photolysis ([lambda] = 193 nm) of the precursors C[sub 3]H[sub 3]Cl or C[sub 3]H[sub 3]Br and detected using time-resolved IR absorption. Absolute concentrations of C[sub 3]H[sub 3] were determined by comparing the C[sub 3]H[sub 3] absorption intensity with that of the Br atom. This calibration scheme was checked by producing methyl radicals by photolysis of methyl bromide and comparing the rate constant for methyl recombination thus obtained with literature values. The quantum yield for HCl production from the photodissociation of C[sub 3]H[sub 3]Cl at 193 nm was determined to be 0.07 [+-] 0.01. 47 refs., 10 figs., 1 tab.

  18. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  19. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    PubMed

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  20. Allowance for antibody bivalence in the determination of association rate constants by kinetic exclusion assay.

    PubMed

    Winzor, Donald J

    2013-10-15

    This investigation completes the amendment of theoretical expressions for the characterization of antigen-antibody interactions by kinetic exclusion assay-an endeavor that has been marred by inadequate allowance for the consequences of antibody bivalence in its uptake by the affinity matrix (immobilized antigen) that is used to ascertain the fraction of free antibody sites in a solution with defined total concentrations of antigen and antibody. A simple illustration of reacted site probability considerations in action confirms that the square root of the fluorescence response ratio, R(Ag)/R₀, needs to be taken in order to determine the fraction of unoccupied antibody sites, which is the parameter employed to describe the kinetics of antigen uptake in the mixture of antigen and antibody with defined initial composition. The approximately 2-fold underestimation of the association rate constant (k(a)) that emanates from the usual practice of omitting the square root factor gives rise to a corresponding overestimate of the equilibrium dissociation constant (K(d))--a situation that is also encountered in the thermodynamic characterization of antigen-antibody interactions by kinetic exclusion assay. PMID:23851342

  1. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    USGS Publications Warehouse

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  2. Quantum Yields and Rate Constants of Photochemical and Nonphotochemical Excitation Quenching (Experiment and Model).

    PubMed Central

    Laisk, A.; Oja, V.; Rasulov, B.; Eichelmann, H.; Sumberg, A.

    1997-01-01

    Sunflower (Helianthus annuus L.), cotton (Gossypium hirsutum L.), tobacco (Nicotiana tabacum L.), sorghum (Sorghum bicolor Moench.), amaranth (Amaranthus cruentus L.), and cytochrome b6f complex-deficient transgenic tobacco leaves were used to test the response of plants exposed to differnt light intensities and CO2 concentrations before and after photoinhibition at 4000 [mu]mol photons m-2 s-1 and to thermoinhibition up to 45[deg]C. Quantum yields of photochemical and nonphotochemical excitation quenching (YP and YN) and the corresponding relative rate constants for excitation capture from the antenna-primary radical pair equilibrium system (k[prime]P and k[prime]N) were calculated from measured fluorescence parameters. The above treatments resulted in decreases in YP and K[prime]P and in approximately complementary increases in YN and K[prime]N under normal and inhibitory conditions. The results were reproduced by a mathematical model of electron/proton transport and O2 evolution/CO2 assimilation in photosynthesis based on budget equations for the intermediates of photosynthesis. Quantitative differences between model predictions and experiments are explainable, assuming that electron transport is organized into domains that contain relatively complete electron and proton transport chains (e.g. thylakoids). With the complementation that occurs between the photochemical and nonphotochemical excitation quenching, the regulatory system can constantly maintain the shortest lifetime of excitation necessary to avoid the formation of chlorophyll triplet states and singlet oxygen. PMID:12223845

  3. Second order rate constants for intramolecular conversions: Application to gas-phase NMR relaxation times

    NASA Astrophysics Data System (ADS)

    Bauer, S. H.; Lazaar, K. I.

    1983-09-01

    The usually quoted expression for the second order rate constant, for a unimolecular reaction at the low pressure limit, is valid only for strictly irreversible processes. Its application to isomerization reactions (which are to some extent reversible) is demonstrably in error; corrected expressions have been published. Attention is directed to intramolecular conversions over low barriers, for which the inappropriateness of the unidirectional expression becomes obvious. For such isomerizations we propose a model which incorporates only operationally observable states, so that an essential conceptual ambiguity is avoided. Use of this model is illustrated for the syn⇄anti conversions of methyl nitrite, derived from a gas phase NMR coalescence curve (Mc:Tc). The present data suggest that during isomerization the alkyl nitrites may not be completely ergodic on a time scale of 10-9 s. A regional phase-space model is proposed which has the appropriate formalism to account for this behavior.

  4. Negative ion formation by Rydberg electron transfer: Isotope-dependent rate constants

    SciTech Connect

    Carman, H.S. Jr.; Klots, C.E.; Compton, R.N.

    1991-01-01

    The formation of negative ions during collisions of rubidium atoms in selected ns and nd Rydberg states with carbon disulfide molecules has been studied for a range of effective principal quantum numbers (10 {le} n* {le} 25). For a narrow range of n* near n* = 17, rate constants for CS{sub 2}{sup {minus}} formation are found to depend upon the isotopic composition of the molecule, producing a negative ion isotope ratio (mass 78 to mass 76, amu) up to 10.5 times larger than the natural abundance ratio of CS{sub 2} isotopes in the reagent. The isotope ratio is found to depend strongly upon the initial quantum state of the Rydberg atom and perhaps upon the collision energy and CS{sub 2} temperature. 32 refs., 5 figs., 1 tab.

  5. The Br+HO 2 reaction revisited: Absolute determination of the rate constant at 298 K

    NASA Astrophysics Data System (ADS)

    Laverdet, G.; Le Bras, G.; Mellouki, A.; Poulet, G.

    1990-09-01

    The absolute determination of the rate constant for the reaction Br+HO 2→HBr+O 2 has been done at 298 K using the discharge-flor EPR method. The value k1 = (1.5±0.2) × 10 -12 cm 3 molecule -1 s -1 was obtained. Previous indirect measurements of k1 from a discharge-flow, LIF/mass spectrometric study of the Br/H 2CO/O 2 system have been reinterpreted, leading to values for k1 ranging from 1.0 × 10 -12 to 2.2 × 10 -12 cm 3 molecule -1 s -1 at 298 K. These results are discussed and compared with other literature values.

  6. Estimation of rate constants of elementary processes - A review of the state of the art.

    NASA Technical Reports Server (NTRS)

    Golden, D. M.

    1973-01-01

    'Thermochemical kinetics,' the codification and extrapolation of empirical observations, as applied to certain elementary reactions of importance to combustion studies, is described. This approach allows the critical scrutiny of experimental data in areas where sufficient previous data exist, while, at the same time, illuminating those key areas where more experimentation is crucial. It is shown that combination of transition-state theory with an understanding of the molecular basis of entropy puts fairly rigid constraints on the values of the Arrhenius A-factor for most reactions. This, in turn, means that the activation energy is often the key datum that is missing, and that such data can be obtained with some degree of confidence, even from measurements of rate constants at only one temperature. In complex mechanisms, it is often possible to distinguish among alternate pathways and pinpoint key processes.

  7. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    SciTech Connect

    Jain, Amber; Subotnik, Joseph E.

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  8. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  9. Determination of ultimate carbonaceous BOD and the specific rate constant (K1)

    USGS Publications Warehouse

    Stamer, J.K.; Bennett, J.P.; McKenzie, Stuart W.

    1982-01-01

    Ultimate carbonaceous biochemical oxygen demand (BODu) and the specific rate constant (K1) at which the demand is exerted are important parameters in designing biological wastewater treatment plants and in assessing the impact of wastewater on receiving streams. An analytical method is presented which uses time-series concentrations of BOD, defined as the calculated sum of dissolved oxygen (DO) losses at each time of measurement, for determining BODu and K1. Time-series DO measurements are obtained from a water sample that is incubated in darkness at 20 degrees Celsius in the presence of nitrapyrin, a chemical nitrification inhibitor. Time-series concentrations of BOD that approximate first order kinetics can be analyzed graphically or mathematically to compute BODu and K1.

  10. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    SciTech Connect

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  11. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions.

    PubMed

    Ceotto, Michele; Miller, William H

    2004-04-01

    Two variants of the recently developed quantum instanton (QI) model for calculating thermal rate constants of chemical reactions are applied to several collinear atom-diatom reactions with various skew angles. The results show that the original QI version of the model is consistently more accurate than the "simplest" quantum instanton version (both being applied here with one "dividing surface") and thus to be preferred. Also, for these examples (as with other earlier applications) the QI results agree well with the correct quantum rates (to within approximately 20% or better) for all temperatures >200 K, except for situations where dynamical corrections to transition state theory (i.e., "re-crossing" dynamics) are evident. (Since re-crossing effects are substantially reduced in higher dimensionality, this is not a cause for serious concern.) A procedure is also described which facilitates use of the METROPOLIS algorithm for evaluating all quantities that appear in the QI rate expression by Monte Carlo path integral methods. PMID:15267524

  12. Cardiopulmonary Effects of Constant-Rate Infusion of Lidocaine for Anesthesia during Abdominal Surgery in Goats.

    PubMed

    Malavasi, Lais M; Greene, Stephen A; Gay, John M; Grubb, Tammy L

    2016-01-01

    Lidocaine is commonly used in ruminants but has an anecdotal history of being toxic to goats. To evaluate lidocaine's effects on selected cardiopulmonary parameters. Isoflurane-anesthetized adult goats (n = 24) undergoing abdominal surgery received a loading dose of lidocaine (2.5 mg/kg) over 20 min followed by constant-rate infusion of lidocaine (100 μg/kg/min); control animals received saline instead of lidocaine. Data collected at predetermined time points during the 60-min surgery included heart rate, mean arterial blood pressure, pO2, and pCO2. According to Welch 2-sample t tests, cardiopulmonary variables did not differ between groups. For example, after administration of the loading dose, goats in the lidocaine group had a mean heart rate of 88 ± 28 bpm, mean arterial blood pressure of 70 ± 19 mm Hg, pCO2 of 65 ± 13 mm Hg, and pO2 of 212 ± 99 mm Hg; in the saline group, these values were 90 ± 16 bpm, 76 ± 12 mm Hg, 61 ± 9 mm Hg, and 209 ± 83 mm Hg, respectively. One goat in the saline group required an additional dose of butorphanol. Overall our findings indicate that, at the dose provided, intravenous lidocaine did not cause adverse cardiopulmonary effects in adult goats undergoing abdominal surgery. Adding lidocaine infusion during general anesthesia is an option for enhancing transoperative analgesia in goats. PMID:27423150

  13. Efficacy and safety of constant-rate intravenous cyclosporine infusion immediately after heart transplantation.

    PubMed

    Schroeder, T J; Myre, S A; Melvin, D B; Van der Bel-Kahn, J; Stephens, G W; Collins, J A; Wolf, R K; Brown, L L; Pesce, A J; First, M R

    1989-01-01

    Oral cyclosporine therapy immediately after heart transplantation is erratic and difficult to predict. The purpose of this study was to evaluate the relative efficacy and safety of cyclosporine when administered by constant-rate infusion immediately after transplantation. Nineteen patients (17 men and two women) aged 50 years (range 25 to 61 years) who weighed 71 +/- 9 kg, participated in the study and received cyclosporine, 7 to 10 mg/hr (117 +/- 15 micrograms/kg/hr). The infusions were initially maintained for 26 +/- 5 hours (range 18 to 42 hours) without adjustments in dosage. Whole blood samples were obtained at hourly intervals for the first 8 to 12 hours and then daily throughout the 7-day study period and were analyzed by high-performance liquid chromatography. Constant-rate cyclosporine infusion resulted in therapeutic blood levels (350 to 450 ng/ml) at 6 hours. These levels remained relatively steady throughout the 7-day infusion, requiring only minimal dosage adjustments. Kidney function was not altered significantly after 7 days of intravenous cyclosporine therapy as evidenced by a mean serum creatinine level of 1.3 mg/dl before therapy and 1.4 mg/dl after therapy. There, however, was a transient rise in serum creatinine level in most patients on the second or third day after transplantation that resolved without a reduction in cyclosporine dosage. The mean endomyocardial biopsy score at 1 week after transplantation was 0.1, and only four of the patients required additional immunosuppressive therapy to treat rejection during the first 6 weeks after transplantation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2647932

  14. Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants

    NASA Astrophysics Data System (ADS)

    Halder, S.; Fruehan, R. J.

    2008-12-01

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  15. Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices.

    PubMed

    Javier Benitez, F; Acero, Juan L; Real, Francisco J; Roldán, Gloria

    2009-09-01

    The ozonation of four pharmaceuticals (metoprolol, naproxen, amoxicillin, and phenacetin) in ultra-pure (UP) water was studied in the pH range between 2.5 and 9. The experiments allowed the determination of the apparent rate constants for the reactions between ozone and the selected compounds. The values obtained varied depending on the pH, and ranged between 239 and 1.27x10(4)M(-1) s(-1) for metoprolol; 2.62x10(4) and 2.97x10(5)M(-1)s(-1) for naproxen; 2.31x10(3) and 1.21x10(7)M(-1)s(-1) for amoxicillin; and 215 and 1.57x10(3)M(-1)s(-1) for phenacetin. Due to the acidic nature of these substances, the degree of dissociation of each pharmaceutical was determined at every pH of work, and the specific rate constants of the neutral and ionic species formed were evaluated. Additionally, the simultaneous ozonation of the pharmaceuticals in different water matrices was carried out by considering a groundwater, a surface water from a public reservoir, and three secondary effluents from municipal wastewater treatment plants. The influence of the operating conditions (initial ozone dose, nature of pharmaceuticals and type of water) on the pharmaceuticals elimination efficiency was established, and a kinetic model was proposed for the evaluation of the partial contribution to the global oxidation of both, the direct ozonation reaction and the radical pathway.

  16. Rate constants for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-30

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K/T) cm{sup 3

  17. Rate constant for the termolecular reaction of OH+toluene+helium in the fall-off range below 10 Torr

    NASA Astrophysics Data System (ADS)

    Bourmada, N.; Devolder, P.; Sochet, L.-R.

    1988-08-01

    We have measured the title rate constant by the discharge flow technique associated with detection of OH by resonance fluorescence and photon counting. The experimental conditions are as follows: pressure range 0.4 to 9.8 Tort; temperature range 297 to 353 K. From room temperature results, the Troe parameters k0 (low-pressure limiting rate constant) and k∞ (high-pressure limiting rate constant) are derived: k0 = (4.0 ± 0.5 ) × 10 -28 cm 6 molecule -2 s -1 ; k∞ = (6.0±0.7) × 10 -12 cm 3 molecule -1 s -1.

  18. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  19. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    ERIC Educational Resources Information Center

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  20. Spatial variability of time-constant slip rates on the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Blisniuk, K.; Oskin, M. E.; Sharp, W. D.; Meriaux, A. B.; Rockwell, T. K.; Fletcher, K.; Owen, L. A.

    2011-12-01

    In southern California, the San Andreas (SAF) and San Jacinto fault (SJF) zones account for 70-80% of the relative dextral motion between the Pacific and North American plates, with some studies suggesting that the SJF zone may be the dominant structure. However, few slip rate measurements are available for the SJF zone, making it difficult to evaluate the partitioning of deformation across the plate boundary. To more reliably constrain the late Quaternary slip history of the SJF zone, we measured the displacement of well-preserved alluvial fans along the Clark and Coyote Creek fault strands of the SJF zone using field mapping and high-resolution LiDAR topographic data, and dated the fans using U-series on pedogenic carbonate clast-coatings and in situ cosmogenic 10Be. Our results from four sites along the Clark fault strand and two sites along the Coyote Creek fault strand indicate that late Quaternary slip rates have fluctuated along their length but have remained constant since the late Pleistocene. Slip rates along the Clark fault strand over the past 50-30 kyr decrease southward over a distance of ~60 km from ~13 mm/yr at Anza, to 8.9 ± 2.0 mm/yr at Rockhouse Canyon, and 1.5 ± 0.4 mm/yr near the SE end of the Santa Rosa Mountains, probably due to transfer of slip from the Clark fault strand to the Coyote Creek fault strand and nearby zones of distributed deformation. Slip rates of up to ~14 to 18 mm/yr summed across the southern SJF zone suggest that since the latest Pleistocene, the SJF zone may rival the southern SAF zone in accommodating deformation across the Pacific-North America Plate boundary.

  1. Stress corrosion cracking of alloy 600 using the constant strain rate test

    SciTech Connect

    Bulischeck, T. S.; van Rooyen, D.

    1980-01-01

    The most recent corrosion problems experienced in nuclear steam generators tubed with Inconel alloy 600 is a phenomenon labeled ''denting''. Denting has been found in various degrees of severity in many operating pressurized water reactors. Laboratory investigations have shown that Inconel 600 exhibits intergranular SCC when subjected to high stresses and exposed to deoxygenated water at elevated temperatures. A research project was initiated at Brookhaven National Laboratory in an attempt to improve the qualitative and quantitative understanding of factors influencing SCC in high temperature service-related environments. An effort is also being made to develop an accelerated test method which could be used to predict the service life of tubes which have been deformed or are actively denting. Several heats of commercial Inconel 600 tubing were procured for testing in deaerated pure and primary water at temperatures from 290 to 365/sup 0/C. U-bend type specimens were used to determine crack initiation times which may be expected for tubes where denting has occurred but is arrested and provide baseline data for judging the accelerating effects of the slow strain rate method. Constant extension rate tests were employed to determine the crack velocities experienced in the crack propagation stage and predict failure times of tubes which are actively denting. 8 refs., 17 figs., 5 tabs.

  2. Rheological and biochemical characterization of salmon myosin as affected by constant heating rate.

    PubMed

    Reed, Zachary H; Park, Jae W

    2011-03-01

    Purified Chinook salmon myosin was studied using sodium dodecylsulfate-polyacryamide gel electrophoresis and densitometric analysis to determine its purity (approximately 94%). Myosin subjected to a constant heating rate began to form aggregates at >24 °C as measured by turbidity at 320 nm. Conformational changes, as measured by surface hydrophobicity (S(o)), began at 18.5 °C and continued to increase up to 75 °C after which it decreased slightly. Total sulfhydryl (TSH) content remained steady from 18.5 to 50 °C after which point the TSH began to drop. Surface reactive sulfhydryl groups gradually increased as the temperature increased from 18.5 to 55 °C and then followed a similar trend as TSH decreased. Presumably disulfide bond started to be formed at around 50 to 55 °C. Differential scanning calorimetry showed 4 peaks, 3 endothermic (27.9, 36.0, 45.5 °C), and 1 exothermic (49.0 °C). Dynamic rheological measurements provided information concerning the gelation point of salmon myosin that was 31.1 °C as samples were heated at a rate of 2 °C/min.

  3. Kinetic mechanism of phenylalanine hydroxylase: intrinsic binding and rate constants from single-turnover experiments.

    PubMed

    Roberts, Kenneth M; Pavon, Jorge Alex; Fitzpatrick, Paul F

    2013-02-12

    Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH(4)) and O(2). A complete kinetic mechanism for PheH was determined by global analysis of single-turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH(4)-phenylalanine complex begins with the rapid binding of BH(4) (K(d) = 65 μM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (K(d) = 130 μM) is approximately 10-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O(2) rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, which can be detected as a decrease in absorbance at 340 nm, with a rate constant of 140 s(-1). Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is 10-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines k(cat). Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation.

  4. A new method for measuring the oxygen diffusion constant and oxygen consumption rate of arteriolar walls.

    PubMed

    Sasaki, Nobuhiko; Horinouchi, Hirohisa; Ushiyama, Akira; Minamitani, Haruyuki

    2012-01-01

    Oxygen transport is believed to primarily occur via capillaries and depends on the oxygen tension gradient between the vessels and tissues. As blood flows along branching arterioles, the O(2) saturation drops, indicating either consumption or diffusion. The blood flow rate, the O(2) concentration gradient, and Krogh's O(2) diffusion constant (K) of the vessel wall are parameters affecting O(2)delivery. We devised a method for evaluating K of arteriolar wall in vivo using phosphorescence quenching microscopy to measure the partial pressure of oxygen in two areas almost simultaneously. The K value of arteriolar wall (inner diameter, 63.5 ± 11.9 μm; wall thickness, 18.0 ± 1.2 μm) was found to be 6.0 ± 1.2 × 10(-11) (cm(2)/s)(ml O(2)·cm(-3) tissue·mmHg(-1)). The arteriolar wall O(2) consumption rate (M) was 1.5 ± 0.1 (ml O(2)·100 cm(-3) tissue·min(-1)), as calculated using Krogh's diffusion equation. These results suggest that the arteriolar wall consumes a considerable proportion of the O(2) that diffuses through it.

  5. Selective determination of rate constants of reactions of atomic hydrogen with various functional groups of a complex molecule

    NASA Astrophysics Data System (ADS)

    Brauer, G. B.; Pugachev, D. V.; Azatyan, V. V.

    2016-05-01

    The possibility of determining absolute values of the rate constants of reactions of active intermediate species with different functional groups of molecules is demonstrated by measuring macrokinetic combustion characteristics. The Arrhenius parameters of the rate constant of the reaction between atomic hydrogen with the methylene group of ethanol and molecular oxygen within the temperature range of 830-970 K are determined. The reasons for the differences between the rate constants of reactions with the methylene and methyl groups of an ethanol molecule are discussed using thermochemical data. It is found that the obtained values of activation energies and preexponential factors of rate constants are in good agreement with the literature data on the region of lower temperatures.

  6. Frequency offset dependence of adiabatic rotating frame relaxation rate constants: relevance to MRS investigations of metabolite dynamics in vivo

    PubMed Central

    Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom

    2011-01-01

    In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R1ρ) and transverse (R2ρ) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R1ρ and R2ρ values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R1ρ and R2ρ values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R1ρ and R2ρ values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R1ρ and R2ρ values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R1ρ and R2ρ values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976

  7. The prediction of the dissolution rate constant by mixing rules: the study of acetaminophen batches.

    PubMed

    Lee, Tu; Hou, Hung Ju; Hsieh, Hsiang Yu; Su, Yan Chan; Wang, Yeh Wen; Hsu, Fu Bin

    2008-05-01

    The purpose of this article is to promote two simple and scalable methods to accelerate the formulation development of formulated granules using acetaminophen as a model system. In method I, formulated granules made from the batch of small particle-sized acetaminophen (1) by ball milling the batch of large particle-sized acetaminophen (2), and the mixture of the two batches at equal weights (mix) gave the dissolution rate constants (k) of k(1) = 0.43 +/- 0.15 minutes(-1), k(2) = 0.18 +/- 0.01 minutes(-1), and k(mix) = 0.30 +/- 0.03 minutes(-1) for 75 wt percent formulation; k(1) = 0.75 +/- 0.01 minutes(-1), k(2) = 0.18 +/- 0.01 minutes(-1), and k(mix) = 0.34 +/- 0.03 minutes(-1) for 62 wt percent formulation; and k(1) = 0.28 +/- 0.01 minutes(-1), k(2) = 0.16 +/- 0.01 minutes(-1), and k(mix) = 0.22 +/- 0.02 minutes(-1) for 30 wt percent formulation. In method II, the mixture of the formulated granules produced by mixing the formulated granules from the two batches at equal weights gave dissolution rate constants of k(mix) = 0.30 +/- 0.03 minutes(-1), 0.30 +/- 0.02 minutes(-1), and 0.22 +/- 0.01 minutes(-1) for 75 wt percent, 62 wt percent, and 30 wt percent formulations, respectively. After fitting the three data points of k(1), k(2), and k(mix) to the 10 mixing rules in materials science--series mixing rule, Hashin and Shtrikman upper bound, logarithmic mixing, Looyenga mixing rule, effective media approximation (EMA), three-point lower bound, Torquato approximation, three-point upper bound, Maxwell mixing rule, and parallel mixing rule--we found that the selection of the best suited mixing rules based on k(1), k(2), and k(mix) was solely dependent on the formulations under a given operating condition and regardless of whether the system was a powder mixture or a granular mixture. The values of k(1), k(2), and k(mix) in both the 75 wt percent and 30 wt percent formulations were enveloped by the parallel mixing rule and Maxwell mixing rule, whereas the values of k(1

  8. The prediction of the dissolution rate constant by mixing rules: the study of acetaminophen batches.

    PubMed

    Lee, Tu; Hou, Hung Ju; Hsieh, Hsiang Yu; Su, Yan Chan; Wang, Yeh Wen; Hsu, Fu Bin

    2008-05-01

    The purpose of this article is to promote two simple and scalable methods to accelerate the formulation development of formulated granules using acetaminophen as a model system. In method I, formulated granules made from the batch of small particle-sized acetaminophen (1) by ball milling the batch of large particle-sized acetaminophen (2), and the mixture of the two batches at equal weights (mix) gave the dissolution rate constants (k) of k(1) = 0.43 +/- 0.15 minutes(-1), k(2) = 0.18 +/- 0.01 minutes(-1), and k(mix) = 0.30 +/- 0.03 minutes(-1) for 75 wt percent formulation; k(1) = 0.75 +/- 0.01 minutes(-1), k(2) = 0.18 +/- 0.01 minutes(-1), and k(mix) = 0.34 +/- 0.03 minutes(-1) for 62 wt percent formulation; and k(1) = 0.28 +/- 0.01 minutes(-1), k(2) = 0.16 +/- 0.01 minutes(-1), and k(mix) = 0.22 +/- 0.02 minutes(-1) for 30 wt percent formulation. In method II, the mixture of the formulated granules produced by mixing the formulated granules from the two batches at equal weights gave dissolution rate constants of k(mix) = 0.30 +/- 0.03 minutes(-1), 0.30 +/- 0.02 minutes(-1), and 0.22 +/- 0.01 minutes(-1) for 75 wt percent, 62 wt percent, and 30 wt percent formulations, respectively. After fitting the three data points of k(1), k(2), and k(mix) to the 10 mixing rules in materials science--series mixing rule, Hashin and Shtrikman upper bound, logarithmic mixing, Looyenga mixing rule, effective media approximation (EMA), three-point lower bound, Torquato approximation, three-point upper bound, Maxwell mixing rule, and parallel mixing rule--we found that the selection of the best suited mixing rules based on k(1), k(2), and k(mix) was solely dependent on the formulations under a given operating condition and regardless of whether the system was a powder mixture or a granular mixture. The values of k(1), k(2), and k(mix) in both the 75 wt percent and 30 wt percent formulations were enveloped by the parallel mixing rule and Maxwell mixing rule, whereas the values of k(1

  9. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.

  10. Effect of selecting a fixed dephosphorylation rate on the estimation of rate constants and rCMRGlu from dynamic (18F) fluorodeoxyglucose/PET data

    SciTech Connect

    Dhawan, V.; Moeller, J.R.; Strother, S.C.; Evans, A.C.; Rottenberg, D.A. )

    1989-09-01

    Several publications have discussed the estimation and physiologic significance of regional ({sup 18}F)fluorodeoxyglucose (FDG) rate constants and metabolic rates. Most of these studies analyzed dynamic data collected over 45-60 min; three rate constants (k1-k3) and blood volume (Vb) were estimated and the regional cerebral metabolic rate for glucose (rCMRGlu) was subsequently derived using the measured blood glucose value and a regionally invariant value of the lumped constant (LC). The dephosphorylation rate constant (k4) was either neglected, or a fixed value was used in the estimation procedure to obtain the remaining parameters. To compare the rate constants obtained by different authors using different values of k4 is impossible without knowledge of the effect of selecting different fixed values of k4 (including zero) on the estimated rate constants and rCMRGlu. Based on our analysis of FDG/PET data from nine normal volunteer subjects, we conclude that inclusion of a fixed value for k4, in spite of a scaling effect on the absolute values of model parameters, has no effect on the coefficient of variation (CV) of within- and between-subject parameter estimates and glucose metabolic rates.

  11. U-shaped temperature dependence of rate constant of intramolecular photoinduced charge separation in zinc-porphyrin-bridge-quinone compounds.

    PubMed

    Kichigina, Anna O; Ionkin, Vladimir N; Ivanov, Anatoly I

    2013-06-20

    The multichannel stochastic point transition model of photoinduced electron transfer from both a vibrationally unrelaxed and a relaxed states involving the vibrational relaxation in donor-acceptor pairs has been elaborated. The U-shaped temperature dependencies of the rate constants of the intramolecular photoinduced charge separation from both the vibrationally unrelaxed and the relaxed states observed in Zn-porphyrin-bridge-quinone compounds in 2-methyltetrahydrofuran solvent have been reproduced in the framework of the proposed model that accounts for the temperature dependencies of the charge separation free energy gap and the medium reorganization energy. This modeling has allowed uncovering the mechanism of such a variation of the rate constant with the temperature. In the high temperature region, 310-125 K, the charge separation proceeds in the solvent controlled regime and its rate constant decreases with decreasing the temperature mirroring the temperature dependence of the medium relaxation rate. Further lowering the temperature leads to a rise of the reaction free energy gap so that it becomes larger than the medium reorganization energy. In this region the dynamic solvent effect is strongly suppressed and the charge separation rate constant becomes independent from the solvent relaxation rate. Although the medium relaxation rate continues to decrease with decreasing the temperature, the charge separation rate constant starts to rise because the reaction proceeds in the barrierless region.

  12. U-shaped temperature dependence of rate constant of intramolecular photoinduced charge separation in zinc-porphyrin-bridge-quinone compounds.

    PubMed

    Kichigina, Anna O; Ionkin, Vladimir N; Ivanov, Anatoly I

    2013-06-20

    The multichannel stochastic point transition model of photoinduced electron transfer from both a vibrationally unrelaxed and a relaxed states involving the vibrational relaxation in donor-acceptor pairs has been elaborated. The U-shaped temperature dependencies of the rate constants of the intramolecular photoinduced charge separation from both the vibrationally unrelaxed and the relaxed states observed in Zn-porphyrin-bridge-quinone compounds in 2-methyltetrahydrofuran solvent have been reproduced in the framework of the proposed model that accounts for the temperature dependencies of the charge separation free energy gap and the medium reorganization energy. This modeling has allowed uncovering the mechanism of such a variation of the rate constant with the temperature. In the high temperature region, 310-125 K, the charge separation proceeds in the solvent controlled regime and its rate constant decreases with decreasing the temperature mirroring the temperature dependence of the medium relaxation rate. Further lowering the temperature leads to a rise of the reaction free energy gap so that it becomes larger than the medium reorganization energy. In this region the dynamic solvent effect is strongly suppressed and the charge separation rate constant becomes independent from the solvent relaxation rate. Although the medium relaxation rate continues to decrease with decreasing the temperature, the charge separation rate constant starts to rise because the reaction proceeds in the barrierless region. PMID:23721362

  13. Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Weaver, Aaron S.

    2003-01-01

    Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.

  14. Theoretical investigation on H abstraction reaction mechanisms and rate constants of Isoflurane with the OH radical

    NASA Astrophysics Data System (ADS)

    Ren, Hongjiang; Li, Xiaojun

    2015-12-01

    The mechanism of H abstraction reactions for Isoflurane with the OH radical was investigated using density functional theory and G3(MP2) duel theory methods. The geometrical structures of all the species were fully optimised at B3LYP/6-311++G** level of theory. Thermochemistry data were obtained by utilising the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for the reaction channels analysis. All the reaction channels were confirmed throughout the intrinsic reaction coordinate analysis. The results show that two channels were obtained, which correspond to P(1) and P(2) with the respective activation barriers of 63.03 and 54.82 kJ/mol. The rate constants for the two channels over a wide temperature range of 298.15-2000 K were predicted and the calculated data are in agreement with the experimental one. The results show that P(2) is the dominant reaction channel under 800 K and above 800 K, it can be found that P(1) will be more preferable reaction channel.

  15. A QSAR for the prediction of rate constants for the reaction of VOCs with nitrate radicals.

    PubMed

    Schindler, Michael

    2016-07-01

    A QSAR for the prediction of rate constants for the degradation of volatile organic compounds by nitrate radicals is developed using the Partial Least Squares technique. The QSAR is based on experimental data published in the literature for 260 compounds. They are modeled by a set of calculated descriptors from standard descriptor generation tools and from quantum chemistry. Out of several diversity-based partitionings of the data set a diverse set of 99 compounds turned out to be the optimum choice with regard to simplicity and performance. The final QSAR model is characterized by r(2) = 0.831 (fit) and q(2) = 0.823 (prediction), and by an r(2)pred = 0.862 for the n = 155 external validation set. The QSAR needs 3 latent variables. The most important descriptors for the QSAR are the ionization potential, obtained from density functional theory, and the energy of the highest occupied molecular orbital, which are modulated by fingerprints indicating the presence of specific molecular fragments like functional groups or ring systems. The applicability domain of the new QSAR was studied for some compound classes which are important for the crop protection industry, including (di)hydroxbenzenes and heterocyclic compounds. PMID:27037771

  16. A QSAR for the prediction of rate constants for the reaction of VOCs with nitrate radicals.

    PubMed

    Schindler, Michael

    2016-07-01

    A QSAR for the prediction of rate constants for the degradation of volatile organic compounds by nitrate radicals is developed using the Partial Least Squares technique. The QSAR is based on experimental data published in the literature for 260 compounds. They are modeled by a set of calculated descriptors from standard descriptor generation tools and from quantum chemistry. Out of several diversity-based partitionings of the data set a diverse set of 99 compounds turned out to be the optimum choice with regard to simplicity and performance. The final QSAR model is characterized by r(2) = 0.831 (fit) and q(2) = 0.823 (prediction), and by an r(2)pred = 0.862 for the n = 155 external validation set. The QSAR needs 3 latent variables. The most important descriptors for the QSAR are the ionization potential, obtained from density functional theory, and the energy of the highest occupied molecular orbital, which are modulated by fingerprints indicating the presence of specific molecular fragments like functional groups or ring systems. The applicability domain of the new QSAR was studied for some compound classes which are important for the crop protection industry, including (di)hydroxbenzenes and heterocyclic compounds.

  17. Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid; Huck, Peter M

    2015-11-01

    Quantitative structure-property relationship (QSPR) models which predict hydroxyl radical rate constants (kOH) for a wide range of emerging micropollutants are a cost effective approach to assess the susceptibility of these contaminants to advanced oxidation processes (AOPs). A QSPR model for the prediction of kOH of emerging micropollutants from their physico-chemical properties was developed with special attention to model validation, applicability domain and mechanistic interpretation. In this study, 118 emerging micropollutants including those experimentally determined by the author and data collected from the literature, were randomly divided into the training set (n=89) and validation set (n=29). 951 DRAGON molecular descriptors were calculated for model development. The QSPR model was calibrated by applying forward multiple linear regression to the training set. As a result, 7 DRAGON descriptors were found to be important in predicting the kOH values which related to the electronegativity, polarizability, and double bonds, etc. of the compounds. With outliers identified and removed, the final model fits the training set very well and shows good robustness and internal predictivity. The model was then externally validated with the validation set showing good predictive power. The applicability domain of the model was also assessed using the Williams plot approach. Overall, the developed QSPR model provides a valuable tool for an initial assessment of the susceptibility of micropollutants to AOPs.

  18. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    NASA Astrophysics Data System (ADS)

    Orkin, Vladimir; Kurylo, Michael

    2015-04-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  19. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Kurylo, M. J., III

    2014-12-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a tropospherically well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  20. Modeling the tissue solubilities and metabolic rate constant (V max) of halogenated methanes, ethanes, and ethylenes

    SciTech Connect

    Gargas, M.L.; Seybold, P.G.; Andersen, M.E.

    1988-01-01

    Experimental solvent:air and tissue:air partition coefficients for 25 halogenated methanes, ethanes, and ethylenes in saline solution; olive oil; and rat blood, muscle, liver, and fat tissues were examined using theoretical molecular modeling techniques. The metabolic rate constant, V/sub max/, was also investigated by these techniques for 19 chlorinated compounds in this group. Two graph theoretical approaches (the distance method of Wiener and the connectivity index method of Randic, Kier, and Hall) and an approach utilizing ad hoc molecular descriptors were employed. Satisfactory regression models for solubility were obtained with both the Randic-Kier-Hall approach and the ad hoc descriptors approach. Fluorine substituents decrease tissue solubilities, whereas both chlorine and bromine substituents increase tissue solubilities, with the relative influence being chlorine

  1. Predicting reaction rate constants of ozone with organic compounds from radical structures

    NASA Astrophysics Data System (ADS)

    Yu, Xinliang; Yi, Bing; Wang, Xueye; Chen, Jianfang

    2012-05-01

    The reaction rate constants of ozone with organic compounds in the atmosphere were predicted by a quantitative structure-activity relationship (QSAR) model. Density functional theory (DFT) calculations, for the first time, were carried out on the radicals from organic compounds, at the UB3LYP level of theory with 6-31G(d) basis set. A set of quantum chemical descriptors calculated from the radicals, the energy of the highest occupied molecular orbital of beta spin states (EβHOMO), the molecular average polarizability (α), and the total energy (ET), were used to build the general QSAR model for aliphatic compounds, applying the genetic algorithm (GA) technique and support vector machine (SVM) regression. The root mean square errors (RMSE) are 0.680 for the training set (68 compounds), 0.777 for the validation set (36 compounds) and 0.709 for the test set (35 compounds). Investigated results indicate that the SVM model given here has good predictivity for aliphatic compounds.

  2. Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid; Huck, Peter M

    2015-11-01

    Quantitative structure-property relationship (QSPR) models which predict hydroxyl radical rate constants (kOH) for a wide range of emerging micropollutants are a cost effective approach to assess the susceptibility of these contaminants to advanced oxidation processes (AOPs). A QSPR model for the prediction of kOH of emerging micropollutants from their physico-chemical properties was developed with special attention to model validation, applicability domain and mechanistic interpretation. In this study, 118 emerging micropollutants including those experimentally determined by the author and data collected from the literature, were randomly divided into the training set (n=89) and validation set (n=29). 951 DRAGON molecular descriptors were calculated for model development. The QSPR model was calibrated by applying forward multiple linear regression to the training set. As a result, 7 DRAGON descriptors were found to be important in predicting the kOH values which related to the electronegativity, polarizability, and double bonds, etc. of the compounds. With outliers identified and removed, the final model fits the training set very well and shows good robustness and internal predictivity. The model was then externally validated with the validation set showing good predictive power. The applicability domain of the model was also assessed using the Williams plot approach. Overall, the developed QSPR model provides a valuable tool for an initial assessment of the susceptibility of micropollutants to AOPs. PMID:26005810

  3. Unified expression for the rate constant of the bridged electron transfer derived by renormalization

    NASA Astrophysics Data System (ADS)

    Saito, Keisuke; Sumi, Hitoshi

    2009-10-01

    Electron transfer (ET) from a donor to an acceptor through an energetically close intermediary state on a midway molecule is a process found often in natural and artificial solar-energy capturing systems such as photosynthesis. This process has often been thought of in terms of opposing "superexchange" and "sequential or hopping" mechanisms, and the recent theory of Sumi and Kakitani (SK) [J. Phys. Chem. B 105, 9603 (2001)] has shown an interpolation between these mechanisms. In their theory, however, dynamics governing the most interesting intermediary region between them has artificially been introduced by phenomenologies. The dynamics is played by decoherence among electronic states, their decay, and thermalization of phonons in the medium. The present work clarifies the dynamics on a microscopic basis by means of renormalization in electronic coupling among the states, and gives a complete unified expression of the rate constant of the ET. It merges to that given by the SK theory in the semiclassical approximation for phonons interacting with an electron transferred.

  4. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    NASA Astrophysics Data System (ADS)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  5. Competitive kinetics versus stopped flow method for determining the degradation rate constants of steroids by ozonation.

    PubMed

    López-López, Alberto; Flores-Payán, Valentín; León-Becerril, Elizabeth; Hernández-Mena, Leonel; Vallejo-Rodríguez, Ramiro

    2016-01-01

    Steroids are classified as endocrine disrupting chemicals; they are persistent with low biodegradability and are hardly degraded by conventional methods. Ozonation process has been effective for steroids degradation and the determination of the kinetics is a fundamental aspect for the design and operation of the reactor. This study assessed two methods: competitive kinetics and stopped flow, for determining the degradation kinetics of two steroids, estradiol (E2) and ethinylestradiol (EE2) in spiked water. Experiments were performed at pH 6, 21 °C, and using tertbutyl alcohol as scavenger of hydroxyl radicals; competitive kinetics method used sodium phenolate as reference compound. For the stopped flow, the experiments were performed in a BioLogic SFM-3000/S equipment. For both methods, the second order rate constants were in the order of 10(6) and 10(5) M(-1) s(-1) for E2 and EE2 respectively. The competitive kinetics can be applied with assurance and reliability but needing an additional analysis method to measure the residual concentrations. Stopped flow method allows the evaluation of the degradation kinetics in milliseconds and avoids the use of additional analytical methodologies; this method allows determining the reaction times on line. The methods are applicable for degradation of other emerging contaminants or other steroids and could be applied in water treatment at industrial level. Finally, it is important to consider the resources available to implement the most appropriate method, either competitive kinetics or the stopped-flow method. PMID:27478722

  6. Use of the vial equilibration technique for determination of metabolic rate constants for dichloromethane.

    PubMed

    Kim, C; Manning, R O; Brown, R P; Bruckner, J V

    1996-08-01

    Metabolism of methylene chloride, or dichloromethane (DCM), plays a key role in determining the kinetics and carcinogenicity of the halocarbon. The objectives of this study were: to evaluate and optimize the vial equilibration technique, originally described by Sato and Nakajima (1979a), in order to characterize the hepatic metabolism of DCM by Sprague-Dawley rats; to employ different hepatic microsomal preparations to examine buffer effects on DCM metabolism; and to assess the relative importance and metabolic constants of the mixed-function oxidase (MFO) and glutathione (GSH) S-transferase (GST) metabolic pathways. A crude liver homogenate (20% W/V) was prepared from perfused livers of male Sprague-Dawley (S-D) rats (275-325 g). A 30% glycerol buffer was found to significantly inhibit DCM metabolism, while 0.25 M sucrose buffer containing 10 mM EDTA and 1.15% KCl did not. DCM was incubated with the liver 10,000 g supernatant or microsomes and cofactors in sealed headspace vials. Disappearance of DCM, as a measure of the chemical's metabolism, was monitored by headspace gas chromatography. Different trials were conducted to elucidate time-, enzyme-, and substrate-activity relationships. The scaled-up K(m) and Vmax values for the microsomal fraction were quite similar to optimized in vivo values reported by other investigators. In the current study, DCM appeared to be metabolized preferentially by cytochrome P450 IIE1, since substrates (e.g., pyrazole, ethanol, and glycerol) for this isozyme completely inhibited DCM metabolism. Thus, glycerol should not be used as a P450 stabilizer for preparation or storage of microsomes. Phorone pretreatment caused marked hepatic GSH depletion, but had little effect on the overall rate of DCM metabolism. Quantitatively, the GST pathway in the cytosol played a very minor role in DCM metabolism. It was not possible to accurately calculate metabolic constants for this pathway in S-D rats. The vial equilibration technique, as

  7. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  8. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-01

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  9. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-01

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications. PMID:26684219

  10. Measurement of the absorption rate of carbon dioxide into aqueous diethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1998-05-01

    Aqueous alkanolamine solutions are commonly used in natural gas sweetening processes to remove the acid gases CO{sub 2} and H{sub 2}S. Absorption rates of gaseous CO{sub 2} into aqueous diethanolamine (DEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate, protonated DEA, and carbamate ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. The diffusion coefficient of DEA in water was also measured using a Taylor dispersion apparatus. A numerical model was developed and used to regress diffusion coefficients of bicarbonate, carbamate, and protonated amine from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and protonated DEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % DEA in water.

  11. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. PMID:27237834

  12. Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals With Three Partially Fluorinated Ethers

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

  13. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data.

  14. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system.

    PubMed

    Schindel, Daniel; Singh, Mahi R

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  15. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel; Singh, Mahi R.

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  16. Energy absorption at high strain rate of glass fiber reinforced mortars

    NASA Astrophysics Data System (ADS)

    Fenu, Luigi; Forni, Daniele; Cadoni, Ezio

    2015-09-01

    In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF) was finally evaluated.

  17. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    PubMed

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range.

  18. Procedures for static and constant-rate tests on a Single-Degree-of-Freedom (SDF) strapdown gyroscope

    NASA Astrophysics Data System (ADS)

    Apps, R.; Vinnins, M.

    1983-10-01

    Test procedures for testing a rate-integrating, Single-Degree-of-Freedom strapdown gyroscope are presented. Tests are restricted to static and constant-rate modes in both inertial reference servo and analog-torque-to-balance configurations. Alignment procedures and adopted sign conventions are discussed. Temperature control considerations are described.

  19. A review of lung-to-blood absorption rates for radon progeny.

    PubMed

    Marsh, J W; Bailey, M R

    2013-12-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.

  20. Seasonally constant field metabolic rates in free-ranging sugar gliders (Petaurus breviceps).

    PubMed

    Quin, Darren G; Riek, Alexander; Green, Stuart; Smith, Andrew P; Geiser, Fritz

    2010-03-01

    Sugar gliders, Petaurus breviceps (average body mass: 120 g) like other small wild mammals must cope with seasonal changes in food availability and weather and therefore thermoregulatory and energetic challenges. To determine whether free-ranging sugar gliders, an arboreal marsupial, seasonally adjust their energy expenditure and water use, we quantified field metabolic rates (FMR) and water flux at a seasonal cool-temperate site in eastern Australia. Thirty six male and female sugar gliders were labelled with doubly labelled water for this purpose in spring, summer and autumn. The mean FMR was 159+/-6 kJ d(-1) (spring), 155+/-8 kJ d(-1) (summer), and 152+/-20 kJ d(-1) (autumn) and the mean FMR for the three seasons combined was 158+/-5 kJ d(-1) (equivalent to 1.33 kJ g(-)(1)d(-1) or 780 kJ kg(-0.)(75)d(-1)). The mean total body water was 83+/-2 g, equal to 68.5% of body weight. Mean water flux was 29+/-1 mL day(-1). Season, ambient temperature or sex did not affect any of the measured and estimated physiological variables, but body mass and total body water differed significantly between sexes and among seasons. Our study is the first to provide evidence for a constant FMR in a small mammal in three different seasons and despite different thermal conditions. This suggests that seasonal changes in climate are compensated for by behavioural and physiological adjustments such as huddling and torpor known to be employed extensively by sugar gliders in the wild.

  1. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Geva, Eitan

    2016-06-01

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.

  2. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space. PMID:27369495

  3. Interpolation constants for calculation of transmittance and rate of dissociation of molecular oxygen in the mesosphere and lower thermosphere

    NASA Technical Reports Server (NTRS)

    Hudson, R. D.; Mahle, S. H.

    1972-01-01

    Values of band oscillator strengths and rotational line widths for the Schumann-Runge band system have been used to derive interpolation constants from which the transmittance and rate of dissociation of molecular oxygen can be calculated. These constants, valid for temperatures between 150 and 300 K and for column densities between 1 x 10 to the 17th power/cm sq and 7 x 10 to the 24th power/cm sq, cover the wavelength range 1750 and 2050A.

  4. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-01

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  5. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  6. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278

  7. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered

  8. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Risaliti, G.; Fabian, A. C.; Kara, E.; Miller, J. M.; Arevalo, P.; Ballantyne, D. R.; Boggs, S. E.; Craig, W. W.; Brenneman, L. W.; Elvis, M.; Christensen, F. E.; Gandhi, P.; Hailey, C. J.; Luo, B.; Marinucci, A.; and others

    2014-06-10

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).

  9. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295 K

    NASA Astrophysics Data System (ADS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-02-01

    When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.

  10. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  11. Rate constants for the gas phase reaction of OH radicals with peroxyacetyl nitrate (PAN) at 273 and 297 K

    NASA Astrophysics Data System (ADS)

    Wallington, Timothy J.; Atkinson, Roger; Winer, Arthur M.

    1984-09-01

    Recently, peroxyacetyl nitrate (PAN) has been postulated to be a potential tropospheric reservoir of oxides of nitrogen, and to be important in their long-range transport. To better assess its atmospheric chemistry, absolute rate constants for the reaction of OH radicals with peroxyacetyl nitrate (PAN) have been determined using a flash photolysis resonance fluorescence technique. Rate constants of (1.13 ± 0.06) × 10-13 cm³ molecule-1 s-1 and (1.37 ± 0.05) × 10-13 cm³ molecule-1 s-1, independent of total pressure over the range 25-100 torr of argon, were determined at 273 ± 2 and 297 ± 2 K, respectively. (The errors limits represent two standard deviations; systematic errors could contribute an additional ˜10% uncertainty.) These rate constants imply that reaction with the OH radical is the most important removal process for PAN in the upper troposphere.

  12. Mechanism and rate of glucose absorption differ between an Australian honeyeater (Meliphagidae) and a lorikeet (Loriidae).

    PubMed

    Napier, Kathryn R; McWhorter, Todd J; Fleming, Patricia A

    2008-11-01

    Efficient mechanisms of glucose absorption are necessary for volant animals as a means of reducing mass during flight: they speed up gut transit time and require smaller volume and mass of gut tissue. One mechanism that may be important is absorption via paracellular (non-mediated) pathways. This may be particularly true for nectarivorous species which encounter large quantities of sugar in their natural diet. We investigated the extent of mediated and non-mediated glucose absorption in red wattlebirds Anthochaera carunculata (Meliphagidae) and rainbow lorikeets Trichoglossus haematodus (Loriidae) to test the hypothesis that paracellular uptake accounts for a significant proportion of total glucose uptake in these species. We found that routes of glucose absorption are highly dynamic in both species. In lorikeets, absorption of L-glucose (non-mediated uptake) is slower than that of D-glucose (mediated and non-mediated uptake), with as little as 10% of total glucose absorbed by the paracellular pathway initially (contrasting previous indirect estimates of approximately 80%). Over time, however, more glucose may be absorbed via the paracellular route. Glucose absorption by both mediated and non-mediated mechanisms in wattlebirds occurred at a faster rate than in lorikeets, and wattlebirds also rely substantially on paracellular uptake. In wattlebirds, we recorded higher bioavailability of L-glucose (96+/-3%) compared with D-glucose (57+/-2%), suggesting problems with the in vivo use of radiolabeled d-glucose. Further trials with 3-O-methyl-D-glucose revealed high bioavailability in wattlebirds (90+/-5%). This non-metabolisable glucose analogue remains the probe of choice for measuring uptake rates in vivo, especially in birds in which absorption and metabolism occur extremely rapidly.

  13. Mechanism and rate of glucose absorption differ between an Australian honeyeater (Meliphagidae) and a lorikeet (Loriidae).

    PubMed

    Napier, Kathryn R; McWhorter, Todd J; Fleming, Patricia A

    2008-11-01

    Efficient mechanisms of glucose absorption are necessary for volant animals as a means of reducing mass during flight: they speed up gut transit time and require smaller volume and mass of gut tissue. One mechanism that may be important is absorption via paracellular (non-mediated) pathways. This may be particularly true for nectarivorous species which encounter large quantities of sugar in their natural diet. We investigated the extent of mediated and non-mediated glucose absorption in red wattlebirds Anthochaera carunculata (Meliphagidae) and rainbow lorikeets Trichoglossus haematodus (Loriidae) to test the hypothesis that paracellular uptake accounts for a significant proportion of total glucose uptake in these species. We found that routes of glucose absorption are highly dynamic in both species. In lorikeets, absorption of L-glucose (non-mediated uptake) is slower than that of D-glucose (mediated and non-mediated uptake), with as little as 10% of total glucose absorbed by the paracellular pathway initially (contrasting previous indirect estimates of approximately 80%). Over time, however, more glucose may be absorbed via the paracellular route. Glucose absorption by both mediated and non-mediated mechanisms in wattlebirds occurred at a faster rate than in lorikeets, and wattlebirds also rely substantially on paracellular uptake. In wattlebirds, we recorded higher bioavailability of L-glucose (96+/-3%) compared with D-glucose (57+/-2%), suggesting problems with the in vivo use of radiolabeled d-glucose. Further trials with 3-O-methyl-D-glucose revealed high bioavailability in wattlebirds (90+/-5%). This non-metabolisable glucose analogue remains the probe of choice for measuring uptake rates in vivo, especially in birds in which absorption and metabolism occur extremely rapidly. PMID:18978218

  14. Novel method of determination of the internal enzyme distribution within porous solid supports and the deactivation rate constant

    SciTech Connect

    Do, D.D.; Hossain, M.M.

    1986-04-01

    This article presents a method for determining the rate constant for deactivation and the internal distribution of immobilized enzyme. This method makes use of the parallel deactivation process in a diffusion-controlled regime, in which the internal activity profile behaves like a penetration front. This front basically traces through the initial active enzymatic profile, and one can determine the internal profile and the rate constant for deactivation from the experimentally observable bulk concentration versus time. This method is applied to the experimental data of the system of hydrogen peroxide-immobilized catalase on controlled pore glas and Si-Al particles. 26 references.

  15. Reactions of ethynyl radicals - Rate constants with CH4, C2H6, and C2D6

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.

    1981-01-01

    An experiment to measure ethynyl radical reactivity with other simple molecules is described. Flash photolysis of CF3C2H, a C2H precursor, was kinetically and spectroscopically analyzed for C2H reactions with CH4, C2H6, and C2D6 and rate constants for the abstraction reaction at room temperature were determined. The experimental apparatus is described, and the acetylene feedstock purification procedures are outlined. Rate constants are provided, and additional examination of the effects of added helium showed no alterations over the pressure range 20-700 torr.

  16. Rate constant measurements for the reaction Cl + CH2O yields HCl + CHO Implications regarding the removal of stratospheric chlorine

    NASA Technical Reports Server (NTRS)

    Anderson, P. C.; Kurylo, M. J.

    1979-01-01

    The flash photolysis resonance fluorescence technique was employed to investigate the rate constant for the reaction Cl + CH2O yields HCl + CHO from 223 to 323 K. An Arrhenius fit of the data gives a rate constant equal to (1.09 + or - 0.40) x 10 to the -10th exp/-(131 + or - 98)/T/ in units of cu cm/molecule per sec. The results are compared to two very recent kinetic studies and are assessed in view of the reaction's role in disrupting the Cl-ClO stratospheric ozone depletion chain.

  17. Absolute rate constant of the reaction between chlorine /2P/ atoms and hydrogen peroxide from 298 to 424 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between chlorine (2P) atoms and hydrogen peroxide was determined from 298 to 424 K, using the discharge flow resonance fluorescence technique. Pseudo-first-order conditions were used with hydrogen peroxide in large excess. A fast flow-sampling procedure limited hydrogen peroxide decomposition to less than 5% over the temperature range studied. At 298 K, the rate constant is (4.1 plus or minus 0.2) x 10 to the minus 13th cu cm/molecule-sec.

  18. The gaseous explosive reaction at constant pressure : the reaction order and reaction rate

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1931-01-01

    The data given in this report covers the explosive limits of hydrocarbon fuels. Incidental to the purpose of the investigation here reported, the explosive limits will be found to be expressed for the condition of constant pressure, in the fundamental terms of concentrations (partial pressures) of fuel and oxygen.

  19. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications.

    PubMed

    Sugano, Kiyohiko; Terada, Katsuhide

    2015-09-01

    The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro-in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy.

  20. A Stringent Limit on Variation of the Fine-Structure Constant Using Absorption Line Multiplets in the Early Universe

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2016-06-01

    One of the key questions of modern physics concerns the possibility that physical constants have varied throughout the history of the Universe. The standard model of physics is built on these constants, but it does not provide any explanation for their values, nor does it require their constancy over space and time. Here, we set a new limit on possible spatial and temporal variations of the fine-structure constant α = e 2/4πɛ0 ħc by comparing transitions and line multiplets in an ensemble of Fe II λ 1608, λ 2344, λ 2374, λ 2383, λ 2587, and λ 2600 observed in the early Universe with those measured in the laboratory. Based on the optical spectrum observations of QSO HE 0515-4414, we deduce a constraint of Δα/α = (-0.157± 0.300)×10-6 at redshift z = 1.15. At present, this represents the tightest limit on Δα/α in early cosmological epochs compared to the published results in the literature.

  1. EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests

    SciTech Connect

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2009-08-14

    concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic. The work described in this report addresses the kinetics of caustic leach under WTP conditions, based on tests performed with a Hanford waste simulant. The tests were completed at the lab-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. The purpose of this report is to summarize the results from both scales that are related to caustic leach chemistry to support a scale-up factor for the submodels to be used in the G2 model, which predicts WTP operating performance. The scale-up factor will take the form of an adjustment factor for the rate constant in the boehmite leach kinetic equation in the G2 model.

  2. Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants.

    PubMed

    Shapiro, Adam B; Gao, Ning; Gu, Rong-Fang; Thresher, Jason

    2014-10-15

    High-molecular-weight penicillin-binding proteins (PBPs) are essential integral membrane proteins of the bacterial cytoplasmic membrane responsible for biosynthesis of peptidoglycan. They are the targets of antibacterial β-lactam drugs, including penicillins, cephalosporins, and carbapenems. β-Lactams covalently acylate the active sites of the PBP transpeptidase domains. Because β-lactams are time-dependent inhibitors, quantitative assessment of the inhibitory activity of these compounds ideally involves measurement of their second-order acylation rate constants. We previously described a fluorescence anisotropy-based assay to measure these rate constants for soluble constructs of PBP3 (Anal. Biochem. 439 (2013) 37-43). Here we report the expression and purification of a soluble construct of Pseudomonas aeruginosa PBP2 as a fusion protein with NusA. This soluble PBP2 was used to measure second-order acylation rate constants with the fluorescence anisotropy assay. Measurements were obtained for mecillinam, which reacts specifically with PBP2, and for several carbapenems. The assay also revealed that PBP2 slowly hydrolyzed mecillinam and was used to measure the rate constant for this deacylation reaction.

  3. Multiple-estimate Monte Carlo calculation of the dose rate constant for a cesium-131 interstitial brachytherapy seed

    SciTech Connect

    Wittman, Richard S.; Fisher, Darrell R.

    2007-01-03

    The purpose of this study was to calculate a more accurate dose rate constant for the Cs-131 (model CS-1, IsoRay Medical, Inc., Richland, Washington) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15 percent greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the Cs-131 seed was 1.040 cGy h^{-1} U^{-1} for an ionization chamber model and 1.032 cGy h^{-1} U^{-1} for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multi-estimate values were from 1.032 cGy h^{-1} U^{-1} to 1.061 cGy h^{-1} U^{-1}. We also modeled three I-125 seeds with known dose rate constants to test the accuracy of this study's approach.

  4. Quantitative Structure-Activity Relationships Study on the Rate Constants of Polychlorinated Dibenzo-p-Dioxins with OH Radical

    PubMed Central

    Qi, Chuansong; Zhang, Chenxi; Sun, Xiaomin

    2015-01-01

    The OH-initiated reaction rate constants (kOH) are of great importance to measure atmospheric behaviors of polychlorinated dibenzo-p-dioxins (PCDDs) in the environment. The rate constants of 75 PCDDs with the OH radical at 298.15 K have been calculated using high level molecular orbital theory, and the rate constants (kα, kβ, kγ and kOH) were further analyzed by the quantitative structure-activity relationships (QSAR) study. According to the QSAR models, the relations between rate constants and the numbers and positions of Cl atoms, the energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied molecular orbital (ELUMO), the difference ΔEHOMO-LUMO between EHOMO and ELUMO, and the dipole of oxidizing agents (D) were discussed. It was found that EHOMO is the main factor in the kOH. The number of Cl atoms is more effective than the number of relative position of these Cl atoms in the kOH. The kOH decreases with the increase of the substitute number of Cl atoms. PMID:26274950

  5. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2,6-dimethoxyphenol)

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Seydi, Abdoulaie

    2012-08-01

    Syringol (2,6-dimethoxyphenol) is a potential marker compound for wood smoke emissions in the atmosphere. To investigate the atmospheric reactivity of this compound, the rate constant for its reaction with hydroxyl radicals (OH) has been determined in a simulation chamber (8 m3) at 294 ± 2 K, atmospheric pressure and low relative humidity (2-4%) using the relative rate method. The syringol and reference compound concentrations were followed by GC/FID (Gas chromatography/Flame Ionization Detection). The determined rate constant (in units of cm3 molecule-1 s-1) is ksyringol = (9.66 ± 1.11) × 10-11. The calculated atmospheric lifetime for syringol is 1.8 h, indicating that it is too reactive to be used as a tracer for wood smoke emissions. Secondary Organic Aerosol (SOA) formation from the OH reaction with syringol was also investigated. The initial mixing ratios for syringol were in the range 495-3557 μg m-3. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (M0) to the total reacted syringol concentration assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial syringol concentration increases, and leads to aerosol yields ranging from 0.10 to 0.36. Y is a strong function of M0 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. To our knowledge, this work represents the first investigation of the rate constant and SOA formation for the reaction of syringol with OH radicals. The atmospheric implications of this reaction are also discussed.

  6. Dissociation and rate constants of some human liver alcohol dehydrogenase isoenzymes.

    PubMed

    Pietruszko, R; de Zalenski, C; Theorell, H

    1976-01-01

    ADH from human liver forms binary complexes with NADH, associated with a blue shift of the peak of the fluorescence emission of NADH. The wavelength shift is the same for all isoenzymes but the accompanying intensification of the fluorescence is different. The fluorescence is further increased by the formation of the very tight ternary enzyme-NADH-isobutyramide complexes. These properties are similar to those for the horse liver ADH, as well as the molecular weight of E=40 000 per active site of the dimer molecule (EE). "Stopped-flow" determined velocity constants (ER in equilibrium E+R) were found to be in good agreement with ethanol activity constants previously determined by activity measurement, confirming the validity of the ordered ternary complex mechanism also for the human ADH. No single isoenzyme activity as high as that reported by Mourad and Woronick or Drum has been found. PMID:184631

  7. Mass Loss Rates for Solar-like Stars Measured from Lyα Absorption

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Müller, H.-R.; Linsky, J. L.

    2003-10-01

    We present a number of mass loss rate measurements for solar-like stars with coronal winds, computed using a Lyα absorption technique. The collision between the solar wind and the interstellar wind seen by the Sun defines the large scale structure of our heliosphere. Similar structures, ``astrospheres,'' exist around other solar-like stars. The deceleration of the interstellar wind at the solar or stellar bow shock heats the interstellar material. Heated neutral hydrogen in the outer astrosphere (and/or heliosphere) produces a broad Lyα absorption profile that is often detectable in high resolution Hubble Space Telescope spectra. The amount of absorption is dependent upon the strength of the stellar wind. With guidance from hydrodynamic models of astrospheres, we use detected astrospheric Lyα absorption to estimate the stellar mass loss rates. For the solar-like GK stars in our sample, mass loss appears to increase with stellar activity, suggesting that young, active stars have stronger winds than old, inactive stars. However, Proxima Cen (M5.5 Ve) and λ And (G8 IV-III+M V) appear to be inconsistent with this relation.

  8. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  9. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  10. Flow variability of an aerial variable-rate nozzle at constant pressures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable-rate ground application systems have been in use for the past 15 years, but due to high application speeds, flow requirements, and aerodynamic considerations, variable-rate aerial nozzles have not been available until now. In 2006, Spray Target, Inc. released the VeriRate™ variable-rate aer...

  11. Online rate control in digital cameras for near-constant distortion based on minimum/maximum criterion

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yong; Ortega, Antonio

    2000-04-01

    We address the problem of online rate control in digital cameras, where the goal is to achieve near-constant distortion for each image. Digital cameras usually have a pre-determined number of images that can be stored for the given memory size and require limited time delay and constant quality for each image. Due to time delay restrictions, each image should be stored before the next image is received. Therefore, we need to define an online rate control that is based on the amount of memory used by previously stored images, the current image, and the estimated rate of future images. In this paper, we propose an algorithm for online rate control, in which an adaptive reference, a 'buffer-like' constraint, and a minimax criterion (as a distortion metric to achieve near-constant quality) are used. The adaptive reference is used to estimate future images and the 'buffer-like' constraint is required to keep enough memory for future images. We show that using our algorithm to select online bit allocation for each image in a randomly given set of images provides near constant quality. Also, we show that our result is near optimal when a minimax criterion is used, i.e., it achieves a performance close to that obtained by applying an off-line rate control that assumes exact knowledge of the images. Suboptimal behavior is only observed in situations where the distribution of images is not truly random (e.g., if most of the 'complex' images are captured at the end of the sequence.) Finally, we propose a T- step delay rate control algorithm and using the result of 1- step delay rate control algorithm, we show that this algorithm removes the suboptimal behavior.

  12. QSARS for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems

    SciTech Connect

    Peijnenburg, W.J.G.M.; 't Hart, M.J.; den Hollander, H.A.; van de Meent, D.; Verboom, H.H.

    1991-01-01

    Quantitative structure-activity relationships (QSARs) are developed relating biotic and abiotic pseudo-first-order disappearance rate constants of halogenated hydrocarbons in anoxic sediments to a number of readily available molecular descriptors. Based upon knowledge of the underlying reaction mechanisms, four descriptors were selected: carbon halogen bond strength, the summation of the Hammett (aromatics) and Taft (aliphatics) sigma constants and the inductive constants (aromatics) of the additional substituents, carbon-carbon bond dissociation energy (aliphatics), and steric factors of the additional substituents. Comparison of the abiotic and biotic QSARs clearly showed the close similarities between both processes. By correlating the rate constants for reduction of a number of halocarbons obtained in a number of distinct sediment samples to the organic carbon content of the samples, the QSARs were made operative for predicting rates of reduction of given halocarbons in given sediment-water systems. The correlations were enhanced by taking into account the fraction of the compounds sorbed to the solid phase. (Copyright (c) 1991 Elsevier Science Publishers B.V.)

  13. Real-time association rate constant measurement using combination tapered fiber-optic biosensor (CTFOB) dip-probes

    PubMed Central

    Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh

    2011-01-01

    This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. “Direct method” was used for detection; goat anti-BSA “capture” antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3 nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 ± 0.01) ×104 M−1 s−1. PMID:21643496

  14. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    NASA Astrophysics Data System (ADS)

    Coïsson, M.; Barrera, G.; Celegato, F.; Martino, L.; Vinai, F.; Martino, P.; Ferraro, G.; Tiberto, P.

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained.

  15. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  16. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    SciTech Connect

    Debreczeny, M.P.

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  17. Slow Crack Growth Analysis of Brittle Materials with Finite Thickness Subjected to Constant Stress-Rate Flexural Loading

    NASA Technical Reports Server (NTRS)

    Chio, S. R.; Gyekenyesi, J. P.

    1999-01-01

    A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.

  18. Absorption cross-section and decay rate of rotating linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Aslan, O. A.

    2016-02-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  19. Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN.

    PubMed

    Fassheber, Nancy; Dammeier, Johannes; Friedrichs, Gernot

    2014-06-21

    The overall rate constant of the reaction (2), NCN + H, which plays a key role in prompt-NO formation in flames, has been directly measured at temperatures 962 K < T < 2425 K behind shock waves. NCN radicals and H atoms were generated by the thermal decomposition of NCN3 and C2H5I, respectively. NCN concentration-time profiles were measured by sensitive narrow-line-width laser absorption at a wavelength of λ = 329.1302 nm. The obtained rate constants are best represented by the combination of two Arrhenius expressions, k2/(cm(3) mol(-1) s(-1)) = 3.49 × 10(14) exp(-33.3 kJ mol(-1)/RT) + 1.07 × 10(13) exp(+10.0 kJ mol(-1)/RT), with a small uncertainty of ±20% at T = 1600 K and ±30% at the upper and lower experimental temperature limits.The two Arrhenius terms basically can be attributed to the contributions of reaction channel (2a) yielding CH + N2 and channel (2b) yielding HCN + N as the products. A more refined analysis taking into account experimental and theoretical literature data provided a consistent rate constant set for k2a, its reverse reaction k1a (CH + N2 → NCN + H), k2b as well as a value for the controversial enthalpy of formation of NCN, ΔfH = 450 kJ mol(-1). The analysis verifies the expected strong temperature dependence of the branching fraction ϕ = k2b/k2 with reaction channel (2b) dominating at the experimental high-temperature limit. In contrast, reaction (2a) dominates at the low-temperature limit with a possible minor contribution of the HNCN forming recombination channel (2d) at T < 1150 K.

  20. Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusiona)

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Li, D.; Radha, P. B.; Sawada, H.; Seka, W.; Boehly, T. R.; Delettrez, J. A.; Gotchev, O. V.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Yaakobi, B.; Mancini, R. C.

    2007-05-01

    Direct-drive laser absorption, mass ablation rate, and shock heating are experimentally studied on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] to validate hydrodynamics simulations. High-gain, direct-drive inertial confinement fusion target implosions require accurate predictions of the shell adiabat α (entropy), defined as the pressure in the main fuel layer to the Fermi-degenerate pressure, and the implosion velocity of the shell. The laser pulse shape determines the shell adiabat and the hydrodynamic efficiency determines the implosion velocity. A comprehensive set of measurements tracking the flow of energy from the laser to the target was conducted. Time-resolved measurements of laser absorption in the corona are performed on spherical implosion experiments. The mass ablation rate is inferred from time-resolved Ti K-shell spectroscopic measurements of nonaccelerating, solid CH spherical targets with a buried tracer layer of Ti. Shock heating is diagnosed in planar-CH-foil targets using time-resolved x-ray absorption spectroscopy and noncollective spectrally resolved x-ray scattering. The highly reproducible experimental results achieved with a high level of laser drive uniformity [S. P. Regan et al., J. Opt. Soc. Am. B 22, 998 (2005)] constrain the modeling of direct-drive energy coupling. A detailed comparison of the experimental results and the simulations reveals that a single-value flux limiter in the thermal transport model cannot explain all of the experimental observables. Simulations of laser absorption measurements need a time-dependent flux limiter to match the data. Modeling of both resonance absorption and nonlocal effects in the electron thermal conduction from the critical density to the ablation front are underway to resolve the observed discrepancies.

  1. Strain Rate Effects on the Energy Absorption of Rapidly Manufactured Composite Tubes

    SciTech Connect

    Brighton, Aaron M; Forrest, Mark; Starbuck, J Michael; ERDMAN III, DONALD L; Fox, Bronwyn

    2009-01-01

    Quasi-static and intermediate rate axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). The quasi-static tests were conducted at 10 mm/min (1.67x10-4 m/s); five different crush initiators were used. Tests at intermediate rates were performed at speeds of 0.25 m/s, 0.5 m/s, 0.75 m/s 1m/s, 2 m/s and 4 m/s. Quasi-static tests of tubular specimens showed high specific energy absorption (SEA) values with 86 kJ/kg for Carbon/Epoxy specimens. The specific energy absorption of the Glass/Polypropylene specimens was measured to be 29 kJ/kg. Results from the intermediate test rates showed that while a decrease in specific energy absorbed was observed as speeds increased, values did not fall below 55kj/kg for carbon specimens or 35 kJ/kg for the Glass/Polypropylene specimens. When compared with steel and aluminium, specific energy absorption values of 15 kJ/kg and 30 kJ/kg respectively, the benefits of using composite materials in crash structures are apparent.

  2. Numerical assessment of the reduction of specific absorption rate by adding high dielectric materials for fetus MRI at 3 T.

    PubMed

    Luo, Minmin; Hu, Can; Zhuang, Yayun; Chen, Wufan; Liu, Feng; Xin, Sherman Xuegang

    2016-08-01

    The specific absorption rate (SAR) is an important issue to be considered in fetus MRI at 3 T due to the high radiofrequency energy deposited inside the body of pregnant woman. The high dielectric material (HDM) has shown its potential for enhancing B1 field and reducing SAR in MRI. The aim of this study is to assess the feasibility of SAR reduction by adding an HDM to the fetus MRI. The feasibility of SAR reduction is numerically assessed in this study, using a birdcage coil in transmission loaded with an electromagnetic pregnant woman model in the SEMCAD-EM solver. The HDMs with different geometric arrangements and dielectric constants are manually optimized. The B1+ ${B_1}^ + $ homogeneity is also considered while calculating the optimized fetus 10 g local SAR among different strategies in the application of HDM. The optimum maximum fetus 10 g local SAR was obtained as 2.25 W/kg, by using two conformal pads placed left and right with the dielectric constant to be 400, reduced by 24.75% compared to that without the HDM. It indicated that the SAR can be significantly reduced with strategic placement of the HDM and the use of HDM may provide a simple, effective and low-cost method for reducing the SAR for the fetus MRI at 3 T. PMID:26985683

  3. Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments

    PubMed Central

    Volkán-Kacsó, Sándor; Marcus, Rudolph A.

    2015-01-01

    A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483

  4. Theoretical Prediction of Rate Constants for Hydrogen Abstraction by OH, H, O, CH3, and HO2 Radicals from Toluene.

    PubMed

    Li, Shu-Hao; Guo, Jun-Jiang; Li, Rui; Wang, Fan; Li, Xiang-Yuan

    2016-05-26

    Hydrogen abstraction from toluene by OH, H, O, CH3, and HO2 radicals are important reactions in oxidation process of toluene. Geometries and corresponding harmonic frequencies of the reactants, transition states as well as products involved in these reactions are determined at the B3LYP/6-31G(2df,p) level. To achieve highly accurate thermochemical data for these stationary points on the potential energy surfaces, the Gaussian-4(G4) composite method was employed. Torsional motions are treated either as free rotors or hindered rotors in calculating partion functions to determine thermodynamic properties. The obtained standard enthalpies of formation for reactants and some prodcuts are shown to be in excellent agreement with experimental data with the largest error of 0.5 kcal mol(-1). The conventional transition state theory (TST) with tunneling effects was adopted to determine rate constants of these hydrogen abstraction reactions based on results from quantum chemistry calculations. To faciliate its application in kinetic modeling, the obtained rate constants are given in Arrhenius expression: k(T) = AT(n) exp(-EaR/T). The obtained reaction rate constants also agree reasonably well with available expermiental data and previous theoretical values. Branching ratios of these reactions have been determined. The present reaction rates for these reactions have been used in a toluene combustion mechanism, and their effects on some combustion properties are demonstrated. PMID:27164019

  5. Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments.

    PubMed

    Volkán-Kacsó, Sándor; Marcus, Rudolph A

    2015-11-17

    A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available.

  6. Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins.

    PubMed

    Kocyła, Anna; Pomorski, Adam; Krężel, Artur

    2015-11-01

    4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492 nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500 M(-1) cm(-1), and the dissociation constant of the complex in these conditions is 7.08×10(-13) M(2). To confirm these values and estimate the range of the dissociation constants of zinc-binding biomolecules that can be measured using PAR, we performed several titrations of zinc finger peptides and zinc chelators. Taken together, our results provide the updated parameters that are applicable to any experiment conducted using inexpensive and commercially available PAR.

  7. Determination by ultraviolet absorption spectrometry and theoretical calculation of dissociation constant of 1,2,3,9-tetrahydro-4H-carbazol-4-one.

    PubMed

    Zhang, Shufang; Zhang, Xiaoyan; Tang, Ke; Zhou, Zhengyu

    2009-08-15

    The dissociation constant of 1,2,3,9-tetrahydro-4H-carbazol-4-one was determined by ultraviolet absorption spectrometry method based on the absorption spectra of 1,2,3,9-tetrahydro-4H-carbazol-4-one at different pH in ethanol-water mixed solvents. The results show that the pK(b) was a good linear function of the volume fraction of ethanol in the concentration range studied. The dissociation constant of 1, 2, 3,9-tetrahydro-4H-carbazol-4-one in water were determined by extrapolation to be 14.04 under the condition of this experiment. The accurate pK(b) calculations of 1,2,3,9-tetrahydro-4H-carbazol-4-one have been investigated using the combination of the extended clusters-continuum model with the polarizable continuum solvation model (PCM). The calculations are performed at the B3LYP/6-31G levels. The formation of molecular clusters by means of the 1,2,3,9-tetrahydro-4H-carbazol-4-one wrapped up with water molecules leads to the weakness of the interaction between the polar solvents and the 1,2,3,9-tetrahydro-4H-carbazol-4-one, hence, the accuracy of pK(b) has been enhanced. The dissociation constant of 1,2,3,9-tetrahydro-4H-carbazol-4-one in water were calculated to be 14.10 and agreed well with experimental data.

  8. Reaction rate constant for dry air oxidation of K Basin fuel

    SciTech Connect

    Trimble, D.J.

    1998-04-29

    The rate of oxidation of spent nuclear fuel stored in the K Basin water is an important parameter when assessing the processes and accident scenarios for preparing the fuel for dry storage. The literature provides data and rate laws for the oxidation of unirradiated uranium in various environments. Measurement data for the dry air oxidation of K Basin fuel is compared to the literature data for linear oxidation in dry air. Equations for the correlations and statistical bounds to the K Basin fuel data and the literature data are selected for predicting nominal and bounding rates for the dry air oxidation of the K Basin fuel. These rate equations are intended for use in the Spent Nuclear Fuel Project Technical Data book.

  9. QSAR ANALYSIS OF SORPTION-CORRECTED RATE CONSTANTS FOR REDUCTIVE BIOTRANSFORMATION OF HALOGENATED AROMATICS

    EPA Science Inventory

    The inherent coupling among geochemical and microbial reactions may have significant effects on the environmental fate of a containinant. For example, sorption processes may decrease the concentration of an organic compound in solution, thereby reducing the biodegradation rate of...

  10. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  11. Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation.

    PubMed

    Kandilian, Razmig; Pruvost, Jérémy; Legrand, Jack; Pilon, Laurent

    2014-07-01

    This study aims to understand the role of light transfer in triglyceride fatty-acid (TG-FA) cell content and productivity from microalgae during nitrogen starvation. Large amounts of TG-FA can be produced via nitrogen starvation of microalgae in photobioreactors exposed to intense light. First, spectral absorption and scattering cross-sections of N. oculata were measured at different times during nitrogen starvation. They were used to relate the mean volumetric rate of energy absorption (MVREA) per unit mass of microalgae to the TG-FA productivity and cell content. TG-FA productivity correlated with the MVREA and reached a maximum for MVREA of 13 μmol hν/gs. This indicated that TG-FA synthesis was limited by the photon absorption rate in the PBR. A minimum MVREA of 13 μmol hν/gs was also necessary at the onset of nitrogen starvation to trigger large accumulation of TG-FA in cells. These results will be instrumental in defining protocols for TG-FA production in scaled-up photobioreactors.

  12. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 1. Monomers

    SciTech Connect

    Debreczeny, M.P.; Sauer, K.; Zhou, J.; Bryant, D.A.

    1995-05-18

    Rate constants for excitation energy transfer in light-harvesting protein, C-phycocyanin (PC), in the monomeric aggregation state, isolated from the cyanobacterium cynechococcus sp. PCC 7002, are calculated, using Foerster theory and compared with the results of time-resolved fluorescence measurements. The assignments of the energy-transfer rate constants in PC monomers are confirmed here by time-resolved fluorescence anisotropy measurements of the PC monomers isolated from both the wild-type and a mutant strain (cpcB/C155S) whose PC is missing the {beta}{sub 155} chromophore. It is concluded that the Foerster model of resonant energy transfer in the weak coupling limit successfully describes the dominant energy-transfer processes in this protein in the monomeric state. 31 refs., 3 figs., 4 tabs.

  13. Rate constant for the reaction of hydroxyl radical with formaldehyde over the temperature range 228-362 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Nava, D. F.; Payne, W. A.; Michael, J. V.

    1980-01-01

    Absolute rate constants for the reaction OH ? H2CO measured over the temperature range 228-362 K using the flash photolysis-resonance fluorescence technique are given. The results are independent of variations in H2CO concentration, total pressure Ar concentration, and flash intensity (i.e., initial OH concentration). The rate constant is found to be invariant with temperature in this range, the best representation being k sub 1 = (1.05 ? or - 0.11) x 10 to the 11th power cu cm molecule(-1) s(-1) where the error is two standard deviations. This result is compared with previous absolute and relative determinations of k sub 1. The reaction is also discussed from a theoretical point of view.

  14. Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates.

    PubMed

    Niland, Courtney N; Jankowsky, Eckhard; Harris, Michael E

    2016-10-01

    Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High-throughput sequencing kinetics (HTS-Kin) uses high-throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigated the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we found that high-throughput sequencing and experimental reproducibility contribute to error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed.

  15. Equilibrium Fermi's Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-05-19

    In this article, we present a comprehensive comparison between the linearized semiclassical expression for the equilibrium Fermi's golden rule rate constant and the progression of more approximate expressions that lead to the classical Marcus expression. We do so within the context of the canonical Marcus model, where the donor and acceptor potential energy surface are parabolic and identical except for a shift in both the free energies and equilibrium geometries, and within the Condon region. The comparison is performed for two different spectral densities and over a wide range of frictions and temperatures, thereby providing a clear test for the validity, or lack thereof, of the more approximate expressions. We also comment on the computational cost and scaling associated with numerically calculating the linearized semiclassical expression for the rate constant and its dependence on the spectral density, temperature, and friction.

  16. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry.

    PubMed

    Groth, Angela; Maurer, Claudia; Reiser, Martin; Kranert, Martin

    2015-02-01

    The aim of the work was to establish a method for emission control of biogas plants especially the observation of fugitive methane emissions. The used method is in a developmental stage but the topic is crucial to environmental and economic issues. A remote sensing measurement method was adopted to determine methane emission rates of a biogas plant in Rhineland-Palatinate, Germany. An inverse dispersion model was used to deduce emission rates. This technique required one concentration measurement with an open path tunable diode laser absorption spectrometer (TDLAS) downwind and upwind the source and basic wind information, like wind speed and direction. Different operating conditions of the biogas plant occurring on the measuring day (December 2013) could be represented roughly in the results. During undisturbed operational modes the methane emission rate averaged 2.8 g/s, which corresponds to 4% of the methane gas production rate of the biogas plant.

  17. Rate constants for aqueous-phase reactions of hydroxyl radical ({center_dot}OH) with aldehydes and ketones

    SciTech Connect

    Allen, J.M.; Allen, S.K.

    1995-12-31

    A wide variety of aldehydes and ketones are formed in the troposphere by the gas-phase oxidation of hydrocarbons. These compounds are expected to readily partition into cloud, fog, and aquated aerosol drops where they can participate in a variety of aqueous-phase reactions. It has been previously demonstrated by other researchers that aqueous-phase photochemical reactions involving aromatic aldehydes and ketones may lead to the formation of hydrogen peroxide. Hydrogen peroxide is an important oxidant for S(IV) and is also an {center_dot}OH precursor. Aldehydes and ketones may also participate in other aqueous-phase reactions within atmospheric water drops including reactions with {center_dot}OH. Rate constants for reactions involving {center_dot}OH in aqueous solutions have been reported for only a limited number of tropospheric aldehydes and ketones. The authors have measured the rate constants for aqueous-phase reactions of {center_dot}OH with several tropospheric aldehydes and ketones by the technique of competition kinetics. Hydroxyl radicals were generated by continuous illumination at 313 nm of an aqueous acidified solution containing Fe(ClO{sub 4}){sub 3}, an {center_dot}OH scavenger, the aldehyde or ketone whose rate constant was to be measured, and a standard for which the rate constant for reaction with {center_dot}OH is well known. Nitrobenzene was used as the standard in all experiments. Loss of the aldehyde or ketone and the standard were monitored by HPLC. Losses attributable to direct photolysis and dark reactions were minimal.

  18. Temperature, pressure and deuterium effects on the phosphorescence decay-rate constant of naphthalene in a single crystal of durene

    NASA Astrophysics Data System (ADS)

    Hoshi, Nagahiro; Yamauchi, Seigo; Hirota, Noboru

    1990-06-01

    It is suggested that the hitherto unexplained drastic temperature, pressure and external deuterium isotope effects on the phosphorescence decay-rate constant ( kT) of naphthalene in a single crystal of durene can be consistently explained in terms of the photoinduced hydrogen-abstraction reaction of triplet naphthalene from durene in which tunneling plays an essential role. This suggestion is supported by calculations based on the "golden rule" approach to tunneling developed by Siebrand, Wildman and Zgierski.

  19. Rate and equilibrium constants for the addition of N-heterocyclic carbenes into benzaldehydes: a remarkable 2-substituent effect.

    PubMed

    Collett, Christopher J; Massey, Richard S; Taylor, James E; Maguire, Oliver R; O'Donoghue, AnnMarie C; Smith, Andrew D

    2015-06-01

    Rate and equilibrium constants for the reaction between N-aryl triazolium N-heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3-(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2-substituent in these reactions and provide insight into the chemoselectivity of cross-benzoin reactions.

  20. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands.

    PubMed

    Nolte, H J; Rosenberry, T L; Neumann, E

    1980-08-01

    The reaction of the specific fluorescent cationic ligand N-methylacridinium with the active site of 11S acetylcholinesterase from electric eel was monitored by temperature-jump relaxation kinetics at a variety of ionic strengths. The ionic strength dependence of the bimolecular association rate constant is analyzed with a Brønsted-Debye-Hückel expression and leads to estimates of the association rate constant at zero ionic strength of K120 = 1.1 X 10(10) M-1 S-1 at 25 degrees C and the net charge number of the enzyme active site of ZE = -6.3. The ionic strength dependence of the second-order hydrolysis rate constant kcat/Kapp for acetylthiocholine under steady-state conditions is also very pronounced and indicates a value of ZE = -9. Thus, a large effective negative charge on the enzyme active site appears to be a general characteristic of its interaction with cationic ligands. The ionic strength dependence of Kcat/Kapp is identical with that of sodium chloride, sodium phosphate, and sodium citrate, thus ruling out any possibility that the phenomena arise from a specific, partially competitive binding of Na+ to the enzyme active site. Substitution of the calculated electrostatic parameters into theoretical equations indicates that the most significant effect of these ZE values is a 2-3 order of magnitude reduction in the rate constant for dissociation of the initial ligand-enzyme encounter complex; this decrease renders the bimolecular reaction diffusion controlled. The high value of k120 and the space requirements of six to nine charged groups suggest that regions of the enzyme surface area larger than the catalytic sites themselves are effective in trapping cationic ligands.

  1. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.

  2. New constraints in absorptive capacity and the optimum rate of petroleum output

    SciTech Connect

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

  3. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  4. Unified equation for access to rate constants of first-order reactions in dynamic and on-column reaction chromatography.

    PubMed

    Trapp, O

    2006-01-01

    A unified equation to evaluate elution profiles of reversible as well as irreversible (pseudo-) first-order reactions in dynamic chromatography and on-column reaction chromatography has been derived. Rate constants k1 and k(-1) and Gibbs activation energies are directly obtained from the chromatographic parameters (retention times tR(A) and tR(B) of the interconverting or reacting species A and B, the peak widths at half-height wA and wB, and the relative plateau height h(p)), the initial amounts A0 and B0 of the reacting species, and the equilibrium constant K(A/B). The calculation of rate constants requires only a few iterative steps without the need of performing a computationally extensive simulation of elution profiles. The unified equation was validated by comparison with a data set of 125,000 simulated elution profiles to confirm the quality of this equation by statistical means and to predict the minimal experimental requirements. Surprisingly, the recovery rate from a defined data set is on average 35% higher using the unified equation compared to the evaluation by iterative computer simulation.

  5. Thiyl radical reaction with thymine: absolute rate constant for hydrogen abstraction and comparison to benzylic C-H bonds.

    PubMed

    Nauser, Thomas; Schöneich, Christian

    2003-09-01

    Free radical damage of DNA is a well-known process affecting biological tissue under conditions of oxidative stress. Thiols can repair DNA-derived radicals. However, the product thiyl radicals may also cause biological damage. To obtain quantitative information on the potential reactivity with DNA components, we measured the rate constant for hydrogen abstraction by cysteamine thiyl radicals from thymine C5-CH(3), k = (1.2 +/- 0.8) x 10(4) M(-1) s(-1), and thymidine-5'-monophosphate, k = (0.9 +/- 0.6) x 10(4) M(-1) s(-1). Hence, the hydrogen abstraction from C5-CH(3) occurs with rate constants similar to the hydrogen abstraction from the carbohydrate moieties. Especially at low oxygen concentration such as that found in skeletal muscle, such hydrogen abstraction processes by thiyl radicals may well compete against other dioxygen-dependent reactions. The rate constants for hydrogen abstraction at thymine C5-CH(3) were compared to those with benzylic substrates, toluenesulfonic acid, and benzyl alcohol.

  6. The H2 + CO ↔ H2CO Reaction: Rate Constants and Relevance to Hot and Dense Astrophysical Media

    NASA Astrophysics Data System (ADS)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2016-07-01

    A theoretical thermochemical and kinetic investigation of the thermal H2 + CO ↔ H2CO reaction was performed for a temperature range from 200 to 4000 K. Geometries and vibrational frequencies of reactants, product, and transition state (TS) were obtained at CCSD/cc-pVxZ (x = T and Q) levels and scaling factors were employed to consider anharmonicity effects on vibrational frequencies, zero-point energies, and thermal corrections provided by these methodologies. Enthalpies Gibbs energies, and rate constants for this reaction were determined by including a complete basis set extrapolation correction for the electronic properties calculated at CCSD(T)/cc-pVyZ (y = Q and 5) levels. Our study indicates that enthalpy changes for this reaction are highly dependent on temperature. Moreover, forward and reverse (high-pressure limit) rate constants were obtained from variational TS theory with quantum tunneling corrections. Thus, modified Arrhenius’ equations were fitted by means of the best forward and reverse rate constant values, which provide very reliable estimates for these quantities within the temperature range between 700 and 4000 K. To our knowledge, this is the first kinetic study done for the forward H2 + CO \\to H2CO process in a wide temperature range. Finally, these results can be used to explain the formaldehyde abundance in hot and dense interstellar media, possibly providing data about the physical conditions associated with H2CO masers close to massive star-forming regions.

  7. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance.

    PubMed

    Storkey, Corin; Pattison, David I; Ignasiak, Marta T; Schiesser, Carl H; Davies, Michael J

    2015-12-01

    Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited.

  8. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  9. Multipath variational transition state theory: rate constant of the 1,4-hydrogen shift isomerization of the 2-cyclohexylethyl radical.

    PubMed

    Yu, Tao; Zheng, Jingjing; Truhlar, Donald G

    2012-01-12

    We propose a new formulation of variational transition state theory called multipath variational transition state theory (MP-VTST). We employ this new formulation to calculate the forward and reverse thermal rate constant of the 1,4-hydrogen shift isomerization of the 2-cyclohexylethyl radical in the gas phase. First, we find and optimize all the local-minimum-energy structures of the reaction, product, and transition state. Then, for the lowest-energy transition state structures, we calculate the reaction path by using multiconfiguration Shepard interpolation (MSCI) method to represent the potential energy surface, and, from this representation, we also calculate the ground-state vibrationally adiabatic potential energy curve, the reaction-path curvature vector, and the generalized free energy of activation profile. With this information, the path-averaged generalized transmission coefficients <γ> are evaluated. Then, thermal rate constant containing the multiple-structure anharmonicity and torsional anharmonicity effects is calculated using multistructural transition state theory (MS-TST). The final MP-VTST thermal rate constant is obtained by multiplying k(MS-T)(MS-TST) by <γ>. In these calculations, the M06 density functional is utilized to compute the energy, gradient, and Hessian at the Shepard points, and the M06-2X density functional is used to obtain the structures (conformers) of the reactant, product, and the saddle point for computing the multistructural anharmonicity factors.

  10. Heating rates in furnace atomic absorption using the L'vov platform

    USGS Publications Warehouse

    Koirtyohann, S.R.; Giddings, R.C.; Taylor, H.E.

    1984-01-01

    Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.

  11. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    PubMed Central

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  12. Specific absorption rate calculations of magnetite, using a modified linear response model for applications in magnetic hyperthermia

    SciTech Connect

    Hernández S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.

    2014-11-07

    Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.

  13. Experimental and theoretical rate constants for CH{sub 4} + O{sub 2} {yields} CH{sub 3} + HO{sub 2}

    SciTech Connect

    Srinivasan, N.K.; Michael, J.V.; Harding, L.B.; Klippenstein, S.J.

    2007-04-15

    In this study, rate constants for the primary initiation process in low to moderate temperature CH{sub 4} oxidation CH{sub 4} + O{sub 2} {yields} CH{sub 3} + HO{sub 2} have been measured in a reflected shock tube apparatus between 1655 and 1822 K using multipass absorption spectrometric detection of OH radicals at 308 nm. After rapid dissociation of HO{sub 2} yielding H atoms, which are instantaneously converted to OH by H + O{sub 2} {yields} OH + O, the temporal concentration of OH radicals was observed as the final product from the rate-controlling title reaction. The present work utilizes 18 optical passes corresponding to a total path length of 1.6 m. This configuration gives a signal to noise ratio of unity at {proportional_to}3 x 10{sup 12} radicals cm{sup -3}. Hence, kinetics experiments could be performed at conditions of low [CH{sub 4}]{sub 0} (60-70 ppm), thereby substantially reducing secondary chemistry. Possible implications of CH{sub 4} dissociation contributing to the OH formation rates were considered. The present experimental results agree with a priori variational transition state theoretical (VTST) calculations, k{sub th}=3.37 x 10{sup -19}T{sup 2.745} exp (-26,041K/T)cm{sup 3}molecule{sup -1} s{sup -1}, clearly showing overlap of experiment and theory, within experimental error. The new rate constant values obtained in this study are 8-10 times higher than the values used in the popular mechanisms GRI-Mech 3.0 and Leeds Methane Mechanism, version 1.5. (author)

  14. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    NASA Astrophysics Data System (ADS)

    Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.

    2013-09-01

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.

  15. APPROXIMATION OF BIODEGRADATION RATE CONSTANTS FOR MONOAROMATIC HYDROCARBONS (BTEX) IN GROUND WATER

    EPA Science Inventory

    Two methods were used to approximate site-specific biodegradation rates of monoaromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes [BTEX]) dissolved in ground water. Both use data from monitoring wells and the hydrologic properties of the quifer to estimate a biode...

  16. Non-Constant Learning Rates in Retrospective Experience Curve Analyses and their Correlation to Deployment Programs

    SciTech Connect

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    2015-07-16

    A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline of historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.

  17. Handling of electronic absorption spectra with a desk-top computer-II: calculation of stability constants from spectrophotometric titrations.

    PubMed

    Zuberbühler, A D; Kaden, T A

    1979-12-01

    A fully automatic system for combined spectrophotometric and pH titrations was described in Part I. Its performance in the titration of weak acids and metal complexes is discussed, along with a computer program for numerical treatment of the data, based on Marquardt's modification of the Newton-Gauss non-linear least-squares method. The deprotonation of p-nitrophenol at concentrations of 4 x 10(-5) and 4 x 10(-6)M was studied in order to test the sensitivity. Results identical within the reproducibility of the pH-meter were obtained: pK(H) = 7.00 +/- 0.01 and 7.02 +/- 0.01, respectively. Three complexation reactions were studied: (1) the interaction of SCN(-) with the Co(2+) complex of 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane (TMC); five independent experiments gave pK [CoTMC (SCN)(+) right harpoon over left harpoon CoTMC(2+) + SCN(-)] = 3.099 +/- 0.003: (2) the deprotonation of the Cu(2+) complex of 3,7-diazanonanediamide (DANA); five experiments gave pK (CuDANA(2+) right harpoon over left harpoon CuDANAH(+)(-1) + H(+)) = 7.14 +/- 0.01 and pK (CuDANAH(+)(-1) right harpoon over left harpoon CuDANAH(-2) + H(+)) = 8.38 +/- 0.01: (3) for the reaction of Cu(2+) with 1,3,7-triazacyclodecane (L), data from different ligand: metal ratios had to be combined to obtain pK (CuL(2+) right harpoon over left harpoon Cu(2+) + L) = 16.19 +/- 0.01, pK (CuL(2+)(2) right harpoon over left harpoon CuL(2+) + L) = 10.30 +/- 0.01, and pK (Cu(2)L(2) (OH)(2+)(2) right harpoon over left harpoon 2 CuL(2+) + 2 OH(-)) = 14.58 +/- 0.03. Titration curves with a total change in absorbance of as little as 0.03 units could be analysed satisfactorily, extending considerably the useful range of concentrations for spectrophotometric titrations. In combined spectrophotometric/pH titrations the accuracy of the glass electrode is normally the limiting factor. Other equilibrium constants can easily be reproduced with standard errors of less than 0.01 log unit.

  18. Gas-phase rate constants for the reaction of NO 3 radicals with selected oxiranes

    NASA Astrophysics Data System (ADS)

    Kind, I.; Berndt, T.; Böge, O.; Rolle, W.

    1996-01-01

    The gas-phase reaction of NO 3 radicals with selected oxiranes has been studied in a flow system at T = 295 ± 2 K in the pressure range 3.4-50 mbar musing N 2 as carrier gas. The analysis of the organics was performed by means of on-line connected GC-FID. Rate constantswere obtained with the relative rate method: 3,4-epoxy-cyclohexene: (2.70 ± 0.18) × 10 -3; 2,2-dimethyl-vinyl)-oxirane; (4.74 ± 0.54) × 10 -12; 2-methyl-2-1(1-methyl-vinyl)-oxirane : (1.55 ± 0.12) × 10 -13; 2-methyl-2-vinyloxirane; (9.40 ± 2.62) × 10 -15; tetramethyloxirane: <5 × 10 -15; and cis-2,3-dimethyloxirane: <5 × 10 -15 cm -3 molecule -1 s -1.

  19. Slopes, nearly constant loss, universality, and hopping rates for dispersive ionic conduction

    NASA Astrophysics Data System (ADS)

    Macdonald, J. Ross; Ahmad, Mohamad M.

    2007-01-01

    The title topics are investigated, discussed, and new insights provided by considering isothermal frequency response data for seven different materials having quite different conductivity spans and involving different electrode polarization effects and temperatures. These data sets were fitted using several different models, including the Kohlrausch-related K0 and K1 ones derived from stretched-exponential response in the temporal domain. The quasi-universal UN model, the K1 with its shape parameter, β1, fixed at 1/3, fitted most of the data very well, and its fits of such data were used to compare its predictions for hopping rate with those derived from fitting with the conventional 'universal dynamic response' Almond-West real-part-of-conductivity model. The K1-model theoretical hopping rate, involving the mean waiting time for a hop and derived from microscopic stochastic analysis, was roughly twice as large as the empirical Almond-West rate for most of the materials considered and should be used in place of it. Its use in a generalized Nernst-Einstein equation led to comparison of estimates of the concentration of fully dissociated mobile charge carriers in superionic PbSnF4 with earlier estimates of Ahmad using an Almond-West hopping rate value. Agreement with an independent structure-derived value was relatively poor. Fitting results obtained using the K0 model, for Na2SO4 data sets for two different polycrystalline material phases, and involving severely limited conductivity variation, were far superior to those obtained using the K1 model. The estimated values of the K0 shape parameter, β0, were close to 1/3 for both phases, strongly suggesting that the charge motion was one dimensional for each phase, even though they involved different crystalline structures.

  20. Experimental determination of the dose rate constant for selected 125I- and 192Ir-brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Selbach, Hans-Joachim; Bambynek, Markus; Aubineau-Lanièce, Isabelle; Gabris, Frantisek; Stefano Guerra, Antonio; Toni, Maria Pia; de Pooter, Jacco; Sander, Thorsten; Schneider, Thorsten

    2012-10-01

    In 2008, the European project ‘T2.J06, Increasing cancer treatment efficacy using 3D brachytherapy’ was launched. One of the main goals of the Joint Research Project was the experimental determination of the dose rate constant Λ to allow the linkage between the air kerma strength or reference air kerma rate currently used for the source characterization and the ‘new’ absorbed dose rate to water with an uncertainty of <3% (k = 1) for some selected brachytherapy sources. The results obtained by five National Metrology Institutes (NMI) for four different types of brachytherapy sources are presented and compared with consensus data published in the literature. A further goal of the project was to develop a calibration chain for the transfer of the new reference quantity to the end user, minimizing the uncertainty. A first direct calibration in terms of absorbed dose rate to water of a secondary standard and the dissemination to the hospitals is presented.

  1. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots.

    PubMed

    Osone, Yoko; Ishida, Atsushi; Tateno, Masaki

    2008-07-01

    Close correlations between specific leaf area (SLA) and relative growth rate (RGR) have been reported in many studies. However, theoretically, SLA by itself has small net positive effect on RGR because any increase in SLA inevitably causes a decrease in area-based leaf nitrogen concentration (LNCa), another RGR component. It was hypothesized that, for a correlation between SLA and RGR, SLA needs to be associated with specific nitrogen absorption rate of roots (SAR), which counteracts the negative effect of SLA on LNCa. Five trees and six herbs were grown under optimal conditions and relationships between SAR and RGR components were analyzed using a model based on balanced growth hypothesis. SLA varied 1.9-fold between species. Simulations predicted that, if SAR is not associated with SLA, this variation in SLA would cause a47% decrease in LNCa along the SLA gradient, leading to a marginal net positive effect on RGR. In reality, SAR was positively related to SLA, showing a 3.9-fold variation, which largely compensated for the negative effect of SLA on LNCa. Consequently, LNCa values were almost constant across species and a positive SLA-RGR relationship was achieved. These results highlight the importance of leaf-root interactions in understanding interspecific differences in RGR.

  2. Bit rate transparent interferometric noise mitigation utilizing the nonlinear modulation curve of electro-absorption modulator.

    PubMed

    Feng, Hanlin; Xiao, Shilin; Fok, Mable P

    2015-08-24

    we propose a bit-rate transparent interferometric noise mitigation scheme utilizing the nonlinear modulation curve of electro-absorption modulator (EAM). Both the zero-slope region and the linear modulation region of the nonlinear modulation curve are utilized to suppress interferometric noise and enlarge noise margin of degraded eye diagrams. Using amplitude suppression effect of the zero-slope region, interferometric noise at low frequency range is suppressed successfully. Under different signal to noise ratio (SNR), we measured the power penalties at bit error rate (BER) of 10<(-9) with and without EAM interferometric noise suppression. By using our proposed scheme, power penalty improvement of 8.5 dB is achieved in a signal with signal-to-noise ratio of 12.5 dB. BER results at various bit rates are analyzed, error floors for each BER curves are removed, significantly improvement in receiver sensitivity and widely opened eye diagrams are resulted.

  3. An Effective Continuum Model for the Liquid-to-Gas Phase Change in a Porous Medium Driven by Solute Diffusion: I. Constant Pressure Decline Rates

    SciTech Connect

    Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.

    2001-08-15

    This report, focuses on the isothermal gas phase growth from a supersaturated, slightly compressible, binary liquid in a porous medium. This is driven by mass transfer, the extent of which is controlled by the application of either a constant-rate decline of the system pressure or the withdrawal of the liquid at a constant rate. This report deals with the first process. Pressure depletion due to constant-rate liquid withdrawal is analyzed in a companion report .

  4. Lipid nanoparticles with no surfactant improve oral absorption rate of poorly water-soluble drug.

    PubMed

    Funakoshi, Yuka; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-07-15

    A pharmacokinetic study was performed in rats to evaluate the oral absorption ratios of nanoparticle suspensions containing the poorly water-soluble compound nifedipine (NI) and two different types of lipids, including hydrogenated soybean phosphatidylcholine and dipalmitoylphosphatidylglycerol. NI-lipid nanoparticle (LN) suspensions with a mean particle size of 48.0 nm and a zeta potential of -57.2 mV were prepared by co-grinding combined with a high-pressure homogenization process. The oral administration of NI-LN suspensions to rats led to a significant increase in the NI plasma concentration, and the area under the curve (AUC) value was found to be 108 min μg mL⁻¹, indicating a 4-fold increase relative to the NI suspensions. A comparison of the pharmacokinetic parameters of the NI-LN suspensions with those of the NI solution prepared using only the surfactant polysorbate 80 revealed that although the AUC and bioavailability (59%) values were almost identical, a rapid absorption rate was still observed in the NI-LN suspensions. These results therefore indicated that lipid nanoparticles prepared using only two types of phospholipid with a mean particle size of less than 50 nm could improve the absorption of the poorly water-soluble drug.

  5. Implementation of Constant Dose Rate and Constant Angular Spacing Intensity-modulated Arc Therapy for Cervical Cancer by Using a Conventional Linear Accelerator

    PubMed Central

    Zhang, Ruo-Hui; Fan, Xiao-Mei; Bai, Wen-Wen; Cao, Yan-Kun

    2016-01-01

    Background: Volumetric-modulated arc therapy (VMAT) can only be implemented on the new generation linacs such as the Varian Trilogy® and Elekta Synergy®. This prevents most existing linacs from delivering VMAT. The purpose of this study was to investigate the feasibility of using a conventional linear accelerator delivering constant dose rate and constant angular spacing intensity-modulated arc therapy (CDR-CAS-IMAT) for treating cervical cancer. Methods: Twenty patients with cervical cancer previously treated with intensity-modulated radiation therapy (IMRT) using Varian Clinical 23EX were retreated using CDR-CAS-IMAT. The planning target volume (PTV) was set as 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), target volume conformity index (CI), the dose to organs at risk, radiation delivery time, and monitor units (MUs) were also compared. The paired t-test was used to analyze the two data sets. All statistical analyses were performed using SPSS 19.0 software. Results: Compared to the IMRT group, the CDR-CAS-IMAT group showed better PTV CI (0.85 ± 0.03 vs. 0.81 ± 0.03, P = 0.001), clinical target volume CI (0.46 ± 0.05 vs. 0.43 ± 0.05, P = 0.001), HI (0.09±0.02 vs. 0.11 ± 0.02, P = 0.005) and D95 (5196.33 ± 28.24 cGy vs. 5162.63 ± 31.12 cGy, P = 0.000), and cord D2 (3743.8 ± 118.7 cGy vs. 3806.2 ± 98.7 cGy, P = 0.017) and rectum V40 (41.9 ± 6.1% vs. 44.2 ± 4.8%, P = 0.026). Treatment time (422.7 ± 46.7 s vs. 84.6 ± 7.8 s, P = 0.000) and the total plan Mus (927.4 ± 79.1 vs. 787.5 ± 78.5, P = 0.000) decreased by a factor of 0.8 and 0.15, respectively. The IMRT group plans were superior to the CDR-CAS-IMAT group plans considering decreasing bladder V50 (17.4 ± 4.5% vs. 16.6 ± 4.2%, P = 0.049), bowel V30 (39.6 ± 6.5% vs. 36.6 ± 7.5%, P = 0.008), and low-dose irradiation volume; there were no significant differences in other statistical indexes. Conclusions

  6. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  7. Rate Constant in Far-from-Equilibrium States of a Replicating System with Mutually Catalyzing Chemicals

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Yukawa, Satoshi; Ito, Nobuyasu

    2006-02-01

    As a first step to study reaction dynamics in far-from-equilibrium open systems, we propose a stochastic protocell model in which two mutually catalyzing chemicals are replicating depending on the external flow of energy resources J. This model exhibits an Arrhenius type reaction; furthermore, it produces a non-Arrhenius reaction that exhibits a power-law reaction rate with regard to the activation energy. These dependences are explained using the dynamics of J; the asymmetric random walk of J results in the Arrhenius equation and conservation of J results in a power-law dependence. Further, we find that the discreteness of molecules results in the power change. Effects of cell divisions are also discussed in our model.

  8. The absorption efficiency and respiration rate of the Florida lancelet, Branchiostoma floridae.

    PubMed

    Nash, Troy R; Ruppert, Edward E; Colacino, James M

    2009-12-01

    The present study investigates some aspects of the digestive biology and physiological energetics of the Florida lancelet, Branchiostoma floridae. Florida lancelets are able to remove 47.2-56.9% of the energy from a diet of mixed algae. The respiration rate is 0.100mL O(2) (STPD) h(-1) g(-1) (wet), which estimates a metabolic rate of 0.248 J h(-1), at an average body mass of 0.125 g (wet). Published values of the chlorophyll a concentration in its natural habitat indicate that a 125 mg lancelet would need to filter 0.018-0.031 L h(-1) to remove sufficient food to support its resting metabolism. The filtration rate of lancelets has been reported as 0.138 L h(-1), indicating that the actual filtration rate is 4-7 times greater than the filtration rate needed to meet resting metabolic demands. It appears that lancelets have the potential to be raised in aquaculture, because their absorption efficiency and respiration rate are comparable to suspension-feeding invertebrates that have been successfully aquacultured.

  9. Theoretical determination of chemical rate constants using novel time-dependent methods

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    1994-01-01

    The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.

  10. Determination of the kinetic rate constant of cyclodextrin supramolecular systems by high-performance affinity chromatography.

    PubMed

    Zhang, Jiwen; Li, Haiyan; Sun, Lixin; Wang, Caifen

    2015-01-01

    The kinetics of the association and dissociation are fundamental kinetic processes for the host-guest interactions (such as the drug-target and drug-excipient interactions) and the in vivo performance of supramolecules. With advantages of rapid speed, high precision and ease of automation, the high-performance affinity chromatography (HPAC) is one of the best techniques to measure the interaction kinetics of weak to moderate affinities, such as the typical host-guest interactions of drug and cyclodextrins by using a cyclodextrin-immobilized column. The measurement involves the equilibration of the cyclodextrin column, the upload and elution of the samples (non-retained substances and retained solutes) at different flow rates on the cyclodextrin and control column, and data analysis. It has been indicated that cyclodextrin-immobilized chromatography is a cost-efficient high-throughput tool for the measurement of (small molecule) drug-cyclodextrin interactions as well as the dissociation of other supramolecules with relatively weak, fast, and extensive interactions. PMID:25749964

  11. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.

    2009-01-01

    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  12. An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs

    SciTech Connect

    Córsico, Alejandro H.; Althaus, Leandro G.

    2013-06-01

    A secular variation of the gravitational constant modifies the structure and evolutionary time scales of white dwarfs. Using an state-of-the-art stellar evolutionary code and an up-to-date pulsational code we compute the effects of a secularly varying G on the pulsational properties of variable white dwarfs. Comparing the the theoretical results obtained taking into account the effects of a running G with the observed periods and measured rates of change of the periods of two well studied pulsating white dwarfs, G117-B15A and R548, we place constraints on the rate of variation of Newton's constant. We derive an upper bound Ġ/G ∼ −1.8 × 10{sup −10} yr{sup −1} using the variable white dwarf G117-B15A, and Ġ/G ∼ −1.3 × 10{sup −10} yr{sup −1} using R548. Although these upper limits are currently less restrictive than those obtained using other techniques, they can be improved in a future measuring the rate of change of the period of massive white dwarfs.

  13. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  14. Effect-compartment equilibrium rate constant (keo) for propofol during induction of anesthesia with a target-controlled infusion device.

    PubMed

    Lim, Thiam Aun; Wong, Wai Hong; Lim, Kin Yuee

    2006-01-01

    The effect-compartment concentration (C(e)) of a drug at a specific pharmacodynamic endpoint should be independent of the rate of drug injection. We used this assumption to derive an effect-compartment equilibrium rate constant (k(eo)) for propofol during induction of anesthesia, using a target controlled infusion device (Diprifusor). Eighteen unpremedicated patients were induced with a target blood propofol concentration of 5 microg x ml(-1) (group 1), while another 18 were induced with a target concentration of 6 microg x ml(-1) (group 2). The time at loss of the eyelash reflex was recorded. Computer simulation was used to derive the rate constant (k(eo)) that resulted in the mean C(e) at loss of the eyelash reflex in group 1 being equal to that in group 2. Using this population technique, we found the k(eo) to be 0.57 min(-1). The mean (SD) effect compartment concentration at loss of the eyelash reflex was 2.39 (0.70) microg x ml(-1). This means that to achieve a desired C(e) within 3 min of induction, the initial target blood concentration should be set at 1.67 times that of the desired C(e) for 1 min, after which it should revert to the desired concentration.

  15. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect

    Hessler, J.P.

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  16. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.

    PubMed

    Alecu, I M; Truhlar, Donald G

    2011-12-29

    Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. PMID:22059377

  17. [Determination of rate constants of gas-phase reactions of alpha-pinene and beta-pinene with ozone].

    PubMed

    Liu, Z R; Hu, D

    2001-10-01

    alpha-pinene and beta-pinene are the most dominating species among natural terpenes. Terpenes are mainly emitted from forest trees, flowers and grass. In the lower troposphere terpenes can react fast with OH radical, ozone, NO3 radical and ground state oxygen atom. These reactions may contribute to the occurring of aerosols, peroxides (hydrogen peroxide and organic peroxide), carbon cycle (mainly CO), acid rain (organic acids, NO3- and SO4(2-), ozone and active radicals such as OH radical. Reactions with ozone occur both in the daytime and in the night. The study in this field in China began in the late 1980. The main work focus on the source emission and the experimental simulation has just started. It is most of our group's work. In this paper preliminary experimental simulation of the gas-phase reactions of alpha-pinene and beta-pinene with ozone were carried out in the quartz chamber. The rate constants of these reactions were measured using long-path Fourier transform infra-red combined with relative rate constant method. And the rate constants for the gas-phase reactions of alpha-pinene, beta-pinene with ozone were determined as 2.83 x 10(17) cm3.molecule-1.s-1 and 1.48 x 10(17) cm3.molecule-1.s-1 at 1.0 x 10(5) Pa and 296 +/- 3 K. The results are quite similar to the data from Atkinson group. No cyclohexane was added to the reaction system during the measurement to restrain the formation of OH radical. The formation of OH radical could not be quantified, so that the effect of subsidiary reactions induced by OH radical has not been calculated. In the later simulation study and model this effect should be considered.

  18. Upper limits for the rate constant for the reaction Br + H2O2 yields HB2 + HO2

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.

    1980-01-01

    Upper limits for the rate constant for the reaction Br + H2O2 yields HBr + HO2 have been measured over the temperature range 298 to 417 K in a discharge flow system using a mass spectrometer as a detector. Results are k sub 1 less than 1.5 x 10 to the -15th power cu cm/s at 298 K and k sub 1 less than 3.0 x 10 to the -15th power cu cm/s at 417 K, respectively. The implication to stratospheric chemistry is discussed.

  19. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    NASA Technical Reports Server (NTRS)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  20. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    PubMed

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature. PMID:24802076

  1. Comparison of calculated and experimental thermal attachment rate constants for SF6 in the temperature range 200-600 K

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.

    1986-01-01

    Electron-attachment cross sections are calcualted for the process e(-) + SF6 yields SF6(-) in the energy range 1-200 meV. An electron scattering approximation is used in which diatomiclike potential energy curves near the equilibrium SF6 ground state are constructed from recent spectroscopic data. Excellent agreement is found over the entire energy range with experimental attachment cross sections at a temperature of 300 K for s-wave (l = 0) scattering. The same calculation, with appropriate adjustment of the thermal populations, is used to calculate attachment rate constants in the range 50-600 K for both s- and p-wave scattering.

  2. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1993-01-01

    Measurements of rate constants for HFC-134 (CF2HCF2H) relative to CH3CCl3, HFC-125, and HFC-134a are reported. The measurements were made in a slow-flow, temperature controlled photochemical reactor, and were based on relative rates of disappearance of the parent compounds as measured by FTIR spectroscopy. Hydroxyl radicals were generated by 254-nm photolysis of O3 in the presence of water vapor. NASA/JPL rate constants for the reference compounds are used to derive temperature-dependent rate constants of both compounds. Rate constants obtained from the different reference compounds are in excellent agreement. The presently recommended rate constant for HFC-134a is about 25 percent too high.

  3. Rate constants for the reaction, O + H sub 2 O yields OH + OH, over the temperature range, 1500--2400 K, by the flash photolysis-shock tube technique: A further consideration of the back reaction

    SciTech Connect

    Lifshitz, A.; Michael, J.V.

    1990-01-01

    Rate constants for the reaction, O + H{sub 2}O {yields} OH + OH, have been measured by the Flash Photolysis-Shock Tube (FP-ST) technique over the temperature range, 1500--2400 K. This technique combines stock heating with flash photolysis in the reflected shock wave regime, and the transient species, O-atoms in this case, are monitored by atomic resonance absorption spectroscopy (aras). Additional experiments were performed with N{sub 2}O as a thermal source of O-atoms, and the formation and depletion of (O) were followed by the aras technique. These results require that the decomposition rate behavior of N{sub 2}O be known. The results obtained by this technique are compared to those obtained by the FP-ST technique and are found to be corroborative. Hence, the combined results are used to describe the rate constants for the title reaction. The experimental results are compared to earlier work, and rate constants for the title reaction are additionally calculated from published results for the reverse reaction, OH + OH, and the well known equilibrium constant. All results are combined, and the rate behavior for the title reaction is evaluated. Lastly, the results for both forward and reverse reactions are compared to the theoretical calculations presented recently by Harding and Wagner. It is concluded that theory and experiment are in agreement within experimental error.

  4. Modeling the downward transport of (210)Pb in Peatlands: Initial Penetration-Constant Rate of Supply (IP-CRS) model.

    PubMed

    Olid, Carolina; Diego, David; Garcia-Orellana, Jordi; Cortizas, Antonio Martínez; Klaminder, Jonatan

    2016-01-15

    The vertical distribution of (210)Pb is commonly used to date peat deposits accumulated over the last 100-150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of (210)Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived (210)Pb ((210)Pbxs) in peat taking into account both incorporation of (210)Pb into the accumulating peat matrix as well as an initial flushing of (210)Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous (210)Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used (210)Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. (241)Am and (137)Cs). Our results showed that the IP-CRS can provide chronologies from peat records where (210)Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. PMID:26476062

  5. Prostaglandin E2 regulation of amnion cell vascular endothelial growth factor expression: relationship with intramembranous absorption rate in fetal sheep.

    PubMed

    Cheung, Cecilia Y; Beardall, Michael K; Anderson, Debra F; Brace, Robert A

    2014-08-01

    We hypothesized that prostaglandin E2 (PGE2) stimulates amniotic fluid transport across the amnion by upregulating vascular endothelial growth factor (VEGF) expression in amnion cells and that amniotic PGE2 concentration correlates positively with intramembranous (IM) absorption rate in fetal sheep. The effects of PGE2 at a range of concentrations on VEGF 164 and caveolin-1 gene expressions were analyzed in cultured ovine amnion cells. IM absorption rate, amniotic fluid (AF) volume, and PGE2 concentration in AF were determined in late-gestation fetal sheep during control conditions, isovolumic fetal urine replacement (low IM absorption rate), or intra-amniotic fluid infusion (high IM absorption rate). In ovine amnion cells, PGE2 induced dose- and time-dependent increases in VEGF 164 mRNA levels and reduced caveolin-1 mRNA and protein levels. VEGF receptor blockade abolished the caveolin-1 response, while minimally affecting the VEGF response to PGE2. In sheep fetuses, urine replacement reduced amniotic PGE2 concentration by 58%, decreased IM absorption rate by half, and doubled AF volume (P < 0.01). Intra-amniotic fluid infusion increased IM absorption rate and AF volume (P < 0.01), while amniotic PGE2 concentration was unchanged. Neither IM absorption rate nor AF volume correlated with amniotic PGE2 concentration under each experimental condition. Although PGE2 at micromolar concentrations induced dose-dependent responses in VEGF and caveolin-1 gene expression in cultured amnion cells consistent with a role of PGE2 in activating VEGF to mediate AF transport across the amnion, amniotic PGE2 at physiological nanomolar concentrations does not appear to regulate IM absorption rate or AF volume.

  6. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  7. Tissue vitamin concentrations are maintained constant by changing the urinary excretion rate of vitamins in rats' restricted food intake.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2014-01-01

    We previously reported that mild food restriction induces a reduction in tryptophan-nicotinamide conversion, which helps to explain why death secondary to pellagra is pandemic during the hungry season. In this study, we investigated the levels of B-group vitamins in the liver, kidney, blood, and urine in rats that underwent gradual restriction of food intake (80, 60, 40, and 20% restriction vs. ad libitum food intake). No significant differences in the B-group vitamin concentrations (mol/g tissue) in the liver and kidney were observed at any level of food restriction. However, the urine excretion rates exhibited some characteristic phenomena that differed by vitamin. These results show that the tissue concentrations of B-group vitamins were kept constant by changing the urinary elimination rates of vitamins under various levels of food restriction. Only vitamin B12 was the only (exception).

  8. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  9. Calculations of rate constants for the three-body recombination of H2 in the presence of H2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1988-01-01

    A new global potential energy hypersurface for H2 + H2 is constructed and quasiclassical trajectory calculations performed using the resonance complex theory and energy transfer mechanism to estimate the rate of three body recombination over the temperature range 100 to 5000 K. The new potential is a faithful representation of ab initio electron structure calculations, is unchanged under the operation of exchanging H atoms, and reproduces the accurate H3 potential as one H atom is pulled away. Included in the fitting procedure are geometries expected to be important when one H2 is near or above the dissociation limit. The dynamics calculations explicitly include the motion of all four atoms and are performed efficiently using a vectorized variable-stepsize integrator. The predicted rate constants are approximately a factor of two smaller than experimental estimates over a broad temperature range.

  10. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  11. Silver fluorescent x-ray yield and its influence on the dose rate constant for nine low-energy brachytherapy source models

    SciTech Connect

    Nath, Ravinder; Chen, Zhe Jay

    2007-10-15

    The physical characteristics of the photons emitted by a low-energy brachytherapy source are strongly dependent on the source's construction. Aside from absorption and scattering caused by the internal structures and the source encapsulation, the photoelectric interactions occurred in certain type of source-construction materials can generate additional energetic characteristic x rays with energies different from those emitted by the bare radionuclide. As a result, the same radionuclide encapsulated in different source models can result in dose rate constants and other dosimetric parameters that are strikingly different from each other. The aim of this work was to perform a systematic study on the yield of silver fluorescent x rays produced in nine {sup 125}I sources that are known to contain silver and its impact on the dose-rate constant. Using a high-resolution germanium spectrometer, the relative {sup 125}I spectra emitted by the nine sources on its bisector were measured and found to be similar to each other (the maximum variation in the {sup 125}I-K{sub {beta}} relative intensity was less than 4%). On the other hand, the measured silver fluorescent x-ray spectra exhibited much greater variations from model to model; the maximum change in the measured Ag-K{sub {alpha}} relative intensity was over 95%. This larger variation in the measured silver fluorescent x-ray yield was caused by (1) the different amount of silver that was directly exposed to the {sup 125}I radionuclide in different source models and (2) the stronger influence of the source's internal geometry on the silver fluorescent x rays. Because the addition of silver fluorescent x rays can significantly alter the photon characteristics emitted by the radioactive sources, a precise knowledge on the silver fluorescent x-ray yield is needed in theoretical calculations of the sources' intrinsic dosimetric properties. This study concludes that the differences in silver fluorescent yield are the primary

  12. Hydroxyl-radical-induced degradative oxidation of beta-lactam antibiotics in water: absolute rate constant measurements.

    PubMed

    Dail, Michelle K; Mezyk, Stephen P

    2010-08-19

    The beta-lactam antibiotics are some of the most prevalent pharmaceutical contaminants currently being detected in aquatic environments. Because the presence of any trace level of antibiotic in water may adversely affect aquatic ecosystems and contribute to the production of antibiotic-resistant bacteria, active removal by additional water treatments, such as using advanced oxidation and reduction processes (AO/RPs), may be required. However, to ensure that any AOP treatment process occurs efficiently and quantitatively, a full understanding of the kinetics and mechanisms of all of the chemical reactions involved under the conditions of use is necessary. In this study, we report on our kinetic measurements for the hydroxyl-radical-induced oxidation of 11 beta-lactam antibiotics obtained using electron pulse radiolysis techniques. For the 5-member ring species, an average reaction rate constant of (7.9 +/- 0.8) x 10(9) M(-1) s(-1) was obtained, slightly faster than for the analogous 6-member ring containing antibiotics, (6.6 +/- 1.2) x 10(9) M(-1) s(-1). The consistency of these rate constants for each group infers a common reaction mechanism, consisting of the partitioning of the hydroxyl radical between addition to peripheral aromatic rings and reaction with the central double-ring core of these antibiotics.

  13. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    SciTech Connect

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.; Lee, J.H.; Smalley, J.F.

    1987-03-12

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/sup -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.

  14. Hydrogen Abstraction Reactions from Phenolic Compounds by Peroxyl Radicals: Multireference Character and Density Functional Theory Rate Constants.

    PubMed

    Galano, Annia; Muñoz-Rugeles, Leonardo; Alvarez-Idaboy, Juan Raul; Bao, Junwei Lucas; Truhlar, Donald G

    2016-07-14

    An assessment of multireference character in transition states is considered to be an important component in establishing the expected reliability of various electronic structure methods. In the present work, the multireference characters of the transition states and the forming and breaking of bonds for a large set of hydrogen abstraction reactions from phenolic compounds by peroxyl radicals have been analyzed using the T1, M, B1, and GB1 diagnostics. The extent of multireference character depends on the system and on the conditions under which the reaction takes place, and some systematic trends are observed. In particular, the multireference character is found to be reduced by solvation, the size of the phenolic compound, and deprotonation in aqueous solution. However, the deviations of calculated rate constants from experimental ones are not correlated with the extent of multireference character. The performance of single-determinant density functional theory was investigated for the kinetics of these reactions by comparing calculated rate constants to experimental data; the results from these analyses showed that the M05 functional performs well for the task at hand.

  15. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results.

    PubMed

    Canneaux, Sébastien; Bohr, Frédéric; Henon, Eric

    2014-01-01

    Kinetic and Statistical Thermodynamical Package (KiSThelP) is a cross-platform free open-source program developed to estimate molecular and reaction properties from electronic structure data. To date, three computational chemistry software formats are supported (Gaussian, GAMESS, and NWChem). Some key features are: gas-phase molecular thermodynamic properties (offering hindered rotor treatment), thermal equilibrium constants, transition state theory rate coefficients (transition state theory (TST), variational transition state theory (VTST)) including one-dimensional (1D) tunnelling effects (Wigner, and Eckart) and Rice-Ramsperger-Kassel-Marcus (RRKM) rate constants, for elementary reactions with well-defined barriers. KiSThelP is intended as a working tool both for the general public and also for more expert users. It provides graphical front-end capabilities designed to facilitate calculations and interpreting results. KiSThelP enables to change input data and simulation parameters directly through the graphical user interface and to visually probe how it affects results. Users can access results in the form of graphs and tables. The graphical tool offers customizing of 2D plots, exporting images and data files. These features make this program also well-suited to support and enhance students learning and can serve as a very attractive courseware, taking the teaching content directly from results in molecular and kinetic modelling. PMID:24190715

  16. Absolute rate constants for O + NO + M /= He, Ne, Ar, Kr/ yields NO2 + M from 217-500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Payne, W. A.; Whytock, D. A.

    1976-01-01

    Rate constants for the reaction O + NO + M yields NO2 + M have been obtained at temperatures from 217-500 K in four different rare gases by a method combining flash photolysis with time resolved detection of O(3-P) by resonance fluorescence. The measured rate constants in Arrhenius form are (10.8 plus or minus 1.2) x 10 to the -33rd exp(1040 plus or minus 60/1.987 T) for helium; (9.01 plus or minus 1.16) x 10 to the -33rd exp(1180 plus or minus 70/1.987 T) for argon; (9.33 plus or minus 1.10) x 10 to the -33rd exp(1030 plus or minus 60/1.987 T) for neon; and (9.52 plus or minus 1.10) x 10 to the -33rd exp(1140 plus or minus 70/1.987 T) for krypton in units of cm to the 6th/sq molecule/s.

  17. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  18. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    PubMed

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV.

  19. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    PubMed

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV. PMID:27440743

  20. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals.

  1. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5′-Monophosphate Decarboxylase

    PubMed Central

    2016-01-01

    The caged complex between orotidine 5′-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5′-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5′-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5′-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein–phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s–1 for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation

  2. Kinetics of the transformation of phenyl-urea herbicides during ozonation of natural waters: rate constants and model predictions.

    PubMed

    Benitez, F Javier; Real, Francisco J; Acero, Juan L; Garcia, Carolina

    2007-10-01

    Oxidation of four phenyl-urea herbicides (isoproturon, chlortoluron, diuron, and linuron) was studied by ozone at pH=2, and by a combination of O3/H2O2 at pH=9. These experiments allowed the determination of the rate constants for their reactions with ozone and OH radicals. For reactions with ozone, the following rate constants were obtained: 1.9 +/- 0.2, 16.5 +/- 0.6, 393.5 +/- 8.4, and 2191 +/- 259 M(-1) s(-1) for linuron, diuron, chlortoluron, and isoproturon, respectively. The rate constants for the reaction with OH radicals were (7.9 +/- 0.1) x 10(9) M(-1) s(-1) for isoproturon, (6.9 +/- 0.2) x 10(9) M(-1) s(-1) for chlortoluron, (6.6 +/- 0.1) x 10(5) M(-1) s(-1) for diuron, and (5.9 +/- 0.1) x 10(9) M(-1) s(-1) for linuron. Furthermore, the simultaneous ozonation of these selected herbicides in some natural water systems (a commercial mineral water, a groundwater, and surface water from a reservoir) was studied. The influence of operating conditions (initial ozone dose, nature of herbicides, and type of water systems) on herbicide removal efficiency was established, and the parameter Rct (proposed by Elovitz, M.S., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone Sci. Eng. 21, 239-260) was evaluated from simultaneous measurement of ozone and OH radicals. A kinetic model was proposed for the prediction of the elimination rate of herbicides in these natural waters, and application of this model revealed that experimental results and predicted values agreed fairly well. Finally, the partial contributions of direct ozone and radical pathways were evaluated, and the results showed that reaction with OH radicals was the major pathway for the oxidative transformation of diuron and linuron, even when conventional ozonation was applied, while for chlortoluron and isoproturon, direct ozonation was the major pathway.

  3. Fe /Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y.; Hoopes, P. J.; Weaver, J. B.

    2007-06-01

    Using a water-in-oil microemulsion with cetyl trimethyl ammonium bromide as the surfactant, iron was reduced to form a metallic core on which a passivating oxide shell was grown. Transmission electron microscopy, vibrating sample magnetometry, and heating measurements were used to characterize these monodispersed magnetic Fe /Fe3O4 composite nanoparticles with respect to the possible application for magnetic hyperthermia treatments of cancer. The aim is to utilize the fact that an iron core (high saturation magnetization) will give a greater heating effect than iron oxide, while the iron oxide coating will allow the nanoparticles to be observed using magnetic resonance imaging so that therapy can be effectively monitored and targeted. The largest specific absorption rate obtained was 345W/g under an alternating magnetic field of 150Oe at 250kHz.

  4. Specific absorption rate in models of man and monkey at 225 and 2000 MHz

    SciTech Connect

    Olsen, R.G.; Griner, T.A.

    1987-01-01

    Full-size models of a man and a rhesus monkey were exposed to radiofrequency (RF) radiation at 225 MHz. The model of man was also exposed to 2000 MHz. Specific absorption rates (SARs) were measured in partial-body sections, such as the arms, legs, etc., using gradient-layer calorimeters. Also, front-surface thermographic images were obtained to qualitatively show the heating patterns. For all of the configurations used, the SAR in the limbs was much higher than in the torso. Agreement (whole-body SARs) with spheroidal models was better for both models at 225 MHz than at 2000 MHz. These results indicate that in the frequency range two orders of magnitude above whole-body resonance, SAR in the limbs significantly contributes to the whole-body average SAR.

  5. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  6. MRI-based anatomical model of the human head for specific absorption rate mapping

    PubMed Central

    Makris, Nikos; Angelone, Leonardo; Tulloch, Seann; Sorg, Scott; Kaiser, Jonathan; Kennedy, David

    2009-01-01

    In this study, we present a magnetic resonance imaging (MRI)-based, high-resolution, numerical model of the head of a healthy human subject. In order to formulate the model, we performed quantitative volumetric segmentation on the human head, using T1-weighted MRI. The high spatial resolution used (1 × 1 × 1 mm3), allowed for the precise computation and visualization of a higher number of anatomical structures than provided by previous models. Furthermore, the high spatial resolution allowed us to study individual thin anatomical structures of clinical relevance not visible by the standard model currently adopted in computational bioelectromagnetics. When we computed the electromagnetic field and specific absorption rate (SAR) at 7 Tesla MRI using this high-resolution model, we were able to obtain a detailed visualization of such fine anatomical structures as the epidermis/dermis, bone structures, bone-marrow, white matter and nasal and eye structures. PMID:18985401

  7. Comparison of Hydrogen Atom Abstraction Rates of Terminal and Bridging Hydrides in Triosmium Clusters: Absolute Abstraction Rate Constants for Benzyl Radical

    SciTech Connect

    Franz, James A.; Kolwaite, Douglas S.; Linehan, John C.; Rosenberg, Edward

    2004-02-02

    Absolute rate constants for hydrogen atom abstraction by benzyl radical from Os3(m-H)2 (CO)9PPh3(1), Os3 (m-H)(H)(CO)10PPh3(2), Os3(m-H)(CO)9(m3-h2-C9H6N)(3), Os3(m-H)(CO)9(m-h2-C9H6N)PPh3 (5) and Os3(m-H)(CO)10(m-h2-C9H6N) (4) were determined in benzene by competition of the abstraction reaction with the self termination of benzyl radical. Thus, experimental values of kabs/kt1/2 were combined with rate constants for self-termination of benzyl radical in benzene from the expression ln(2kt/M-1s-1= 27.23 - 2952.4/RT), RT in cal/mol, to give absolute rate constants for abstraction, kabs: for Os3(m-H)2 (CO)9PPh3(1) in benzene, log (kabs/M-1s-1)= (8.86 .20) - (6.90 .31)/q; for Os3 (m-H)(H)(CO)(10PPh3) (2) log (kabs/M-1s-1)= (8.15 .49) - (4.41 .72)/q; for Os3(m-H)(CO)9(m3-h2-C9H6N) (3) log (kabs/M-1s-1)= (8.9 2) (8.8 3)/q; value for 4 and for Os3(m-H)(CO9)(m-h2-C9H6N)(PPh3) (5) log (kabs/M-1s-1)= (7.0 .38) - (4.15 .56)/q, q= 2.303RT kcal/mol. The terminal hydride on the Os3 c luster 2 is about 10 times more reactive than bridging hydride in 1. The results show that while m-H bridging retards the rate of hydrogen abstraction relative to terminal hydrogen, the bridging hydrogen remains appreciably reactive in the m-H form. In fact, the highest rate observed was for the bridging hydride in 4, Os3(m-H)(CO)10(m-h2-C9H6N). Temperature dependent kinetics for compound 4 were not determined because of significant CO loss above room temperature. However at 293 K the rate constant of hydrogen atom abstraction from this electron-rich cluster, 5 2 x 104 M-1s-1, is at least twice as fast as that for the terminal hydrogen atom cluster, 2, Os3 (m-H)(H)(CO)10PPh3, kabs (298 K)= 1.8 x 104 M-1s-1. The rate constants for hydrogen atom abstraction by benzyl radical from these osmium clusters increase with increasing electron density on the osmium cluster and decrease with increasing steric bulk of the ligands.

  8. Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments

    NASA Astrophysics Data System (ADS)

    Coral, D. F.; Mendoza Zélis, P.; de Sousa, M. E.; Muraca, D.; Lassalle, V.; Nicolás, P.; Ferreira, M. L.; Fernández van Raap, M. B.

    2014-01-01

    In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (˜10-10 s and 10-4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i

  9. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

  10. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene. PMID:25664674

  11. Determination of the Temperature Dependence of the Rate Constants for HO2/Acetonylperoxy Reaction and Acetonylperoxy Self-Reaction

    NASA Astrophysics Data System (ADS)

    Darby, E. C.; Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2014-12-01

    Reactions of hydroperoxy radical, HO2, with carbonyl containing RO2 can play an important role in the oxidation chemistry of the troposphere. Discovered radical product channels in addition to radical termination channels have resulted in increased study of these important reactions. In our continued study of HO2 reactions with acetonylperoxy and acetylperoxy radicals, we report here our first results on the kinetics of the acetonylperoxy system. Previous studies have resulted in conflicting results and no temperature dependence of the rate constants. Using the Infrared Kinetic Spectroscopy (IRKS) method in which a temperature-controlled slow-flow tube apparatus and laser flash photolysis of Cl2 are used to produce HO2 and CH3C(O)CH2O2 from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 295 to 240 K. Rates of chemical reaction were determined by monitoring the HO2 concentration as a function of time by sensitive near-IR diode laser wavelength modulation spectroscopy while simultaneously measuring the disappearance of [CH3C(O)CH2O2] in the ultraviolet at 300 nm. The simultaneous fits resulted in the determination of the temperature dependence of the rate constants for the HO2/acetonylperoxy reaction and the acetonylperoxy self-reaction. At the lower temperatures, the reactions of HO2 and CH3C(O)CH2O2 with the adducts HO2•CH3OH and HO2•CH3C(O)CH3 formed in significant concentrations needed to be included in the fitting models.

  12. Two-level renegotiated constant bit rate algorithm (2RCBR) for scalable MPEG2 video over QoS networks

    NASA Astrophysics Data System (ADS)

    Pegueroles, Josep R.; Alins, Juan J.; de la Cruz, Luis J.; Mata, Jorge

    2001-07-01

    MPEG family codecs generate variable-bit-rate (VBR) compressed video with significant multiple-time-scale bit rate variability. Smoothing techniques remove the periodic fluctuations generated by the codification modes. However, global efficiency concerning network resource allocation remains low due to scene-time-scale variability. RCBR techniques provide suitable means to achieving higher efficiency. Among all RCBR techniques described in literature, 2RCBR mechanism seems to be especially suitable for video-on demand. The method takes advantage of the knowledge of the stored video to calculate the renegotiation intervals and of the client buffer memory to perform work-ahead buffering techniques. 2RCBR achieves 100% bandwidth global efficiency with only two renegotiation levels. The algorithm is based on the study of the second derivative of the cumulative video sequence to find out sharp-sloped inflection points that point out changes in the scene complexity. Due to its nature, 2RCBR becomes very adequate to deliver MPEG2 scalable sequences into the network cause it can assure a constant bit rate to the base MPEG2 layer and use the higher rate intervals to deliver the enhanced MPEG2 layer. However, slight changes in the algorithm parameters must be introduced to attain an optimal behavior. This is verified by means of simulations on MPEG2 video patterns.

  13. Measurement of OH(X 2Πi υ = 2, 3, 4) Collisional Removal Rate Constants by Oxygen Atoms

    NASA Astrophysics Data System (ADS)

    Boulter, J. E.; Marschall, J.; Copeland, R. A.

    2002-05-01

    The fluorescence of vibrationally excited, ground electronic state hydroxyl radical (OH) in the airglow originates in the mesosphere-lower thermosphere (MLT) region of Earth's atmosphere. Spectroscopic measurements of this infrared emission are being made by the TIMED satellite to characterize the dynamics, temperature profiles, and HOy chemistry in the region 80-100 km. In the atmosphere, hydroxyl radicals in υ = 6-9 are formed in the reaction of hydrogen atoms with ozone; lower vibrational levels are populated through subsequent collisional deactivation by molecular oxygen. The lifetimes of the lower levels (υ <= 4) are significantly affected by collisions with atomic oxygen, as collisions with molecular oxygen are less efficient at relaxation than at higher levels. Given the importance of O-atom collisions in the atmosphere, we have developed an experimental approach and performed experiments on the collisional removal of OH(υ = 2, 3, 4) by atomic oxygen. In this work, the reaction of OH with atomic oxygen is studied using a two-laser method. Ozone is photolyzed in nitrogen with a pulsed excimer laser to generate O(1D), a portion of which reacts with either hydrogen to form OH(υ <= 4) or with water vapor to form OH(υ <= 3); the remainder is rapidly deactivated by collisions with N2 to produce ground state O(3P). A second, tunable dye laser pulse probes the OH population in a specific rovibrational state as a function of reaction time, using fluorescence from the A 2}Σ {+ - X 2Π { i} system. By adjusting the composition of the reactant gas mixture and by varying the photolysis laser fluence to control the ozone dissociation fraction, the dominant relaxation partner can be varied systematically from ozone and water or hydrogen to atomic oxygen. Experimentally determined rate constants for the removal of OH(υ = 2, 3, 4) by O(3P) are obtained at room temperature, with values of 6 x 10-11, 1.0 x 10-10 and 1.6 x 10-10 for υ = 2, 3 and 4, respectively, and 2-

  14. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    PubMed Central

    Bentley, T. William

    2015-01-01

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228

  15. Rate constant of exciton quenching of Ir(ppy)3 with hole measured by time-resolved luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Oyama, Shiho; Sakai, Heisuke; Murata, Hideyuki

    2016-03-01

    We observed the quenching of tris(2-phenylpyridinato)iridium(III) [Ir(ppy)3] excitons by polarons (holes or electrons) by time-resolved photoluminescence (PL) spectroscopy to clarify the dynamics of the triplet-polaron quenching of excitons. We employed a hole-only device (HOD) and an electron-only device (EOD), where the emitting layer consists of Ir(ppy)3 doped in 4,4‧-bis(carbazol-9-yl)biphenyl. Time-resolved PL spectroscopy of the EOD and HOD were measured under a constant current density. The results showed that the excitons of Ir(ppy)3 were significantly quenched only by holes. The PL decay curves of HOD were well fitted by the biexponential function, where lifetimes (τ1 and τ2) remain unchanged but the coefficient of each exponential term depends on hole current density. From the results, we proposed a model of exciton quenching where the exciton-hole quenching area expands with increasing hole current density. On the basis of the model, the triplet-polaron quenching rate constant Kq was determined.

  16. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    SciTech Connect

    Nesseris, Savvas; Blake, Chris; Davis, Tamara; Parkinson, David E-mail: cblake@astro.swin.edu.au E-mail: d.parkinson@uq.edu.au

    2011-07-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 < z < 0.9. We use this data in two ways. Firstly we constrain the matter density of the Universe, Ω{sub m} (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, G{sub eff}, that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-dot{sub eff}(t{sub 0}) = −1.19 ± 0.95·10{sup −20} h{sup 2} yr{sup −2}, where h is defined via H{sub 0} = 100 h km s{sup −1} Mpc{sup −1}, while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-dot{sub eff}(t{sub 0}) = −3.6 ± 6.8·10{sup −21} h{sup 2} yr{sup −2}, both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ{sub 8} using the WiggleZ data is σ{sub 8} = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ{sub 8} = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation.

  17. A nonmonotonic dependence of standard rate constant on reorganization energy for heterogeneous electron transfer processes on electrode surface

    NASA Astrophysics Data System (ADS)

    Xu, Weilin; Li, Songtao; Zhou, Xiaochun; Xing, Wei; Huang, Mingyou; Lu, Tianhong; Liu, Changpeng

    2006-05-01

    In the present work a nonmonotonic dependence of standard rate constant (k0) on reorganization energy (λ) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k0 on λ is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of λ, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the λ dependence of k0 for Process I is monotonic thoroughly, while for Process II on electrode surface the λ dependence of k0 could show a nonmonotonicity.

  18. Rate constants for the reactions of OH with ClO, Cl2, and Cl2O at 298K

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Lin, C. L.

    1979-01-01

    Recent concern about the depletion of stratospheric ozone by chlorine species from the decomposition of chlorofluoromethanes has emphasized the need for laboratory studies of the first reaction steps involved, especially those which control the concentration of the OH and ClO radicals in the stratosphere. Rate constants for the reactions of OH with ClO, Cl2, and Cl2O at 298 K have been determined in a discharge flow system using resonance fluoresence detection. The results are (9.1 + or - 1.3) x 10 to the -12th, (5.5 + or - 0.3) x 10 to the -14th, and (6.5 + or - 0.5) x 10 to the -12th (all in units of cu cm/sec), respectively.

  19. Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol.

    PubMed

    Altarawneh, Mohammednoor; Al-Muhtaseb, Ala'A H; Dlugogorski, Bogdan Z; Kennedy, Eric M; Mackie, John C

    2011-06-01

    An important step in the initial oxidation of hydrocarbons at low to intermediate temperatures is the abstraction of H by hydroperoxyl radical (HO(2)). In this study, we calculate energy profiles for the sequence: reactant + HO(2) → [complex of reactants] → transition state → [complex of products] → product + H(2)O(2) for methanol, ethenol (i.e., C(2)H(3)OH), acetaldehyde, toluene, and phenol. Rate constants are provided in the simple Arrhenius form. Reasonable agreement was obtained with the limited literature data available for acetaldehyde and toluene. Addition of HO(2) to the various distinct sites in phenol is investigated. Direct abstraction of the hydroxyl H was found to dominate over HO(2) addition to the ring. The results presented herein should be useful in modeling the lower temperature oxidation of the five compounds considered, especially at low temperature where the HO(2) is expected to exist at reactive levels. PMID:21370242

  20. A molecular copper catalyst for electrochemical water reduction with a large hydrogen-generation rate constant in aqueous solution.

    PubMed

    Zhang, Peili; Wang, Mei; Yang, Yong; Yao, Tianyi; Sun, Licheng

    2014-12-01

    The copper complex [(bztpen)Cu](BF4)2 (bztpen=N-benzyl-N,N',N'-tris(pyridin-2-ylmethyl)ethylenediamine) displays high catalytic activity for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen-generation rate constant (k(obs)) of over 10000 s(-1). A turnover frequency (TOF) of 7000 h(-1) cm(-2) and a Faradaic efficiency of 96% were obtained from a controlled potential electrolysis (CPE) experiment with [(bztpen)Cu](2+) in pH 2.5 buffer solution at -0.90 V versus the standard hydrogen electrode (SHE) over two hours using a glassy carbon electrode. A mechanism involving two proton-coupled reduction steps was proposed for the dihydrogen generation reaction catalyzed by [(bztpen)Cu](2+). PMID:25314646

  1. Absolute Rate Constants for the Reaction of OH with [|#11#|]Cyclopentane and Cycloheptane from 230-350 K

    NASA Astrophysics Data System (ADS)

    Dransfield, T. J.; Gennaco, M. M.; Huang, Y.; Hannun, R. A.

    2011-12-01

    We report absolute measurements of the rate constants of the reaction of hydroxyl radical (OH) with cyclopentane and cycloheptane in 6-8 Torr of nitrogen from 230-350 K using Harvard's High Pressure Flow System. Ethane's reactivity was simultaneously measured as a test of experimental performance. Hydroxyl concentrations were measured using Laser-Induced Fluorescence, and alkane concentrations were measured using Fourier-Transform Infrared Spectroscopy. Recent work on this flow system has suggested that cyclohexane has a significantly higher activation energy to reaction with OH than does cyclo-octane, a result which is not suggested by our understanding of hydrocarbon reactivity nor predicted by structure-activity relationships. This work examines the temperature dependent rates for two other similarly-sized cycloalkanes to determine whether they behave as cyclohexane or as cyclooctane. While several previous experiments have studied the reaction with cyclopentane, there is significant scatter in the room temperature rates, and only four absolute rate measurements are available at non-ambient temperatures. There are only two absolute rate measurements available for the reaction with cycloheptane; only one of these reports a temperature dependence, and that study is limited to temperatures above 298 K. Thus, this work significantly expands the available data set for both reactions. The data for the reactions of OH with ethane, cyclopentane, cyclohexane, and cycloheptane are all modeled using a simple Arrhenius fit, and also with a modified Arrhenius equation based on transition state theory, ignoring tunneling. Results from the latter fit indicate that the activation barriers for both title reactions are greater than that of OH + cyclo-octane. The measured activation energy for OH + cyclopentane actually exceeds that of OH + cyclohexane.

  2. Correction of dead-time and pile-up in a detector array for constant and rapidly varying counting rates

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Wright, T.

    2015-03-01

    The effect of dead-time and pile-up in counting experiments may become a significant source of uncertainty if not properly taken into account. Although analytical solutions to this problem have been proposed for simple set-ups with one or two detectors, these are limited when it comes to arrays where time correlation between the detector modules is used, and also in situations of variable counting rates. In this paper we describe the dead-time and pile-up corrections applied to the n_TOF Total Absorption Calorimeter (TAC), a 4π γ-ray detector made of 40 BaF2 modules operating at the CERN n_TOF facility. Our method is based on the simulation of the complete signal detection and event reconstruction processes and can be applied as well in the case of rapidly varying counting rates. The method is discussed in detail and then we present its successful application to the particular case of the measurement of 238U(n, γ) reactions with the TAC detector.

  3. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.

  4. A simple approach to evaluate the kinetic rate constant for ATP synthesis in resting human skeletal muscle at 7 T.

    PubMed

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2016-09-01

    Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common saturation transfer (ST) techniques. One well-recognized issue with IT is the complexity of data analysis in comparison with much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP , can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7 T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP to m˙Pi, the rate of Pi magnetization change. The kPi→γATP value is accessed from m˙Pi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s(-1) , in agreement with literature-reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a (31) P IT experiment in about 10 min or less at 7 T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Selecting constant work rates for endurance testing in COPD: the role of the power-duration relationship.

    PubMed

    van der Vaart, Hester; Murgatroyd, Scott R; Rossiter, Harry B; Chen, Carey; Casaburi, Richard; Porszasz, Janos

    2014-06-01

    Constant work rate (CWR) exercise testing is highly responsive to therapeutic interventions and reveals physiological and functional benefits. No consensus exists, however, regarding optimal methods for selecting the pre-intervention work rate. We postulate that a CWR whose tolerated duration (tlim) is 6 minutes (WR6) may provide a useful interventional study baseline. WR6 can be extracted from the power-duration relationship, but requires 4 CWR tests. We sought to develop prediction algorithms for easier WR6 identification using backward stepwise linear regression, one in 69 COPD patients (FEV1 45 ± 15% pred) and another in 30 healthy subjects (HLTH), in whom cycle ergometer ramp incremental (RI) and CWR tests with tlim of ∼6 minutes had been performed. Demographics, pulmonary function, and RI responses were used as predictors. We validated these algorithms against power-duration measurements in 27 COPD and 30 HLTH (critical power 43 ± 18W and 231 ± 43W; curvature constant 5.1 ± 2.7 kJ and 18.5 ± 3.1 kJ, respectively). This analysis revealed that, on average, only corrected peak work rate ( = WRpeak-1 min × WRslope) in RI was required to predict WR6 (COPD SEE = 5.0W; HLTH SEE = 5.6W; R(2) > 0.96; p < 0.001). In the validation set, predicted and actual WR6 were strongly correlated (COPD R(2) = 0.937; HLTH 0.978; p < 0.001). However, in COPD, unlike in HLTH, there was a wide range of tlim values at predicted WR6: COPD 8.3 ± 4.1 min (range 3.6 to 22.2 min), and HLTH 5.5 ± 0.7 min (range 3.9 to 7.0 min). This analysis indicates that corrected WRpeak in an incremental test can yield an acceptable basis for calculating endurance testing work rate in HLTH, but not in COPD patients. PMID:24182350

  6. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    PubMed

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  7. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    SciTech Connect

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  8. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    PubMed

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  9. Citronellal reactions with ozone and OH radical: Rate constants and gas-phase products detected using PFBHA derivatization

    NASA Astrophysics Data System (ADS)

    Harrison, J. C.; Ham, J. E.; Wells, J. R.

    The bimolecular rate constants, kOH+citronellal, (150±40)×10 -12 cm 3 molecule -1 s -1 and, k+citronellal, (3.5±1.2)×10 -16 cm 3 molecule -1 s -1, were measured using the relative rate technique for the reactions of the hydroxyl radical (OH) and ozone (O 3) with 3,7-dimethyl-6-octen-1-al ((R)-(+)-citronellal) at (297±3) K and 1 atm total pressure. To more clearly define part of citronellal's indoor environment degradation mechanism, the products of the citronellal+OH and citronellal+O 3 reactions were also investigated. The positively identified citronellal/OH and citronellal/O 3 reaction products were: 3-methylhexanedial HC( dbnd O)CH 2CH 2CH(CH 3)CH 2C( dbnd O)H and 2-oxopropanal (methylglyoxal, CH 3C( dbnd O)C( dbnd O)H). The use of derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) was used to propose 3-methylhexanedial as a major citronellal/OH and citronellal/O 3 reaction product. The elucidation of this reaction product was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible citronellal/OH and citronellal/O 3 reaction mechanisms based on previously published volatile organic compound/OH and volatile organic compound/O 3 gas-phase reaction mechanisms.

  10. Searching for variations in the fine-structure constant and the proton-to-electron mass ratio using quasar absorption lines

    NASA Astrophysics Data System (ADS)

    King, Julian A.

    2012-02-01

    (abridged) Quasar absorption lines provide a precise test of the assumed constancy of the fundamental constants of physics. We have investigated potential changes in the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu. The many-multiplet method allows one to use optical fine-structure transitions to constrain (Delta alpha)/alpha at better than the 10^(-5) level. We present a new analysis of 154 quasar absorbers with 0.2 < z <3.7 in VLT/UVES spectra. From these absorbers we find 2.2 sigma evidence for angular variations in alpha under a dipole+monopole model. Combined with previous Keck/HIRES observations, we find 4.1 sigma evidence for angular (and therefore spatial) variations in alpha, with maximal increase of alpha occurring in the direction RA=(17.3 +/- 1.0) hr, dec=(-61 +/- 10) deg. Under a model where the observed effect is proportional to the lookback-time distance the significance increases to 4.2 sigma. Dipole models fitted to the VLT and Keck samples and models fitted to z<1.6 and z>1.6 sub-samples independently yield consistent estimates of the dipole direction, which suggests that the effect is not caused by telescope systematics. We consider a number of systematic effects and show that they are unable to explain the observed dipole effect. We have used spectra of the quasars Q0405-443, Q0347-383 and Q0528-250 from VLT/UVES to investigate the absorbers at z=2.595, 3.025 and 2.811 in these spectra respectively. We find that (Delta mu)/mu=(10.1 +/- 6.6) x 10^(-6), (8.2 +/- 7.5) x 10^(-6) and (-1.4 +/- 3.9) x 10^(-6) in these absorbers respectively. A second spectrum of Q0528-250 provides an additional constraint of (Delta mu)/mu=(0.2 +/- 3.2_stat +/- 1.9_sys) x 10^(-6). The weighted mean of these values yields (Delta mu)/mu=(1.7 +/- 2.4) x 10^(-6), the most precise constraint on evolution in mu at z>1.

  11. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  12. State-to-state vibration-translation and vibration-vibration rate constants in H{sub 2}-H{sub 2} and HD-HD collisions

    SciTech Connect

    Cacciatore, M.; Billing G.D.

    1992-01-09

    The authors present calculations of vibration-vibration and vibration-translation energy transfer rate constants in diatom-diatom collisions. The results are compared to recent experimental measurements.

  13. The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Strunk, A.; Huijnen, V.; van Weele, M.

    2012-01-01

    A flexible and explicit on-line parameterization for the calculation of tropospheric photodissociation rate constants (J-values) has been integrated into the global Chemistry Transport Model TM5. Here we provide a comprehensive description of this Modified Band Approach (MBA) including details of the optimization procedure employed, the methodology applied for calculating actinic fluxes, the photochemical reaction data used for each chemical species, the aerosol climatology which is adopted and the parameterizations adopted for improving the description of scattering and absorption by clouds. The resulting J-values change markedly throughout the troposphere when compared to the offline approach used to date, with significant increases in the boundary layer and upper troposphere. Conversely, for the middle troposphere a reduction in the actinic flux results in a decrease in J-values. Integrating effects shows that application of the MBA introduces seasonal dependent differences in important trace gas oxidants. Tropospheric ozone (O3) changes by ±10% in the seasonal mean mixing ratios throughout the troposphere, especially over land. These changes and the perturbations in the photolysis rate of O3 induce changes of ±15% in tropospheric OH. In part this is due to an increase in the re-cycling efficiency of nitrogen oxides. The overall increase in northern hemispheric tropospheric ozone strengthens the oxidizing capacity of the troposphere significantly and reduces the lifetime of CO and CH4 by ~5 % and ~4%, respectively. Changes in the tropospheric CO burden, however, are limited to a few percent due to competing effects. Comparing the distribution of tropospheric ozone in the boundary layer and middle troposphere against observations in Europe shows there are improvements in the model performance during boreal winter in the Northern Hemisphere near regions affected by high nitrogen oxide emissions. Monthly mean total columns of nitrogen dioxide and formaldehyde

  14. Low temperature rate constants for the N + CN → N2 + C reaction: two-dimensional quantum capture calculations on an accurate potential energy surface.

    PubMed

    Ma, Jianyi; Guo, Hua; Dawes, Richard

    2012-09-21

    The title reaction is thought to be responsible for the production of molecular nitrogen in interstellar clouds. In this work, we report quantum capture calculations on a new two-dimensional potential energy surface determined by interpolating high-level ab initio data. The low-temperature rate constant calculated using a capture model is quite large and has a positive temperature dependence, in agreement with a recent experiment. The origin of the aforementioned behaviors of the rate constant is analyzed.

  15. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    PubMed

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741

  16. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    SciTech Connect

    Yang, R; Wang, J

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  17. [Change in cross-bridge activation rate constant (Kac) after six-minute walk in patients with heart failure].

    PubMed

    Takahashi, M; Takeda, K; Saotome, T; Kobayashi, N; Yagi, S

    1994-01-01

    Cardiac adrenergic activity is increased in patients with congestive heart failure (CHF) and is excessively increased during mild exercise. Changes in cardiac adrenergic activity were examined in normal individuals and patients with CHF before and after mild exercise using the cross-bridge activation rate constant (Ka), which may represent the adrenergic activity related to the working left ventricular myocardium. Ten normal volunteers and 31 patients with stable CHF underwent echocardiography. The left ventricular ejection fraction (LVEF) was measured in all the CHF patients using left ventriculography or radionuclide cineangiography. The patients were classified into two groups: group 1 with an LVEF > or = 50% (n = 16) and group 2 with an LVEF < 50% (n = 15). The cause of CHF was old myocardial infarction in 25 patients and dilated cardiomyopathy in 6. All subjects exercised by walking for 6 min after resting in the supine position for 30 min. The blood pressure, electrocardiogram, phonocardiogram, and M-mode echocardiogram were recorded simultaneously before and after exercise. The values of Ka and Kac (Ka corrected for the individual heart rate) were calculated from the QS2 interval and the heart rate (HR) as follows: Ka = 3/QS2 interval, and Kac = Ka +0.0249 (66-HR). Before exercise, the HR was significantly higher in group 2, but the Kac value showed no significant difference between all three groups. The increase of HR with exercise (delta HR) and the Kac value after exercise were not significantly different between all three groups.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7823284

  18. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    PubMed Central

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment. PMID:23250012

  19. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    PubMed

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation.

  20. Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter; Khalid, Mohammed; Mann, Simon

    2003-12-01

    Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered, operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to ~50% if kept in the position of maximum SAR for 6 min continuously.

  1. Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset.

    PubMed

    Dimbylow, Peter; Khalid, Mohammed; Mann, Simon

    2003-12-01

    Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered. operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to approximately 50% if kept in the position of maximum SAR for 6 min continuously.

  2. A Prototype RF Dosimeter for Independent Measurement of the Average Specific Absorption Rate (SAR) During MRI

    PubMed Central

    Stralka, John P; Bottomley, Paul A

    2008-01-01

    Purpose To develop a scanner-independent dosimeter for measuring the average radio frequency (RF) power deposition and specific absorption rates (SAR) for human MRI exposure. Materials and Methods A prototype dosimeter has a transducer with orthogonal conducting loops surrounding a small signal-generating MRI sample. The loops contain resistors whose values are adjusted to load the scanner’s MRI coils equivalent to an average head or body during MRI. The scanner adjusts its power output to normal levels during setup, using the MRI sample. Following calibration, the total power and average SAR deposited in the transducer are measured from the root-mean-square (rms) power induced in the transducer during MRI. Results A 1.5 Tesla head transducer was adjusted to elicit the same load as the average of nine adult volunteers. Once adjusted, the transducer loads other head coils the same as the head does. The dosimeter is calibrated at up to 20 W total deposited power and 4.5 W/kg SAR in the average head, with about 5% accuracy. Conclusion This dosimeter provides a simple portable means of measuring the power deposited in a body-equivalent sample load, independent of the scanner. Further work will develop SAR dosimetry for the torso and for higher fields. PMID:17969145

  3. Specific absorption rate in electrically coupled biological samples between metal plates.

    PubMed

    Joines, W T; Blackman, C F; Spiegel, R J

    1986-01-01

    The specific absorption rate (SAR) in a biological sample irradiated by electromagnetic fields between the metal plates of a transmission line can be altered significantly by the spacing of the metal plates and the distance between neighboring samples. The SAR in spherical biological samples is calculated for a number of neighboring sample arrangements and metal-plate spacings by using the method of images and induced dipole coupling. For a decrease in metal-plate spacing, the derived equations predict an increase in SAR within a sample and a decrease in SAR with a decrease in neighboring-sample spacing. The calculations are compared with measurements made with the aid of an array of 1-in radius metal hemispheres on the lower plate of two parallel plates (thus forming an image system). The hemisphere on which measurements are taken is insulated from the metal plate and is connected via a coaxial center conductor to an HP 3582A spectrum analyzer that measures the voltage and hence the electric field intensity at the hemisphere. Measurements made at a frequency where wavelength is large compared with sample size (48 Hz) are in good agreement with calculations. PMID:3741491

  4. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

    NASA Astrophysics Data System (ADS)

    Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.

    2014-12-01

    In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

  5. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    PubMed

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K < T < 2475 K, the overall rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  6. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    PubMed

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K < T < 2475 K, the overall rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway. PMID:26017854

  7. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    PubMed

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  8. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    PubMed

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  9. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  10. Using a Family of Dividing Surfaces Normal to the Minimum EnergyPath for Quantum Instanton Rate Constants

    SciTech Connect

    Li, Yimin; Miller, Wlliam H.

    2006-02-22

    One of the outstanding issues in the quantum instanton (QI) theory (or any transition state-type theory) for thermal rate constants of chemical reactions is the choice of an appropriate ''dividing surface'' (DS) that separates reactants and products. (In the general version of the QI theory, there are actually two dividing surfaces involved.) This paper shows one simple and general way for choosing DS's for use in QI Theory, namely using the family of (hyper) planes normal to the minimum energy path (MEP) on the potential energy surface at various distances s along it. Here the reaction coordinate is not one of the dynamical coordinates of the system (which will in general be the Cartesian coordinates of the atoms), but rather simply a parameter which specifies the DS. It is also shown how this idea can be implemented for an N-atom system in 3d space in a way that preserves overall translational and rotational invariance. Numerical application to a simple system (the colliner H + H{sub 2} reaction) is presented to illustrate the procedure.

  11. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures.

    PubMed

    Li, Chao; Yang, Xianhai; Li, Xuehua; Chen, Jingwen; Qiao, Xianliang

    2014-01-01

    The reaction rate constants of hydroxyl radicals with organic chemicals (kOH) are of great importance for assessing the persistence and fate of organic pollutants in the atmosphere. However, experimental determination of kOH seems fairly unrealistic, due to the soaring number of the emerging chemicals additional to the large number of existing chemicals. Quantitative structure-activity relationship (QSAR) models are excellent choices for evaluating and predicting kOH values. In this study, a QSAR model that can predict kOH at different temperatures was developed by employing quantum chemical descriptors and DRAGON descriptors. The adjusted determination coefficient Radj(2) of the model is 0.873, and the external validation coefficient Qext(2) is 0.835, implying that the model has satisfactory robustness and good predictability. Additionally, a QSAR model was also built for kOH prediction at room-temperature (298 K). The development of the two models followed the guidelines for development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD). The applicability domains of the current models were extended to several classes of compounds including long-chain alkenes (C8-C13), organophosphates, dimethylnaphthalenes, organic selenium and organic mercury compounds that have not been covered in the previous studies.

  12. Low-pressure effective fluorescence lifetimes and photo-physical rate constants of one- and two-ring aromatics

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Faust, Stephan; Dreier, Thomas; Schulz, Christof

    2015-12-01

    One- and two-ring aromatics such as toluene and naphthalene are frequently used molecular tracer species in laser-induced fluorescence (LIF) imaging diagnostics. Quantifying LIF signal intensities requires knowledge of the photo-physical processes that determine the fluorescence quantum yield. Collision-induced and intramolecular energy transfer processes in the excited electronic state closely interact under practical conditions. They can be separated through experiments at variable low pressures. Effective fluorescence lifetimes of gaseous toluene, 1,2,4-trimethylbenzene, anisole, naphthalene, and 1-methylnaphthalene diluted in CO2 were measured after picosecond laser excitation at 266 nm and time-resolved detection of fluorescence intensities. Measurements in an optically accessible externally heated cell between 296 and 475 K and 0.010-1 bar showed that effective fluorescence lifetimes generally decrease with temperature, while the influence of the bath-gas pressure depends on the respective target species and temperature. The results provide non-radiative and fluorescence rate constants and experimentally validate the effect of photo-induced cooling.

  13. Kinetic Analysis for the Multistep Profiles of Organic Reactions: Significance of the Conformational Entropy on the Rate Constants of the Claisen Rearrangement.

    PubMed

    Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi

    2015-12-01

    The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.

  14. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate.

    PubMed

    Jeon, Seongho; Hurley, Katie R; Bischof, John C; Haynes, Christy L; Hogan, Christopher J

    2016-09-21

    A promising route to cancer treatment is hyperthermia, facilitated by superparamagnetic iron oxide nanoparticles (SPIONs). After exposure to an alternating external magnetic field, SPIONs generate heat, quantified by their specific absorption rate (SAR, in W g(-1) Fe). However, without surface functionalization, commercially available, high SAR SPIONs (EMG 308, Ferrotec, USA) aggregate in aqueous suspensions; this has been shown to reduce SAR. Further reduction in SAR has been observed for SPIONs in suspensions containing cells, but the origin of this further reduction has not been made clear. Here, we use image analysis methods to quantify the structures of SPION aggregates in the extra- and intracellular milieu of LNCaP cell suspensions. We couple image characterization with nanoparticle tracking analysis and SAR measurements of SPION aggregates in cell-free suspensions, to better quantify the influence of cellular uptake on SPION aggregates and ultimately its influence on SAR. We find that in both the intra- and extracellular milieu, SPION aggregates are well-described by a quasifractal model, with most aggregates having fractal dimensions in the 1.6-2.2 range. Intracellular aggregates are found to be significantly larger than extracellular aggregates and are commonly composed of more than 10(3) primary SPION particles (hence they are "superaggregates"). By using high salt concentrations to generate such superaggregates and measuring the SAR of suspensions, we confirm that it is the formation of superaggregates in the intracellular milieu that negatively impacts SAR, reducing it from above 200 W g(-1) Fe for aggregates composed of fewer than 50 primary particles to below 50 W g(-1) for superaggregates. While the underlying physical mechanism by which aggregation leads to reduction in SAR remains to be determined, the methods developed in this study provide insight into how cellular uptake influences the extent of SPION aggregation, and enable estimation of the

  15. An experimentally determined set of V-T and V-V rate constants involving the OH radical. Implications for atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Teitelbaum, H.; Aker, P.; Sloan, J. J.

    1988-01-01

    This is the first application of an analytical technique verifying a generalized rate law for vibrational relaxation based on a complete solution of the master equation. Experimental V-T and V-V energy transfer rate constants for the collisional deactivation of OH( v = 1-4) at 300 K by O 3 and OH are reported. It is found that the rate constant for 2OH( v = 1) → OH( v = 0) + OH( v = 2) is 1.8 × 10 -10 cm 3 molecule -1 s -1 and that for OH( v = 1) + O 3 → OH( v = 0) + O 3 is 1.0 × 10 -12 cm 3 molecule -1 s -1, both ±30%. Altogether 40 V-T and V-V rate constants involving vibrationally excited OH are extracted from the time evolution of the OH( v) distribution produced by the chemical reaction O( 1D) + H 2 → OH( v) + H. The rate constants obey a combined Landau-Teller-exponential gap law, with the gap constants being very similar in magnitude to the Polanyi-Woodall or Lambert-Salter constants. It is also shown that measurements of OH quenching by O 3 as reported by others are correct in magnitude but might be falsely attributed to chemical reaction, throwing doubts on atmospheric models of OH chemistry. Furthermore, using the energy transfer rate constants just determined, the time-evolution of the population distribution is extrapolated backwards in time. The resulting initial distribution is found to be yet more sharply peaked than reported heretofore for the reaction O( 1D) + H 2 → OH( v) + H. Finally it is shown that commonly used rate laws for vibrational relaxation, such as the Bethe-Teller law and quasi-first-order decay laws of initially excited levels, should be abandoned.

  16. The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Strunk, A.; Huijnen, V.; van Weele, M.

    2011-09-01

    A flexible and explicit on-line parameterization for the calculation of tropospheric photodissociation rate constants (J-values) has been integrated into the global Chemistry Transport Model TM5. Here we provide a comprehensive description of this Modified Band Approach (MBA) including details of the optimization procedure employed, the methodology applied for calculating actinic fluxes, the photochemical reaction data used for each chemical species and the parameterizations adopted for improving the description of scattering and absorption by clouds and aerosols. The resulting J-values change markedly throughout the troposphere when compared to the offline approach used to date, with significant increases in the boundary layer and upper troposphere. Conversely, for the middle troposphere a reduction in the actinic flux results in a decrease in J-values. Integrating effects shows that application of the MBA introduces seasonal dependent differences in important trace gas oxidants. Tropospheric ozone changes by ±5% in the seasonal mean mixing ratios throughout the troposphere, which induces changes of ±15% in tropospheric OH. In part this is due to an increase in the re-cycling efficiency of nitrogen oxides. The overall increase in northern hemispheric tropospheric ozone strengthens the oxidizing capacity of the troposphere significantly and reduces the lifetime of CO and CH4 by ~5% and ~4%, respectively. Changes in the tropospheric CO burden, however, are limited to a few percent due to competing effects. Comparing the distribution of tropospheric ozone in the boundary layer and middle troposphere against observations in Europe shows there are improvements in the model performance during boreal winter in the Northern Hemisphere near regions affected by high nitrogen oxide emissions. Monthly mean total columns of nitrogen dioxide and formaldehyde also compare more favorably against OMI and SCIAMACHY total column observations.

  17. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.

    PubMed

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Dawson, William M; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K

    2014-12-10

    Catalysis by dihydrofolate reductase from the moderately thermophilic bacterium Geobacillus stearothermophilus (BsDHFR) was investigated by isotope substitution of the enzyme. The enzyme kinetic isotope effect for hydride transfer was close to unity at physiological temperatures but increased with decreasing temperatures to a value of 1.65 at 5 °C. This behavior is opposite to that observed for DHFR from Escherichia coli (EcDHFR), where the enzyme kinetic isotope effect increased slightly with increasing temperature. These experimental results were reproduced in the framework of variational transition-state theory that includes a dynamical recrossing coefficient that varies with the mass of the protein. Our simulations indicate that BsDHFR has greater flexibility than EcDHFR on the ps-ns time scale, which affects the coupling of the environmental motions of the protein to the chemical coordinate and consequently to the recrossing trajectories on the reaction barrier. The intensity of the dynamic coupling in DHFRs is influenced by compensatory temperature-dependent factors, namely the enthalpic barrier needed to achieve an ideal transition-state configuration with minimal nonproductive trajectories and the protein disorder that disrupts the electrostatic preorganization required to stabilize the transition state. Together with our previous studies of other DHFRs, the results presented here provide a general explanation why protein dynamic effects vary between enzymes. Our theoretical treatment demonstrates that these effects can be satisfactorily reproduced by including a transmission coefficient in the rate constant calculation, whose dependence on temperature is affected by the protein flexibility. PMID:25396728

  18. Determination of Bimolecular Rate Constants for Reactions of Hydroxyl Radical with Pharmaceutical and Cosmetics Chemicals - Implications to the Fate in the Aquatic Environment

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Arakaki, T.; Anastasio, C.

    2008-12-01

    Large organic compounds such as hyaluronic acid and chondroitin sulfate are often used in pharmaceutical and cosmetics products, but their chemical degradation pathways are not well understood. To better elucidate their fate in the aquatic environment, we initiated a study to determine bimolecular rate constants between these organic compounds and hydroxyl radical (OH), which is a potent oxidant in the environment. The lifetimes of many organic compounds are determined by reactions with OH radicals, and the lifetime of OH is often controlled by reactions with organic compounds. To determine these bimolecular rate constants we used a competition kinetics technique with either hydrogen peroxide or nitrate as a source of OH and benzoate as the competing sink. Since the molecular weights of some of the large organic compounds we studied were not known, we used dissolved organic carbon (DOC) concentrations to determine mole-carbon based bimolecular rate constants, instead of the commonly used molar-based bimolecular rate constants. We will report the mole-carbon based bimolecular rate constants of OH, determined at room temperature, with hyaluronic acid, chondroitin sulfate and some other large organic compounds.

  19. Determination of lethality rate constants and D-values for Bacillus atrophaeus (ATCC 9372) spores exposed to dry heat from 115 degrees C to 170 degrees C.

    PubMed

    Kempf, M J; Schubert, W W; Beaudet, R A

    2008-12-01

    Dry heat microbial reduction is the NASA-approved sterilization method to reduce the microbial bioburden on spaceflight hardware for missions with planetary protection requirements. The method involves heating the spaceflight hardware to temperatures between 104 degrees C and 125 degrees C for up to 50 hours, while controlling the humidity to very low values. Collection of lethality data at temperatures above 125 degrees C and with ambient (uncontrolled) humidity conditions would establish whether any microbial reduction credit can be offered to the flight project for processes that occur at temperatures greater than 125 degrees C. The goal of this research is to determine the survival rates of Bacillus atrophaeus (ATCC 9372) spores subjected to temperatures higher than 125 degrees C under both dry (controlled) and room ambient humidity (36-66% relative humidity) conditions. Spores were deposited inside thin, stainless steel thermal spore exposure vessels (TSEVs) and heated under ambient or controlled humidity conditions from 115 degrees C to 170 degrees C. After the exposures, the TSEVs were cooled rapidly, and the spores were recovered and plated. Survivor ratios, lethality rate constants, and D-values were calculated at each temperature. At 115 degrees C and 125 degrees C, the controlled humidity lethality rate constant was faster than the ambient humidity lethality rate constant. At 135 degrees C, the ambient and controlled humidity lethality rate constants were statistically identical. At 150 degrees C and 170 degrees C, the ambient humidity lethality rate constant was slightly faster than the controlled humidity lethality rate constant. These results provide evidence for possibly modifying the NASA dry heat microbial reduction specification. PMID:19191542

  20. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head

    PubMed Central

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  1. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  2. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169

  3. Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis.

    PubMed Central

    Takai, A; Ohno, Y; Yasumoto, T; Mieskes, G

    1992-01-01

    As is often the case with tightly binding inhibitors, okadaic acid produces its inhibitory effect on type 2A protein phosphatase (PP2A) in a time-dependent manner. We measured the rate constants associated with the binding of okadaic acid to PP2A by analysing the time-course of the reduction of the p-nitrophenyl phosphate (pNPP) phosphatase activity of the enzyme after application of okadaic acid. The rate constants for dissociation of okadaic acid from PP2A were also estimated from the time-course of the recovery of the activity from inhibition by okadaic acid after addition of a mouse IgG1 monoclonal antibody raised against the inhibitor. Our results show that the rate constants for the binding of okadaic acid and PP2A are of the order of 10(7) M-1.s-1, a typical value for reactions involving relatively large molecules, whereas those for their dissociation are in the range 10(-4)-10(-3) s-1. The very low values of the latter seems to be the determining factor for the exceedingly high affinity of okadaic acid for PP2A. The dissociation constants for the interaction of okadaic acid with the free enzyme and the enzyme-substrate complex, estimated as the ratio of the rate constants, are both in the range 30-40 pM, in agreement with the results of previous dose-inhibition analyses. PMID:1329723

  4. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    SciTech Connect

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approach in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy

  5. Heating from free-free absorption and the mass-loss rate of the progenitor stars to supernovae

    SciTech Connect

    Björnsson, C.-I.; Lundqvist, P. E-mail: peter@astro.su.se

    2014-06-01

    An accurate determination of the mass-loss rate of the progenitor stars to core-collapse supernovae is often limited by uncertainties pertaining to various model assumptions. It is shown that under conditions when the temperature of the circumstellar medium is set by heating due to free-free absorption, observations of the accompanying free-free optical depth allow a direct determination of the mass-loss rate from observed quantities in a rather model-independent way. The temperature is determined self-consistently, which results in a characteristic time dependence of the free-free optical depth. This can be used to distinguish free-free heating from other heating mechanisms. Since the importance of free-free heating is quite model dependent, this also makes possible several consistency checks of the deduced mass-loss rate. It is argued that the free-free absorption observed in SN 1993J is consistent with heating from free-free absorption. The deduced mass-loss rate of the progenitor star is, approximately, 10{sup –5} M {sub ☉} yr{sup –1} for a wind velocity of 10 km s{sup –1}.

  6. Rate constants and isotope effects for the CH3+ H2 → CH4+ H reaction by an approximate semiclassical initial-value representation method

    NASA Astrophysics Data System (ADS)

    Fernández-Ramos, Antonio; Martínez-Núñez, Emilio; Smedarchina, Zorka; Vázquez, Saulo A.

    2001-06-01

    Rate constants and kinetic isotope effects are calculated for the CH3+ H2 → CH4+ H reaction by two theoretical methods: variational transition state theory with semiclassical corrections for tunneling and an approximate (linearized) semiclassical initial-value representation method, recently proposed by H. Wang, X. Sun, W.H. Miller [J. Chem. Phys. 108 (1998) 9726]. The theoretical results agree well with each other and with the experimental data in the temperature range 500-1500 K. For high temperatures, the differences between the two theoretical rate constants arise from the more accurate treatment of dividing surface recrossings by Miller's method.

  7. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  8. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  9. USING IN VIVO GAS UPDATE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE

    EPA Science Inventory

    USING IN VIVO GAS UPTAKE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPENE AND 2,2-DICHLOROPROPANE.
    Mitchell, C T, Evans, M V, Kenyon, E M. NHEERL, U.S. EPA, ORD, ETD, RTP, NC

    The Safe Drinking Water Act Amendments of 1996 required ...

  10. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  11. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  12. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-10-01

    The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11)×10-10 cm3 s-1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K 400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1)C2H + O(1D) → CH(A) + CO and (kCL2)C2H + O(3P) → CH(A) + CO, both followed by CH(A) → CH(X) + hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  13. A direct comparison of U.S. Environmental Protection Agency's method 304B and batch tests for determining activated-sludge biodegradation rate constants for volatile organic compounds

    SciTech Connect

    Cano, M.L.; Wilcox, M.E.; Compernolle, R. van

    1999-12-01

    Biodegradation rate constants for volatile organic compounds (VOCs) in activated-sludge systems are needed to quantify emissions. One current US environmental Protection Agency method for determining a biodegradation rate constant is Method 304B. In this approach, a specific activated-sludge unit is simulated by a continuous biological treatment system with a sealed headspace. Batch experiments, however, can be alternatives to Method 304B. Two of these batch methods are the batch test that uses oxygen addition (BOX) and the serum bottle test (SBT). In this study, Method 304B was directly compared to BOX and SBT experiments. A pilot-scale laboratory reactor was constructed to serve as the Method 304B unit. Biomass from the unit was also used to conduct BOX and modified SBT experiments (modification involved use of a sealed draft-tube reactor with a headspace recirculation pump instead of a serum bottle) for 1,2-dichloroethane, diisopropyl ether, methyl tertiary butyl ether, and toluene. Three experimental runs--each consisting of one Method 304B experiment, one BOX experiment, and one modified SBT experiment--were completed. The BOX and SBT data for each run were analyzed using a Monod model, and best-fit biodegradation kinetic parameters were determined for each experiment, including a first-order biodegradation rate constant (K{sub 1}). Experimental results suggest that for readily biodegradable VOCs the two batch techniques can provide improved means of determining biodegradation rate constants compared with Method 304B. In particular, these batch techniques avoid the Method 304B problem associated with steady-state effluent concentrations below analytical detection limits. However, experimental results also suggest that the two batch techniques should not be used to determine biodegradation rate constants for slowly degraded VOCs (i.e., K{sub 1} {lt} 0.1 L/g VSS-h).

  14. Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature

    NASA Astrophysics Data System (ADS)

    Best, R.; Biermann, W.; Reimann, R. C.

    1985-01-01

    The returned fifteen ton Solar Absorption Machine (SAM) 015 chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of the work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below 0(0)C (32(0)F) and identify any operational problems.

  15. Modifying the high rate algal pond light environment and its effects on light absorption and photosynthesis.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-03-01

    The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.

  16. A simplified method for calculating the atmospheric heating rate by absorption of solar radiation in the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, T.; Helmle, L. C.

    1979-01-01

    Calculations of the atmospheric heating rate by absorption of solar radiation by O3, H2O, and CO2 are reported. The method needs only seven parameters for each molecule and is particularly useful for heating calculations in three-dimensional global circulation models below 80 km. Applying the formula to the observed distributions of O3, H2O, and CO2 produces reasonable latitudinal and seasonal variations in the heating rate. The calculated heating rate, however, is sensitive to the global distributions of the absorbing gases, and uncertainties in the O3 distribution above approximately 50 km and the H2O distribution below approximately 20 km may seriously affect the global distributions of the heating rate in these regions.

  17. Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants.

    PubMed

    Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim

    2013-10-01

    Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible

  18. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  19. Smoluchowski Equations for Agglomeration in Conditions of Variable Temperature and Pressure and a New Scaling of Rate Constants: Application to Nozzle-Beam Expansion.

    PubMed

    Chaiken, J; Goodisman, J; Kornilov, O

    2015-07-01

    The Smoluchowski equations provide a rigorous and efficient means for including multiple kinetic pathways when modeling coalescence growth systems. Originally written for a constant temperature and volume system, the equations must be modified if temperature and pressure vary during the coalescence time. In this paper, the equations are generalized, and adaptations appropriate to the situation presented by supersonic nozzle beam expansions are described. Given rate constants for all the cluster-cluster reactions, solution of the Smoluchowski equations would yield the abundances of clusters of all sizes at all times. This is unlikely, but we show that if these rate constants scale with the sizes of the reacting partners, the asymptotic (large size and large time) form of the cluster size distribution can be predicted. Experimentally determined distributions for He fit the predicted asymptotic distribution very well. Deviations between predicted and observed distributions allow identification of special cluster sizes that is, magic numbers. Furthermore, fitting an observed distribution to the theoretical form yields the base agglomeration cross section, from which all cluster-cluster rate constants may be obtained by scaling. Comparing the base cross section to measures of size and reactivity gives information about the coalescence process.

  20. The cosmological constant

    NASA Technical Reports Server (NTRS)

    Carroll, Sean M.; Press, William H.; Turner, Edwin L.

    1992-01-01

    The cosmological constant problem is examined in the context of both astronomy and physics. Effects of a nonzero cosmological constant are discussed with reference to expansion dynamics, the age of the universe, distance measures, comoving density of objects, growth of linear perturbations, and gravitational lens probabilities. The observational status of the cosmological constant is reviewed, with attention given to the existence of high-redshift objects, age derivation from globular clusters and cosmic nuclear data, dynamical tests of Omega sub Lambda, quasar absorption line statistics, gravitational lensing, and astrophysics of distant objects. Finally, possible solutions to the physicist's cosmological constant problem are examined.

  1. Evaluation of scavenging rate constants of DOPA and tyrosine enantiomers against multiple reactive oxygen species and methyl radical as measured with ESR trapping method.

    PubMed

    Sueishi, Yoshimi; Takemoto, Tsubasa

    2015-04-15

    The scavenging rates of DOPA (dl- and l-3-(3,4-dihydroxyphenyl)alanine) and Tyr (tyrosine (dl- and l-3-(4-hydroxyphenyl)alanine)) against five reactive oxygen species (ROS) and methyl radical were measured with the use of electron spin resonance (ESR) spin-trapping method and the scavenging rate constants of DOPA and Tyr were determined. The scavenging rate constants for multiple active species increased in the order of O2(-)

  2. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model

    NASA Astrophysics Data System (ADS)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.

    2015-06-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  3. Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. [Quantitative Structure-Activity Relationship

    SciTech Connect

    Tratnyek, P.G.; Holgne, J. , Duebendorf )

    1991-09-01

    Substituted phenols can be oxidized by singlet oxygen ({sup 1}O{sub 2}), which is formed in sunlit surface waters, and it has been suggested that this reaction may contribute to the environmental fate of phenolic substances. In aqueous solution, the observed rate of phenol disappearance is due to reaction of both the phenolate anion and the undissociated phenol. In order to quantify the effect of substituents on the rates of these reactions, second-order rate constants have been measured for both species for 22 substituted phenols by use of a model system containing the sensitizer rose bengal. Correlation analysis based on half-wave oxidation potentials, E{sub 1/2}, and on {sigma} constants reveals significant quantitative structure-activity relationships (QSARs) for both the undissociated phenols and the phenolate anions. Ortho- and multisubstituted phenols have been included in the correlations. These QSARs are consistent with the rate-limiting formation of a precursor complex with a small amount of charge-transfer character and can be used to predict additional rate constants for a wide range of environmentally significant substituted phenols.

  4. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    NASA Astrophysics Data System (ADS)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  5. COMPARISON OF IN VIVO DERIVED AND SCALED IN VITRO METABOLIC RATE CONSTANTS FOR SOME VOLATILE ORGANIC COMPOUNDS (VOCS)

    EPA Science Inventory

    The reliability of physiologically based pharmacokinetic (PBPK) models is directly related to the accuracy of the metabolic rate parameters used as model inputs. When metabolic rate parameters derived from in vivo experiments are unavailable, they can be estimated from in vitro d...

  6. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-05-01

    We have determined, in the temperature range 227 K to 719 K, the absolute rate constant for the reaction O(1D)+N2O → products and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.09)×10-10 cm3 s-1. For temperatures greater than 450 K a marked decrease in value was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K-400 K range show very low scatter and are significantly greater, by 20% at room temperature and by 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1) C2H+O(1D) → CH(A)+CO and (kCL2) C2H+O(3P) → CH(A)+CO, both followed by CH(A) → CH(X)+hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  7. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  8. Low temperature rate constants for the N(4S) + CH(X2Πr) reaction. Implications for N2 formation cycles in dense interstellar clouds.

    PubMed

    Daranlot, Julien; Hu, Xixi; Xie, Changjian; Loison, Jean-Christophe; Caubet, Philippe; Costes, Michel; Wakelam, Valentine; Xie, Daiqian; Guo, Hua; Hickson, Kevin M

    2013-09-01

    Rate constants for the potentially important interstellar N((4)S) + CH(X(2)Πr) reaction have been measured in a continuous supersonic flow reactor over the range 56 K ≤T≤ 296 K using the relative rate technique employing both the N((4)S) + OH(X(2)Πi) and N((4)S) + CN(X(2)Σ(+)) reactions as references. Excess concentrations of atomic nitrogen were produced by the microwave discharge method upstream of the Laval nozzle and CH and OH radicals were created by the in situ pulsed laser photolysis of suitable precursor molecules. In parallel, quantum dynamics calculations of the title reaction have been performed based on accurate global potential energy surfaces for the 1(3)A' and 1(3)A'' states of HCN and HNC, brought about through a hierarchical construction scheme. Both adiabatic potential energy surfaces are barrierless, each one having two deep potential wells suggesting that this reaction is dominated by a complex-forming mechanism. The experimental and theoretical work are in excellent agreement, predicting a positive temperature dependence of the rate constant, in contrast to earlier experimental work at low temperature. The effects of the new low temperature rate constants on interstellar N2 formation are tested using a dense cloud model, yielding N2 abundances 10-20% lower than previously predicted.

  9. Calculation of the rate constant for state-selected recombination of H+O2(v) as a function of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.

    2004-06-01

    Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.

  10. A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin.

    PubMed

    Kasting, G B; Saiyasombati, P

    2001-02-01

    Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.

  11. Rate constants, 1100{le}T{le}2000 K, for H + NO{sub 2} {r_arrow} OH + NO using two shock tube techniques : comparison of theory to experiment.

    SciTech Connect

    Su, M.-C.; Kumaran, S. S.; Lim, K. P.; Michael, J. V.; Wagner, A. F.; Harding, L. B.; Fang, D.-C.

    2002-09-12

    Rate constants for the reaction H + NO{sub 2} {yields} OH + NO have been measured over the temperature range 1100-2000 K in reflected shock wave experiments using two different methods of analysis. In both methods, the source of H-atoms is from ethyl radical decomposition in which the radicals are formed essentially instantaneously from the thermal decomposition of C{sub 2}H{sub 5}I. The first method uses atomic resonance absorption spectrometry (ARAS) to follow the temporal behavior of H-atoms. Experiments were performed under such low [C{sub 2}H{sub 5}I]{sub 0} that the title reaction could be chemically isolated, and the decay of H-atoms was strictly first-order. The results from these experiments can be summarized as k = (1.4 {+-} 0.3) x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1} for 1100 {<=} T {<=} 1650 K. The second method utilizes a multipass optical system for observing the product radical, OH. A resonance lamp was used as the absorption source. Because this is the first OH-radical kinetics investigation from this laboratory, extensive calibration was required. This procedure resulted in a modified Beer's law description of the curve-of-growth, which could subsequently be used to convert absorption data to OH-radical profiles. Rate constants by this method required chemical simulation, and the final result can be summarized as k = (1.8 {+-} 0.2) x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1} for 1250 {<=} T {<=} 2000 K. Because the results from the two methods statistically overlap, they can be combined giving k = (1.64 {+-} 0.30) x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1} for 1100 {<=} T {<=} 2000 K. The present results are compared to earlier work at lower temperatures, and the combined database yields the temperature dependence over the large range, 195-2000 K. The combined results can be summarized as k = (1.47 {+-} 0.26) x 10{sup -10} cm3 molecule{sup -1} s{sup -1} for 195 {<=} T {<=} 2000 K. The reaction is subsequently considered

  12. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.

    PubMed

    Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji

    2013-01-01

    Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.

  13. Absolute rate constant for the reaction of atomic chlorine with hydrogen peroxide vapor over the temperature range 265-400 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1977-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen peroxide were measured from 265-400 K using the flash photolysis-resonance fluorescence technique. Analytical techniques were developed to measure H2O2 under reaction conditions. Due to ambiguity in the interpretation of the analytical results, the data combine to give two equally acceptable representations of the temperature dependence. The results are compared to previous work at 298 K and are theoretically discussed in terms of the mechanism of the reaction. Additional experiments on the H + H2O2 reaction at 298 and 359 K are compared with earlier results from this laboratory and give a slightly revised bimolecular rate constant.

  14. Absolute rate constant of the reaction OH + H2O2 yields HO2 + H2O from 245 to 423 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between the hydroxyl radical and hydrogen peroxide was measured by using the discharge-flow resonance fluorescence technique at total pressure between 1 and 4 torr. At 298 K the result is (1.64 + or - 0.32) x 10 to the -12th cu cm/molecule s. The observed rate constant is independent of pressure, surface-to-volume ratio, the addition of vibrational quenchers, and the source of OH. The temperature dependence has also been determined between 245 and 423 K; the resulting Arrhenius expression is k cu cm/molecule s is equal to (2.51 + or - 0.6) x 10 to the -12th exp(-126 + or - 76/T).

  15. Computer simulation of the non-steady-state radioactive labelling of a system of metabolite pools with constant rates of influx and efflux.

    PubMed

    England, P J

    1970-05-01

    The derivation is given of the general case of a differential equation describing the labelling of a single metabolite pool that is subjected to constant rates of influx of radioactive material when the pool size is itself changing at constant rate. A programme, written in ALGOL, is briefly described that solves a set of these differential equations, and that can be used to simulate the radioactive labelling of a system of metabolite pools. A copy of the programme, together with examples of input and output, has been deposited as Supplementary Publication no. SUP 50001 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1970), 116, 7.

  16. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    NASA Technical Reports Server (NTRS)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  17. Rate constants for the deactivation of O/1D/ by Xe, Kr, and Ar over the range 110-330 K

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Schiff, H. I.; Brown, T. J.; Streit, G. E.; Howard, C. J.

    1978-01-01

    The rate constants for the deactivation of O(1D) by Xe, Kr, and Ar were measured over the range 110-330 K. Only Xe had a significant temperature dependence. Its Arrhenius expression is (8.5 + or - 1.7) times 10 to the -11th power exp(-103 + or - 52)/RT cu cm/molecule-sec. The rate constants for Kr and Ar are (6.4 + or - 1.3) times 10 to the -12th power and (5.0 + or - 1.5) times 10 to the -13th power cu cm/molecule-sec, respectively. The observed trend in deactivation efficiency, Xe (greatest), Kr, Ar (least), and the observed temperature effects support the results and the spin-orbit interaction mechanism for deactivation given by Husain and co-workers.

  18. Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen (/sup 1/. delta. /sub g/O/sub 2/)

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R.

    1987-08-13

    Relative rate constants for the radiative deactivation (k/sub r/) of singlet molecular oxygen (/sup 3/Sigma/sub g//sup -/O/sub 2/ reverse arrow /sup 1/..delta../sub g/O/sub 2/) have been determined in 15 solvents. A substantial solvent effect is observed. Changes in the value of k/sub r/ can exceed a factor of 20. A reasonably good correlation exists between the solvent polarizability, defined as a function of the solvent refractive index, and the radiative rate constant. We suggest that our data support a model in which /sup 1/..delta../sub g/O/sub 2/ is perturbed through the formation of a discrete oxygen-solvent collision complex.

  19. Modelling the fate of nonylphenolic compounds in the Seine River--part 1: determination of in-situ attenuation rate constants.

    PubMed

    Cladière, Mathieu; Bonhomme, Céline; Vilmin, Lauriane; Gasperi, Johnny; Flipo, Nicolas; Tassin, Bruno

    2014-01-15

    Assessing the fate of endocrine disrupting compounds (EDCs) in the environment is currently a key issue for determining their impacts on aquatic ecosystems. The 4-nonylphenol (4-NP) is a well known EDC and results from the biodegradation of surfactant nonylphenol ethoxylates (NPnEOs). Fate mechanisms of NPnEO are well documented but their rate constants have been mainly determined through laboratory experiments. This study aims at evaluating the in-situ fate of 4-NP, nonylphenol monoethoxylate (NP1EO) and nonylphenolic acetic acid (NP1EC). Two sampling campaigns were carried out on the Seine River in July and September 2011, along a 28km-transect downstream Paris City. The field measurements are used for the calibration of a sub-model of NPnEO fate, included into a hydro-ecological model of the Seine River (ProSe). The timing of the sampling is based on the Seine River velocity in order to follow a volume of water. Based on our results, in-situ attenuation rate constants of 4-NP, NP1EO and NP1EC for both campaigns are evaluated. These rate constants vary greatly. Although the attenuation rate constants in July are especially high (higher than 1d(-1)), those obtained in September are lower and consistent with the literature. This is probably due to the biogeochemical conditions in the Seine River. Indeed, the July sampling campaign took place at the end of an algal bloom leading to an unusual bacterial biomass while the September campaign was carried out during common biogeochemical status. Finally, the uncertainties on measurements and on the calibration parameters are estimated through a sensitivity analysis. This study provides relevant information regarding the fate of biodegradable pollutants in an aquatic environment by coupling field measurements and a biogeochemical model. Such data may be very helpful in the future to better understand the fate of nonylphenolic compounds or any other pollutants at the basin scale. PMID:24100207

  20. Rate constant for the reaction of NO sub 2 with sulfur(IV) over the pH range 5. 3-13

    SciTech Connect

    Clifton, C.L.; Altstein, N.; Hule, R.E. )

    1988-05-01

    Rate constants have been determined for the reactions of NO{sub 2} with SO{sub 3}{sup 2{minus}} and HSO{sub 3}{sup {minus}} in aqueous solutions. A pulse radiolysis apparatus with signal averaging, which has allowed us to monitor the decay of NO{sub 2} directly and to measure rate constants for the reaction of NO{sub 2} with SO{sub 3}{sup 2{minus}} and HSO{sub 3}{sup {minus}} over the pH range 5.3-13. The rate constant increases from about 1.2 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1} near pH 5 to 2.9 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1} at pH 13. The reaction appears to involve the formation of an intermediate complex that may undergo subsequent reaction with NO{sub 2} to yield the ultimate products or may react with other substrates present. The formation of a long-lived intermediate would have implications on the chemistry of flue gas scrubbers and on luminol-based NO{sub 2} detectors.

  1. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification.

    PubMed

    Sudhakaran, Sairam; Amy, Gary L

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (k(OH) and k(O3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O(3) and AOP processes were developed, and rate constants, k(OH) and [Formula: see text] , were predicted based on target compound properties. The k(O3) and k(OH) values ranged from 5 * 10(-4) to 10(5) M(-1)s(-1) and 0.04 to 18 * (10(9)) M(-1) s(-1), respectively. Several molecular descriptors which potentially influence O(3) and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r(2) (>0.75). The models were validated by internal and external validation along with residual plots. PMID:23260175

  2. Learning Rates and Known-to-Unknown Flash-Card Ratios: Comparing Effectiveness While Holding Instructional Time Constant

    ERIC Educational Resources Information Center

    Forbes, Bethany E.; Skinner, Christopher H.; Black, Michelle P.; Yaw, Jared; Booher, Joshua; Delisle, Jean

    2013-01-01

    Using alternating treatments designs, we compared learning rates across 2 computer-based flash-card interventions (3?min each): a traditional drill intervention with 15 unknown words and an interspersal intervention with 12 known words and 3 unknown words. Each student acquired more words under the traditional drill intervention. Discussion…

  3. Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars.

    PubMed

    Srianand, R; Chand, H; Petitjean, P; Aracil, B

    2004-03-26

    We present the results of a detailed many-multiplet analysis performed on a new sample of Mg ii systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in alpha derived from our analysis over the redshift range 0.4absorption line systems.

  4. Optical Constants of Silicon Carbide for Astrophysical Applications. II. Extending Optical Functions from Infrared to Ultraviolet Using Single-Crystal Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Pitman, K. M.; Goncharov, A. F.; Speck, A. K.

    2009-05-01

    Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal structures of silicon carbide (SiC) are presented from 1200-35000 cm-1 (λ ~ 8-0.28 μm) and used to improve the accuracy of optical functions (n and k) from the infrared (IR) to the ultraviolet (UV). Comparison with previous λ ~ 6-20 μm thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for k in the IR region. We extract n and k needed for radiative transfer models using a new "difference method," which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral regions, 3C (β-SiC) and the \\vec{E}\\bot \\vec{c} polarization of 6H (a type of α-SiC) have almost identical optical functions that can be substituted for each other in modeling astronomical environments. Optical functions for \\vec{E} \\Vert \\vec{c} of 6H SiC have peaks shifted to lower frequency, permitting identification of this structure below λ ~ 4 μm. The onset of strong UV absorption for pure SiC occurs near 0.2 μm, but the presence of impurities redshifts the rise to 0.33 μm. Optical functions are similarly impacted. Such large differences in spectral characteristics due to structural and chemical effects should be observable and provide a means to distinguish chemical variation of SiC dust in space.

  5. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  6. High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.

    2009-01-01

    High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.

  7. Enhancement of specific absorption rate by exchange coupling of the core-shell structure of magnetic nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Phadatare, M. R.; Meshram, J. V.; Gurav, K. V.; Hyeok Kim, Jin; Pawar, S. H.

    2016-03-01

    Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic thermal induction by NPs. To increase the efficiency of magnetic thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe2O4) has been coupled to a soft material (Ni0.5Zn0.5Fe2O4). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

  8. Nonlinear dynamics of heart rate and oxygen uptake in exhaustive 10,000 m runs: influence of constant vs. freely paced.

    PubMed

    Billat, Véronique L; Wesfreid, Eva; Kapfer, Christian; Koralsztein, Jean P; Meyer, Yves

    2006-02-01

    We hypothesized that a freely paced 10,000 m running race would induce a smaller physiological strain (heart rate and oxygen uptake) compared with one performed at the same average speed but with an imposed constant pace. Furthermore, we analyzed the scaling properties with a wavelet transform algorithm computed log2 (wavelet transform energy) vs. log2 (scale) to get slope alpha, which is the scaling exponent, a measure of the irregularity of a time series. HR was sampled beat by beat and V2O, breath by breath. The enforced constant pace run elicited a significantly higher mean VO2 value (53 +/- 4 vs. 48 +/- 5 ml kg(-1) min(-1), P < 0.001), HR (169 +/- 13 vs. 165 +/- 14 bpm, P < 0.01), and blood lactate concentration (6.6 +/- 0.9 vs. 7.5 +/- 1 mM, P < 0.001) than the freely paced run. HR and VO2 signals showed a scaling behavior, which means that the signals have a similar irregularity (a self-similarity) whatever the scale of analysis may be, in both constant and free-paced 10,000 m runs. The scaling exponent was not significantly different according to the type of run (free vs. constant, P > 0.05) and the signal (HR vs. VO2, P > 0.05). The higher metabolic cost of constant vs. free paced run did not affect the self-similarity of HR and VO2, in either run. The HR signal only kept its scaling behavior only with a distance run, no matter the type of run (free or constant). The results suggest that the larger degree of pace variation in freely paced races may be an intentionally chosen strategy designed to minimize the physiological strain during severe exercise and to prevent a premature termination of effort, even if the variability of the heart rate and VO2, are comparable in an enforced constant vs. a freely paced run and if HR keeps the same variability until the arrival. PMID:16779918

  9. The carbonate profile of two recent Ionian Sea cores: Evidence that the sedimentation rate is constant over the last millennia

    SciTech Connect

    Castagnoli, G.C.; Bonino, G.; Caprioglio, F.; Provenzale, A.; Serio, M.; Guang-Mei, Zhu Istituto di Fisica Generale dell'Universiat', Torino )

    1990-10-01

    The authors confirm and extend the results previously reported on the carbonate profile of the GT14 Ionian Sea core (Cini Castagnoli et al., 1990). A second, much longer core (2.81 meters) named GT89/3, has been taken about 1 km apart from the previous one. The carbonate profiles of the two cores are impressively similar; the details of the CaCO{sub 3} variations in the two sediments match on the scale of the sampling interval {Delta}d = 2.5 mm used for both cores. The authors show that {Delta}d corresponds to the mud deposited in a time interval {Delta}t = 3.87 {plus minus} 0.04 years, a value which is constant throughout the entire length of the cores. This precision is achieved by the tephroanalysis of the two cores. In this approach the markers of well-known historical eruptions in the Vesuvius area are recognized (Pompei, AD 79, Pollena, AD 472, Ischia, AD 1301), providing a precise dating which accurately tunes that obtained by the radiometric method. The correlation between the carbonate profile of the GT14 core and the tree-ring radiocarbon record has been discussed in (Cini Castagnoli et al., 1990); here the authors extend these results and show that the same correlation holds at least up to 1690 BC. Due to the longer length of the GT89/3 time series, they also show that three periodic components at about 206 yr, 228 yr and 179 yr may now be resolved in the carbonate series, in close agreement with the results already found for the radiocarbon record.

  10. Fracture in Westerly granite under AE feedback and constant strain rate loading: Nucleation, quasi-static propagation, and the transition to unstable fracture propagation

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2006-01-01

    New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.

  11. Quantum instanton calculation of rate constant for CH4 + OH → CH3 + H2O reaction: torsional anharmonicity and kinetic isotope effect.

    PubMed

    Wang, Wenji; Zhao, Yi

    2012-12-01

    Thermal rate constants for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The results reveal that the quantum effect is remarkable for the reaction at both low and high temperatures, and the obtained rates are in good agreement with experimental measurements at high temperatures. Compared to the harmonic approximation, the torsional anharmonic effect of the internal rotation has a little influence on the rates at low temperatures, however, it enhances the rate by about 20% at 1000 K. In addition, the free energy barriers for the isotopic reactions and the temperature dependence of kinetic isotope effects are also investigated. Generally speaking, for the title reaction, the replacement of OH with OD will reduce the free energy barrier, while substituting D for H (connected to C) will increase the free energy barrier.

  12. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy.

    PubMed

    Smith, Mica C; Chao, Wen; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2016-07-14

    The unimolecular decomposition of (CH3)2COO and (CD3)2COO was measured by direct detection of the Criegee intermediate at temperatures from 283 to 323 K using time-resolved UV absorption spectroscopy. The unimolecular rate coefficient kd for (CH3)2COO shows a strong temperature dependence, increasing from 269 ± 82 s(-1) at 283 K to 916 ± 56 s(-1) at 323 K with an Arrhenius activation energy of ∼6 kcal mol(-1). The bimolecular rate coefficient for the reaction of (CH3)2COO with SO2, kSO2, was also determined in the temperature range 283 to 303 K. Our temperature-dependent values for kd and kSO2 are consistent with previously reported relative rate coefficients kd/kSO2 of (CH3)2COO formed from ozonolysis of tetramethyl ethylene. Quantum chemical calculations of kd for (CH3)2COO are consistent with the experiment, and the combination of experiment and theory for (CD3)2COO indicates that tunneling plays a significant role in (CH3)2COO unimolecular decomposition. The fast rates of unimolecular decomposition for (CH3)2COO measured here, in light of the relatively slow rate for the reaction of (CH3)2COO with water previously reported, suggest that thermal decomposition may compete with the reactions with water and with SO2 for atmospheric removal of the dimethyl-substituted Criegee intermediate.

  13. Aqueous suspensions of polymer coated magnetite nanoparticles: Colloidal stability, specific absorption rate, and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Saville, Steven Lee

    The design, functionalization, characterization, and applications of magnetic nanoparticles have garnered significant interest over the past several decades. While this area has garnered increasing attention, several questions remain unanswered about the stability of these systems and it's influence on their biomedical applications. To help answer these questions about the stability of these, a novel tri(nitroDOPA) terminated polymer based ligand has been developed for the stabilization of magnetite nanoparticles. The synthesis involves a process in which ethylene oxide is polymerized using a trivinyl initiator, modified with carboxylic acid using a free radical addition of mercaptoundecanoic acid, and then functionalized with nitroDOPA using N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. This polymer has displayed robust adhesion even in harsh chemical environments, out performing many polymers used today for the stabilization of magnetite. Along these same lines, the effects of instability of these systems were analyzed in both MRI and magnetic hyperthermia applications. It is widely known that formation of linear aggregates (i.e. chains) occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. In this work the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate and heating rate in magnetic hyperthermia of aqueous suspensions of magnetic particles are examined. The results indicate that varying the ligand length has a direct effect on the colloidal

  14. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.

    PubMed

    Chown, Steven L; Haupt, Tanya M; Sinclair, Brent J

    2016-02-01

    Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.

  15. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.

    PubMed

    Chown, Steven L; Haupt, Tanya M; Sinclair, Brent J

    2016-02-01

    Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate - temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0-10 °C, 5-15 °C, and 10-20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3-14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5-15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic. PMID:26592773

  16. Review of Rate Constants and Exploration of Correlations of the Halogen Transfer Reaction of Tri-substituted Carbon-centered Radicals with Molecular Halogens

    SciTech Connect

    Poutsma, Marvin L

    2012-01-01

    Rate constants for the reaction (R 3C + X2 R 3CX + X ; X = F, Cl, Br, and I) are reviewed. Because of curved Arrhenius plots and negative EX values, empirical structure-reactivity correlations are sought for log kX,298 rather than EX. The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R 3C is p, the sum of the Hammett p constants for the three substituents, R . Electronegative substituents with lone pairs, such as halogen or oxygen, thus appear to destabilize the formation of a polarized pre-reaction complex and/or TS ( +R---X---X -) by -inductive/field electron withdrawal while simultaneously stabilizing them by -resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I2 > Br2 >> Cl2 F2, is the polarizability of the halogen, (X-X). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log kX,298 is achieved with only two parameters, p and (X-X), with a mean unsigned deviation of 0.59 log units. How much of this residual variance is the result of inaccuracies in the data compared with over-simplification of the correlation approach remains to be seen.

  17. Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability

    PubMed Central

    Lauffer, Benjamin E. L.; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F.; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M.; Lupardus, Patrick J.; Kaminker, Joshua S.; Heise, Christopher E.; Steiner, Pascal

    2013-01-01

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility. PMID:23897821

  18. Theoretical derivation for reaction rate constants of H abstraction from thiophenol by the H/O radical pool

    PubMed Central

    Batiha, Marwan; Altarawneh, Mohammednoor; Al-Harahsheh, Mohammad; Altarawneh, Ibrahem; Rawadieh, Saleh

    2011-01-01

    Reaction and activation energy barriers are calculated for the H abstraction reactions (C6H5SH + X• → C6H5S + XH, X = H, OH and HO2) at the BB1K/GTLarge level of theory. The corresponding reactions with H2S and CH3SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K–2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. ΔfH298o of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures. PMID:22485200

  19. XrayOpticsConstants

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  20. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    PubMed

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels.