Science.gov

Sample records for absorption rate distribution

  1. A Bottom-Up Whole-Body Physiologically Based Pharmacokinetic Model to Mechanistically Predict Tissue Distribution and the Rate of Subcutaneous Absorption of Therapeutic Proteins.

    PubMed

    Gill, Katherine L; Gardner, Iain; Li, Linzhong; Jamei, Masoud

    2016-01-01

    The ability to predict subcutaneous (SC) absorption rate and tissue distribution of therapeutic proteins (TPs) using a bottom-up approach is highly desirable early in the drug development process prior to clinical data being available. A whole-body physiologically based pharmacokinetic (PBPK) model, requiring only a few drug parameters, to predict plasma and interstitial fluid concentrations of TPs in humans after intravenous and subcutaneous dosing has been developed. Movement of TPs between vascular and interstitial spaces was described by considering both convection and diffusion processes using a 2-pore framework. The model was optimised using a variety of literature sources, such as tissue lymph/plasma concentration ratios in humans and animals, information on the percentage of dose absorbed following SC dosing via lymph in animals and data showing loss of radiolabelled IgG from the SC dosing site in humans. The resultant model was used to predict t max and plasma concentration profiles for 12 TPs (molecular weight 8-150 kDa) following SC dosing. The predicted plasma concentration profiles were generally comparable to observed data. t max was predicted within 3-fold of reported values, with one third of the predictions within 0.8-1.25-fold. There was no systematic bias in simulated C max values, although a general trend for underprediction of t max was observed. No clear trend between prediction accuracy of t max and TP isoelectric point or molecular size was apparent. The mechanistic whole-body PBPK model described here can be applied to predict absorption rate of TPs into blood and movement into target tissues following SC dosing.

  2. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  3. ABSORPTION MEASURE DISTRIBUTION IN Mrk 509

    SciTech Connect

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.; Czerny, B.

    2015-12-20

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 10{sup 8} cm{sup −3}.

  4. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  5. Pharmacokinetics, absorption and tissue distribution of tanshinone IIA solid dispersion.

    PubMed

    Hao, Haiping; Wang, Guangji; Cui, Nan; Li, Jing; Xie, Lin; Ding, Zuoqi

    2006-11-01

    This study was designed to elucidate the pharmacokinetics, absorption, tissue distribution and plasma protein binding properties of tanshinone IIA, a highly lipophilic compound isolated from Salvia miltiorrhiza. Tanshinone IIA was isolated using a previously well developed LC-MS/MS method. Its pharmacokinetic characteristics, absolute bioavailability, tissue distribution and plasma protein binding properties were determined. The membrane permeability was evaluated using Caco-2 cells in monolayer. The pharmacokinetic plasma profile of tanshinone IIA after a single intravenous dosing exhibited a triexponential pattern consisting of rapid distribution (t1/2 alpha, 0.024 h), slow redistribution (t1/2 beta, 0.34 h) and terminal elimination phase (t1/2 gamma, 7.5 h). Tanshinone IIA preferentially distributed into the reticuloendothelial system, especially into liver and lung, after either intravenous or oral doses. Tanshinone IIA (99.2 %) bound highly to plasma proteins, among which lipoprotein played an important role (77.5 %). Tanshinone IIA absorption was extremely poor with an absolute bioavailability below 3.5 %. Absorptive saturation was deduced from the fact that the AUC and Cmax increased less proportionally to dose and Tmax was significantly prolonged. The poor absorption of tanshinone IIA may be caused by its low aqueous solubility and limited membrane permeability. There were no significant differences of the apparent permeability coefficient for all tested concentrations and for the apical to basolateral and reverse direction transport, suggesting a passive transport mode and no involvement of an efflux protein. In conclusion, tanshinone IIA has a suitable pharmacokinetic behavior except for its poor absorption. A pharmaceutical strategy for promoting its absorption should be designed to develop tanshinone IIA as a new drug candidate. PMID:17024606

  6. The distribution of absorptive power dissipation in irradiated nanoparticulate system

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Yang, Jian; Gu, Xiaobing

    2016-10-01

    The knowledge of local radiant absorption is important to the nanostructure optimization, it is beneficial to the applications in energy harvesting, optical heating, photocatalysis, etc. In this paper, FDTD model is constructed for the distribution of absorptive power dissipation in irradiated nanoparticulate system. The theoretical model extended from Mie theory is used to examine the FDTD model, the parameters and conditions set for FDTD simulation are confirmed based on the comparison. Then, the influence of Ag nanoparticle on the absorptive properties of nearby TiO2 nanoparticle is investigated by FDTD simulation at the wavelength of 0.25 μm. It is indicated that suitable distance between TiO2 and Ag particles is beneficial to the spectral radiant absorption of TiO2 particle. Considering the agglomeration of nanoparticles and the oxidation at the TiO2-Ag interface, the Ag core coated with Al2O3 shell is suggested, and the simulated results indicated that the shell thickness and the Ag core size need to be optimized for enhancing the radiant absorption of TiO2 particle.

  7. Correlation between nasal membrane permeability and nasal absorption rate.

    PubMed

    Zhang, Hefei; Lin, Chih-Wei; Donovan, Maureen D

    2013-03-01

    The objective of this study was to investigate the relationship between in vitro permeability (Papp) values obtained from isolated nasal tissues and the absorption rates (ka) of the same compounds following nasal administration in animals and humans. The Papp of a set of 11 drug compounds was measured using animal nasal explants and plasma time-concentration profiles for each of the same compounds following intravenous (IV) and intranasal (IN) administration were experimentally determined or obtained from literature reports. The plasma clearance was estimated from the IV plasma time-concentration profiles, and ka was determined from the IN plasma time-concentration profiles using a deconvolution approach. The level of correlation between Papp and ka was established using Pearson correlation analysis. A good correlation (r=0.77) representing a point-to-point relationship for each of the compounds was observed. This result indicates that the nasal absorption for many drug candidates can be estimated from a readily measured in vitro Papp value. PMID:23225081

  8. Sound propagation and absorption in foam - A distributed parameter model.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  9. Measurements of parallel electron velocity distributions using whistler wave absorption.

    PubMed

    Thuecks, D J; Skiff, F; Kletzing, C A

    2012-08-01

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense (ω(pe) > ω(ce)). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency ω(ce). As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation ω - k([parallel])v([parallel]) = ω(ce). The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  10. Measurements of parallel electron velocity distributions using whistler wave absorption

    SciTech Connect

    Thuecks, D. J.; Skiff, F.; Kletzing, C. A.

    2012-08-15

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense ({omega}{sub pe} > {omega}{sub ce}). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency {omega}{sub ce}. As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation {omega}-k{sub ||v||} = {omega}{sub ce}. The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  11. Determination of rate distributions from kinetic experiments.

    PubMed Central

    Steinbach, P J; Chu, K; Frauenfelder, H; Johnson, J B; Lamb, D C; Nienhaus, G U; Sauke, T B; Young, R D

    1992-01-01

    Rate processes in proteins are often not adequately described by simple exponential kinetics. Instead of modeling the kinetics in the time domain, it can be advantageous to perform a numerical inversion leading to a rate distribution function f(lambda). The features observed in f(lambda) (number, positions, and shapes of peaks) can then be interpreted. We discuss different numerical techniques for obtaining rate distribution functions, with special emphasis on the maximum entropy method. Examples are given for the application of these techniques to flash photolysis data of heme proteins. PMID:1540692

  12. The absorption, distribution, metabolism and excretion of procyanidins.

    PubMed

    Zhang, Liang; Wang, Yijun; Li, Daxiang; Ho, Chi-Tang; Li, Junsong; Wan, Xiaochun

    2016-03-01

    Procyanidins (PAs) are polyphenols in plant food that have many health benefits, including cancer prevention, cardiovascular protection and diabetes prevention. PAs have been known to have low oral bioavailability. In this review, we summarize the published results on the ADME (absorption, distribution, metabolism and excretion) of PAs in vivo and in vitro. After oral administration, in the stomach the decomposition of PAs is highly dependent on the pH value of gastric juice, which is also affected by food intake. In the small intestine, PA polymers and oligomers with DP > 4 are not directly absorbed in vivo, but minor PA monomers and dimers could be detected in the plasma. Methylated and glucuronidated PA dimers and monomers are the main metabolites of PAs in plasma. In the colon, PAs are catabolized by colonic microflora into a series of low molecular weight phenolic acids, such as phenyl valerolactone, phenylacetic acids and phenylpropionic acids. We reviewed the degradation of PAs in gastric digestion, the absorption of PAs in the small intestine and the metabolic pathway of PAs by colonic microflora. To clearly explain the in vivo pharmacokinetics of PAs, a systematic comparative analysis on previously published data on PAs was conducted. PMID:26814915

  13. The absorption, distribution, metabolism and excretion of procyanidins.

    PubMed

    Zhang, Liang; Wang, Yijun; Li, Daxiang; Ho, Chi-Tang; Li, Junsong; Wan, Xiaochun

    2016-03-01

    Procyanidins (PAs) are polyphenols in plant food that have many health benefits, including cancer prevention, cardiovascular protection and diabetes prevention. PAs have been known to have low oral bioavailability. In this review, we summarize the published results on the ADME (absorption, distribution, metabolism and excretion) of PAs in vivo and in vitro. After oral administration, in the stomach the decomposition of PAs is highly dependent on the pH value of gastric juice, which is also affected by food intake. In the small intestine, PA polymers and oligomers with DP > 4 are not directly absorbed in vivo, but minor PA monomers and dimers could be detected in the plasma. Methylated and glucuronidated PA dimers and monomers are the main metabolites of PAs in plasma. In the colon, PAs are catabolized by colonic microflora into a series of low molecular weight phenolic acids, such as phenyl valerolactone, phenylacetic acids and phenylpropionic acids. We reviewed the degradation of PAs in gastric digestion, the absorption of PAs in the small intestine and the metabolic pathway of PAs by colonic microflora. To clearly explain the in vivo pharmacokinetics of PAs, a systematic comparative analysis on previously published data on PAs was conducted.

  14. New constraints in absorptive capacity and the optimum rate of petroleum output

    SciTech Connect

    El Mallakh, R

    1980-01-01

    Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

  15. Assessing dose rate distributions in VMAT plans.

    PubMed

    Mackeprang, P-H; Volken, W; Terribilini, D; Frauchiger, D; Zaugg, K; Aebersold, D M; Fix, M K; Manser, P

    2016-04-21

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min(-1) for conventional fractionation

  16. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  17. Universal Distribution of Litter Decay Rates

    NASA Astrophysics Data System (ADS)

    Forney, D. C.; Rothman, D. H.

    2008-12-01

    Degradation of litter is the result of many physical, chemical and biological processes. The high variability of these processes likely accounts for the progressive slowdown of decay with litter age. This age dependence is commonly thought to result from the superposition of processes with different decay rates k. Here we assume an underlying continuous yet unknown distribution p(k) of decay rates [1]. To seek its form, we analyze the mass-time history of 70 LIDET [2] litter data sets obtained under widely varying conditions. We construct a regularized inversion procedure to find the best fitting distribution p(k) with the least degrees of freedom. We find that the resulting p(k) is universally consistent with a lognormal distribution, i.e.~a Gaussian distribution of log k, characterized by a dataset-dependent mean and variance of log k. This result is supported by a recurring observation that microbial populations on leaves are log-normally distributed [3]. Simple biological processes cause the frequent appearance of the log-normal distribution in ecology [4]. Environmental factors, such as soil nitrate, soil aggregate size, soil hydraulic conductivity, total soil nitrogen, soil denitrification, soil respiration have been all observed to be log-normally distributed [5]. Litter degradation rates depend on many coupled, multiplicative factors, which provides a fundamental basis for the lognormal distribution. Using this insight, we systematically estimated the mean and variance of log k for 512 data sets from the LIDET study. We find the mean strongly correlates with temperature and precipitation, while the variance appears to be uncorrelated with main environmental factors and is thus likely more correlated with chemical composition and/or ecology. Results indicate the possibility that the distribution in rates reflects, at least in part, the distribution of microbial niches. [1] B. P. Boudreau, B.~R. Ruddick, American Journal of Science,291, 507, (1991). [2] M

  18. The distribution of sunspot decay rates

    NASA Astrophysics Data System (ADS)

    Martinez Pillet, V.; Moreno-Insertis, F.; Vazquez, M.

    1993-07-01

    The distribution of sunspot decay rates is studied using the Greenwich Photoheliographic Results (GPR) for a total of approximately hundred years between 1874 and 1976. The decay rates are seen to be lognormally distributed. The discrepancies between the decay rates given in the past by different authors are shown to originate as a consequence of this asymmetric distribution. It is pointed out that the extended tails shown by the lognormal distributions are associated to spots decaying much faster than suggested by Bumba's (1963) work. A cycle by cycle analysis of the lognormal distributions associated with each sunspot group type and for single spots is presented. The differences between the nine solar cycles involved are studied. As a remarkable property of the decay process, we show that it happens at a nearly constant total to umbral area ratio. This property holds for decaying spots which are still large enough to show a penumbra. We have studied the suitability of a decay law with the instantaneous decay rate proportional to the length of the spot boundary. This law predicts a parabolic decay pattern with some specific characteristics. No definite conclusion in favour of this law is reached, but it is suggested that a linear decay is as weakly supported by the GPR data as a peripheral one. On the other hand, weak non-linearities are seen in the decay of isolated spots with a clear tendency to produce a convex pattern in the area vs. time diagram. The implication is that sunspot decay is braked as time proceeds.

  19. A simplified method for calculating the atmospheric heating rate by absorption of solar radiation in the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, T.; Helmle, L. C.

    1979-01-01

    Calculations of the atmospheric heating rate by absorption of solar radiation by O3, H2O, and CO2 are reported. The method needs only seven parameters for each molecule and is particularly useful for heating calculations in three-dimensional global circulation models below 80 km. Applying the formula to the observed distributions of O3, H2O, and CO2 produces reasonable latitudinal and seasonal variations in the heating rate. The calculated heating rate, however, is sensitive to the global distributions of the absorbing gases, and uncertainties in the O3 distribution above approximately 50 km and the H2O distribution below approximately 20 km may seriously affect the global distributions of the heating rate in these regions.

  20. Distribution and evolution of asteroid rotation rates

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Murray, C. D.

    1984-01-01

    Data on the rotational characteristics of more than 300 asteroids are currently available, and it is now clear that the distribution of the rotation rates is nonrandom. A plot of rotation rate against asteroid diameter shows large dispersion but is distinctly V-shaped. The minimum of this curve at about 120 km may separate primordial asteroids from their collision products. There is also evidence that rotation rate depends on type classification, and weak evidence that it may also depend on family membership. Recent bias-free observations suggest that the marked rise of rotation rate with decreasing diameter D for those asteroids with D less than 120 km cannot be completely accounted for by observational-selection effects. A significantly large subset of the small asteroids have exceptionally long rotation periods suggestive of either a different nature and origin or a peculiar history. Models that have been proposed to account for these results are discussed.

  1. Distribution, synthesis, and absorption of kynurenic acid in plants.

    PubMed

    Turski, Michal P; Turska, Monika; Zgrajka, Wojciech; Bartnik, Magdalena; Kocki, Tomasz; Turski, Waldemar A

    2011-05-01

    Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement. PMID:21157681

  2. Global evidence on the distribution of economic profit rates

    NASA Astrophysics Data System (ADS)

    Williams, Michael A.; Baek, Grace; Park, Leslie Y.; Zhao, Wei

    2016-09-01

    Gibrat (1931) initiated the study of the distribution of firms' profit rates, suggesting the distribution was log-normal. Although initial empirical work supported that finding, a consensus has developed in the literature that the distribution of firm profit rates is best approximated by the Laplace distribution. Using a richer database than prior studies and testing for more theoretical distributions, we find that the distribution of firm profit rates is best approximated by the heavier-tailed Cauchy distribution.

  3. Absorption, distribution, and excretion of /sup 14/C-trihalomethanes in mice and rats

    SciTech Connect

    Mink, F.L.; Brown, T.J.; Rickabaugh, J.

    1986-11-01

    Chloroform and other trihalomethanes have been shown to originate from reactions between chlorine and naturally-occurring organic precursors in water. Chloroform (TCM) has been shown, at high dose levels, to increase the tumor incidence in mice and rats. Studies by lardiff demonstrated chloroform was not mutagenic in the Ames bioassay using Salmonella typhimurium strains TA100 and TA1535. Bromodichloromethane, dibromochloromethane and bromoform demonstrated a dose-related mutagenic response. Differences in biological responses between mice and rats have been attributed to differences in their relative rates of TCM metabolism. Several predictive studies estimate that the mouse metabolizes TCM at a significantly different rate than the rat. This study was initiated to determine the absorption, distribution and excretion characteristics of four trihalomethanes (TCM, TBM, DBCM and BDCM) using the carbon 14 labeled compounds under identical experimental conditions in both the mouse and rat.

  4. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers.

    PubMed

    Gorjan, Martin; Marincek, Marko; Copic, Martin

    2009-10-26

    We investigate diode pump absorption and temperature distribution in three erbium-doped double-clad fluoride fibers. Absorption is measured via fluorescence intensity and temperature distribution is measured with thermal imaging. Ray-tracing calculations of absorption and heat-equation modeling of temperature distribution are also conducted. We found excellent agreement between measurements and calculations for all fibers. Results indicate that erbium-doped fluoride fiber lasers have already reached maximum output powers allowed under natural convection cooling, with fiber end being the most critical. We propose cooling and fiber design optimizations that may allow an order-of-magnitude further power-scaling.

  5. Effect of Clouds on the Calculated Vertical Distribution of Shortwave Absorption in the Tropics

    SciTech Connect

    McFarlane, Sally A.; Mather, James H.; Ackerman, Thomas P.; Liu, Zheng

    2008-09-23

    High vertical resolution profiles of cloud properties were obtained from cloud radars operated by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus in the Tropical Western Pacific (TWP). Broadband flux calculations using a correlated k-distribution model were performed to estimate the effect of clouds on the total column and vertical distribution of shortwave absorption at these tropical sites. Sensitivity studies were performed to examine the role of precipitable water vapor, cloud vertical location, optical depth, and particle size on the SW column absorption. On average, observed clouds had little impact on the calculated total SW column absorption at the two sites, but a significant impact on the vertical distribution of SW absorption. Differences in the column amount, vertical profiles, and diurnal cycle of SW absorption at the two sites were due primarily to differences in cirrus cloud frequency.

  6. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.

  7. Tropospheric ozone distributions measured with an airborne laser absorption spectrometer

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1978-01-01

    Measurements of tropospheric ozone have been made in the southern and middle California regions and over the Pacific Ocean during two series of flights in February and May 1977. The data were obtained by using a laser absorption spectrometer, a nadir-viewing instrument which remotely measures the ozone column abundance between ground level and aircraft altitude by interacting with ozone at specific wavelengths near 9.5 microns. The measurements indicate significantly lower ozone abundances above the Mojave Desert region as compared with farm, forest, and urban areas. The average tropospheric column density was found to be 0.0027 atm cm/km over the California region and 0.0035 atm cm/km over the Pacific Ocean region 1000-2000 km west of the coast of Mexico.

  8. Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake.

    PubMed

    Franke, Adrian A; Lai, Jennifer F; Halm, Brunhild M

    2014-10-01

    Soy is the major source of dietary exposure to isoflavonoids (IFLs). Accumulating evidence supports a role for soy and IFLs in the protection against many chronic diseases including cancer. After soy intake we found a biphasic IFL appearance pattern in plasma as well as in urine that we suggest to be due to IFL absorption in the small intestine (ca. 10%) during the first 2h after intake and IFL absorption in the large intestine (ca. 90%) 4-6 h after intake. While each IFL disappears from the circulation at different times excellent correlations between urinary and circulating IFL values were discovered and algorithms to convert urinary excretion values into circulating levels were established. We suggest the term 'apparent bioavailability' when using urinary data to describe IFL exposure. The IFL bioavailability was found to be influenced by gut bacteria, oral antibiotic treatment (OABX), and an individual's age and health status. While daidzein (DE) and genistein start to be absorbed minutes after intake, equol (EQ) appears in plasma only after a minimum of 8h following soy intake owing to the required transit time of DE to the colon where the conversion of DE to EQ takes place by intestinal microbiota. We have also shown that the apparent IFL bioavailability is higher in children than adults, higher in healthy versus non-healthy individuals, and decreased in children but increased in adults during OABX. Finally, we propose to use a urinary EQ/DE ratio of 0.018 with a DE threshold to identify EQ producers. With this cutoff definition we observed that EQ production is inconsistent over time in 5-30% of both premenopausal and postmenopausal women.

  9. Absorption and distribution of orally administered jojoba wax in mice.

    PubMed

    Yaron, A; Samoiloff, V; Benzioni, A

    1982-03-01

    The liquid wax obtained from the seeds of the arid-land shrub jojoba (Simmondsia chinensis) is finding increasing use in skin treatment preparations. The fate of this wax upon reaching the digestive tract was studied. 14C-Labeled wax was administered intragastrically to mice, and the distribution of the label in the body was determined as a function of time. Most of the wax was excreted, but a small amount was absorbed, as was indicated by the distribution of label in the internal organs and the epididymal fat. The label was incorporated into the body lipids and was found to diminish with time.

  10. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  11. Measurement of the absorption rate of carbon dioxide into aqueous diethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1998-05-01

    Aqueous alkanolamine solutions are commonly used in natural gas sweetening processes to remove the acid gases CO{sub 2} and H{sub 2}S. Absorption rates of gaseous CO{sub 2} into aqueous diethanolamine (DEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate, protonated DEA, and carbamate ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. The diffusion coefficient of DEA in water was also measured using a Taylor dispersion apparatus. A numerical model was developed and used to regress diffusion coefficients of bicarbonate, carbamate, and protonated amine from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and protonated DEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % DEA in water.

  12. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system.

    PubMed

    Schindel, Daniel; Singh, Mahi R

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  13. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel; Singh, Mahi R.

    2015-09-01

    We have studied energy absorption rate in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. We applied a control field to induce dipole moments in the quantum dot and the metal nanosphere, and monitored the energy absorption using a probe field. These external fields induce dipole moments in the metal nanosphere and the quantum dot, and these two structures interact with one another via the dipole-dipole interaction. The density matrix method was used to evaluate the absorption, indicating that it can be shifted by moving the metal nanosphere close to the quantum dot. Also, absorption efficiency can either be quenched or enhanced by the addition of a metal nanosphere. This hybrid system can be used to create ultrafast switching and sensing nanodevices.

  14. Energy absorption at high strain rate of glass fiber reinforced mortars

    NASA Astrophysics Data System (ADS)

    Fenu, Luigi; Forni, Daniele; Cadoni, Ezio

    2015-09-01

    In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF) was finally evaluated.

  15. A review of lung-to-blood absorption rates for radon progeny.

    PubMed

    Marsh, J W; Bailey, M R

    2013-12-01

    The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.

  16. Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion.

    PubMed

    Morck, Anna; Hakk, Heldur; Orn, Ulrika; Klasson Wehler, Eva

    2003-07-01

    Among the group of polybrominated diphenyl ethers used as flame-retardants, the fully brominated diphenyl ether, decabromodiphenyl ether (decaBDE), is the most commonly used. Despite the large usage of decaBDE, neither the metabolic pathways nor the absorption have been addressed, and there are very few studies on its toxicology. In this work, it is shown that after a single oral dose of 14C-labeled decaBDE to rats, at least 10% of the decaBDE dose is absorbed. The major excretion route in conventional rats is via feces that contained 90% of the decaBDE dose. The excretion in bile was close to 10% of the dose and represented mainly metabolites. It cannot be excluded that greater than 10% of the oral dose had been absorbed since 65% of the radioactivity excreted in feces was metabolites. The highest concentrations on a lipid weight basis were found in plasma and blood-rich tissues, and the adipose tissue had the lowest concentration of decaBDE. After derivatization of a phenolic fraction, gas chromatography-mass spectrometry (GC/MS) analyses indicated that metabolites with five to seven bromine atoms had formed, and they possessed a guaiacol structure (a hydroxy and a methoxy group) in one of the rings. In addition, traces of nonabrominated diphenyl ethers and monohydroxylated metabolites were found by GC/MS. Metabolites, characterized by their chemical properties, were interpreted to be covalently bound to macromolecules, either proteins or lipids. In addition, water solubility was suggested. The metabolic pathway was indicated to include a reactive intermediate. PMID:12814967

  17. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  18. Mechanism and rate of glucose absorption differ between an Australian honeyeater (Meliphagidae) and a lorikeet (Loriidae).

    PubMed

    Napier, Kathryn R; McWhorter, Todd J; Fleming, Patricia A

    2008-11-01

    Efficient mechanisms of glucose absorption are necessary for volant animals as a means of reducing mass during flight: they speed up gut transit time and require smaller volume and mass of gut tissue. One mechanism that may be important is absorption via paracellular (non-mediated) pathways. This may be particularly true for nectarivorous species which encounter large quantities of sugar in their natural diet. We investigated the extent of mediated and non-mediated glucose absorption in red wattlebirds Anthochaera carunculata (Meliphagidae) and rainbow lorikeets Trichoglossus haematodus (Loriidae) to test the hypothesis that paracellular uptake accounts for a significant proportion of total glucose uptake in these species. We found that routes of glucose absorption are highly dynamic in both species. In lorikeets, absorption of L-glucose (non-mediated uptake) is slower than that of D-glucose (mediated and non-mediated uptake), with as little as 10% of total glucose absorbed by the paracellular pathway initially (contrasting previous indirect estimates of approximately 80%). Over time, however, more glucose may be absorbed via the paracellular route. Glucose absorption by both mediated and non-mediated mechanisms in wattlebirds occurred at a faster rate than in lorikeets, and wattlebirds also rely substantially on paracellular uptake. In wattlebirds, we recorded higher bioavailability of L-glucose (96+/-3%) compared with D-glucose (57+/-2%), suggesting problems with the in vivo use of radiolabeled d-glucose. Further trials with 3-O-methyl-D-glucose revealed high bioavailability in wattlebirds (90+/-5%). This non-metabolisable glucose analogue remains the probe of choice for measuring uptake rates in vivo, especially in birds in which absorption and metabolism occur extremely rapidly.

  19. Mechanism and rate of glucose absorption differ between an Australian honeyeater (Meliphagidae) and a lorikeet (Loriidae).

    PubMed

    Napier, Kathryn R; McWhorter, Todd J; Fleming, Patricia A

    2008-11-01

    Efficient mechanisms of glucose absorption are necessary for volant animals as a means of reducing mass during flight: they speed up gut transit time and require smaller volume and mass of gut tissue. One mechanism that may be important is absorption via paracellular (non-mediated) pathways. This may be particularly true for nectarivorous species which encounter large quantities of sugar in their natural diet. We investigated the extent of mediated and non-mediated glucose absorption in red wattlebirds Anthochaera carunculata (Meliphagidae) and rainbow lorikeets Trichoglossus haematodus (Loriidae) to test the hypothesis that paracellular uptake accounts for a significant proportion of total glucose uptake in these species. We found that routes of glucose absorption are highly dynamic in both species. In lorikeets, absorption of L-glucose (non-mediated uptake) is slower than that of D-glucose (mediated and non-mediated uptake), with as little as 10% of total glucose absorbed by the paracellular pathway initially (contrasting previous indirect estimates of approximately 80%). Over time, however, more glucose may be absorbed via the paracellular route. Glucose absorption by both mediated and non-mediated mechanisms in wattlebirds occurred at a faster rate than in lorikeets, and wattlebirds also rely substantially on paracellular uptake. In wattlebirds, we recorded higher bioavailability of L-glucose (96+/-3%) compared with D-glucose (57+/-2%), suggesting problems with the in vivo use of radiolabeled d-glucose. Further trials with 3-O-methyl-D-glucose revealed high bioavailability in wattlebirds (90+/-5%). This non-metabolisable glucose analogue remains the probe of choice for measuring uptake rates in vivo, especially in birds in which absorption and metabolism occur extremely rapidly. PMID:18978218

  20. Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon.

    PubMed

    Huang, Susie Shih-Yin; Strathe, Anders Bjerring; Fadel, James G; Lin, Pinpin; Liu, Tsung-Yun; Hung, Silas S O

    2012-10-15

    Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and biomagnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48h post intubation period, and at 48h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p<0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12h. The maximal observed blood Hg concentration peaks are 0.56±0.02, 0.70±0.02, and 2.19±0.07 μg/ml (mean±SEM) for the 250, 500, and 1000 μgHg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations

  1. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications.

    PubMed

    Sugano, Kiyohiko; Terada, Katsuhide

    2015-09-01

    The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro-in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy.

  2. Mass Loss Rates for Solar-like Stars Measured from Lyα Absorption

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Müller, H.-R.; Linsky, J. L.

    2003-10-01

    We present a number of mass loss rate measurements for solar-like stars with coronal winds, computed using a Lyα absorption technique. The collision between the solar wind and the interstellar wind seen by the Sun defines the large scale structure of our heliosphere. Similar structures, ``astrospheres,'' exist around other solar-like stars. The deceleration of the interstellar wind at the solar or stellar bow shock heats the interstellar material. Heated neutral hydrogen in the outer astrosphere (and/or heliosphere) produces a broad Lyα absorption profile that is often detectable in high resolution Hubble Space Telescope spectra. The amount of absorption is dependent upon the strength of the stellar wind. With guidance from hydrodynamic models of astrospheres, we use detected astrospheric Lyα absorption to estimate the stellar mass loss rates. For the solar-like GK stars in our sample, mass loss appears to increase with stellar activity, suggesting that young, active stars have stronger winds than old, inactive stars. However, Proxima Cen (M5.5 Ve) and λ And (G8 IV-III+M V) appear to be inconsistent with this relation.

  3. Effects of dietary calcium on lead absorption, distribution, and elimination kinetics in rats

    SciTech Connect

    Aungst, B.J.; Fung, H.L.

    1985-01-01

    A pharmacokinetic analysis of lead absorption, distribution, and elimination was conducted in rats maintained on calcium-deficient, control, and calcium-supplemented diets. Dietary calcium affected lead disposition in a number of ways. Systematic lead clearance after a 10-mg/kg intracardiac lead dose was approximately 25% lower than control in rats administered dietary calcium supplements. In rats maintained on a calcium-deficient diet, systemic lead clearance was estimated to be 40% less than control. The apparent volume of lead distribution was increased. The apparent systemic availability of 1-, 10-, and 100-mg.kg oral lead doses was three- to fourfold greater than control in calcium-deficient rats. The percentage absorption was dose-dependent in control and calcium-deficient rats. The observed changes in lead absorption and systemic clearance associated with the calcium-deficient diet represent synergistic effects that could elevate blood lead accumulation and thus potentially influence susceptibility to lead toxicity.

  4. High-throughput approaches for evaluating absorption, distribution, metabolism and excretion properties of lead compounds.

    PubMed

    Tarbit, M H; Berman, J

    1998-06-01

    Combinatorial chemistry methods and high-throughput screening for leads in industrial drug discovery have generated a potential bottleneck in the optimisation processes that seek to align potency with good pharmacokinetics in order to produce good medicines. This has resulted in the need for higher throughput methods of screening for absorption, distribution, metabolism and excretion properties. Significant progress has been made in throughput of in vivo pharmacokinetic studies, with the introduction of cassette, or multiple-in-one, protocols. In this technique, typically up to ten compounds are administered in one dose and analysed concomitantly on the mass spectrometer. High-throughput methods in in vitro absorption, distribution, metabolism and excretion are less well-developed as yet, and current approaches comprise automation of well-established methods for absorption using cell lines and metabolism using liver microsomes.

  5. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    NASA Astrophysics Data System (ADS)

    Coïsson, M.; Barrera, G.; Celegato, F.; Martino, L.; Vinai, F.; Martino, P.; Ferraro, G.; Tiberto, P.

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained.

  6. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  7. Absorption cross-section and decay rate of rotating linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Aslan, O. A.

    2016-02-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  8. Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusiona)

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Li, D.; Radha, P. B.; Sawada, H.; Seka, W.; Boehly, T. R.; Delettrez, J. A.; Gotchev, O. V.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Yaakobi, B.; Mancini, R. C.

    2007-05-01

    Direct-drive laser absorption, mass ablation rate, and shock heating are experimentally studied on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] to validate hydrodynamics simulations. High-gain, direct-drive inertial confinement fusion target implosions require accurate predictions of the shell adiabat α (entropy), defined as the pressure in the main fuel layer to the Fermi-degenerate pressure, and the implosion velocity of the shell. The laser pulse shape determines the shell adiabat and the hydrodynamic efficiency determines the implosion velocity. A comprehensive set of measurements tracking the flow of energy from the laser to the target was conducted. Time-resolved measurements of laser absorption in the corona are performed on spherical implosion experiments. The mass ablation rate is inferred from time-resolved Ti K-shell spectroscopic measurements of nonaccelerating, solid CH spherical targets with a buried tracer layer of Ti. Shock heating is diagnosed in planar-CH-foil targets using time-resolved x-ray absorption spectroscopy and noncollective spectrally resolved x-ray scattering. The highly reproducible experimental results achieved with a high level of laser drive uniformity [S. P. Regan et al., J. Opt. Soc. Am. B 22, 998 (2005)] constrain the modeling of direct-drive energy coupling. A detailed comparison of the experimental results and the simulations reveals that a single-value flux limiter in the thermal transport model cannot explain all of the experimental observables. Simulations of laser absorption measurements need a time-dependent flux limiter to match the data. Modeling of both resonance absorption and nonlocal effects in the electron thermal conduction from the critical density to the ablation front are underway to resolve the observed discrepancies.

  9. Strain Rate Effects on the Energy Absorption of Rapidly Manufactured Composite Tubes

    SciTech Connect

    Brighton, Aaron M; Forrest, Mark; Starbuck, J Michael; ERDMAN III, DONALD L; Fox, Bronwyn

    2009-01-01

    Quasi-static and intermediate rate axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). The quasi-static tests were conducted at 10 mm/min (1.67x10-4 m/s); five different crush initiators were used. Tests at intermediate rates were performed at speeds of 0.25 m/s, 0.5 m/s, 0.75 m/s 1m/s, 2 m/s and 4 m/s. Quasi-static tests of tubular specimens showed high specific energy absorption (SEA) values with 86 kJ/kg for Carbon/Epoxy specimens. The specific energy absorption of the Glass/Polypropylene specimens was measured to be 29 kJ/kg. Results from the intermediate test rates showed that while a decrease in specific energy absorbed was observed as speeds increased, values did not fall below 55kj/kg for carbon specimens or 35 kJ/kg for the Glass/Polypropylene specimens. When compared with steel and aluminium, specific energy absorption values of 15 kJ/kg and 30 kJ/kg respectively, the benefits of using composite materials in crash structures are apparent.

  10. Use of In Vitro Absorption, Distribution, Metabolism, and Excretion (ADME) Data in Bioaccumulation Assessments for Fish

    SciTech Connect

    Nichols, John W.; Erhardt, Susan; Dyer, Scott; James, Margaret O.; Moore, Margo; Plotzke, Kathleen; Segner, Helmut; Schultz, Irvin R.; Thomas, Karluss; Vasiluk, Luba; Weisbrod, Anne V.

    2007-11-01

    A scientific workshop was held in 2006 to discuss the use of in vitro Absorption, Distribution, Metabolism, and Excretion (ADME) data in chemical bioaccumulation assessments for fish. Computer-based (in silico) modeling tools are widely used to estimate chemical bioaccumulation. These in silico methods have inherent limitations that result in inaccurate estimates for many compounds. Based on a review of the science workshop participants concluded that two factors, absorption and metabolism, represent the greatest sources of uncertainty in current bioaccumulation models. Both factors can be investigated experimentally using in vitro test systems.

  11. Anticancer efficacy and absorption, distribution, metabolism, and toxicity studies of aspergiolide A in early drug development.

    PubMed

    Wang, Yuanyuan; Qi, Xin; Li, Dehai; Zhu, Tianjiao; Mo, Xiaomei; Li, Jing

    2014-01-01

    Since the first anthracycline was discovered, many other related compounds have been studied in order to overcome its defects and improve efficacy. In the present paper, we investigated the anticancer effects of a new anthracycline, aspergiolide A (ASP-A), from a marine-derived fungus in vitro and in vivo, and we evaluated the absorption, distribution, metabolism, and toxicity drug properties in early drug development. We found that ASP-A had activity against topoisomerase II that was comparable to adriamycin. ASP-A decreased the growth of various human cancer cells in vitro and induced apoptosis in BEL-7402 cells via a caspase-dependent pathway. The anticancer efficacy of ASP-A on the growth of hepatocellular carcinoma xenografts was further assessed in vivo. Results showed that, compared with the vehicle group, ASP-A exhibited significant anticancer activity with less loss of body weight. A pharmacokinetics and tissue distribution study revealed that ASP-A was rapidly cleared in a first order reaction kinetics manner, and was enriched in cancer tissue. The maximal tolerable dose (MTD) of ASP-A was more than 400 mg/kg, and ASP-A was not considered to be potentially genotoxic or cardiotoxic, as no significant increase of micronucleus rates or inhibition of the hERG channel was seen. Finally, an uptake and transport assay of ASP-A was performed in monolayers of Caco-2 cells, and ASP-A was shown to be absorbed through the active transport pathway. Altogether, these results indicate that ASP-A has anticancer activity targeting topoisomerase II, with a similar structure and mechanism to adriamycin, but with much lower toxicity. Nonetheless, further molecular structure optimization is necessary.

  12. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  13. Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation.

    PubMed

    Kandilian, Razmig; Pruvost, Jérémy; Legrand, Jack; Pilon, Laurent

    2014-07-01

    This study aims to understand the role of light transfer in triglyceride fatty-acid (TG-FA) cell content and productivity from microalgae during nitrogen starvation. Large amounts of TG-FA can be produced via nitrogen starvation of microalgae in photobioreactors exposed to intense light. First, spectral absorption and scattering cross-sections of N. oculata were measured at different times during nitrogen starvation. They were used to relate the mean volumetric rate of energy absorption (MVREA) per unit mass of microalgae to the TG-FA productivity and cell content. TG-FA productivity correlated with the MVREA and reached a maximum for MVREA of 13 μmol hν/gs. This indicated that TG-FA synthesis was limited by the photon absorption rate in the PBR. A minimum MVREA of 13 μmol hν/gs was also necessary at the onset of nitrogen starvation to trigger large accumulation of TG-FA in cells. These results will be instrumental in defining protocols for TG-FA production in scaled-up photobioreactors.

  14. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry.

    PubMed

    Groth, Angela; Maurer, Claudia; Reiser, Martin; Kranert, Martin

    2015-02-01

    The aim of the work was to establish a method for emission control of biogas plants especially the observation of fugitive methane emissions. The used method is in a developmental stage but the topic is crucial to environmental and economic issues. A remote sensing measurement method was adopted to determine methane emission rates of a biogas plant in Rhineland-Palatinate, Germany. An inverse dispersion model was used to deduce emission rates. This technique required one concentration measurement with an open path tunable diode laser absorption spectrometer (TDLAS) downwind and upwind the source and basic wind information, like wind speed and direction. Different operating conditions of the biogas plant occurring on the measuring day (December 2013) could be represented roughly in the results. During undisturbed operational modes the methane emission rate averaged 2.8 g/s, which corresponds to 4% of the methane gas production rate of the biogas plant.

  15. Using integrating spheres as absorption cells: path-length distribution and application of Beer's law.

    PubMed

    Hodgkinson, Jane; Masiyano, Dackson; Tatam, Ralph P

    2009-10-20

    We have modeled the path-length distribution in an integrating sphere used as a multipass optical cell for absorption measurements. The measured radiant flux as a function of analyte concentration is nonlinear as a result, deviating from that expected for a single path length. We have developed a full numerical model and introduce a new analytical relationship that describes this behavior for high reflectivity spheres. We have tested both models by measuring the optical absorption of methane at 1651 nm in a 50 mm diameter sphere, with good agreement with experimental data in the absorption range of 0-0.01 cm(-1). Our results compare well with previous work on the temporal response of integrating spheres.

  16. Polarized Synchrotron Emissivities and Absorptivities for Relativistic Thermal, Power-law, and Kappa Distribution Functions

    NASA Astrophysics Data System (ADS)

    Pandya, Alex; Zhang, Zhaowei; Chandra, Mani; Gammie, Charles F.

    2016-05-01

    Synchrotron emission and absorption determine the observational appearances of many astronomical systems. In this paper, we describe a numerical scheme for calculating synchrotron emissivities and absorptivities in all four Stokes parameters for arbitrary gyrotropic electron distribution functions, building on earlier work by Leung, Gammie, and Noble. We use this technique to evaluate the emissivities and the absorptivities for a thermal (Maxwell-Jüttner), isotropic power-law, and an isotropic kappa distribution function. The latter contains a power-law tail at high particle energies that smoothly merges with a thermal core at low energies, as is characteristic of observed particle spectra in collisionless plasmas. We provide fitting formulae and error bounds on the fitting formulae for use in codes that solve the radiative transfer equation. The numerical method and the fitting formulae are implemented in a compact C library called symphony. We find that the kappa distribution has a source function that is indistinguishable from a thermal spectrum at low frequency and transitions to the characteristic self-absorbed synchrotron spectrum, \\propto {ν }5/2, at high frequency; the linear polarization fraction for a thermal spectrum is near unity at high frequency; and all distributions produce O(10%) circular polarization at low frequency for lines of sight sufficiently close to the magnetic field vector.

  17. Specific absorption rate calculations of magnetite, using a modified linear response model for applications in magnetic hyperthermia

    SciTech Connect

    Hernández S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.

    2014-11-07

    Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.

  18. Bit rate transparent interferometric noise mitigation utilizing the nonlinear modulation curve of electro-absorption modulator.

    PubMed

    Feng, Hanlin; Xiao, Shilin; Fok, Mable P

    2015-08-24

    we propose a bit-rate transparent interferometric noise mitigation scheme utilizing the nonlinear modulation curve of electro-absorption modulator (EAM). Both the zero-slope region and the linear modulation region of the nonlinear modulation curve are utilized to suppress interferometric noise and enlarge noise margin of degraded eye diagrams. Using amplitude suppression effect of the zero-slope region, interferometric noise at low frequency range is suppressed successfully. Under different signal to noise ratio (SNR), we measured the power penalties at bit error rate (BER) of 10<(-9) with and without EAM interferometric noise suppression. By using our proposed scheme, power penalty improvement of 8.5 dB is achieved in a signal with signal-to-noise ratio of 12.5 dB. BER results at various bit rates are analyzed, error floors for each BER curves are removed, significantly improvement in receiver sensitivity and widely opened eye diagrams are resulted.

  19. Spin Rate Distribution of Small Asteroids Shaped by YORP Effect

    NASA Astrophysics Data System (ADS)

    Pravec, Petr

    2008-09-01

    We studied a distribution of spin rates of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km using data obtained within the Photometric Survey of Asynchronous Binary Asteroids (Pravec et al. 2008). We found that the spin distribution of the small asteroids is uniform in the range from f = 1 to 9.5 d-1, and there is an excess of slow rotators with f < 1 d-1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of 0.022 d-1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d-1 is 45 Myr), thus the residence time of slowed down asteroids in the excess is 110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km ( 5-times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f = 9-10 d-1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. Reference: Pravec, P., and 30 colleagues, 2008. Spin rate distribution of small asteroids. Icarus, in press. DOI: http://dx.doi.org/10.1016/j.icarus.2008.05.012

  20. Lipid nanoparticles with no surfactant improve oral absorption rate of poorly water-soluble drug.

    PubMed

    Funakoshi, Yuka; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2013-07-15

    A pharmacokinetic study was performed in rats to evaluate the oral absorption ratios of nanoparticle suspensions containing the poorly water-soluble compound nifedipine (NI) and two different types of lipids, including hydrogenated soybean phosphatidylcholine and dipalmitoylphosphatidylglycerol. NI-lipid nanoparticle (LN) suspensions with a mean particle size of 48.0 nm and a zeta potential of -57.2 mV were prepared by co-grinding combined with a high-pressure homogenization process. The oral administration of NI-LN suspensions to rats led to a significant increase in the NI plasma concentration, and the area under the curve (AUC) value was found to be 108 min μg mL⁻¹, indicating a 4-fold increase relative to the NI suspensions. A comparison of the pharmacokinetic parameters of the NI-LN suspensions with those of the NI solution prepared using only the surfactant polysorbate 80 revealed that although the AUC and bioavailability (59%) values were almost identical, a rapid absorption rate was still observed in the NI-LN suspensions. These results therefore indicated that lipid nanoparticles prepared using only two types of phospholipid with a mean particle size of less than 50 nm could improve the absorption of the poorly water-soluble drug.

  1. OH reaction rate constants and UV absorption cross-sections of unsaturated esters

    NASA Astrophysics Data System (ADS)

    Teruel, M. A.; Lane, S. I.; Mellouki, A.; Solignac, G.; Le Bras, G.

    Absolute rate coefficients have been determined for the gas-phase reactions of hydroxyl radicals with methyl acrylate ( k1), methyl methacrylate ( k2) and ethyl acrylate ( k3). Experiments were performed using two different techniques, the relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The kinetic data obtained were used to derive the following Arrhenius expressions in the temperature range 253-374 K (in units of cm 3 molecule -1 s -1): k1=(2.0±0.8)×10exp[(553±51)/T], k2=(2.5±0.8)×10exp[(821±55)/T], k3=(2.3±0.8)×10exp[(580±65)/T]. At 298 K, the reaction rate constants obtained by the two methods were in good agreement. In addition, the UV absorption spectra for the three unsaturated esters have been determined at (298±2) K and the absorption cross-sections in the wavelength region 215-298 nm were reported. The results are presented, discussed and used to estimate the atmospheric lifetimes for the studied esters.

  2. Nutrient Distribution and Absorption in the Colonial Hydroid Podocoryna carnea Is Sequentially Diffusive and Directional

    PubMed Central

    Buss, Leo W.; Anderson, Christopher P.; Perry, Elena K.; Buss, Evan D.; Bolton, Edward W.

    2015-01-01

    The distribution and absorption of ingested protein was characterized within a colony of Podocoryna carnea when a single polyp was fed. Observations were conducted at multiple spatial and temporal scales at three different stages of colony ontogeny with an artificial food item containing Texas Red conjugated albumin. Food pellets were digested and all tracer absorbed by digestive cells within the first 2–3 hours post-feeding. The preponderance of the label was located in the fed polyp and in a transport-induced diffusion pattern surrounding the fed polyp. After 6 hours post-feeding particulates re-appeared in the gastrovascular system and their absorption increased the area over which the nutrients were distributed, albeit still in a pattern that was centered on the fed polyp. At later intervals, tracer became concentrated in some stolon tips, but not in others, despite the proximity of these stolons either to the fed polyp or to adjacent stolons receiving nutrients. Distribution and absorption of nutrients is sequentially diffusive and directional. PMID:26359660

  3. The Wealth Distribution Model with the Kickback Rate

    NASA Astrophysics Data System (ADS)

    Zhang, Yujie; He, Mingfeng

    We define an asset exchange model by adding the kickback rate to the trade, and discuss the Gini index with different kickback rates. It is found that for every kickback rate, the related Gini index tends to be steady; thus, the kickback rate — Gini index curve may be obtained. Furthermore, it is shown that the Gini index decreases when the kickback rate increases, so that the fair degree of social wealth distribution gets better. The Gini index reaches a minimum when the kickback rate is 0.58, and then it increases, as the accretion of the kickback rate destroys the fair degree of social wealth distribution. However, in all situations, the Gini index with kickback rate is less than the one without kickback. This means that the introduction of kickback rate is favorable to the raising of the fair degree of wealth distribution. We also define a moral index similar to the Gini index to weigh the differences of social moral level, and find that the differences of social moral level increase with time for the model with kickback rate.

  4. 7 CFR 1717.307 - Distribution members' rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Federal Pre-emption in Rate Making in Connection With Power Supply Borrowers § 1717.307 Distribution... continue to exercise jurisdiction, pursuant to applicable provisions of state law, over all other business..., that the state regulatory authority shall treat any RUS approved rate for the power supply borrower...

  5. Dose rate distribution from a standard waste drum arrangement.

    PubMed

    Zoeger, N; Brandl, A

    2011-11-01

    The evaluation of the dose rate distributions from radioactive sources, together with the specific detector locations with respect to those sources, in many cases presents a significant analytical challenge. With the exception of a few, simple source-detector geometries, it is not possible to find an analytical expression for these dose rate distributions as functions of detector location. In this paper, the dose rate distributions due to the arrangement of radiological waste drums on a standard wooden transport and storage pallet are investigated. The dose rates at various distances, ranging from 5 cm to 20 m, from the waste drum assembly have been evaluated by Monte Carlo calculations. The simulation data are fitted by smooth analytical functions in two independent regions, the waste drum near zone, where a logarithmic function best described the data, and the far zone, where the functional dependence closely approximates the 1/r2-law for point sources. PMID:21968820

  6. The absorption efficiency and respiration rate of the Florida lancelet, Branchiostoma floridae.

    PubMed

    Nash, Troy R; Ruppert, Edward E; Colacino, James M

    2009-12-01

    The present study investigates some aspects of the digestive biology and physiological energetics of the Florida lancelet, Branchiostoma floridae. Florida lancelets are able to remove 47.2-56.9% of the energy from a diet of mixed algae. The respiration rate is 0.100mL O(2) (STPD) h(-1) g(-1) (wet), which estimates a metabolic rate of 0.248 J h(-1), at an average body mass of 0.125 g (wet). Published values of the chlorophyll a concentration in its natural habitat indicate that a 125 mg lancelet would need to filter 0.018-0.031 L h(-1) to remove sufficient food to support its resting metabolism. The filtration rate of lancelets has been reported as 0.138 L h(-1), indicating that the actual filtration rate is 4-7 times greater than the filtration rate needed to meet resting metabolic demands. It appears that lancelets have the potential to be raised in aquaculture, because their absorption efficiency and respiration rate are comparable to suspension-feeding invertebrates that have been successfully aquacultured.

  7. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect

    Hessler, J.P.

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  8. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  9. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.

    PubMed

    Li, Xiaoqi; Jiang, Huabei

    2013-02-21

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  10. Prostaglandin E2 regulation of amnion cell vascular endothelial growth factor expression: relationship with intramembranous absorption rate in fetal sheep.

    PubMed

    Cheung, Cecilia Y; Beardall, Michael K; Anderson, Debra F; Brace, Robert A

    2014-08-01

    We hypothesized that prostaglandin E2 (PGE2) stimulates amniotic fluid transport across the amnion by upregulating vascular endothelial growth factor (VEGF) expression in amnion cells and that amniotic PGE2 concentration correlates positively with intramembranous (IM) absorption rate in fetal sheep. The effects of PGE2 at a range of concentrations on VEGF 164 and caveolin-1 gene expressions were analyzed in cultured ovine amnion cells. IM absorption rate, amniotic fluid (AF) volume, and PGE2 concentration in AF were determined in late-gestation fetal sheep during control conditions, isovolumic fetal urine replacement (low IM absorption rate), or intra-amniotic fluid infusion (high IM absorption rate). In ovine amnion cells, PGE2 induced dose- and time-dependent increases in VEGF 164 mRNA levels and reduced caveolin-1 mRNA and protein levels. VEGF receptor blockade abolished the caveolin-1 response, while minimally affecting the VEGF response to PGE2. In sheep fetuses, urine replacement reduced amniotic PGE2 concentration by 58%, decreased IM absorption rate by half, and doubled AF volume (P < 0.01). Intra-amniotic fluid infusion increased IM absorption rate and AF volume (P < 0.01), while amniotic PGE2 concentration was unchanged. Neither IM absorption rate nor AF volume correlated with amniotic PGE2 concentration under each experimental condition. Although PGE2 at micromolar concentrations induced dose-dependent responses in VEGF and caveolin-1 gene expression in cultured amnion cells consistent with a role of PGE2 in activating VEGF to mediate AF transport across the amnion, amniotic PGE2 at physiological nanomolar concentrations does not appear to regulate IM absorption rate or AF volume.

  11. An analytical solution for the model of drug distribution and absorption in small intestine

    NASA Astrophysics Data System (ADS)

    Mingyu, Xu

    1990-11-01

    According to the physiological and anatomical characteristics of small intestine, neglecting the effect of its motility on the distribution and absorption of drug and nutrient, Y. Miyamoto et al.[1] proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drug by numerical analysis. In this paper, we give a steady state analytical solution of the above model including deactivation term. The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence provides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.

  12. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    PubMed

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV.

  13. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    PubMed

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV. PMID:27440743

  14. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals.

  15. Mineral Spatial Distribution in Determining Rates: When does it matter?

    NASA Astrophysics Data System (ADS)

    Li, L.; Salehikhoo, F.; Brantley, S. L.

    2013-12-01

    This abstract summarizes several years' work on exploring the largely unknown effects of mineral spatial distribution on dissolution rates using columns packed with the same magnesite mass but with different distributions within a quartz matrix. Variables include the spatial distribution of the reactive mineral magnesite, orientation of the magnesite zone to the main flow direction, length scale, flow rates, and size contrast between magnesite and quartz grains. The columns with lengths varying from 5 to 20 cm were flushed with acidic solutions (pH 4.0) at flow velocities varying from 0.015 to 7.2 m/d. The largest rate difference was observed between a 'Mixed' column containing uniformly distributed magnesite and a 'One-zone' column containing magnesite in one cylindrical zone in the center of the column ('flow-parallel One-zone' column). Breakthrough data show that the zonation in the One-zone columns, especially when the grain sizes of magnesite are smaller than that of the quartz, limits magnesite dissolution by a factor of 1.5 - 4.0 compared to the Mixed column. The magnitude of the rate difference increases with increasing flow rates. Under low flow rate conditions, the porefluids reach chemical equilibrium and reaction kinetics does not play an important role. For those conditions, the mineral distribution does not make a difference. Under high flow conditions, however, the effects of the mineral distribution are maximized because column-scale rates exhibit kinetic control due to low residence times. The rate differences between the Mixed and the flow-parallel One-zone cases are much larger than the 14% maximum difference observed between the Mixed column and the 'flow-perpendicular One-zone' column. Two-dimensional reactive transport modeling revealed that local pore-scale dissolution rates vary by orders of magnitude under almost all conditions. In particular, in the flow-parallel one-zone columns, the transverse dispersivity at the quartz

  16. Fe /Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Baker, I.; Loudis, J. A.; Liao, Y.; Hoopes, P. J.; Weaver, J. B.

    2007-06-01

    Using a water-in-oil microemulsion with cetyl trimethyl ammonium bromide as the surfactant, iron was reduced to form a metallic core on which a passivating oxide shell was grown. Transmission electron microscopy, vibrating sample magnetometry, and heating measurements were used to characterize these monodispersed magnetic Fe /Fe3O4 composite nanoparticles with respect to the possible application for magnetic hyperthermia treatments of cancer. The aim is to utilize the fact that an iron core (high saturation magnetization) will give a greater heating effect than iron oxide, while the iron oxide coating will allow the nanoparticles to be observed using magnetic resonance imaging so that therapy can be effectively monitored and targeted. The largest specific absorption rate obtained was 345W/g under an alternating magnetic field of 150Oe at 250kHz.

  17. Specific absorption rate in models of man and monkey at 225 and 2000 MHz

    SciTech Connect

    Olsen, R.G.; Griner, T.A.

    1987-01-01

    Full-size models of a man and a rhesus monkey were exposed to radiofrequency (RF) radiation at 225 MHz. The model of man was also exposed to 2000 MHz. Specific absorption rates (SARs) were measured in partial-body sections, such as the arms, legs, etc., using gradient-layer calorimeters. Also, front-surface thermographic images were obtained to qualitatively show the heating patterns. For all of the configurations used, the SAR in the limbs was much higher than in the torso. Agreement (whole-body SARs) with spheroidal models was better for both models at 225 MHz than at 2000 MHz. These results indicate that in the frequency range two orders of magnitude above whole-body resonance, SAR in the limbs significantly contributes to the whole-body average SAR.

  18. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  19. MRI-based anatomical model of the human head for specific absorption rate mapping

    PubMed Central

    Makris, Nikos; Angelone, Leonardo; Tulloch, Seann; Sorg, Scott; Kaiser, Jonathan; Kennedy, David

    2009-01-01

    In this study, we present a magnetic resonance imaging (MRI)-based, high-resolution, numerical model of the head of a healthy human subject. In order to formulate the model, we performed quantitative volumetric segmentation on the human head, using T1-weighted MRI. The high spatial resolution used (1 × 1 × 1 mm3), allowed for the precise computation and visualization of a higher number of anatomical structures than provided by previous models. Furthermore, the high spatial resolution allowed us to study individual thin anatomical structures of clinical relevance not visible by the standard model currently adopted in computational bioelectromagnetics. When we computed the electromagnetic field and specific absorption rate (SAR) at 7 Tesla MRI using this high-resolution model, we were able to obtain a detailed visualization of such fine anatomical structures as the epidermis/dermis, bone structures, bone-marrow, white matter and nasal and eye structures. PMID:18985401

  20. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Differential Gene Expression Approach

    EPA Science Inventory

    Absorption, distribution, metabolism, and excretion (ADME) parameters represent important connections between exposure to chemicals and the activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. ADME parameters u...

  1. THE ACQUISITION AND APPLICATION OF ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION (ADME) DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS

    EPA Science Inventory

    A multi-sector international group of government, academic, and industry scientists has developed a proposal for an improved testing scheme for assessing the safety of crop protection chemicals. Incorporation of pharmacokinetic studies describing the absorption, distribution, me...

  2. Lead transfer in maternal milk, and the absorption, retention, distribution and excretion of lead in suckling mice

    SciTech Connect

    Keller, Charles Arthur

    1980-01-01

    Suckling mice were found to absorb and retain a greater fraction of an oral lead dose than did adult mice. Pinocytotic activity and lead uptake (in vivo) were found to be greatest in the distal small intestinal tissue. Cortisone pretreatment results in precocious cessation of pinocytotic activity in the intestine of suckling mice. Cortisone pretreatment of adult mice had no effect on whole body lead retention or intestinal tissue content of lead following an oral dose. The data indicate that the distal small intestine is the site of active pinocytosis of lead, and that pinocytosis is the major mechanism involved in lead absorption in suckling mice. Developmental differences were also observed in the percentage of lead retained in the whole body. Both groups exhibited dose-independent lead retention, indicating a first-order absorption process for each age group. Lead distribution and elimination from organs also differed between suckling and adult mice. Developmental differences were observed in organ lead concentration for kidneys and brain following oral doses. Relative distribution of lead to the brains of suckling mice were greater than to adult brains. Whole body and bone lead elimination rates were reduced in suckling compared to adult mice. Brain lead elimination rates did not differ in suckling and adult mice. A lactating mouse model was developed to study lead transfer to suckling offspring. Lead was transferred in milk to suckling offspring from mothers which had previously ingested lead in the drinking water. Relative lead transfer to suckled offspring during lactation greatly exceeded transfer to fetuses during gestation. Lactation resulted in an increased rate of maternal lead elimination. Lead concentration in milk exceeded plasma concentration by a factor of approximately 25. (ERB)

  3. Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments

    NASA Astrophysics Data System (ADS)

    Coral, D. F.; Mendoza Zélis, P.; de Sousa, M. E.; Muraca, D.; Lassalle, V.; Nicolás, P.; Ferreira, M. L.; Fernández van Raap, M. B.

    2014-01-01

    In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (˜10-10 s and 10-4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i

  4. Strain energy release rate distributions for double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A 24-ply composite double cantilever-beam specimen under mode I (opening) loading has been analyzed by a 3D FEM code that calculated along a straight delamination starter for several different specimen materials. An isotropic specimen was found to have a strain-energy release rate distribution which varied along its delamination front due to the boundary-layer effect and another effect associated with the anticlastic curvature of the bent specimen arms. A 0-deg graphite-reinforced epoxy specimen had a nearly-uniform strain-energy release rate distribution which dropped only near the edge, due to the boundary-layer effect, and a +/- 45-deg graphite/epoxy specimen exhibited a pronounced strain-energy release rate variation across the specimen width.

  5. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.

  6. Do learning rates adapt to the distribution of rewards?

    PubMed

    Gershman, Samuel J

    2015-10-01

    Studies of reinforcement learning have shown that humans learn differently in response to positive and negative reward prediction errors, a phenomenon that can be captured computationally by positing asymmetric learning rates. This asymmetry, motivated by neurobiological and cognitive considerations, has been invoked to explain learning differences across the lifespan as well as a range of psychiatric disorders. Recent theoretical work, motivated by normative considerations, has hypothesized that the learning rate asymmetry should be modulated by the distribution of rewards across the available options. In particular, the learning rate for negative prediction errors should be higher than the learning rate for positive prediction errors when the average reward rate is high, and this relationship should reverse when the reward rate is low. We tested this hypothesis in a series of experiments. Contrary to the theoretical predictions, we found that the asymmetry was largely insensitive to the average reward rate; instead, the dominant pattern was a higher learning rate for negative than for positive prediction errors, possibly reflecting risk aversion.

  7. Velocity distribution function of sputtered Cu atoms obtained by time resolved optical absorption spectroscopy

    SciTech Connect

    Kang, Namjun; Gaboriau, Freddy; Ricard, Andre; Oh, Soo-ghee

    2010-01-15

    A new method based on time resolved optical absorption spectroscopy is proposed to determine the velocity distribution function of sputtered Cu atoms in a magnetron plasma discharge. The method consists of applying a short pulse of 1.5 {mu}s and of recording time variations in copper atom density in off pulse at different positions (1, 2, and 3 cm) from target surface under 3-30 mTorr. The time evolution of the density is then converted into velocity distribution. We estimate that only sputtered atoms with radial velocity component lower than 0.5 km/s are detected. The average velocity of Cu atoms is evaluated as the first order moment of the velocity distribution functions. The velocity distribution functions become the more dispersive the farther from target surface. The average velocities vary in the range of 2.5-3 km/s at the vicinity of target surface whereas at 3 cm a decrease from 2.5 to 1.2 km/s is observed at 30 mTorr.

  8. Longitudinal dose distribution and energy absorption in PMMA and water cylinders undergoing CT scans

    SciTech Connect

    Li, Xinhua; Zhang, Da; Liu, Bob

    2014-10-15

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full width at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or

  9. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  10. Absorption Line Studies and the Distribution of Neutral Gas in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.

    1984-01-01

    Previous published absorption line studies performed at ultraviolet and visual wavelengths are combined with new ultraviolet data in order to map out the distribution of HI within 150 pc of the Sun. Newly presented data for distances less than 50 pc further support the local cloud model as presented by Bruhweiler (1982). The Sun is embedded, near the edge of a diffuse cloud with total column density 2 x 10 to the 19th power/sq cm. Most observed directions within 50 pc away from the cloud body reveal trace amounts of gas (N)HI) approximately 10 to the 18th power/sq cm presumably arising in the outer skin of the local cloud. At greater distances (50 approximately or d approximately or 150 pc) most directions show significant absorption with N(HI) 10(19)/sq cm. Two directions, one toward the northern galactic pole (NGP), the other toward beta CMa exhibit unusually low HI column densities out to distances of 150 to 200 pc. However, substantial amounts of gas N(HI) 10 to the 19th power/sq cm, are seen toward the NGP at greater distances. The implicatons of these results on astronomy at wavelengths shortward of 912A are discussed.

  11. Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter; Khalid, Mohammed; Mann, Simon

    2003-12-01

    Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered, operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to ~50% if kept in the position of maximum SAR for 6 min continuously.

  12. Assessment of specific energy absorption rate (SAR) in the head from a TETRA handset.

    PubMed

    Dimbylow, Peter; Khalid, Mohammed; Mann, Simon

    2003-12-01

    Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) from a representative TETRA handset have been performed in an anatomically realistic model of the head. TETRA (Terrestrial Trunked Radio) is a modern digital private mobile radio system designed to meet the requirements of professional users, such as the police and fire brigade. The current frequency allocations in the UK are 380-385 MHz and 390-395 MHz for the public sector network. A comprehensive set of calculations of SAR in the head was performed for positions of the handset in front of the face and at both sides of the head. The representative TETRA handset considered. operating at 1 W in normal use, will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a monopole antenna operating at 3 W in normal use will show compliance with both the ICNIRP occupational and public exposure restrictions. The handset with a helical antenna operating at 3 W in normal use will show compliance with the ICNIRP occupational exposure restriction but will be over the public exposure restriction by up to approximately 50% if kept in the position of maximum SAR for 6 min continuously.

  13. A Prototype RF Dosimeter for Independent Measurement of the Average Specific Absorption Rate (SAR) During MRI

    PubMed Central

    Stralka, John P; Bottomley, Paul A

    2008-01-01

    Purpose To develop a scanner-independent dosimeter for measuring the average radio frequency (RF) power deposition and specific absorption rates (SAR) for human MRI exposure. Materials and Methods A prototype dosimeter has a transducer with orthogonal conducting loops surrounding a small signal-generating MRI sample. The loops contain resistors whose values are adjusted to load the scanner’s MRI coils equivalent to an average head or body during MRI. The scanner adjusts its power output to normal levels during setup, using the MRI sample. Following calibration, the total power and average SAR deposited in the transducer are measured from the root-mean-square (rms) power induced in the transducer during MRI. Results A 1.5 Tesla head transducer was adjusted to elicit the same load as the average of nine adult volunteers. Once adjusted, the transducer loads other head coils the same as the head does. The dosimeter is calibrated at up to 20 W total deposited power and 4.5 W/kg SAR in the average head, with about 5% accuracy. Conclusion This dosimeter provides a simple portable means of measuring the power deposited in a body-equivalent sample load, independent of the scanner. Further work will develop SAR dosimetry for the torso and for higher fields. PMID:17969145

  14. Specific absorption rate in electrically coupled biological samples between metal plates.

    PubMed

    Joines, W T; Blackman, C F; Spiegel, R J

    1986-01-01

    The specific absorption rate (SAR) in a biological sample irradiated by electromagnetic fields between the metal plates of a transmission line can be altered significantly by the spacing of the metal plates and the distance between neighboring samples. The SAR in spherical biological samples is calculated for a number of neighboring sample arrangements and metal-plate spacings by using the method of images and induced dipole coupling. For a decrease in metal-plate spacing, the derived equations predict an increase in SAR within a sample and a decrease in SAR with a decrease in neighboring-sample spacing. The calculations are compared with measurements made with the aid of an array of 1-in radius metal hemispheres on the lower plate of two parallel plates (thus forming an image system). The hemisphere on which measurements are taken is insulated from the metal plate and is connected via a coaxial center conductor to an HP 3582A spectrum analyzer that measures the voltage and hence the electric field intensity at the hemisphere. Measurements made at a frequency where wavelength is large compared with sample size (48 Hz) are in good agreement with calculations. PMID:3741491

  15. On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials

    NASA Astrophysics Data System (ADS)

    Wildeboer, R. R.; Southern, P.; Pankhurst, Q. A.

    2014-12-01

    In the clinical application of magnetic hyperthermia, the heat generated by magnetic nanoparticles in an alternating magnetic field is used as a cancer treatment. The heating ability of the particles is quantified by the specific absorption rate (SAR), an extrinsic parameter based on the clinical response characteristic of power delivered per unit mass, and by the intrinsic loss parameter (ILP), an intrinsic parameter based on the heating capacity of the material. Even though both the SAR and ILP are widely used as comparative design parameters, they are almost always measured in non-adiabatic systems that make accurate measurements difficult. We present here the results of a systematic review of measurement methods for both SAR and ILP, leading to recommendations for a standardised, simple and reliable method for measurements using non-adiabatic systems. In a representative survey of 50 retrieved datasets taken from published papers, the derived SAR or ILP was found to be more than 5% overestimated in 24% of cases and more than 5% underestimated in 52% of cases.

  16. Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy.

    PubMed

    Hwang, Bing-Joe; Sarma, Loka Subramanyam; Chen, Jiun-Ming; Chen, Ching-Hsiang; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Lee, Jyh-Fu; Tang, Mau-Tsu

    2005-08-10

    In this report, we describe a general methodology to determine the extent of alloying or atomic distribution quantitatively in bimetallic nanoparticles (NPs) by X-ray absorption spectroscopy (XAS). The structural parameters determined in these studies serve as a quantitative index and provide a general route to determine the structural aspects of the bimetallic NPs. We have derived various types of possible structural models based on the extent of alloying and coordination number parameters of bimetallic NPs. We also discussed the nature of homo- and heterometallic interactions in bimetallic NPs based on the extent of alloying. Herein, we use carbon-supported platinum-ruthenium bimetallic nanoparticles to demonstrate the proposed methodology, and this can be extended further to get more insights into the alloying extent or atomic distribution of other bimetallic systems. The results demonstrated in this paper open up methods to determine the atomic distribution of bimetallic NPs, which is an extremely important parameter that strongly influences the physicochemical properties of NPs and their applications.

  17. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  18. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  19. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    SciTech Connect

    Garland, N.L.; Medhurst, L.J.; Nelson, H.H.

    1993-12-20

    The authors measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF{sub 2}OCHF{sub 2} (E 134), k(T) = (5.4 {+-} 3.5) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}3.1 {+-} 0.4 kcal mol{sup {minus}1})/RT]; CF{sub 3}CH{sub 2}CF{sub 3} (FC 236fa), k(T) = (2.0 {+-} 1.0) x 10{sup {minus}14} cm{sup 3} s{sup {minus}1} exp [({minus}1.8 {+-} 0.3 kcal mol{sup {minus}1})/RT]; CF{sub 3}CHFCHF{sub 2} (FC 236ea), k(T) = (2.0 {+-} 0.9) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.0 {+-} 0.3 kcal mol{sup {minus}1})/RT]; and CF{sub 3}CF{sub 2}CH{sub 2}F (FC 236cb), k(T) = (2.6 {+-} 1.6) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.2 {+-} 0.4 kcal mol{sup {minus}1})/RT]. The measured activation energies (2-3 kcal mol{sup {minus}1}) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm{sup {minus}1} suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not. 17 refs., 4 figs., 3 tabs.

  20. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate.

    PubMed

    Jeon, Seongho; Hurley, Katie R; Bischof, John C; Haynes, Christy L; Hogan, Christopher J

    2016-09-21

    A promising route to cancer treatment is hyperthermia, facilitated by superparamagnetic iron oxide nanoparticles (SPIONs). After exposure to an alternating external magnetic field, SPIONs generate heat, quantified by their specific absorption rate (SAR, in W g(-1) Fe). However, without surface functionalization, commercially available, high SAR SPIONs (EMG 308, Ferrotec, USA) aggregate in aqueous suspensions; this has been shown to reduce SAR. Further reduction in SAR has been observed for SPIONs in suspensions containing cells, but the origin of this further reduction has not been made clear. Here, we use image analysis methods to quantify the structures of SPION aggregates in the extra- and intracellular milieu of LNCaP cell suspensions. We couple image characterization with nanoparticle tracking analysis and SAR measurements of SPION aggregates in cell-free suspensions, to better quantify the influence of cellular uptake on SPION aggregates and ultimately its influence on SAR. We find that in both the intra- and extracellular milieu, SPION aggregates are well-described by a quasifractal model, with most aggregates having fractal dimensions in the 1.6-2.2 range. Intracellular aggregates are found to be significantly larger than extracellular aggregates and are commonly composed of more than 10(3) primary SPION particles (hence they are "superaggregates"). By using high salt concentrations to generate such superaggregates and measuring the SAR of suspensions, we confirm that it is the formation of superaggregates in the intracellular milieu that negatively impacts SAR, reducing it from above 200 W g(-1) Fe for aggregates composed of fewer than 50 primary particles to below 50 W g(-1) for superaggregates. While the underlying physical mechanism by which aggregation leads to reduction in SAR remains to be determined, the methods developed in this study provide insight into how cellular uptake influences the extent of SPION aggregation, and enable estimation of the

  1. Absorption, distribution, metabolism and excretion of YM466, a novel factor Xa inhibitor, in rats.

    PubMed

    Mano, Yuji; Sonoda, Takuya; Nakamura, Eiji; Usui, Takashi; Kamimura, Hidetaka

    2004-09-01

    YM466 is a novel factor Xa inhibitor for the treatment of thrombosis. The absorption, distribution, metabolism and excretion of YM466 were investigated in male Fisher rats after a single oral administration. YM466 was absorbed rapidly from all segments of the gastrointestinal tract except the stomach. After oral dosing, the plasma concentration of (14)C-YM466 reached a maximum within 0.5 h, and declined rapidly with an elimination half-life of 0.64 h. The unchanged YM466 accounted for almost all of its radioactivity, suggesting a minimal metabolism in rats. This was also supported by the finding that no metabolites were observed in bile and urine after oral dosing of (14)C-YM466. The distribution of (14)C-YM466 in tissue was evaluated and the liver and kidney were the organs with radioactivity concentrations consistently higher than that of plasma. Cumulative biliary and urinary excretion of radioactivity in bile duct-cannulated rats was 29.5% and 7.6%, respectively, indicating prominent excretion into bile after oral dosing. This was consistent with the finding that 76.1% and 25.2% of radioactivity dosed were excreted to faeces and urine, respectively, after i.v. dosing. These results suggest that YM466 was rapidly absorbed and then subjected to biliary excretion with a minimal metabolism after oral dosing to rats. PMID:15334624

  2. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  3. Absorption, distribution, metabolism and excretion of novel phosphodiesterase type 4 inhibitor ASP3258 in rats.

    PubMed

    Ohtsu, Yoshiaki; Sonoda, Takuya; Susaki, Yoko; Tohda, Toshifumi; Fukunaga, Yasuhisa; Iwatsubo, Takafumi; Noguchi, Kiyoshi

    2015-01-01

    The potent and selective phosphodiesterase 4 inhibitor ASP3258 is a novel therapeutic agent for asthma and chronic obstructive pulmonary disease (COPD). After a single oral administration to rats, ASP3258 is rapidly absorbed with a bioavailability of 106%. In situ absorption data indicated that ASP3258 is mainly absorbed in the small intestine. Tissue distribution data after oral administration of (14)C-ASP3258 showed rapid and extensive distribution to various tissues. Excluding the gastrointestinal tract, the tissues with the highest concentrations were liver, heart and plasma. Liquid chromatography-nuclear magnetic resonance spectroscopy data revealed that O-glucuronidation of the carboxylic acid moiety of ASP3258 (formation of an acyl glucuronide) plays a key role in metabolism. No indication was found that the acyl glucuronide reacted with proteins in plasma or tissues. When (14)C-ASP3258 was orally administered to intact rats, urinary and fecal excretion accounted for 1.3% and 100.6% of the administered radioactivity, respectively. After a single oral administration of (14)C-ASP3258 to bile-cannulated rats, urinary and biliary excretion accounted for 0.7% and 93.8% of the administered radioactivity, respectively. These findings suggest that fecal excretion via bile plays an important role in the elimination of ASP3258-derived radioactivity. In vitro metabolic profiles were relatively similar among the species examined, suggesting that our findings in rats may help us to understand pharmacokinetics, efficacy and safety profiles in humans and other species.

  4. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

    2010-01-01

    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

  5. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz. PMID:26253286

  6. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  7. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in themore » intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  8. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    SciTech Connect

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  9. Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine.

    PubMed

    Madsen, Jan L; Sjögreen-Gleisner, Katarina; Elema, Dennis R; Søndergaard, Lasse R; Rasmussen, Palle; Fuglsang, Stefan; Ljungberg, Michael; Damgaard, Morten

    2014-02-01

    Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4 MBq [⁷⁵Se]L-SeMet ([⁷⁵Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [⁷⁵Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87·9 (sd 3·3)% of the administered activity of [⁷⁵Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8·2 (sd 1·1)% of the activity. Time-activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet.

  10. Effects of distribution of infection rate on epidemic models.

    PubMed

    Lachiany, Menachem; Louzoun, Yoram

    2016-08-01

    A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear dynamics not incorporated in standard models. We show that when variability in infection rates is included in standard susciptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models the total number of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not affect R_{0} or the number of infected individuals in the early phases of the epidemics. However, a wide distribution of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola epidemics and by numerical simulation. PMID:27627337

  11. Effects of distribution of infection rate on epidemic models

    NASA Astrophysics Data System (ADS)

    Lachiany, Menachem; Louzoun, Yoram

    2016-08-01

    A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear dynamics not incorporated in standard models. We show that when variability in infection rates is included in standard susciptible-infected-susceptible (SIS ) and susceptible-infected-recovered (SIR ) models the total number of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not affect R0 or the number of infected individuals in the early phases of the epidemics. However, a wide distribution of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola epidemics and by numerical simulation.

  12. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  13. The Use of Correlated k-Distributions to Account for the Radiative Effect of Molecular Absorption Upon Satellite Measured Radiances

    NASA Technical Reports Server (NTRS)

    Kratz, David P.

    1998-01-01

    Establishing the radiative effect of molecular absorption (emission) in the atmosphere is critical to the proper interpretation of satellite retrieved radiances. Without an accurate accounting for molecular absorption, the assignment of radiative transfer processes to observed radiative effects could be fraught errors. Moreover, since the spectral characteristics of molecular absorption can change quickly with wavenumber, the adaptation of climate model parameterizations has the potential to lead to dubious results unless the chosen spectral range corresponds closely to the response function of the satellite instrument. Thus, an initiative has been undertaken to construct parameterizations that will account for the molecular absorption found in the spectral ranges of several satellite radiometers. Because of its efficiency and accuracy in calculating the molecular absorption for nonhomogeneous paths, the correlated k-distribution procedure has proven to be the most effective parameterization (Fu and Liou, 1992, and Kratz, 1995). A further advantage of the correlated k- distribution procedure is its ability to be incorporated directly into multiple scattering routines that consider scattering, as well as absorption, by clouds and aerosol particles.

  14. Deposition Rate and Size Distribution of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Hikida, M.

    2006-12-01

    Sakurajima Volcano has been in violent activity since 1955 and erupting large amount of volcanic ash and stones from the crater. Volcanic fallouts have caused damages to the agricaltural products in the area and denuded the mountainside of vegitation. Deposited ash and stones on the mountainside has also caused hazardrous debris flows in the rivers. Therefore, it is necessary to know the deposition rate of the fallouts in prediction of debris flow. Due to the violent volcanic activity, however, it is prohibited to enter within two kilometers of the crater, making it impossible to measure the depth of deposited fallouts in the area. Theoretical study on deposition rate of volcanic fallouts should be needed to estimate the amount of fallouts in the upstream area. At first, motion of a particle erupted from the crater into the air was computed to examine its trajectory. From the simulation of the trajectory, a particle was assumed to fall at its terminal veloctity, and theoretical equation which give the deposition rate of volcanic ash and the distribution of deposited ash were obtained. In the derivation of these equations, the probability density functions of eruption column height, the terminal velocity of the erupted particles and the wind velocity were introduced. The computed values of amount of deposited ash show good agreement with the data taken from 93 collection points around Sakurajima Volcano. The annual amount of erupted volcanic ash was estimated to be about thirteen millions tons. The sample of deposited fallouts were taken to analize the size distribution. The data was also used to check the applicability of the theory presented.

  15. Optimization of pelvic heating rate distributions with electromagnetic phased arrays.

    PubMed

    Paulsen, K D; Geimer, S; Tang, J; Boyse, W E

    1999-01-01

    Deep heating of pelvic tumours with electromagnetic phased arrays has recently been reported to improve local tumour control when combined with radiotherapy in a randomized clinical trial despite the fact that rather modest elevations in tumour temperatures were achieved. It is reasonable to surmise that improvements in temperature elevation could lead to even better tumour response rates, motivating studies which attempt to explore the parameter space associated with heating rate delivery in the pelvis. Computational models which are based on detailed three-dimensional patient anatomy are readily available and lend themselves to this type of investigation. In this paper, volume average SAR is optimized in a predefined target volume subject to a maximum allowable volume average SAR outside this zone. Variables under study include the position of the target zone, the number and distribution of radiators and the applicator operating frequency. The results show a clear preference for increasing frequency beyond 100 MHz, which is typically applied clinically, especially as the number of antennae increases. Increasing both the number of antennae per circumferential distance around the patient, as well as the number of independently functioning antenna bands along the patient length, is important in this regard, although improvements were found to be more significant with increasing circumferential antenna density. However, there is considerable site specific variation and cases occur where lower numbers of antennae spread out over multiple longitudinal bands are more advantageous. The results presented here have been normalized relative to an optimized set of antenna array amplitudes and phases operating at 100 MHz which is a common clinical configuration. The intent is to provide some indications of avenues for improving the heating rate distributions achievable with current technology.

  16. Global distributions and occurrence rates of transient luminous events

    NASA Astrophysics Data System (ADS)

    Chen, Alfred B.; Kuo, Cheng-Ling; Lee, Yi-Jen; Su, Han-Tzong; Hsu, Rue-Ron; Chern, Jyh-Long; Frey, Harald U.; Mende, Stephen B.; Takahashi, Yukihiro; Fukunishi, Hiroshi; Chang, Yeou-Shin; Liu, Tie-Yue; Lee, Lou-Chuang

    2008-08-01

    We report the global transient luminous event (TLE) distributions and rates based on the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment onboard the FORMOSAT-2 satellite. ISUAL observations cover 45°S to 25°N latitude during the northern summer and 25°S to 45°N latitude during the northern winter. From July 2004 to June 2007, ISUAL recorded 5,434 elves, 633 sprites, 657 halos, and 13 gigantic jets. Surprisingly, elve is the dominant type of TLEs, while sprites/halos are a distant second. Elve occurrence rate jumps as the sea surface temperature exceeds 26 degrees Celsius, manifesting an ocean-atmosphere-ionosphere coupling. In the ISUAL survey, elves concentrate over the Caribbean Sea, South China Sea, east Indian Ocean, central Pacific Ocean, west Atlantic Ocean, and southwest Pacific Ocean; while sprites congregate over central Africa, Japan Sea, and west Atlantic Ocean. The ISUAL experiment observed global rates of 3.23, 0.50, 0.39, and 0.01 events per minute for elves, sprites, halos, and gigantic jets, respectively. Taking the instrumental detection sensitivity and the restricted survey area into account, the corrected global occurrence rates for sprites and elves likely are a factor of two and an order of magnitude higher, respectively. ISUAL observations also indicate that the relative frequency of high peak current lightning (>80 kA) is 10 times higher over the oceans than over the land. On the basis of the corrected ISUAL elve global occurrence rate, the total electron content at the lower ionosphere above elve hot zones was computed to be elevated by more than 5%.

  17. Fundamental rate-loss tradeoff for optical quantum key distribution.

    PubMed

    Takeoka, Masahiro; Guha, Saikat; Wilde, Mark M

    2014-01-01

    Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. Here we show that the secret key agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret key agreement capacity of optical channels-a long-standing open problem in optical quantum information theory-and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances. PMID:25341406

  18. Distributed nerve gases sensor based on IR absorption in hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Viola, R.; Liberatore, N.; Luciani, D.; Mengali, S.; Pierno, L.

    2010-10-01

    The Nerve gases are persistent gases that appear as very challenging menace in homeland security scenarios, due to the low pressure vapor at ambient temperature, and the very low lethal concentrations. A novel approach to the detection and identification of these very hazardous volatile compounds in large areas such as airports, underground stations, big events arenas, aimed to a high selectivity (Low false alarm probability), has been explored under the SENSEFIB Corporate Project of Finmeccanica S.p.A. The technical demonstrator under development within the Project is presented. It is based on distributed line sensors performing infrared absorption measurements to reveal even trace amounts of target compounds from the retrieval of their spectral fingerprint. The line sensor is essentially constituted by a widely tunable external cavity quantum cascade laser (EC-QCL), coupled to IR thermoelectrically cooled MCT fast detectors by means of a infrared hollow core fibers (HCF). The air is sampled through several micro-holes along the HCF, by means of a micropump, while the infrared radiation travels inside the fiber from the source to the detector, that are optically coupled with the opposite apertures of the HCF. The architecture of the sensor and its principle of operation, in order to cover large areas with a few line sensors instead of with a grid of many point sensors, are illustrated. The sensor is designed to use the HCF as an absorption cell, exploiting long path length and very small volume, (e.g fast response), at the same time. Furthermore the distributed sensor allows to cover large areas and/or not easily accessible locations, like air ducts, with a single line sensor by extending the HCF for several tens of meters. The main components implemented in the sensor are described, in particular: the EC-QCL source to span the spectral range of wavelength between 9.15um and 9.85um; and the hollow core fiber, exhibiting a suitably low optical loss in this spectral

  19. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head

    PubMed Central

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  20. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  1. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169

  2. Total ozone column distribution over peninsular Malaysia from scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY)

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; MatJafri, M. Z.

    2012-10-01

    Increasing of atmospheric ozone concentrations have received great attention around the whole because of its characteristic, in order to degrade air quality and brings hazard to human health and ecosystems. Ozone, one of the most pollutants source and brings a variety of adverse effects on plant life and human being. Continuous monitoring on ozone concentrations at atmosphere provide information and precautions for the high ozone level, which we need to be established. Satellite observation of ozone has been identified that it can provide the precise and accurate data globally, which sensitive to the small regional biases. We present measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) included on the European environmental satellite ENVISAT, launched on 1st of March 2002. Main objective of this study is to examine the ozone distribution over Peninsular Malaysia using SCIAMACHY level-2 of total ozone column WFMD version 1.0 with spatial resolution 1° x 1.25°. Maps of time averaged (yearly, tri-monthly) ozone was generated and analyzed over Peninsular Malaysia for the year 2003 using PCI Geomatica 10.3 image processing software. It was retrieved using the interpolation technique. The concentration changes within boundary layer at all altitude levels are equally sensitive through the SCIAMACHY nearinfrared nadir observations. Hence, we can make observation of ozone at surface source region. The results successfully identify the area with highest and lowest concentration of ozone at Peninsular Malaysia using SCIAMACHY data. Therefore, the study is suitable to examine the distribution of ozone at tropical region.

  3. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  4. Intestinal absorption and tissue distribution of ( sup 14 C)pyrroloquinoline quinone in mice

    SciTech Connect

    Smidt, C.R.; Unkefer, C.J.; Houck, D.R.; Rucker, R.B. )

    1991-05-01

    Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and membrane-bound glucose dehydrogenase. In animals fed chemically defined diets, PQQ improves reproductive outcome and neonatal growth. Consequently, the present study was undertaken to determine the extent to which PQQ is absorbed by the intestine, its tissue distribution, and route of excretion. About 28 micrograms of PQQ (0.42 microCi/mumol), labeled with {sup 14}C derived from L-tyrosine, was administered orally to Swiss-Webster mice (18-20 g) to estimate absorption. PQQ was readily absorbed (62%, range 19-89%) in the lower intestine, and was excreted by the kidneys (81% of the absorbed dose) within 24 hr. The only tissues that retained significant amounts of ({sup 14}C)PQQ at 24 hr were skin and kidney. For kidney, it was assumed that retention of ({sup 14}C)PQQ represented primarily PQQ destined for excretion. For skin, the concentration of ({sup 14}C)PQQ increased from 0.3% of the absorbed dose at 6 hr to 1.3% at 24 hr. Furthermore, most of the ({sup 14}C)PQQ in blood (greater than 95%) was associated with the blood cell fraction, rather than plasma.

  5. The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs

    PubMed Central

    He, Y; Chevillet, J R; Liu, G; Kim, T K; Wang, K

    2015-01-01

    The importance of genetic factors (e.g. sequence variation) in the absorption, distribution, metabolism, excretion (ADME) and overall efficacy of therapeutic agents is well established. Our ability to identify, interpret and utilize these factors is the subject of much clinical investigation and therapeutic development. However, drug ADME and efficacy are also heavily influenced by epigenetic factors such as DNA/histone methylation and non-coding RNAs [especially microRNAs (miRNAs)]. Results from studies using tools, such as in silico miRNA target prediction, in vitro functional assays, nucleic acid profiling/sequencing and high-throughput proteomics, are rapidly expanding our knowledge of these factors and their effects on drug metabolism. Although these studies reveal a complex regulation of drug ADME, an increased understanding of the molecular interplay between the genome, epigenome and transcriptome has the potential to provide practically useful strategies to facilitate drug development, optimize therapeutic efficacy, circumvent adverse effects, yield novel diagnostics and ultimately become an integral component of personalized medicine. PMID:25296724

  6. [Absorption and distribution of K, Na and Mg in Avicennia marina seedlings under cadmium stress].

    PubMed

    Lu, Zhi-qiang; Chen, Chang-xu; Ma, Li; Zheng, Wen-jiao

    2015-05-01

    In this paper, mangrove seedlings Avicennia marina were treated with various contents of cadmium (0, 0.5, 5, 25, 50, 100, 150 mg · L(-1)). These seedlings were cultivated by man-made seawater with a salinity of 15 in sand for 90 days in a greenhouse. The absorption and distribution of elements contents (K, Na and Mg) under cadmium stress were investigated at 45th and 90th day, respectively. The results showed that the enrichment of cadmium in the different components of seedlings increased with the increasing cadmium stress level and exposure time. The cadmium contents in roots and cotyledons were relatively higher than in the other components, accounting for 66.9% and 16.3% of cadmium in the seedlings under the 150 mg · L(-1) cadmium stress, respectively. The fall of cotyledons could reduce the damage of cadmium stress to the whole seedlings. The Na contents increased in roots and stems and decreased in leaves and cotyledons after cadmium stress for 90 days. The K content decreased in roots and cotyledons, while had no significant change in stems and leaves. The Mg content in roots, stems, leaves and cotyledons of seedlings treated with cadmium for 90 days were lower than those of the control, and were negatively related to the cadmium content. PMID:26571646

  7. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  8. Heating from free-free absorption and the mass-loss rate of the progenitor stars to supernovae

    SciTech Connect

    Björnsson, C.-I.; Lundqvist, P. E-mail: peter@astro.su.se

    2014-06-01

    An accurate determination of the mass-loss rate of the progenitor stars to core-collapse supernovae is often limited by uncertainties pertaining to various model assumptions. It is shown that under conditions when the temperature of the circumstellar medium is set by heating due to free-free absorption, observations of the accompanying free-free optical depth allow a direct determination of the mass-loss rate from observed quantities in a rather model-independent way. The temperature is determined self-consistently, which results in a characteristic time dependence of the free-free optical depth. This can be used to distinguish free-free heating from other heating mechanisms. Since the importance of free-free heating is quite model dependent, this also makes possible several consistency checks of the deduced mass-loss rate. It is argued that the free-free absorption observed in SN 1993J is consistent with heating from free-free absorption. The deduced mass-loss rate of the progenitor star is, approximately, 10{sup –5} M {sub ☉} yr{sup –1} for a wind velocity of 10 km s{sup –1}.

  9. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  10. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  11. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  12. Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature

    NASA Astrophysics Data System (ADS)

    Best, R.; Biermann, W.; Reimann, R. C.

    1985-01-01

    The returned fifteen ton Solar Absorption Machine (SAM) 015 chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of the work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below 0(0)C (32(0)F) and identify any operational problems.

  13. Modifying the high rate algal pond light environment and its effects on light absorption and photosynthesis.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-03-01

    The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.

  14. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  15. Optimal reconstruction of reaction rates from particle distributions

    NASA Astrophysics Data System (ADS)

    Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2010-05-01

    Random walk particle tracking methodologies to simulate solute transport of conservative species constitute an attractive alternative for their computational efficiency and absence of numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from particle distributions have typically prevented its use in reactive transport problems. The numerical problem mainly arises from the need to first reconstruct the concentrations of species/components from a discrete number of particles, which is an error prone process, and then computing a spatial functional of the concentrations and/or its derivatives (either spatial or temporal). Errors are then propagated, so that common strategies to reconstruct this functional require an unfeasible amount of particles when dealing with nonlinear reactive transport problems. In this context, this article presents a methodology to directly reconstruct this functional based on kernel density estimators. The methodology mitigates the error propagation in the evaluation of the functional by avoiding the prior estimation of the actual concentrations of species. The multivariate kernel associated with the corresponding functional depends on the size of the support volume, which defines the area over which a given particle can influence the functional. The shape of the kernel functions and the size of the support volume determines the degree of smoothing, which is optimized to obtain the best unbiased predictor of the functional using an iterative plug-in support volume selector. We applied the methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem involving the mixing of two different waters carrying two aqueous species in chemical equilibrium and moving through a randomly heterogeneous porous medium.

  16. Variable food absorption by Antarctic krill: Relationships between diet, egestion rate and the composition and sinking rates of their fecal pellets

    NASA Astrophysics Data System (ADS)

    Atkinson, A.; Schmidt, K.; Fielding, S.; Kawaguchi, S.; Geissler, P. A.

    2012-01-01

    The kinetics of food processing by zooplankton affects both their energy budgets and the biogeochemical fate of their fecal pellets. We sampled 40 schools of krill across the Scotia Sea during spring, summer and autumn and found that in all 3 seasons, every aspect of their absorption and defecation varied greatly. The C content of fecal pellets varied from 0.85% to 29% of their dry mass (median 9.8%) and C egestion rates varied 75-fold. C:N mass ratios of pellets ranged from 4.9 to 13.2 (median 7.8), higher than values of 3.9 in the krill and 5.4 in their food, pointing to enhanced uptake of N. Pellet sinking rates equated to 27-1218 m d -1 (median 304 m d -1), being governed mainly by pellet diameter (80-600 μm, mean 183 μm) and density (1.038-1.391 g cm -3, mean 1.121 g cm -3). Pellets showed little loss of C or N in filtered seawater over the first 2 days and were physically robust. When feeding rates were low, slow gut passage time and high absorption efficiency resulted in low egestion rates of pellets that were low in C and N content. These pellets were compact, dense and fast-sinking. Conversely, in good feeding conditions much food tended to pass quickly through the gut and was not efficiently absorbed, producing C and N-rich, slow-sinking pellets. Such "superfluous feeding" probably maximises the absolute rates of nutrient absorption. Food composition was also important: diatom-rich diets depressed the C content of the pellets but increased their sinking rates, likely due to silica ballasting. So depending on how krill process food, their pellets could represent both vehicles for rapid export and slow sinking, C and N-rich food sources for pelagic scavengers. C egestion rates by krill averaged 3.4% of summer primary production (and ingestion rates would be 2-10-fold higher than this) so whatever the fate of the pellets, krill are an important re-packager within the food web. While salp pellets tend to sink faster than those of krill, it is the latter

  17. Intestinal absorption, organ distribution, and urinary excretion of the rare sugar D-psicose

    PubMed Central

    Tsukamoto, Ikuko; Hossain, Akram; Yamaguchi, Fuminori; Hirata, Yuko; Dong, Youyi; Kamitori, Kazuyo; Sui, Li; Nonaka, Machiko; Ueno, Masaki; Nishimoto, Kazuyuki; Suda, Hirofumi; Morimoto, Kenji; Shimonishi, Tsuyoshi; Saito, Madoka; Song, Tao; Konishi, Ryoji; Tokuda, Masaaki

    2014-01-01

    Background The purpose of this study was to evaluate intestinal absorption, organ distribution, and urinary elimination of the rare sugar D-psicose, a 3-carbon stereoisomer of D-fructose that is currently being investigated and which has been found to be strongly effective against hyperglycemia and hyperlipidemia. Methods This study was performed using radioactive D-psicose, which was synthesized enzymatically from radioactive D-allose. Concentrations in whole blood, urine, and organs were measured at different time points until 2 hours after both oral and intravenous administrations and 7 days after a single oral administration (100 mg/kg body weight) to Wistar rats. Autoradiography was also performed by injecting 100 mg/kg body weight of 14C-labeled D-psicose or glucose intravenously to C3H mice. Results Following oral administration, D-psicose easily moved to blood. The maximum blood concentration (48.5±15.6 μg/g) was observed at 1 hour. Excretion to urine was 20% within 1 hour and 33% within 2 hours. Accumulation to organs was detected only in the liver. Following intravenous administration, blood concentration was decreased with the half-life=57 minutes, and the excretion to urine was up to almost 50% within 1 hour. Similarly to the results obtained with oral administration, accumulation to organs was detected only in the liver. Seven days after the single-dose oral administration, the remaining amounts in the whole body were less than 1%. Autoradiography of mice showed results similar to those in rats. High signals of 14C-labeled D-psicose were observed in liver, kidney, and bladder. Interestingly, no accumulation of D-psicose was observed in the brain. Conclusion D-psicose was absorbed well after oral administration and eliminated rapidly after both oral and intravenous administrations, with short duration of action. The study provides valuable pharmacokinetic data for further drug development of D-psicose. Because the findings were mainly based on animal

  18. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  19. A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin.

    PubMed

    Kasting, G B; Saiyasombati, P

    2001-02-01

    Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.

  20. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.

    PubMed

    Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji

    2013-01-01

    Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.

  1. Ingestion of chromium(VI) in drinking water by human volunteers: Absorption, distribution, and excretion of single and repeated doses

    SciTech Connect

    Kerger, B.D.; Corbett, G.E.; Dodge, D.G.

    1997-01-01

    This study examines the magnitude of hexavalent chromium [Cr(VI)] absorption, distribution, and excretion following oral exposure to 5 and 10 mg Cr(VI)/L in drinking water administered as a single bolus dose or for 3 d at a dosage of 1 L/d. Adult male volunteers were used. In the bolus dose studies, a fairly consistent pattern of urinary chromium excretion was observed, with an average half life of about 39 h. However, 4-d total urinary chromium excretion and peak concentrations in urine and blood varied considerably among the 5 volunteers. Studies of repeated exposure to small volumes ingested at a more gradual rate showed similar urinary chromium excretion patterns but generally lower chromium uptake/excretion. These data suggest that virtually all of the ingested Cr(VI) at 5 and 10 mg Cr(VI)/L was reduced to Cr(III) before entering the bloodstream. The interindividual differences in total chromium uptake and excretion are plausibly explained by ingestion of appreciable doses on an empty stomach, likely results in the formation of well-absorbed Cr(III) organic complexes. No clinical indications of toxicity in the volunteers and the patterns of blood uptake and urinary excretion of chromium are consistent with a predominant uptake of Cr(III) organic complexes that are excreted more slowly than inorganic forms of Cr(III). Therefore, it appears that the endogenous reducing agents within the upper gastrointestinal tract and the blood provide sufficient reducing potential to prevent any substantial systemic uptake of Cr(VI) following drinking-water exposures at 5-10 mg Cr(VI)/L. Based on these data, the chemical environment in the gastrointestinal tract and the blood is effective even under relative fasting condition in reducing Cr(VI) to one or more forms of Cr(III). 54 refs., 5 figs., 1 tab.

  2. Reconstruction of spatial distributions of sound velocity and absorption in soft biological tissues using model ultrasonic tomographic data

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.

    2014-07-01

    A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.

  3. Scaling and universality in heart rate variability distributions

    NASA Technical Reports Server (NTRS)

    Rosenblum, M. G.; Peng, C. K.; Mietus, J. E.; Havlin, S.; Stanley, H. E.; Goldberger, A. L.

    1998-01-01

    We find that a universal homogeneous scaling form describes the distribution of cardiac variations for a group of healthy subjects, which is stable over a wide range of time scales. However, a similar scaling function does not exist for a group with a common cardiopulmonary instability associated with sleep apnea. Subtle differences in the distributions for the day- and night-phase dynamics for healthy subjects are detected.

  4. Scaling and universality in heart rate variability distributions

    NASA Astrophysics Data System (ADS)

    Ivanov, P. Ch; Rosenblum, M. G.; Peng, C.-K.; Mietus, J. E.; Havlin, S.; Stanley, H. E.; Goldberger, A. L.

    We find that a universal homogeneous scaling form describes the distributions of cardiac variations for a group of healthy subjects, which is stable over a wide range of time scales. However, a similar scaling function does not exist for a group with a common cardiopulmonary instability associated with sleep apnea. Subtle differences in the distributions for the day- and night-phase dynamics for healthy subjects are detected.

  5. Spatial and temporal variations in NO(2) distributions over Beijing, China measured by imaging differential optical absorption spectroscopy.

    PubMed

    Lee, Hanlim; Kim, Young J; Jung, Jinsang; Lee, Chulkyu; Heue, Klaus-Peter; Platt, Ulrich; Hu, Min; Zhu, Tong

    2009-04-01

    During the CAREBEIJING campaign in 2006, imaging differential optical absorption spectroscopy (I-DOAS) measurements were made from 08:00 to 16:00 on September 9 and 10 over Beijing, China. Detailed images of the near-surface NO(2) differential slant column density (DSCD) distribution over Beijing were obtained. Images with less than a 30-min temporal resolution showed both horizontal and vertical variations in NO(2) distributions. For DSCD to mixing ratio conversion, path length along the lines of I-DOAS lines of sight was estimated using the light-extinction coefficient and Angstrom exponent data obtained by a transmissometer and a sunphotometer, respectively. Mixing ratios measured by an in-situ NO(2) analyzer were compared with those estimated by the I-DOAS instrument. The obtained temporal and spatial variations in NO(2) distributions measured by I-DOAS for the two days are interpreted with consideration of the locations of the major NO(x) sources and local wind conditions. I-DOAS measurements have been applied in this study for estimating NO(2) distribution over an urban area with multiple and distributed emission sources. Results are obtained for estimated temporal and spatial NO(2) distributions over the urban atmosphere; demonstrating the capability of the I-DOAS technique. We discuss in this paper the use of I-DOAS measurements to estimate the NO(2) distribution over an urban area with multiple distributed emission sources. PMID:19111964

  6. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  7. High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.

    2009-01-01

    High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.

  8. Enhancement of specific absorption rate by exchange coupling of the core-shell structure of magnetic nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Phadatare, M. R.; Meshram, J. V.; Gurav, K. V.; Hyeok Kim, Jin; Pawar, S. H.

    2016-03-01

    Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic thermal induction by NPs. To increase the efficiency of magnetic thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe2O4) has been coupled to a soft material (Ni0.5Zn0.5Fe2O4). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

  9. Heating rates in furnace atomic absorption using the L'vov platform

    USGS Publications Warehouse

    Koirtyohann, S.R.; Giddings, R.C.; Taylor, H.E.

    1984-01-01

    Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.

  10. Distribution of ACTFL Ratings by TOEFL Score Ranges.

    ERIC Educational Resources Information Center

    Boldt, R. F.; And Others

    The purpose of this study was to align verbal descriptions of test takers' language performance with distributions of the numerical scores they received on the three sections (Listening Comprehension, Structure and Written Expression, and Reading Comprehension and Vocabulary) of the Test of English as a Foreign Language (TOEFL). The descriptors of…

  11. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy.

    PubMed

    Smith, Mica C; Chao, Wen; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2016-07-14

    The unimolecular decomposition of (CH3)2COO and (CD3)2COO was measured by direct detection of the Criegee intermediate at temperatures from 283 to 323 K using time-resolved UV absorption spectroscopy. The unimolecular rate coefficient kd for (CH3)2COO shows a strong temperature dependence, increasing from 269 ± 82 s(-1) at 283 K to 916 ± 56 s(-1) at 323 K with an Arrhenius activation energy of ∼6 kcal mol(-1). The bimolecular rate coefficient for the reaction of (CH3)2COO with SO2, kSO2, was also determined in the temperature range 283 to 303 K. Our temperature-dependent values for kd and kSO2 are consistent with previously reported relative rate coefficients kd/kSO2 of (CH3)2COO formed from ozonolysis of tetramethyl ethylene. Quantum chemical calculations of kd for (CH3)2COO are consistent with the experiment, and the combination of experiment and theory for (CD3)2COO indicates that tunneling plays a significant role in (CH3)2COO unimolecular decomposition. The fast rates of unimolecular decomposition for (CH3)2COO measured here, in light of the relatively slow rate for the reaction of (CH3)2COO with water previously reported, suggest that thermal decomposition may compete with the reactions with water and with SO2 for atmospheric removal of the dimethyl-substituted Criegee intermediate.

  12. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  13. Aqueous suspensions of polymer coated magnetite nanoparticles: Colloidal stability, specific absorption rate, and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Saville, Steven Lee

    The design, functionalization, characterization, and applications of magnetic nanoparticles have garnered significant interest over the past several decades. While this area has garnered increasing attention, several questions remain unanswered about the stability of these systems and it's influence on their biomedical applications. To help answer these questions about the stability of these, a novel tri(nitroDOPA) terminated polymer based ligand has been developed for the stabilization of magnetite nanoparticles. The synthesis involves a process in which ethylene oxide is polymerized using a trivinyl initiator, modified with carboxylic acid using a free radical addition of mercaptoundecanoic acid, and then functionalized with nitroDOPA using N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. This polymer has displayed robust adhesion even in harsh chemical environments, out performing many polymers used today for the stabilization of magnetite. Along these same lines, the effects of instability of these systems were analyzed in both MRI and magnetic hyperthermia applications. It is widely known that formation of linear aggregates (i.e. chains) occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. In this work the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate and heating rate in magnetic hyperthermia of aqueous suspensions of magnetic particles are examined. The results indicate that varying the ligand length has a direct effect on the colloidal

  14. 78 FR 6318 - SourceGas Distribution LLC; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Energy Regulatory Commission SourceGas Distribution LLC; Notice of Petition for Rate Approval Take notice that on January 15, 2013, SourceGas Distribution LLC (SourceGas) filed a rate election pursuant to section 284.123(b)(1) of the Commissions regulations. SourceGas states the rate election...

  15. Distribution of strain rates in the Taiwan orogenic wedge

    NASA Astrophysics Data System (ADS)

    Mouthereau, F.; Fillon, C.; Ma, K.-F.

    2009-07-01

    To constrain the way Eurasian crust is accreted to the Taiwan orogenic wedge we investigate the present-day 3D seismogenic deformation field using the summation of 1129 seismic moment tensors of events ( Mw > 4) covering a period of 11 years (1995 to 2005). Based on the analysis of the principal strain-rate field, including dilatation and maximum shear rates, we distinguish four domains. Domain I comprises the Coastal Plain and the Western Foothills. It is mainly contractional in both the horizontal plane and in cross-section. Domain II comprises the eastern Western Foothills, the Hsuehshan Range and the Backbone Range. It is characterized by the highest contraction rates of 10 - 6 yr - 1 in association with area expansion in cross-section and area contraction in the horizontal plane. Domain III corresponds to the Central Range. It is characterized by area contraction in cross-section and area expansion in the horizontal plane. The maximum contractional axis is typically low and plunges ~ 30°E. Extension is larger, horizontal and strikes parallel to the axis of the mountain range. Domain IV corresponding to the Coastal Range and offshore Luzon Arc shows deformation patterns similar to domain II. This seismogenic strain-rate field, which is found in good agreement with the main features of the geodetic field, supports shortening within a thick wedge whose basal décollement is relatively flat and located in the middle-to-lower crust > 20 km. The east plunges of maximum strain-rate axes below the Central Range argue for the development of top-to-the-east transport of rocks resulting from the extrusion of the whole crust along west-dipping crustal-scale shear zones. The study of seismogenic strain rates argues that the initiation of subduction reversal has already started in the Taiwan collision domain.

  16. Absorption, Distribution, Excretion, and Pharmacokinetics of 14C-Pyronaridine Tetraphosphate in Male and Female Sprague-Dawley Rats

    PubMed Central

    Park, Sang Hyun; Pradeep, Kannampalli

    2010-01-01

    The main objective of this investigation was to determine the absorption, distribution, excretion, and pharmacokinetics of the antimalarial drug pyronaridine tetraphosphate (PNDP) in Sprague-Dawley rats. Following oral administration of a single dose (10 mg/Kg) of 14C-PNDP, it was observed that the drug was readily absorbed from the small intestine within 1 hour following oral administration and was widely distributed in most of the tissues investigated as determined from the observed radioactivity in the tissues. The peak value of the drug in the blood was reached at around 8 hours postadministration, and radioactivity was detected in most of the tissues from 4 hours onwards. 14C-PNDP showed a poor permeability across the blood-brain barrier, and the absorption, distribution, and excretion of 14C-PNDP were found to be gender-independent as both male and female rats showed a similar pattern of radioactivity. Excretion of the drug was predominantly through the urine with a peak excretion post 24 hours of administration. A small amount of the drug was also excreted in the feces and also in the breath. It was found that the Cmax, AUC (0-inf), and Tmax values were similar to those observed in the Phase II clinical trials of pyronaridine/artesunate (Pyramax) conducted in Uganda. PMID:20379367

  17. Resource Distribution and Graduation Rates in SREB States: An Overview

    ERIC Educational Resources Information Center

    Houck, Eric A.; Kurtz, Adam

    2010-01-01

    Recognizing the interrelated nature of the standards movement, school finance litigation, and student outcomes, this study investigates the relationship of school funding and the specific outcome measure of cohort graduation rates in 16 Southern states that comprise the Southern Region Education Board (SREB). Research indicates that Southern…

  18. The Distribution of Accommodation Rates in St. Anton, Austria.

    ERIC Educational Resources Information Center

    Eysberg, Cees D.

    1984-01-01

    For use in college geography courses which teach spatial analysis, this case study investigated whether hotel rates in the ski resort of St. Anton, Austria, are affected by the hotel's proximity to ski lifts and apres ski establishments. Results showed that tourists are sensitive to distance; spatial behavior is predictable. (RM)

  19. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies

    PubMed Central

    Rosati, Adolfo; Metcalf, Samuel G.; Buchner, Richard P.; Fulton, Allan E.; Lampinen, Bruce D.

    2007-01-01

    Background and Aims Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. Methods Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. Key Results Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6·3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on

  20. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols.

    PubMed

    Clifford, Michael N; van der Hooft, Justin J J; Crozier, Alan

    2013-12-01

    Recent research on the bioavailability of flavan-3-ols after ingestion of green tea by humans is reviewed. Glucuronide, sulfate, and methyl metabolites of (epi)catechin and (epi)gallocatechin glucuronide reach peak nanomolar per liter plasma concentrations 1.6-2.3 h after intake, indicating absorption in the small intestine. The concentrations then decline, and only trace amounts remain 8 h after ingestion. Urinary excretion of metabolites over a 24-h period after green tea consumption corresponded to 28.5% of the ingested (epi)catechin and 11.4% of (epi)gallocatechin, suggesting higher absorption than that of most other flavonoids. The fate of (-)-epicatechin-3-O-gallate, the main flavan-3-ol in green tea, is unclear because it appears unmetabolized in low concentrations in plasma but is not excreted in urine. Possible enterohepatic recirculation of flavan-3-ols is discussed along with the impact of dose and other food components on flavan-3-ol bioavailability. Approximately two-thirds of the ingested flavan-3-ols pass from the small to the large intestine where the action of the microbiota results in their conversion to C-6-C-5 phenylvalerolactones and phenylvaleric acids, which undergo side-chain shortening to produce C-6-C-1 phenolic and aromatic acids that enter the bloodstream and are excreted in urine in amounts equivalent to 36% of flavan-3-ol intake. Some of these colon-derived catabolites may have a role in vivo in the potential protective effects of tea consumption. Although black tea, which contains theaflavins and thearubigins, is widely consumed in the Western world, there is surprisingly little research on the absorption and metabolism of these compounds after ingestion and their potential impact on health.

  1. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  2. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  3. Iron absorption from the whole diet: comparison of the effect of two different distributions of daily calcium intake.

    PubMed

    Gleerup, A; Rossander-Hulthén, L; Gramatkovski, E; Hallberg, L

    1995-01-01

    The possibility of reducing calcium inhibition of iron absorption by decreasing calcium intake in lunch and dinner meals, which provided the most dietary iron, was examined in 21 healthy female volunteers. During a 10-d period, nonheme iron in all meals was extrinsically labeled with radioisotopic iron to a uniform specific activity. Iron absorption from two identical 10-d periods was compared when meals were labeled with two different iron radioisotopes and when the same amount of calcium (937 mg) was distributed in two ways, in either mainly breakfast and late evening meals or more evenly in all meals. About 30-50% more iron was absorbed when no milk or cheese was served with lunch or dinner. The difference was statistically significant. Median iron requirements (1.61 mg/d) calculated from body weight and menstrual iron losses agreed with the mean value of median iron absorption in the two 10-d periods (1.54 mg/d), which supports the validity of the present method. A reasonable separation of calcium and iron intakes would improve iron nutrition.

  4. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  5. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  6. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats.

    PubMed

    Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P

    2001-10-01

    We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre. PMID:11591231

  7. Experimental determination of whole body average specific absorption rate (SAR) of mice exposed to 200-400 MHz CW

    SciTech Connect

    Marshall, S.V.; Brown, R.F.

    1983-01-01

    A maximum of six live mice, mouse cadavers, prolate spheroids molded from muscle-equivalent tissue, or saline-filled culture flasks, were exposed to continuous wave radiation in a TEM cell at frequencies between 200 and 400 MHz. Whole-body average specific absorption rate (SAR) was determined from power meter measurements of incident, reflected, and transmitted powers. The SARs for both live mice and cadavers were approximately twice that for the prolate spheroid models, and when housed in Plexiglas restraining cages, about 2 1/2 times greater. An error multiplying factor is identified, that quantitatively expresses how SAR data obtained by the three-power-meter method becomes progressively more noisy as the irradiation frequency is lowered or as the TEM cell cross section is increased.

  8. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    SciTech Connect

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate of the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.

  9. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    PubMed Central

    Stigliano, Robert; Baker, Ian

    2015-01-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2–5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20–40 nm flower-like aggregates with a hydrodynamic diameter of 110–120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99–164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue. PMID:25825545

  10. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (<250 Oe). This may extend MNP hyperthermia therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  11. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Agarwal, A.

    2015-04-01

    Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).

  12. Zinc absorption from composite meals. I. The significance of whest extraction rate, zinc, calcium, and protein content in meals based on bread.

    PubMed

    Sandström, B; Arvidsson, B; Cederblad, A; Björn-Rasmussen, E

    1980-04-01

    The absorption of zinc in man from composite meals based on bread was measured with a radionuclide technique using 65Zn and whole-body counting. Bread was made up from wheat flour of 100 and 72% extraction rate. A lower absolute amount of zinc was absorbed from the white bread compared to the absorption from the same amount of wholemeal bread. When the two types of bread were enriched with zinc chloride the absorption was higher from the white bread than from the wholemeal bread. Addition of calcium in the form of milk products improved the absorption of zinc from a meal with wholemeal bread. A significant positive correlation was found between zinc absorption and the protein content in meals containing milk, cheese, beef, and egg in various combinations with the wholemeal bread.

  13. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy.

    PubMed

    Kosterev, A A; Curl, R F; Tittel, F K; Gmachl, C; Capasso, F; Sivco, D L; Baillargeon, J N; Hutchinson, A L; Cho, A Y

    2000-08-20

    A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-10(9) (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 micrometers. A new technique for analysis of dense high resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.

  14. The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man

    PubMed Central

    Grundy, Scott M.; Ahrens, E. H.

    1970-01-01

    Cholesterol balance studies were carried out in 11 patients with various types of hyperlipoproteinemia to determine the mechanism by which unsaturated fats lower plasma cholesterol. Unsaturated fats produced no increase in fecal endogenous neutral steroids in 10 of 11 patients and no decrease in absorption of exogenous cholesterol in 5 patients who received cholesterol in the diet. In 8 of 11 patients no changes occurred in excretion of bile acids during the period on unsaturated fat when plasma cholesterol was declining. However, in 3 of 11 patients small but significant increases in bile acid excretion were found during this transitional period; in 2 others increases also occurred after plasma cholesterol had become constant at lower levels on unsaturated fat. Since the majority of patients showed no change in cholesterol or bile acid excretions during the transitional period, we propose that when excretion changes did occur they were probably not the cause of the plasma cholesterol change. Furthermore, turnover data and specific activity curves suggested that cholesterol synthesis was not influenced by exchange of dietary fats. Thus, excluding changes in excretion and synthesis, we conclude that it is most likely that unsaturated fats cause plasma cholesterol to be redistributed into tissue pools. We have also examined the possibility that cholesterol which is redistributed into tissues could be secondarily excreted as neutral steroids or bile acids. In at least 5 of 11 patients excretion patterns were consistent with this explanation. However, we cannot rule out that excretion changes may have been due to alterations in transit time, to changes in bacterial flora, or to transitory changes in absorption or synthesis of cholesterol or bile acids. Our conclusion that unsaturated fats cause a redistribution of cholesterol between plasma and tissue pools points to the necessity in future to explore where cholesterol is stored, to what extent stored cholesterol can

  15. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots.

    PubMed

    Osone, Yoko; Ishida, Atsushi; Tateno, Masaki

    2008-07-01

    Close correlations between specific leaf area (SLA) and relative growth rate (RGR) have been reported in many studies. However, theoretically, SLA by itself has small net positive effect on RGR because any increase in SLA inevitably causes a decrease in area-based leaf nitrogen concentration (LNCa), another RGR component. It was hypothesized that, for a correlation between SLA and RGR, SLA needs to be associated with specific nitrogen absorption rate of roots (SAR), which counteracts the negative effect of SLA on LNCa. Five trees and six herbs were grown under optimal conditions and relationships between SAR and RGR components were analyzed using a model based on balanced growth hypothesis. SLA varied 1.9-fold between species. Simulations predicted that, if SAR is not associated with SLA, this variation in SLA would cause a47% decrease in LNCa along the SLA gradient, leading to a marginal net positive effect on RGR. In reality, SAR was positively related to SLA, showing a 3.9-fold variation, which largely compensated for the negative effect of SLA on LNCa. Consequently, LNCa values were almost constant across species and a positive SLA-RGR relationship was achieved. These results highlight the importance of leaf-root interactions in understanding interspecific differences in RGR.

  16. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  17. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  18. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  19. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  20. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  1. Absorption and distribution kinetics of the 13C-labeled tomato carotenoid phytoene in healthy adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoene is a tomato carotenoid which may contribute to the apparent health benefits of tomato consumption. While phytoene is a less prominent tomato carotenoid than lycopene, it is a major carotenoid in various human tissues. Phytoene distribution to plasma lipoproteins and tissues differs from lyc...

  2. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band.

    PubMed

    Wainwright, P R

    2003-10-01

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.

  3. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  4. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.

    2006-11-01

    A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

  5. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates.

    PubMed

    Wagner, Peter J

    2012-02-23

    Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.

  6. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser.

    PubMed

    Namjou, K; Cai, S; Whittaker, E A; Faist, J; Gmachl, C; Capasso, F; Sivco, D L; Cho, A Y

    1998-02-01

    We report what we believe are the first spectroscopic measurements to be made with a room-temperature quantum-cascade distributed-feedback laser. Using wavelength modulation spectroscopy, we detected N(2)O and CH(4) in the chemical fingerprint wavelength range near 8microm . The noise equivalent absorbance for our measurement was 5 parts in 10(5), limited by excess amplitude modulation on the laser output, which corresponds to a 1-Hz bandwidth detection limit of 250 parts N(2)O in 10(9) parts N(2) in a 1-m path length.

  7. Approximating the imbibition and absorption behavior of a distribution of matrix blocks by an equivalent spherical block

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-03-01

    A theoretical study is presented of the effect of matrix block shape and matrix block size distribution on liquid imbibition and solute absorption in a fractured rock mass. It is shown that the behavior of an individual irregularly-shaped matrix block can be modeled with reasonable accuracy by using the results for a spherical matrix block, if one uses an effective radius {tilde a} = 3V/A, where V is the volume of the block and A is its surface area. In the early-time regime of matrix imbibition, it is shown that a collection of blocks of different sizes can be modeled by a single equivalent block, with an equivalent radius of {sup {minus}1}, where the average is taken on a volumetrically-weighted basis. In an intermediate time regime, it is shown for the case where the radii are normally distributed that the equivalent radius is reasonably well approximated by the mean radius . In the long-time limit, where no equivalent radius can be rigorously defined, an asymptotic expression is derived for the cumulative diffusion as a function of the mean and the standard deviation of the radius distribution function.

  8. [Studies on the remote measurement of the distribution of city gaseous pollutant by mobile passive differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-cheng; Li, Ang; Xie, Pin-hua; Xu, Jin; Shi, Peng; Qin, Min; Wang, Man-hua; Wang, Jie; Zhang, Yong

    2011-03-01

    An optical remote sensing method based on passive differential optical absorption spectroscopy for the measurement of the distribution of city gaseous pollutant was studied. The passive DOAS system, which was installed in a car, successively measures the interested area (such as city, industrial area) and the column density was obtained by DOAS fitting process using the zenith scattered sunlight. The mobile DOAS was applied to measurement in Shenzhen City during the continuous six days and got the distribution of SO2, NO2 in this paper. It showed that the pollution in the west is higher than in the east. The average concentration in the west is 2.0 times higher than the eastern for SO2 and 3.6 times for NO2. And comparison of the values between mobile DOAS and the point instrument was carried out in Baguang site. There was an agreement between the two instruments, the correlation coefficient was 0.86 for SO2, while 0.57 for NO2. The results indicate that this optical remote sensing method based on passive DOAS is an effective means of rapidly determining the distribution of city gaseous pollutant. PMID:21595196

  9. 37 CFR 385.3 - Royalty rates for making and distributing phonorecords.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Physical Phonorecord Deliveries, Permanent Digital Downloads and Ringtones § 385.3 Royalty rates for making and...

  10. 37 CFR 385.3 - Royalty rates for making and distributing phonorecords.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Physical Phonorecord Deliveries, Permanent Digital Downloads and Ringtones § 385.3 Royalty rates for making and...

  11. 37 CFR 385.3 - Royalty rates for making and distributing phonorecords.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Physical Phonorecord Deliveries, Permanent Digital Downloads and Ringtones § 385.3 Royalty rates for making and...

  12. 37 CFR 385.3 - Royalty rates for making and distributing phonorecords.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Physical Phonorecord Deliveries, Permanent Digital Downloads and Ringtones § 385.3 Royalty rates for making and...

  13. 37 CFR 385.3 - Royalty rates for making and distributing phonorecords.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., LIBRARY OF CONGRESS RATES AND TERMS FOR STATUTORY LICENSES RATES AND TERMS FOR USE OF MUSICAL WORKS UNDER COMPULSORY LICENSE FOR MAKING AND DISTRIBUTING OF PHYSICAL AND DIGITAL PHONORECORDS Physical Phonorecord Deliveries, Permanent Digital Downloads and Ringtones § 385.3 Royalty rates for making and...

  14. Current Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Antibody-Drug Conjugates: An Industry White Paper.

    PubMed

    Kraynov, Eugenia; Kamath, Amrita V; Walles, Markus; Tarcsa, Edit; Deslandes, Antoine; Iyer, Ramaswamy A; Datta-Mannan, Amita; Sriraman, Priya; Bairlein, Michaela; Yang, Johnny J; Barfield, Matthew; Xiao, Guangqing; Escandon, Enrique; Wang, Weirong; Rock, Dan A; Chemuturi, Nagendra V; Moore, David J

    2016-05-01

    An antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014. This white paper contains observations from the working group and provides an initial framework on issues and approaches to consider when evaluating the ADME of ADCs.

  15. Nuclear microscopy: a tool for imaging elemental distribution and percutaneous absorption in vivo.

    PubMed

    Veríssimo, Ana; Alves, Luís C; Filipe, Paulo; Silva, João N; Silva, Raquel; Ynsa, Maria Dolores; Gontier, Etienne; Moretto, Philippe; Pallon, Jan; Pinheiro, Teresa

    2007-04-01

    Nuclear microscopy is a technique based on a focused beam of accelerated particles that has the ability of imaging the morphology of the tissue in vivo and of producing the correspondent elemental maps, whether in major, minor, or trace concentrations. These characteristics constitute a strong advantage in studying the morphology of human skin, its elemental distributions and the permeation mechanisms of chemical compounds. In this study, nuclear microscopy techniques such as scanning transmission ion microscopy and particle induced X-ray emission were applied simultaneously, to cryopreserved human skin samples with the purpose of obtaining high-resolution images of cells and tissue morphology. In addition, quantitative elemental profiling and mapping of phosphorus, calcium, chlorine, and potassium in skin cross-sections were obtained. This procedure accurately distinguishes the epidermal strata and dermis by overlapping in real time the elemental information with density images obtained from the transmitted beam. A validation procedure for elemental distributions in human skin based on differential density of epidermal strata and dermis was established. As demonstrated, this procedure can be used in future studies as a tool for the in vivo examination of trans-epidermal and -dermal delivery of products.

  16. Rate-based modeling of reactive absorption of CO{sub 2} and H{sub 2}S into aqueous methyldiethanolamine

    SciTech Connect

    Pacheco, M.A.; Rochelle, G.T.

    1998-10-01

    A general framework was developed to model the transport processes that take place during reactive absorption when both rate- and equilibrium-controlled reactions occur in the liquid phase. This framework was applied to the selective absorption of H{sub 2}S from fuel gas containing CO{sub 2} using aqueous methyldiethanolamine. A rate-based distillation column module was used for the column integration. The Maxwell-Stefan and enhancement factor theories were utilized. In packed columns, CO{sub 2} absorption is controlled by diffusion with fast chemical reactions; in trayed columns it is controlled primarily by physical absorption. Gas-film resistance is never significant for CO{sub 2} absorption. For H{sub 2}S absorption, gas- and liquid-film resistances are important, and diffusion of bisulfide controls the liquid-film resistance. Heat effects produce temperatures bulges that can cause equilibrium pinches at the maximum temperature. This phenomenon gives an optimum packing height for the H{sub 2}S removal. Trayed columns are more selective than packed columns for H{sub 2}S removal, primarily because of the larger number of liquid-film mass transfer units.

  17. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Le; Liu, Jian-Guo; Kan, Rui-Feng; Xu, Zhen-Yu

    2014-12-01

    Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss—Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss—Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.

  18. Determination of the magnetocrystalline anisotropy constant from the frequency dependence of the specific absorption rate in a frozen ferrofluid

    NASA Astrophysics Data System (ADS)

    Mosher, Nathaniel; Perkins-Harbin, Emily; Aho, Brandon; Wang, Lihua; Kumon, Ronald; Rablau, Corneliu; Vaishnava, Prem; Tackett, Ronald; Therapeutic Biomaterials Group Team

    2015-03-01

    Colloidal suspensions of superparamagnetic nanoparticles, known as ferrofluids, are promising candidates for the mediation of magnetic fluid hyperthermia (MFH). In such materials, the dissipation of heat occurs as a result of the relaxation of the particles in an applied ac magnetic field via the Brownian and Neel mechanisms. In order to isolate and study the role of the Neel mechanism in this process, the sample can be frozen, using liquid nitrogen, in order to suppress the Brownian relaxation. In this experiment, dextran-coated Fe3O4 nanoparticles synthesized via co-precipitation and characterized via transmission electron microscopy and dc magnetization are used as MFH mediators over the temperature range between -70 °C to -10 °C (Brownian-suppressed state). Heating the nanoparticles using ac magnetic field (amplitude ~300 Oe), the frequency dependence of the specific absorption rate (SAR) is calculated between 150 kHz and 350 kHz and used to determine the magnetocrystalline anisotropy of the sample. We would like to thank Fluxtrol, Inc. for their help with this project

  19. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging.

    PubMed

    Thorat, Nanasaheb D; Bohara, Raghvendra A; Malgras, Victor; Tofail, Syed A M; Ahamad, Tansir; Alshehri, Saad M; Wu, Kevin C-W; Yamauchi, Yusuke

    2016-06-15

    Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs. PMID:27197993

  20. Numerical assessment of the reduction of specific absorption rate by adding high dielectric materials for fetus MRI at 3 T.

    PubMed

    Luo, Minmin; Hu, Can; Zhuang, Yayun; Chen, Wufan; Liu, Feng; Xin, Sherman Xuegang

    2016-08-01

    The specific absorption rate (SAR) is an important issue to be considered in fetus MRI at 3 T due to the high radiofrequency energy deposited inside the body of pregnant woman. The high dielectric material (HDM) has shown its potential for enhancing B1 field and reducing SAR in MRI. The aim of this study is to assess the feasibility of SAR reduction by adding an HDM to the fetus MRI. The feasibility of SAR reduction is numerically assessed in this study, using a birdcage coil in transmission loaded with an electromagnetic pregnant woman model in the SEMCAD-EM solver. The HDMs with different geometric arrangements and dielectric constants are manually optimized. The B1+ ${B_1}^ + $ homogeneity is also considered while calculating the optimized fetus 10 g local SAR among different strategies in the application of HDM. The optimum maximum fetus 10 g local SAR was obtained as 2.25 W/kg, by using two conformal pads placed left and right with the dielectric constant to be 400, reduced by 24.75% compared to that without the HDM. It indicated that the SAR can be significantly reduced with strategic placement of the HDM and the use of HDM may provide a simple, effective and low-cost method for reducing the SAR for the fetus MRI at 3 T. PMID:26985683

  1. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging.

    PubMed

    Thorat, Nanasaheb D; Bohara, Raghvendra A; Malgras, Victor; Tofail, Syed A M; Ahamad, Tansir; Alshehri, Saad M; Wu, Kevin C-W; Yamauchi, Yusuke

    2016-06-15

    Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs.

  2. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  3. Absorption and distribution of high specific radioactivity 2-C-abscisic Acid in cotton seedlings.

    PubMed

    Shindy, W W; Asmundson, C M; Smith, O E; Kumamoto, J

    1973-11-01

    High specific radioactivity (26.3 mc/mmole) racemic 2-(14)C-abscisic acid was synthesized. An aliquot of abscisic acid, 1.2 x 10(-4)m in aqueous methanolic solution, was applied to the surface of either a cotyledon or the first true leaf of 8- to 32-day-old cotton seedlings (Gossypium hirsutum L.). After various intervals (6-192 hours), the seedlings were processed for autoradiography, counting, and identification of the radioactivity. After 6 hours, radioactivity was observed moving basipetally out of the treated leaf toward the roots. Four days later, radioactivity could be detected throughout the whole seedling. After 8 days, 10% of the recovered radioactivity was found in the roots, and 80% remained in the treated leaf blade. Neither leaf type nor age had any effect on the abscisic acid movement or pattern of distribution. Isolated radioactivity from the roots was identified as abscisic acid, based on comparison with an authentic standard by thin layer chromatography, gas-liquid chromatography, or gas-liquid chromatography-mass spectrometry.

  4. Absorption, distribution, and excretion of 8-methoxypsoralen in HRA/Skh mice

    SciTech Connect

    Muni, I.A.; Schneider, F.H.; Olsson, T.A. III; King, M.

    1984-12-01

    The tissue distribution and excretion of (/sup 3/H)8-methoxypsoralen (8-MOP), a well-accepted therapeutic agent for the treatment of psoriasis, was studied in hairless HRA/Skh female mice. Mice were given single oral doses of 6 mg of (/sup 3/H)8-MOP or 5-(/sup 14/C)8-MOP/kg in corn oil. Radiochemical analyses of tissues and excreta were accomplished by liquid scintillation counting. The 8-MOP appeared to be rapidly absorbed through the gastrointestinal tract, where the tritium levels were highest, followed by skin, blood, and liver; levels were lowest in fat (adipose tissue). In female HRA/Skh mice which had not been irradiated with UVA (320-400 nm), 84% of the carbon-14 and 58% of the tritium were recovered in the urine and feces within 24 hours of oral administration of 5-(/sup 14/C)8-MOP or (/sup 3/H)8-MOP, respectively. Animals that were exposed to UVA and received (3H)8-MOP excreted approximately 12% less tritium in the urine and feces compared with the animals which received no UVA.

  5. Comparison of FDTD-calculated specific absorption rate in adults and children when using a mobile phone at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Martínez-Búrdalo, M.; Martín, A.; Anguiano, M.; Villar, R.

    2004-01-01

    In this paper, the specific absorption rate (SAR) in scaled human head models is analysed to study possible differences between SAR in the heads of adults and children and for assessment of compliance with the international safety guidelines, while using a mobile phone. The finite-difference time-domain method (FDTD) has been used for calculating SAR values for models of both children and adults, at 900 and 1800 MHz. Maximum 1 g averaged SAR (SAR1 g) and maximum 10 g averaged SAR (SAR10 g) have been calculated in adults and scaled head models for comparison and assessment of compliance with ANSI/IEEE and European guidelines. Results show that peak SAR1 g and peak SAR10 g all trend downwards with decreasing head size but as head size decreases, the percentage of energy absorbed in the brain increases. So, higher SAR in children's brains can be expected depending on whether the thickness of their skulls and surrounding tissues actually depends on age. The SAR in eyes of different sizes, as a critical organ, has also been studied and very similar distributions for the full size and the scaled models have been obtained. Standard limits can only be exceeded in the unpractical situation where the antenna is located at a very short distance in front of the eye.

  6. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling

    NASA Astrophysics Data System (ADS)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-07-01

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg-1 and 91 mV m-1 for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg-1) and the in situ electric field (18.9 V m-1) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.

  7. The absorption, distribution and excretion of prothidium in rats, rabbits and cattle

    PubMed Central

    Taylor, Angela E. R.

    1960-01-01

    2-Amino-7-(2-amino-6-methylpyrimidin-4-ylamino)-9-p-aminophenylphenanthridine 10,1'-dimethobromide (Prothidium), a prophylactic drug against cattle trypanosomiasis, was concentrated in the liver and kidneys of rats and rabbits after intraperitoneal or intracardial injection; it was detectable in these organs for 7 days in rats and 10 days in rabbits. The drug protected adult rats against Trypanosoma vivax for 8 weeks. Histological examination of the organs of rats treated with Prothidium indicated that no damage had been incurred from the treatment. When cattle were treated subcutaneously, elongated swellings appeared at the site of injection which disappeared within 6 weeks. Excretion of unchanged Prothidium occurred via the bile in rats and the drug was detectable in the bile for 9 days, but no Prothidium could be detected in the faeces or urine of rats or rabbits. No metabolic products of the Prothidium were found in the tissues or plasma of rats, rabbits, or cattle. In rat liver perfused for 6 hours with Prothidium only the unchanged drug was recovered. A depot of Prothidium was formed at the site of subcutaneous injection in cattle and this remained for at least 3 months. The prolonged prophylactic action was probably due to the formation of this depot since Prothidium injected intraperitoneally into a calf was excreted at a similar rate to that observed in rats and rabbits. PMID:13837111

  8. Distribution of gamma exposure rates in a reactor effluent stream flood plain system.

    PubMed

    Gladden, J B; Brown, K L; Smith, M H; Towns, A

    1985-01-01

    Ground-level gamma dosimetry surveys were conducted along the length of a radiocesium-contaminated reactor effluent stream flood plain system to determine the extent and patterns of isotope distribution over a decade after reactor releases were stopped. The maximum mean exposure rates were found at upstream locations near the source of the contamination and in a downstream sedimentary delta. Gamma exposure rates were not uniformly distributed and high exposure rates were generally restricted to small areas of the flood plain. There was little similarity in either the spatial distribution or magnitudes of maximum gamma exposure rates across flood plains along the stream. Frequency the measured exposure rates tended to be highly skewed and most closely approximated the log-normal distribution in most areas along the stream. However, the complex and changing patterns of dose distributions strongly affected the ability to predict the probability of encountering unusually high exposure rates. Complex statistical and distributional models are required to provide precise descriptions of the dosimetry environment in such complex ecosystems and different models could be required on a site-by-site basis.

  9. Investigating the Distribution of Chemical Forms of Sulfur in Prostate Cancer Tissue Using X-ray Absorption Spectroscopy.

    PubMed

    Czapla-Masztafiak, Joanna; Okoń, Krzysztof; Gałka, Marek; Huthwelker, Thomas; Kwiatek, Wojciech M

    2016-02-01

    The use of synchrotron radiation may shed more light on the study of prostate cancer, one of the leading diseases among men. In the presented study the microbeam setup at the PSI Swiss Light Source combined with fluorescence detected X-ray absorption spectroscopy (XAS) was applied to determine two-dimensional (2D) imaging of distributions of various chemical sulfur forms in prostate cancer tissue sections, since sulfur is considered important and essential in cancer progression. The research focused on prostate tissues obtained during routine prostatectomies on patients suffering from prostate cancer.Our previous studies using μ-XAS point measurements on prostate cancer cell lines showed the differences in fractions of various forms of sulfur between cancerous and non-cancerous cells. Therefore, in this experiment the chosen areas of prostate cancer tissues were scanned to get the full picture of the chemical composition of tissue, which is highly heterogeneous. The incident X-ray beams of energies tuned to spectroscopic features of the near-edge region of sulfur K-edge absorption spectra were used to provide contrast between chemical species presented in the tissue. Next, the relative content of the three main sulfur forms, found in biological systems, was calculated and the results are presented in a form of 2D color maps. These maps are correlated with the microscopic histological image of the scanned area.The main findings show that sulfur occurs in prostate tissue mainly in reduced form. The oxidized form of sulfur is present mostly in prostatic stroma, while sulfur in intermediate oxidation state is present in trace amount.

  10. GRBs Radiative Processes: Synchrotron and Synchrotron Self-Absorption From a Power Law Electrons Distribution with Finite Energy Range

    SciTech Connect

    Fouka, M.; Ouichaoui, S.

    2010-10-31

    Synchrotron emission behind relativistic magnetic internal-external shocks in gamma-ray bursts cosmological explosions is assumed to be the basic emission mechanism for prompt and afterglow emissions. Inverse Compton from relativistic electrons can also have appreciable effects by upscattering initial synchrotron or blackbody photons or other photons fields up to GeV-TeV energies. For extreme physical conditions such as high magnetic fields (e.g., B>10{sup 5} Gauss) self-absorption is not negligible and can hardly affect spectra at least for the low energy range. In this paper we present calculations of the synchrotron power, P{sub {nu}}, and their asymptotic forms, generated by a power law relativistic electron distribution of type N{sub e}({gamma}) = C{gamma}{sup -p} with {gamma}{sub 1}<{gamma}<{gamma}{sub 2}, especially for finite values of the higher limit {gamma}{sub 2}. For this aim we defined the dimensionless parametric function Z{sub p}(x,{eta}) with x = {nu}/{nu}{sub 1} and {eta} = {gamma}{sub 2}/{gamma}{sub 1} so that P{sub {nu}{proportional_to}Zp}({nu}/{nu}{sub 1},{eta}), with {nu}{sub 1} = (3/4{pi}){gamma}{sub 1}{sup 2}qBsin{theta}/mc({theta} being the pitch angle). Asymptotic forms of this later are derived for three different frequency ranges, i.e., x<<1, 1<>{eta}{sup 2}. These results are then used to calculate the absorption coefficient, {alpha}{sub {nu}}, and the source function, S{sub {nu}}, together with their asymptotic forms through the dimensionless parametric functions H{sub p}(x,{eta}) and Y{sub p}(x,{eta}), respectively. Further calculation details are also presented and discussed.

  11. Analysis of the Role of Lead Resistivity in Specific Absorption Rate for Deep Brain Stimulator Leads at 3T MRI

    PubMed Central

    Angelone, Leonardo M.; Ahveninen, Jyrki; Belliveau, John W.; Bonmassar, Giorgio

    2011-01-01

    Magnetic resonance imaging (MRI) on patients with implanted deep brain stimulators (DBSs) can be hazardous because of the antenna-effect of leads exposed to the incident radio-frequency field. This study evaluated electromagnetic field and specific absorption rate (SAR) changes as a function of lead resistivity on an anatomically precise head model in a 3T system. The anatomical accuracy of our head model allowed for detailed modeling of the path of DBS leads between epidermis and the outer table. Our electromagnetic finite difference time domain (FDTD) analysis showed significant changes of 1 g and 10 g averaged SAR for the range of lead resistivity modeled, including highly conductive leads up to highly resistive leads. Antenna performance and whole-head SAR were sensitive to the presence of the DBS leads only within 10%, while changes of over one order of magnitude were observed for the peak 10 g averaged SAR, suggesting that local SAR values should be considered in DBS guidelines. With ρlead = ρcopper, and the MRI coil driven to produce a whole-head SAR without leads of 3.2 W/kg, the 1 g averaged SAR was 1080 W/kg and the 10 g averaged SAR 120 W/kg at the tip of the DBS lead. Conversely, in the control case without leads, the 1 g and 10 g averaged SAR were 0.5 W/kg and 0.6 W/kg, respectively, in the same location. The SAR at the tip of lead was similar with electrically homogeneous and electrically heterogeneous models. Our results show that computational models can support the development of novel lead technology, properly balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the system battery. PMID:20335090

  12. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  13. Non-mass dependent photodissociation rates of ozone isotopologues from ab-initio absorption cross sections and experimental actinic flux

    NASA Astrophysics Data System (ADS)

    Ndengué, Steve; Jost, Rémy; Gatti, Fabien; Schinke, Reinhard; Madronich, Sasha

    2010-05-01

    The absorption cross sections (XSs) of eighteen isotopologues of the ozone molecule have been calculated in the range of the Chappuis-Huggins-Hartley bands: 15000-55000 cm-1 with special emphasis to those of atmospheric interest: symmetric 16O3, 16O17O16O, and 16O18O16O and asymmetric 17O16O2 and 18O16O2. We have used the MCTDH code which is based on the time propagation of the X(0,0,0) ground state initial wavepacket on the excited state PESs. The XSs have been obtained as the Fourier transform of the autocorrelation function of this wavepacket. The calculations have been performed only for zero total angular momentum and the rotational structure has been modeled numerically. The isotopologue dependence of the overall XSs has been characterized differently in each of the three bands: in the Chappuis band (15000-27000 cm-1) and in the Hartley band (33000-55000 cm-1), the XSs are weakly structured and the isotopologue dependence is globally weak. In contrast, in the Huggins band (27000 to 33000 cm-1) the different XSs are highly structured and their peaks are significantly shifted from those of the 16O3 absolute XS which has been chosen as reference. The Hartley band of each isotopologue can be approximated by a bell shape envelop modeled by a modified Gaussian depending on only four parameters: amplitude, centre, width and asymmetry. The isotopologue dependence of the Hartley band resumes only into tiny differences between these parameters. The dependence of the Chappuis band is also weak. The isotopologue shifts of peaks in the Huggins bands induce a significant dependence of the photodissociation rates because these rates are the integral of the product of the XS by the actinic flux. Below 30 km, the actinic flux displays a tremendous attenuation in the range of the Hartley band because the solar flux is strongly absorbed by the stratospheric ozone, almost exclusively by the 16O3 isotopologue. This implies two consequences: a) the actinic flux reproduces

  14. Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance.

    PubMed

    Dieho, K; Dijkstra, J; Schonewille, J T; Bannink, A

    2016-07-01

    The aim of the present experiment was to study changes in volatile fatty acid (VFA) production using an isotope dilution technique, and changes in VFA fractional absorption rate (kaVFA) using a buffer incubation technique (BIT) during the dry period and early lactation, as affected by the postpartum (pp) rate of increase of concentrate allowance. The current results are complementary to previously reported changes on rumen papillae morphology from the same experiment. From 50 d antepartum to 80 d pp, VFA production rate was measured 5 times and kaVFA was measured 10 times in 12 rumen-cannulated Holstein Friesian cows. Cows had free access to a mixed ration, consisting of grass and corn silage, soybean meal, and (dry period only) chopped straw. Treatment consisted of either a rapid (RAP; 1.0 kg of DM/d; n=6) or gradual (GRAD; 0.25 kg of DM/d; n=6) increase of concentrate allowance (up to 10.9 kg of DM/d), starting at 4 d pp, aimed at creating a contrast in rumen-fermentable organic matter intake. For the BIT, rumen contents were evacuated, the rumen washed, and a standardized buffer fluid introduced [120 mM VFA, 60% acetic (Ac), 25% propionic (Pr), and 15% butyric (Bu) acid; pH 5.9 and Co-EDTA as fluid passage marker]. For the isotope dilution technique, a pulse-dose of (13)C-labeled Ac, Pr, and Bu and Co-EDTA as fluid passage marker was infused. The rate of total VFA production was similar between treatments and was 2 times higher during the lactation (114 mol/d) than the dry period (53 mol/d). Although papillae surface area at 16, 30, and 44 d pp was greater in RAP than GRAD, Bu and Ac production at these days did not differ between RAP and GRAD, whereas at 16 d pp RAP produced more Pr than GRAD. These results provide little support for the particular proliferative effects of Bu on papillae surface area. Similar to developments in papillae surface area in the dry period and early lactation, the kaVFA (per hour), measured using the BIT, decreased from 0.45 (Ac), 0

  15. Rate of Return to Education: A Distributional Analysis Using the LifePaths Model

    ERIC Educational Resources Information Center

    Boothby, Daniel; Rowe, Geoff

    2002-01-01

    This paper reports estimates of the distribution of individual private rates of return to undergraduate and community college education by field of study for Canada. It is important to know the dispersion of the private rate of return to post-secondary education, as well as its average level. There are very different implications for…

  16. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  17. The Distribution of Dropout and Turnover Rates among Urban and Suburban High Schools.

    ERIC Educational Resources Information Center

    Rumberger, Russell W.; Thomas, Scott L.

    2000-01-01

    Examines the distribution of dropout and turnover rates among 247 U.S. urban and suburban high schools to study school effectiveness. Finds that dropout and turnover rates can be attributed to student background, student composition, school resources, and school processes. (Contains references.) (CMK)

  18. Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline.

    PubMed

    Manda, Vamshi K; Avula, Bharathi; Ali, Zulfiqar; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2014-05-01

    Mitragyna speciosa (kratom) is a popular herb in Southeast Asia, which is traditionally used to treat withdrawal symptoms associated with opiate addiction. Mitragynine, 7-hydroxymitragynine, and mitraphylline are reported to be the central nervous system active alkaloids which bind to the opiate receptors. Mitraphylline is also present in the bark of Uncaria tomentosa (cat's claw). Several therapeutic properties have been reported for these compounds but limited information is available on the absorption and distribution properties. This study focuses on evaluating the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds and their effect on major efflux transporter P-glycoprotein, using in vitro methods. Quantitative analysis was performed by the Q-TOF LC-MS system. Mitragynine was unstable in simulated gastric fluid with 26 % degradation but stable in simulated intestinal fluid. 7-Hydroxymitragynine degraded up to 27 % in simulated gastric fluid, which could account for its conversion to mitragynine (23 %), while only 6 % degradation was seen in simulated intestinal fluid. Mitraphylline was stable in simulated gastric fluid but unstable in simulated intestinal fluid (13.6 % degradation). Mitragynine and 7-hydroxymitragynine showed moderate permeability across Caco-2 and MDR-MDCK monolayers with no significant efflux. However, mitraphylline was subjected to efflux mediated by P-glycoprotein in both Caco-2 and MDR-MDCK monolayers. Mitragynine was found to be metabolically stable in both human liver microsomes and S9 fractions. In contrast, both 7-hydroxymitragynine and mitraphylline were metabolized by human liver microsomes with half-lives of 24 and 50 min, respectively. All three compounds exhibited high plasma protein binding (> 90 %) determined by equilibrium dialysis. Mitragynine and 7-hydroxymitragynine inhibited P-glycoprotein with EC50 values of 18.2 ± 3.6 µM and 32.4 ± 1.9 µM, respectively

  19. Evaluation of in vitro absorption, distribution, metabolism, and excretion (ADME) properties of mitragynine, 7-hydroxymitragynine, and mitraphylline.

    PubMed

    Manda, Vamshi K; Avula, Bharathi; Ali, Zulfiqar; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2014-05-01

    Mitragyna speciosa (kratom) is a popular herb in Southeast Asia, which is traditionally used to treat withdrawal symptoms associated with opiate addiction. Mitragynine, 7-hydroxymitragynine, and mitraphylline are reported to be the central nervous system active alkaloids which bind to the opiate receptors. Mitraphylline is also present in the bark of Uncaria tomentosa (cat's claw). Several therapeutic properties have been reported for these compounds but limited information is available on the absorption and distribution properties. This study focuses on evaluating the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds and their effect on major efflux transporter P-glycoprotein, using in vitro methods. Quantitative analysis was performed by the Q-TOF LC-MS system. Mitragynine was unstable in simulated gastric fluid with 26 % degradation but stable in simulated intestinal fluid. 7-Hydroxymitragynine degraded up to 27 % in simulated gastric fluid, which could account for its conversion to mitragynine (23 %), while only 6 % degradation was seen in simulated intestinal fluid. Mitraphylline was stable in simulated gastric fluid but unstable in simulated intestinal fluid (13.6 % degradation). Mitragynine and 7-hydroxymitragynine showed moderate permeability across Caco-2 and MDR-MDCK monolayers with no significant efflux. However, mitraphylline was subjected to efflux mediated by P-glycoprotein in both Caco-2 and MDR-MDCK monolayers. Mitragynine was found to be metabolically stable in both human liver microsomes and S9 fractions. In contrast, both 7-hydroxymitragynine and mitraphylline were metabolized by human liver microsomes with half-lives of 24 and 50 min, respectively. All three compounds exhibited high plasma protein binding (> 90 %) determined by equilibrium dialysis. Mitragynine and 7-hydroxymitragynine inhibited P-glycoprotein with EC50 values of 18.2 ± 3.6 µM and 32.4 ± 1.9 µM, respectively

  20. SPINS OF LARGE ASTEROIDS: A HINT OF A PRIMORDIAL DISTRIBUTION IN THEIR SPIN RATES

    SciTech Connect

    Steinberg, Elad; Sari, Re’em

    2015-04-15

    The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in stark contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.

  1. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  2. Significant effect of grain size distribution on compaction rates in granular aggregates

    NASA Astrophysics Data System (ADS)

    Niemeijer, André; Elsworth, Derek; Marone, Chris

    2009-07-01

    We investigate the role of pressure solution in deformation of upper- to mid-crustal rocks using aggregates of halite as a room temperature analog for fluid-assisted deformation processes in the Earth's crust. Experiments evaluate the effects of initial grain size distribution on macroscopic pressure solution rate of the aggregate and compare the results to theoretical models for pressure solution. We find that the grain size exponent deviates significantly from the theoretical value of 3 for diffusion-controlled pressure solution. Models typically assume mono-dispersed spherical particles in pseudo-regular packing. We infer that the discrepancy between experimentally determined grain size exponents and the theoretical values are a result of deviation of experimental (and natural) samples from regular packs of mono-dispersed spherical particles. Moreover, we find that compaction rates can vary by up to one order of magnitude as a function of the width of the grain size distribution for a given mean grain size. Wider size distributions allow for higher initial compaction rates, increasing the macroscopic compaction rate with respect to more narrow grain size distributions. Grain sizes in rocks, fault gouges, and hydrocarbon reservoirs are typically log-normal or power law distributed and therefore pressure solution rates may significantly exceed theoretical predictions. Spatiotemporal variations in pressure solution rates due to variations in grain size may cause the formation of low porosity zones, which could potentially focus deformation in these zones and produce pockets of high pore pressures, promoting nucleation of frictional instability and earthquake rupture.

  3. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    SciTech Connect

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.; Buschbom, R.L.; Siewicki, T.C.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd provided a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.

  4. Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves.

    PubMed Central

    Donoso, J; Muñoz, F; Garcia Blanco, F

    1993-01-01

    The absorption spectra of the coenzyme [pyridoxal 5'-phosphate (PLP)] in glycogen phosphorylase a (GPha), glycogen phosphorylase b (GPhb) and of the latter bound to various effectors and substrates were analysed on the basis of log-normal distribution curves. The results obtained showed that the ionization state of the PLP and GPha environment differs from that of GPhb. This divergence was interpreted in terms of tautomeric equilibria between some forms of the Schiff base of PLP and enzymic Lys-679. The ionic forms are slightly more predominant in GPha than they are in GPhb, so ionic and/or hydrogen-bonding interactions between the aromatic ring of PLP and GPha must be stronger than with GPhb. This confirms the purely structural role of the aromatic ring of the coenzyme. Binding of GPhb to AMP and Mg2+ results in the coenzyme adopting a similar state as in GPha. On the other hand, binding to IMP gives rise to no detectable changes in the tautomeric equilibrium of the coenzyme. PMID:8503849

  5. An ABC method for estimating the rate and distribution of effects of beneficial mutations.

    PubMed

    Moura de Sousa, Jorge A; Campos, Paulo R A; Gordo, Isabel

    2013-01-01

    Determining the distribution of adaptive mutations available to natural selection is a difficult task. These are rare events and most of them are lost by chance. Some theoretical works propose that the distribution of newly arising beneficial mutations should be close to exponential. Empirical data are scarce and do not always support an exponential distribution. Analysis of the dynamics of adaptation in asexual populations of microorganisms has revealed that these can be summarized by two effective parameters, the effective mutation rate, Ue, and the effective selection coefficient of a beneficial mutation, Se. Here, we show that these effective parameters will not always reflect the rate and mean effect of beneficial mutations, especially when the distribution of arising mutations has high variance, and the mutation rate is high. We propose a method to estimate the distribution of arising beneficial mutations, which is motivated by a common experimental setup. The method, which we call One Biallelic Marker Approximate Bayesian Computation, makes use of experimental data consisting of periodic measures of neutral marker frequencies and mean population fitness. Using simulations, we find that this method allows the discrimination of the shape of the distribution of arising mutations and that it provides reasonable estimates of their rates and mean effects in ranges of the parameter space that may be of biological relevance.

  6. Comparison of fluence rate distributions made be side-firing fibers in an optical phantom

    NASA Astrophysics Data System (ADS)

    Royston, David; Richards, Philip Q.

    1999-07-01

    Side-firing fibers are used to provide coagulative therapy to the urologic tract. These fibers use different optical technologies to deflect the beam transverse to the fibers' optical axis. This produces emitted beams which differ in both beam direction and divergence angles. The relative optical performance of 13 fibers was studied in an optical phantom suspension. The fluence rate distribution created by each side-firing fiber was determined. The fluence rate distribution accounts for both the direct and spurious beams emitted from side-firing fibers as well as the light scattering produced by the target tissue. Based upon limited clinical dosimetry studies, the relative fluence rate distribution appears to indicate general exposure conditions for the evaluated fibers.

  7. Spectroscopic Character and Spatial Distribution of Hydroxyl and Water Absorption Features Measured on the Lunar Surface by the Moon Mineralogy Mapper Imaging Spectrometer on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Pieters, C. M.; Goswami, J.; Clark, R. N.; Annadurai, M.; Boardman, J. W.; Buratti, B. J.; Combe, J.; Dyar, M. D.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R. L.; Kramer, G. Y.; Kumar, S.; Livo, K. E.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.

    2009-12-01

    The Moon Mineralogy Mapper imaging spectrometer on Chandrayaan-1 has a broad spectral range from 430 to 3000 nm. By design, the range was specified to extend to 3000 nm to allow for possible detection of trace volatile compounds that possess absorption bands near 3000 nm. Soon after acquisition and calibration of a large fraction of the lunar surface in early February 2009, absorption features in the 2700 to 3000 nm region were detected over unexpectedly large regional areas. This extraordinary discovery has withstood extensive re-analysis and falsification efforts. We have concluded these absorption features are fundamentally present in the M3 measurements and are indicators of extensive hydroxyl and water-bearing materials occurring on the surface of the Moon. Based on current analyses, these absorption features appear strongest at high latitudes, but also occur in association with several fresh feldspathic craters. Interestingly, the distribution of these absorption features are not directly correlated with existing neutron spectrometer hydrogen abundance data for the sunlight surface. This may indicate that the formation and retention of hydroxyl and water is an active process largely restricted to the upper most surface. We present the detailed spectroscopic character of these absorption features in the 2700 to 3000 nm spectral region, including selected examples through all levels of measurement processing from raw data to calibrated apparent surface reflectance. In summary we show the measured strength and latitudinal distribution of the absorptions as well as selected localized occurrences in association with fresh feldspathic craters. The presence of hydroxyl and water bearing material over extensive regions of the lunar surface provides a new and unexpected source of volatiles. Options for harvesting these elements directly from the regolith may provide an alternate supply of volatiles for long term human exploration objectives.

  8. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.

    PubMed

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-07-21

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines. PMID:24936747

  9. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.

    PubMed

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-07-21

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.

  10. Revisiting the formation rate and redshift distribution of long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kanaan, C.; de Freitas Pacheco, J. A.

    2013-11-01

    Using a novel approach, the distribution of fluences of long gamma-ray bursts derived from the Swift-BAT catalog was reproduced by a jet-model characterized by the distribution of the total radiated energy in γ-rays and the distribution of the aperture angle of the emission cone. The best fit between simulated and observed fluence distributions permits one to estimate the parameters of the model. An evolution of the median energy of the bursts is required to adequately reproduce the observed redshift distribution of the events when the formation rate of γ-ray bursts follows the cosmic star formation rate. For our preferred model, the median jet energy evolves as EJ ∝ e0.5(1 + z) and the mean expected jet energy is 3.0 × 1049 erg, which agrees with the mean value derived from afterglow data. The estimated local formation rate is Rgrb = 290 Gpc-3 yr-1, representing less than 9% of the local formation rate of type Ibc supernovae. This result also suggests that the progenitors of long gamma-ray bursts have masses ≥ 90 M⊙ when a Miller-Scalo initial mass function is assumed.

  11. Mass flow rate and pressure distribution of gas through three-dimensional micro-channels

    SciTech Connect

    Jiang, Jianzheng; Fan, Jing

    2014-12-09

    An effective method to predict the mass flow rate and pressure distribution of gas through three dimensional micro-channels with different cross-section shapes has been proposed. For rectangular cross sections often employed in experiment, the present solutions versus measured data of Zohar et al. (2002) show that the side walls significantly affect the mass flow rates as the aspect ratio is smaller than 10, whereas the non-dimensional pressure distributions, mainly determined by the inlet-to-outlet pressure ratio, are insensitive to the aspect ratio.

  12. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    NASA Astrophysics Data System (ADS)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  13. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    SciTech Connect

    Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  14. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  15. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    NASA Astrophysics Data System (ADS)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  16. SYNCHROTRON AND SYNCHROTRON SELF-ABSORPTION FOR A POWER-LAW PARTICLE DISTRIBUTION: ASYMPTOTIC FORMS FOR FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S.

    2009-12-10

    We calculate and plot the synchrotron power, P {sub n}u, the absorption coefficient, alpha{sub n}u, and the source function, S {sub n}u, for a power-law distribution of charged particles with Lorentz parameter values gamma{sub 1} <= gamma <= gamma{sub 2}. For this purpose, we define parametric functions Z{sub p} (x, eta), H{sub p} (x, eta), and Y{sub p} (x, eta) with eta = gamma{sub 2}/gamma{sub 1}, such that P {sub n}u propor to Z{sub p} (gamma{sup -2} {sub 1}nu/nu{sub 0}, eta), alpha{sub n}u propor to H{sub p} (gamma{sup -2} {sub 1}nu/nu{sub 0}, eta), and S {sub n}u propor to Y{sub p} (gamma{sup -2} {sub 1}nu/nu{sub 0}, eta). Corresponding asymptotic forms are also calculated and plotted for three frequency ranges, i.e., x << 1, 1 << x << eta{sup 2}, and x >> eta{sup 2}, especially in the case of finite parameter eta. Asymptotic forms of the middle range are possible for functions Z{sub p} and Y{sub p} for p>1/3, and for function H{sub p} for all positive values of index p. A characteristic value, eta {sub c}(p, epsilon) (with epsilon << 1), is then defined for each of the above functions so that for eta approx> eta {sub c}(p, epsilon) the middle range asymptotic forms could be considered. Further calculation details are also presented and discussed.

  17. Enhancement of the dissolution rate and gastrointestinal absorption of pranlukast as a model poorly water-soluble drug by grinding with gelatin.

    PubMed

    Chono, Sumio; Takeda, Eri; Seki, Toshinobu; Morimoto, Kazuhiro

    2008-01-22

    The effect of grinding with gelatin on the dissolution behavior and gastrointestinal absorption of a poorly water-soluble drug was evaluated using the antiasthmatic agent, pranlukast, as a model poorly water-soluble drug. A ground pranlukast-gelatin mixture was prepared by grinding equal quantities of pranlukast and gelatin. In the dissolution testing, the dissolution rate of pranlukast in the suspension of the ground pranlukast-gelatin mixture under conditions of pH 3.0, 5.0 and 7.0 was markedly faster than that in the suspension of pranlukast. According to powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC) analysis, the enhanced dissolution rate of pranlukast produced by grinding with gelatin was caused by changing the crystalline state of pranlukast into an amorphous state. In an animal experiment, the bioavailability of pranlukast following oral administration of the ground pranlukast-gelatin mixture to rats was threefold greater than that following administration of pranlukast. In the in vitro permeation experiment, the amount of permeated pranlukast through Caco-2 cell monolayers after application of the ground pranlukast-gelatin mixture was greater than that after application of pranlukast. These results suggest that the enhancement of the gastrointestinal absorption of pranlukast by grinding with gelatin is due to enhancement of the dissolution rate. Grinding a poorly water-soluble drug with gelatin is a useful method of enhancing its gastrointestinal absorption.

  18. Size distribution and emission rate measurement of fine and ultrafine particle from indoor human activities

    NASA Astrophysics Data System (ADS)

    Géhin, Evelyne; Ramalho, Olivier; Kirchner, Séverine

    Human indoor activities generate airborne particles which contribute to the increase of aerosol concentration levels in the home. The particle size distribution emission rate was measured for 18 different activities (burning candle or incense, cooking, spray use, computer printing and household cleaning). The particle emission rate was calculated from concentration measurements with a DMS500 (CAMBUSTION) in an experimental chamber (2.36 ± 0.05 m 3). The results showed that ultrafine particles are emitted during these activities and the lowest number distribution mode was 6 nm for one of the burning candles. All the cooking activities had similar emissions with a mode between 20 and 40 nm. The measured size distributions were represented in a database by the sum of 1, 2 or 3 lognormal distributions. The measured total emission rate ranged between 0.06 × 10 10 and 13.10 × 10 10 s -1 and the highest emission rate was measured for the self cleaning oven program (pyrolysis).

  19. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  20. Shape of growth-rate distribution determines the type of Non-Gibrat’s Property

    NASA Astrophysics Data System (ADS)

    Ishikawa, Atushi; Fujimoto, Shouji; Mizuno, Takayuki

    2011-11-01

    In this study, the authors examine exhaustive business data on Japanese firms, which cover nearly all companies in the mid- and large-scale ranges in terms of firm size, to reach several key findings on profits/sales distribution and business growth trends. Here, profits denote net profits. First, detailed balance is observed not only in profits data but also in sales data. Furthermore, the growth-rate distribution of sales has wider tails than the linear growth-rate distribution of profits in log-log scale. On the one hand, in the mid-scale range of profits, the probability of positive growth decreases and the probability of negative growth increases symmetrically as the initial value increases. This is called Non-Gibrat’s First Property. On the other hand, in the mid-scale range of sales, the probability of positive growth decreases as the initial value increases, while the probability of negative growth hardly changes. This is called Non-Gibrat’s Second Property. Under detailed balance, Non-Gibrat’s First and Second Properties are analytically derived from the linear and quadratic growth-rate distributions in log-log scale, respectively. In both cases, the log-normal distribution is inferred from Non-Gibrat’s Properties and detailed balance. These analytic results are verified by empirical data. Consequently, this clarifies the notion that the difference in shapes between growth-rate distributions of sales and profits is closely related to the difference between the two Non-Gibrat’s Properties in the mid-scale range.

  1. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks

    PubMed Central

    Navlakha, Saket; Barth, Alison L.; Bar-Joseph, Ziv

    2015-01-01

    Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains. PMID:26217933

  2. Enhanced visible-light absorption and dopant distribution of iodine-TiO{sub 2} nanoparticles synthesized by a new facile two-step hydrothermal method

    SciTech Connect

    Hong Xiaoting; Luo Zhiping; Batteas, James D.

    2011-08-15

    In order to prepare visible-light responsive iodine-doped TiO{sub 2}, a new facile synthetic approach was proposed, which started with the cost-efficient and environmentally friendly precursor of undoped anatase TiO{sub 2} to form nanotube structures as templates that collapsed and recrystallized into I-TiO{sub 2} nanopowders in HIO{sub 3} solution, followed by annealing at different temperatures. The modification of TiO{sub 2} to incorporate iodine and form titanium dioxide with significantly enhanced absorption in the visible range of the spectrum was investigated. The extent of iodine dopant incorporation was determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX) and was found to be homogenously distributed on each nanostructure as determined by electron energy-loss spectroscopy (EELS) elemental mapping and EDX spectroscopy. The modified TiO{sub 2} exhibits a dramatically extended absorption edge beyond 800 nm as compared to the original and unmodified TiO{sub 2}. - Graphical abstract: As-synthesized I-TiO{sub 2} nanoparticles show significantly enhanced visible-light absorption, with the dopant iodine homogenously dispersed on each I-TiO{sub 2} nanostructure based on EELS elemental mapping. Highlights: > Iodine-TiO{sub 2} nanoparticles by a new facile two-step hydrothermal method. > Significantly enhanced light absorption in the visible range of the spectrum. > Homogenous dopant distribution within each nanostructure.

  3. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data

    USGS Publications Warehouse

    Schmidt, D.A.; Burgmann, R.; Nadeau, R.M.; d'Alessio, M.

    2005-01-01

    We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion,of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of ???5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a Mw = 6.77 ?? 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip. Copyright 2005 by the American Geophysical Union.

  4. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae.

    PubMed

    Blache, Ulrich; Jakob, Torsten; Su, Wanwen; Wilhelm, Christian

    2011-08-01

    Photosynthesis-irradiance (P-E)-curves describe the photosynthetic performance of autotrophic organisms. From these P-E-curves the photosynthetic parameters α-slope, P(max), and E(k) can be deduced which are often used to characterize and to compare different organisms or organisms in acclimation to different environmental conditions. Particularly, for in situ-measurements of P-E curves of phytoplankton the analysis of variable chlorophyll fluorescence proved its potential as a sensitive and rapid method. By using Chlorella vulgaris (Trebouxiophyceae), Nannochloropsis salina (Eustigmatophyceae), Skeletonema costatum and Cyclotella meneghiniana (Bacillariophyceae), the present study investigated the influence of cellular bio-optical properties on the correlation of the photosynthetic parameters derived from fluorescence-based P-E-curves with photosynthetic parameters obtained from the measurement of oxygen evolution. It is demonstrated that small planktonic algae show a wide range of cellular absorptivity which was subject to species-specifity, growth stage and environmental conditions, e.g. nutrient limitation. This variability in bio-optical properties resulted in a great deviation of relative electron transport rates (rETRs) from oxygen-based photosynthesis rates. Thus, the photosynthetic parameters α-slope and P(max) derived from rETRs strongly depend on the specific cellular absorptivity and cannot be used to compare the photosynthetic performance of cells with different optical properties. However, it was shown that E(k) is independent of cellular absorptivity and could be used to compare samples with unknown optical properties. PMID:21571541

  5. The impact of cell-specific absorption properties on the correlation of electron transport rates measured by chlorophyll fluorescence and photosynthetic oxygen production in planktonic algae.

    PubMed

    Blache, Ulrich; Jakob, Torsten; Su, Wanwen; Wilhelm, Christian

    2011-08-01

    Photosynthesis-irradiance (P-E)-curves describe the photosynthetic performance of autotrophic organisms. From these P-E-curves the photosynthetic parameters α-slope, P(max), and E(k) can be deduced which are often used to characterize and to compare different organisms or organisms in acclimation to different environmental conditions. Particularly, for in situ-measurements of P-E curves of phytoplankton the analysis of variable chlorophyll fluorescence proved its potential as a sensitive and rapid method. By using Chlorella vulgaris (Trebouxiophyceae), Nannochloropsis salina (Eustigmatophyceae), Skeletonema costatum and Cyclotella meneghiniana (Bacillariophyceae), the present study investigated the influence of cellular bio-optical properties on the correlation of the photosynthetic parameters derived from fluorescence-based P-E-curves with photosynthetic parameters obtained from the measurement of oxygen evolution. It is demonstrated that small planktonic algae show a wide range of cellular absorptivity which was subject to species-specifity, growth stage and environmental conditions, e.g. nutrient limitation. This variability in bio-optical properties resulted in a great deviation of relative electron transport rates (rETRs) from oxygen-based photosynthesis rates. Thus, the photosynthetic parameters α-slope and P(max) derived from rETRs strongly depend on the specific cellular absorptivity and cannot be used to compare the photosynthetic performance of cells with different optical properties. However, it was shown that E(k) is independent of cellular absorptivity and could be used to compare samples with unknown optical properties.

  6. Measurement of nonuniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods.

    PubMed

    Liu, Chang; Xu, Lijun; Cao, Zhang

    2013-07-10

    Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy (TDLAS) to measure nonuniform temperature and concentration distributions along the laser path when a priori information of the temperature distribution tendency is available. Relying on measurements of 12 absorption transitions of water vapor from 1300 to 1350 nm, the nonuniform temperature and concentration distributions were retrieved by making the use of nonlinear and linear regularization methods, respectively. To examine the effectiveness of regularization methods, a simulated annealing algorithm for nonlinear regularization was implemented to reconstruct the temperature distribution, while three linear regularization methods, namely truncated singular value decomposition, Tikhonov regularization, and a revised Tikhonov regularization method, were implemented to retrieve the concentration distribution. The results show that regularization methods not only can be used to retrieve temperature and concentration distributions closer to the original but also are less sensitive to measurement noise. When no sufficient optical access is available for TDLAS tomography, the methods proposed in the paper can be used to obtain more details of the combustion field with higher accuracy and robustness, which are expected to play a more important role in combustion diagnosis.

  7. Effects of particulate complex refractive index and particle size distribution variations on atmospheric extinction and absorption for visible through middle ir wavelengths.

    PubMed

    Jennings, S G; Pinnick, R G; Auvermann, H J

    1978-12-15

    A comprehensive sensitivity study has been made using Mie theory to determine the effect of realistic variations in values of real and imaginary parts of the complex index of refraction on volume extinction and absorption coefficients for a wide range of log normal particle size distributions (defined by geometric mean radius r(g) and geometric standard deviation sigma(g)). Wavelengths lambda from the visible (0.55 microm) through the middle ir (10.6 microm) were considered. Extinction is independent of the complex index to within 20% for the majority of realistic particle size distributions, providing lambda < 2 microm. However, changes in extinction by up to an order of magnitude are caused by realistic variations in refractive indexes for 2 microm distribution for values of refractive indexes typical of atmospheric constituents. For bimodal size distributions representative of desert aerosols, values of the complex refractive index that result in minimum and maximum extinction coefficients are given. Absorption is generally less dependent on size distribution than is extinction and is not, in general, linear with the imaginary index, especially for broad particle distributions.

  8. Impact of the dark matter velocity distribution on capture rates in the Sun

    SciTech Connect

    Choi, K.; Itow, Y.; Rott, C. E-mail: rott@skku.edu

    2014-05-01

    Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence of a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.

  9. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers.

    PubMed

    Smith, K J; Chan, H K; Brown, K F

    1998-01-01

    Particle size distribution of delivered aerosols and the total mass of drug delivered from the inhaler are important determinants of pulmonary deposition and response to inhalation therapy. Inhalation flow rate may vary between patients and from dose to dose. The Andersen Sampler (AS) cascade impactor operated at flow rates of 30 and 55 L/min and the Marple-Miller Impactor (MMI) operated at flow rates of 30, 55, and 80 L/min were used in this study to investigate the influence of airflow rate on the particle size distributions of inhalation products. Total mass of drug delivered from the inhaler, fine particle mass, fine particle fraction, percentage of nonrespirable particles, and amount of formulation retained within the inhaler were determined by ultraviolet spectrophotometry for several commercial bronchodilator products purchased in the marketplace, including a pressurized metered-dose inhaler (pMDI), breath-actuated pressurized inhaler (BAMDI), and three dry powder inhalers (DPIs), two containing salbutamol sulphate and the other containing terbutaline sulphate. Varying the flow rate through the cascade impactor produced no significant change in performance of the pressurized inhalers. Increasing the flow rate produced a greater mass of drug delivered and an increase in respirable particle mass and fraction from all DPIs tested. PMID:10346666

  10. Addition of sodium bicarbonate to either 1 or 2 feedings of colostrum replacer: effect on uptake and rate of absorption of immunoglobulin G in neonatal calves.

    PubMed

    Cabral, R G; Kent, E J; Haines, D M; Erickson, P S

    2012-06-01

    Forty Holstein dairy calves were blocked by birth date and sex, and randomly assigned to 1 of 4 treatments within each block to elucidate the effect of feeding regimen and sodium bicarbonate (NaHCO₃) supplementation on absorption of IgG from colostrum replacer (CR). Calves received CR containing 191.4 g of IgG fed either in 1 feeding at 0 h (within 45 min of birth), with or without 30 g of NaHCO₃, or in 2 feedings (127.6 g of IgG at 0 h, with or without 20 g of NaHCO₃, and 63.8 g of IgG at 6 h, with or without 10 g of NaHCO₃). The treatments were (1) 1 feeding of CR+0 g of NaHCO₃; (2) 1 feeding of CR+30 g of NaHCO₃; (3) 2 feedings of CR+0 g of NaHCO₃; and (4) 2 feedings of CR+30 g total of NaHCO₃. Only calves born with no dystocia were used on this study. Blood samples were taken at 0, 6, 12, 18, and 24h postpartum and were analyzed for IgG using a radial immunoassay. Results indicated that, individually, feeding regimen and NaHCO₃ treatments had no effect. However, the interaction was significant for 24-h IgG and area under the curve, and showed a trend for apparent efficiency of absorption. Absorption rate data indicated that, for calves fed within 45 min of birth, most IgG absorption occurred in the first 6 h after birth. From 6 to 12 h postpartum, IgG absorption started to decrease; however, IgG absorption remained higher for calves fed in a single feeding than in 2 feedings. These data indicated that NaHCO₃ may increase IgG absorption when calves are fed colostrum in a single feeding but is not beneficial when colostrum is fed in 2 feedings.

  11. Deep-sea spherules from Pacific clay: mass distribution and influx rate

    USGS Publications Warehouse

    Murrell, M.T.; Davis, P.A.; Nishiizumi, K.; Millard, H.T.

    1980-01-01

    From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 ??m were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of both optical and electron microscopy as well as atomic absorption elemental analysis. The integral number (N) of stony particles from this sediment in the mass (M) range 20-300 ??g is given by N( > M(g)) = 5.13 ?? 10-6 ?? M-1.65. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but as yet the question remains unanswered. ?? 1980.

  12. A Distributed Transmission Rate Adjustment Algorithm in Heterogeneous CSMA/CA Networks

    PubMed Central

    Xie, Shuanglong; Low, Kay Soon; Gunawan, Erry

    2015-01-01

    Distributed transmission rate tuning is important for a wide variety of IEEE 802.15.4 network applications such as industrial network control systems. Such systems often require each node to sustain certain throughput demand in order to guarantee the system performance. It is thus essential to determine a proper transmission rate that can meet the application requirement and compensate for network imperfections (e.g., packet loss). Such a tuning in a heterogeneous network is difficult due to the lack of modeling techniques that can deal with the heterogeneity of the network as well as the network traffic changes. In this paper, a distributed transmission rate tuning algorithm in a heterogeneous IEEE 802.15.4 CSMA/CA network is proposed. Each node uses the results of clear channel assessment (CCA) to estimate the busy channel probability. Then a mathematical framework is developed to estimate the on-going heterogeneous traffics using the busy channel probability at runtime. Finally a distributed algorithm is derived to tune the transmission rate of each node to accurately meet the throughput requirement. The algorithm does not require modifications on IEEE 802.15.4 MAC layer and it has been experimentally implemented and extensively tested using TelosB nodes with the TinyOS protocol stack. The results reveal that the algorithm is accurate and can satisfy the throughput demand. Compared with existing techniques, the algorithm is fully distributed and thus does not require any central coordination. With this property, it is able to adapt to traffic changes and re-adjust the transmission rate to the desired level, which cannot be achieved using the traditional modeling techniques. PMID:25822140

  13. Inferring learning rules from distributions of firing rates in cortical neurons.

    PubMed

    Lim, Sukbin; McKee, Jillian L; Woloszyn, Luke; Amit, Yali; Freedman, David J; Sheinberg, David L; Brunel, Nicolas

    2015-12-01

    Information about external stimuli is thought to be stored in cortical circuits through experience-dependent modifications of synaptic connectivity. These modifications of network connectivity should lead to changes in neuronal activity as a particular stimulus is repeatedly encountered. Here we ask what plasticity rules are consistent with the differences in the statistics of the visual response to novel and familiar stimuli in inferior temporal cortex, an area underlying visual object recognition. We introduce a method that allows one to infer the dependence of the presumptive learning rule on postsynaptic firing rate, and we show that the inferred learning rule exhibits depression for low postsynaptic rates and potentiation for high rates. The threshold separating depression from potentiation is strongly correlated with both mean and s.d. of the firing rate distribution. Finally, we show that network models implementing a rule extracted from data show stable learning dynamics and lead to sparser representations of stimuli. PMID:26523643

  14. 76 FR 77223 - SourceGas Distribution LLC; Notice of Petition for Rate Approval and Revised Statement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... to utilize rates that are the same as those contained in SourceGas' transportation rate schedules for... Energy Regulatory Commission SourceGas Distribution LLC; Notice of Petition for Rate Approval and Revised Statement of Operating Conditions Take notice that on December 1, 2011, SourceGas Distribution LLC...

  15. 77 FR 40609 - SourceGas Distribution LLC; Notice of Petition for Rate Approval and Revised Statement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... utilize rates that are the same as those contained in SourceGas' transportation rate schedules for... Energy Regulatory Commission SourceGas Distribution LLC; Notice of Petition for Rate Approval and Revised Statement of Operating Conditions Take notice that on June 29, 2012, SourceGas Distribution LLC...

  16. Min-entropy and quantum key distribution: Nonzero key rates for ''small'' numbers of signals

    SciTech Connect

    Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Bruss, Dagmar

    2011-02-15

    We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10{sup 4}-10{sup 5} signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.

  17. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton

    PubMed Central

    Huete-Ortega, María; Cermeño, Pedro; Calvo-Díaz, Alejandra; Marañón, Emilio

    2012-01-01

    The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03–1.32), negating the idea that Kleiber's law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of −1.15 (range: −1.29 to −0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems. PMID:22171079

  18. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton.

    PubMed

    Huete-Ortega, María; Cermeño, Pedro; Calvo-Díaz, Alejandra; Marañón, Emilio

    2012-05-01

    The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates and cell abundance across a cell volume range of over six orders of magnitude in tropical and subtropical waters of the Atlantic Ocean. We found an approximately isometric relationship between carbon fixation rate and cell size (mean slope value: 1.16; range: 1.03-1.32), negating the idea that Kleiber's law is applicable to unicellular autotrophic protists. On the basis of the scaling of individual resource use with cell size, we predicted a reciprocal relationship between the size-scalings of phytoplankton metabolic rate and abundance. This prediction was confirmed by the observed slopes of the relationship between phytoplankton abundance and cell size, which have a mean value of -1.15 (range: -1.29 to -0.97), indicating that the size abundance distribution largely results from the size-scaling of metabolic rate. Our results imply that the total energy processed by carbon fixation is constant along the phytoplankton size spectrum in near steady-state marine ecosystems.

  19. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  20. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Shebalin, Peter; Narteau, Clément

    2016-07-01

    Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, and in most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodetic measurements are therefore two complementary data sets that together document ongoing deformation along active tectonic structures. Here we study the influence of stable sliding on earthquake statistics. We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake size distribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas it shows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficit of large events under conditions of faster creep where seismic ruptures are less likely to propagate. These results suggest that the earthquake size distribution does not only depend on the level of stress but also on the type of deformation.

  1. The functional response predicts the effect of resource distribution on the optimal movement rate of consumers.

    PubMed

    Calcagno, Vincent; Grognard, Frédéric; Hamelin, Frédéric M; Wajnberg, Éric; Mailleret, Ludovic

    2014-12-01

    Understanding how often individuals should move when foraging over patchy habitats is a central question in ecology. By combining optimality and functional response theories, we show analytically how the optimal movement rate varies with the average resource level (enrichment) and resource distribution (patch heterogeneity). We find that the type of functional response predicts the effect of enrichment in homogeneous habitats: enrichment should decrease movement for decelerating functional responses, but increase movement for accelerating responses. An intermediate resource level thus maximises movement for type-III responses. Counterintuitively, greater movement costs favour an increase in movement. In heterogeneous habitats predictions further depend on how enrichment alters the variance of resource distribution. Greater patch variance always increases the optimal rate of movement, except for type-IV functional responses. While the functional response is well established as a fundamental determinant of consumer-resource dynamics, our results indicate its importance extends to the understanding of individual movement strategies.

  2. Aerodynamic heating rate distributions induced by trailing edge controls on hypersonic aircraft configurations at Mach 8

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1984-01-01

    Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.

  3. Enhanced Rates of Hydrogen Absorption Resulting from Oxidation of Pd and Internal Oxidation of Pd-Al Alloys

    SciTech Connect

    Shanahan, K.L.

    1999-08-20

    The goal of this research was the determination of the relative rates before and after internal oxidation of Pd--Al alloys and oxidation (Pd) and this is independent of whether heat transfer is the rate-limiting step for the internally oxidized Pd--Al alloys rather than a more fundamental step.

  4. Toward Online Adaptive Hyperthermia Treatment Planning: Correlation Between Measured and Simulated Specific Absorption Rate Changes Caused by Phase Steering in Patients

    SciTech Connect

    Kok, H. Petra; Ciampa, Silvia; Kroon-Oldenhof, Rianne de; Steggerda-Carvalho, Eva J.; Stam, Gerard van; Zum Vörde Sive Vörding, Paul J.; Stalpers, Lukas J.A.; Geijsen, Elisabeth D.; Bardati, Fernando; Bel, Arjan; Crezee, Johannes

    2014-10-01

    Purpose: Hyperthermia is the clinical application of heat, in which tumor temperatures are raised to 40°C to 45°C. This proven radiation and chemosensitizer significantly improves clinical outcome for several tumor sites. Earlier studies of the use of pre-treatment planning for hyperthermia showed good qualitative but disappointing quantitative reliability. The purpose of this study was to investigate whether hyperthermia treatment planning (HTP) can be used more reliably for online adaptive treatment planning during locoregional hyperthermia treatments. Methods and Materials: This study included 78 treatment sessions for 15 patients with non-muscle-invasive bladder cancer. At the start of treatments, temperature rise measurements were performed with 3 different antenna settings optimized for each patient, from which the absorbed power (specific absorption rate [SAR]) was derived. HTP was performed based on a computed tomography (CT) scan in treatment position with the bladder catheter in situ. The SAR along the thermocouple tracks was extracted from the simulated SAR distributions. Correlations between measured and simulated (average) SAR values were determined. To evaluate phase steering, correlations between the changes in simulated and measured SAR values averaged over the thermocouple probe were determined for all 3 combinations of antenna settings. Results: For 42% of the individual treatment sessions, the correlation coefficient between measured and simulated SAR profiles was higher than 0.5, whereas 58% showed a weak correlation (R of <0.5). The overall correlation coefficient between measured and simulated average SAR was weak (R=0.31; P<.001). The measured and simulated changes in average SAR after adapting antenna settings correlated much better (R=0.70; P<.001). The ratio between the measured and simulated quotients of maximum and average SARs was 1.03 ± 0.26 (mean ± SD), indicating that HTP can also correctly predict the relative amplitude of

  5. Growth rate distribution of NH4Cl dendrite and its scaling structure.

    PubMed

    Miki, Hiroshi; Honjo, Haruo

    2012-12-01

    Scaling structure of the growth rate distribution on the interface of a dendritic pattern is investigated. The distribution is evaluated for an NH4Cl quasi-two-dimensional crystal by numerically solving the Laplace equation with the boundary condition taking account of the surface tension effect. It is found that the distribution has multifractality and the surface tension effect is almost ineffective in the unscreened large growth region. The values of the minimum singular exponent and the fractal dimension are smaller than those for the diffusion-limited aggregation pattern. The Makarov's theorem, the information dimension equals one, and the Turkevich-Scher conjecture between the fractal dimension and the minimum singularity exponent hold. PMID:23367960

  6. Growth rate distribution of NH4Cl dendrite and its scaling structure

    NASA Astrophysics Data System (ADS)

    Miki, Hiroshi; Honjo, Haruo

    2012-12-01

    Scaling structure of the growth rate distribution on the interface of a dendritic pattern is investigated. The distribution is evaluated for an NH4Cl quasi-two-dimensional crystal by numerically solving the Laplace equation with the boundary condition taking account of the surface tension effect. It is found that the distribution has multifractality and the surface tension effect is almost ineffective in the unscreened large growth region. The values of the minimum singular exponent and the fractal dimension are smaller than those for the diffusion-limited aggregation pattern. The Makarov's theorem, the information dimension equals one, and the Turkevich-Scher conjecture between the fractal dimension and the minimum singularity exponent hold.

  7. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  8. Key rate for calibration robust entanglement based BB84 quantum key distribution protocol

    SciTech Connect

    Gittsovich, O.; Moroder, T.

    2014-12-04

    We apply the approach of verifying entanglement, which is based on the sole knowledge of the dimension of the underlying physical system to the entanglement based version of the BB84 quantum key distribution protocol. We show that the familiar one-way key rate formula holds already if one assumes the assumption that one of the parties is measuring a qubit and no further assumptions about the measurement are needed.

  9. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  10. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation

    PubMed Central

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W.; Akens, Margarete K.; Lilge, Lothar; Marjoribanks, Robin S.

    2016-01-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles. PMID:27375948

  11. Broadening the polyethylene molecular weight distribution by controlling the hydrogen concentration and catalyst feed rates.

    PubMed

    Ali, Emad M; Ali, Mohammad Al-haj

    2010-01-01

    This paper discusses the control of an industrial gas-phase polyethylene reactor to produce a desired molecular weight distribution (MWD) of the polymer. The controller objective is to regulate online the entire molecular weight distribution by either manipulating the hydrogen content inside the reactor or coordinating the feed rates of two different types of catalysts. In this work, the molecular weight distribution is modeled as a function of the reaction kinetics and hydrogen to monomer ratio. Nonlinear model predictive controller (NLMPC) algorithm is used to maintain the desired molecular weight distribution online. The closed-loop simulations indicated the effectiveness of NLMPC to achieve its goal even in the presence of modeling errors. Moreover, the results showed that, altering the hydrogen concentration solely can produce the required polymer quality provided that an efficient mechanism is available to readily alter the hydrogen composition. Alternatively, the desired MWD can also be guaranteed with proper manipulation of the catalyst feed rates while the other process inputs are kept constant.

  12. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

    SciTech Connect

    Woehl, Taylor J.; Park, Chiwoo; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2014-01-08

    Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of “non-classical” growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

  13. Dose-rate distribution of {sup 32}P-glass microspheres for intra-arterial brachytherapy

    SciTech Connect

    Guimaraes, Carla C.; Moralles, Mauricio; Sene, Frank F.; Martinelli, Jose R.

    2010-02-15

    Purpose: The intra-arterial administration of radioactive glass microspheres is an alternative therapy option for treating primary hepatocellular carcinoma, the main cause of liver cancer death, and metastatic liver cancer, another important kind of cancer induced in the liver. The technique involves the administration of radioactive microspheres in the hepatic artery, which are trapped preferentially in the tumor. Methods: In this work the GEANT4 toolkit was used to calculate the radial dose-rate distributions in water from {sup 32}P-loaded glass microspheres and also from {sup 90}Y-loaded glass microspheres. To validate the toolkit for this application, the authors compared the dose-rate distribution of {sup 32}P and {sup 90}Y point sources in water with data from the International Commission on Radiation Units and Measurements report 72. Results: Tables of radial dose-rate distributions are provided for practical use in brachytherapy planning with these microspheres. Conclusions: The simulations with the microspheres show that the shape of the beta ray energy spectra with respect to the {sup 32}P and {sup 90}Y sources is significantly modified by the glass matrix.

  14. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    NASA Astrophysics Data System (ADS)

    Szilagyi, J.; Jozsa, J.

    2009-05-01

    Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature () by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure) of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (,) pair together with the wet-environment surface temperature () and ET rate (ETw), obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. , in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska), was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000-2007) catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a) observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b) the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops).

  15. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    NASA Astrophysics Data System (ADS)

    Szilagyi, J.; Jozsa, J.

    2009-03-01

    Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature () by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure) of the complementary relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (, ) pair together with the wet-environment surface temperature () and ET rate (ETw), obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. , in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska), was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000-2007) catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a) observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b) the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e., rangeland versus center-pivot irrigated crops).

  16. Determination of drug absorption rate in time-variant disposition by direct deconvolution using beta clearance correction and end-constrained non-parametric regression.

    PubMed

    Neelakantan, S; Veng-Pedersen, P

    2005-11-01

    A novel numerical deconvolution method is presented that enables the estimation of drug absorption rates under time-variant disposition conditions. The method involves two components. (1) A disposition decomposition-recomposition (DDR) enabling exact changes in the unit impulse response (UIR) to be constructed based on centrally based clearance changes iteratively determined. (2) A non-parametric, end-constrained cubic spline (ECS) input response function estimated by cross-validation. The proposed DDR-ECS method compensates for disposition changes between the test and the reference administrations by using a "beta" clearance correction based on DDR analysis. The representation of the input response by the ECS method takes into consideration the complex absorption process and also ensures physiologically realistic approximations of the response. The stability of the new method to noisy data was evaluated by comprehensive simulations that considered different UIRs, various input functions, clearance changes and a novel scaling of the input function that includes the "flip-flop" absorption phenomena. The simulated input response was also analysed by two other methods and all three methods were compared for their relative performances. The DDR-ECS method provides better estimation of the input profile under significant clearance changes but tends to overestimate the input when there were only small changes in the clearance.

  17. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  18. Product distributions, rate constants, and mechanisms of LiH +H reactions

    NASA Astrophysics Data System (ADS)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  19. The distribution of the heavy metal accumulation rate in the biomass of three Daphnia species

    SciTech Connect

    Gajula, V.K.; Hovorka, J.; Stuchlik, E.

    1995-12-31

    The difference in the accumulation rate of a mixture of heavy metals in aquatic organisms is of considerable interest because of its importance in the prediction of the effect of pollutants in aquatic systems. In this study the authors are making an effort to evaluate the accumulation patterns of pollutants in aquatic organisms by establishing a relation between the level of an accumulated mixture of heavy metals (Cd, Zn, Pb, As, Hg) in individuals of Daphnia magna, Daphnia pulicaria and Daphnia galeata and its dry weight with respect to the form of heavy metals in the aquatic environment. One age group of Daphnia species (10 day old) were exposed to 5 ppb, 10 ppb and 20 ppb of the mixture of heavy metals for 24 hours in three different experiments. In the first experiment the mixture of heavy metals was present exclusively in labelled algae (Scendesmus actus), in the second in an aquatic medium with non labelled algae, and in the third experiment the mixture of heavy metals was dissolved in the aquatic medium only without the addition of algae. The concentration of the heavy metal mixture in individuals of D.magna; D.pulicaria and D.galeata was determined using atomic absorption spectrometry. Results were statistically evaluated and the rate of accumulation and influence of various heavy metals in the biomass of three Daphnia species is discussed.

  20. Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2013-02-01

    Probability distribution functions of shallow cumulus cloud core entrainment and detrainment rates are calculated using 4362 individual cumulus clouds isolated from LES using a cloud tracking algorithm. Calculation of the mutual information between fractional entrainment/detrainment and a variety of mean cloud core properties suggests that fractional entrainment rate is best predicted by the mean cloud buoyancy B and the environmental buoyancy lapse rate dθρdz at that level, while fractional detrainment is best predicted by the mean vertical velocity w and the critical mixing fraction χc. Fractional entrainment and detrainment rates are relatively insensitive to cloud core horizontal area, and the circumference of horizontal cloud core sections display an a0.69 dependence. This implies that cloud core mass entrainment flux E is proportional to cloud core cross-sectional area instead of cloud core surface area, as is generally assumed. Empirical best-fit relations for ε(B, dθρdz and δ(w, χc) are found for both individual shallow cumulus clouds and cloud ensembles. It is found that clouds with high buoyancy in strong stratification experience low entrainment rates, while clouds with high vertical velocities and critical mixing fractions experience low detrainment rates.

  1. Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES

    NASA Astrophysics Data System (ADS)

    Dawe, J. T.; Austin, P. H.

    2013-08-01

    Probability distribution functions of shallow cumulus cloud core entrainment and detrainment rates are calculated using 4362 individual cumulus clouds isolated from LES (large eddy simulation) using a cloud tracking algorithm. Calculation of the mutual information between fractional entrainment/detrainment and a variety of mean cloud core properties suggests that fractional entrainment rate is best predicted by the mean cloud buoyancy B and the environmental buoyancy lapse rate dθρ/dz at that level, while fractional detrainment is best predicted by the mean vertical velocity w and the critical mixing fraction χc. Fractional entrainment and detrainment rates are relatively insensitive to cloud core horizontal area, and the perimeter of horizontal cloud core sections display an a0.73 dependence. This implies that cloud core mass entrainment flux E is proportional to cloud core cross-sectional area instead of cloud core surface area, as is generally assumed. Empirical best-fit relations for ɛ(B, dθρ/dz and δ(w, χc) are found for both individual shallow cumulus clouds and cloud ensembles. It is found that clouds with high buoyancy in strong stratification experience low entrainment rates, while clouds with high vertical velocities and critical mixing fractions experience low detrainment rates.

  2. How do output growth-rate distributions look like? Some cross-country, time-series evidence

    NASA Astrophysics Data System (ADS)

    Fagiolo, G.; Napoletano, M.; Roventini, A.

    2007-05-01

    This paper investigates the statistical properties of within-country gross domestic product (GDP) and industrial production (IP) growth-rate distributions. Many empirical contributions have recently pointed out that cross-section growth rates of firms, industries and countries all follow Laplace distributions. In this work, we test whether also within-country, time-series GDP and IP growth rates can be approximated by tent-shaped distributions. We fit output growth rates with the exponential-power (Subbotin) family of densities, which includes as particular cases both Gaussian and Laplace distributions. We find that, for a large number of OECD (Organization for Economic Cooperation and Development) countries including the US, both GDP and IP growth rates are Laplace distributed. Moreover, we show that fat-tailed distributions robustly emerge even after controlling for outliers, autocorrelation and heteroscedasticity.

  3. Determination of particle nucleation and growth rates from measured aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Verheggen, B.; Mozurkewich, M.

    2003-04-01

    The effects of aerosols on atmospheric chemistry, health and climate are dependent on particle size and composition, and therefore on particle nucleation and growth. An analytical model has been developed to determine nucleation and growth rates from measurements of consecutive aerosol size distributions. The evolution of an aerosol population in time is described by the General Dynamic Equation (GDE). Wall loss, coagulation loss and coagulation production are determined, based on the measured aerosol size distributions. Taking their contributions into account, a non-linear regression analysis of the GDE is performed for each time interval to find the value of the growth rate, that gives best agreement between the measured and calculated change in the size distribution. Other parameters can also be verified and/or optimized by regression analysis. Knowing the growth rate as a function of time (and size) from the regression analysis, each measured cohort of particles is tracked backwards in time to their time of formation, where the radius of the critical cluster is assumed to be 0.5 nm. The number density of each cohort has decreased since their formation, due to wall losses and coagulation processes. Perturbation theory is used to approximate the contribution of within mode coagulation in decreasing the number density. Wall losses and coagulation scavenging are well characterized for each time interval. The integrated losses, from time of formation to time of measurement, are used to obtain the number of nucleated particles, and ultimately the -empirically determined- nucleation rate. The analysis is applied to measurements made in Calspan's 590 m3 smog chamber, following SO2 nucleation.

  4. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    PubMed

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  5. Mmax Inferred from the Back Slip Rate Distributions along the Japan Islands

    NASA Astrophysics Data System (ADS)

    Koketsu, K.; Yokota, Y.; Higuchi, S.

    2012-12-01

    The devastating Tohoku earthquake of magnitude (M) 9.0 occurred on 11 March 2011 UTC along the Japan Trench, where the Pacific plate is subducting beneath the Tohoku district. Koketsu, Yokota, Kato, and Kato (2012) recovered annual rates of back slip, which is the drag of the overriding plate by interplate coupling, using GPS data in northeastern Japan before the Tohoku earthquake. They then recovered coseismic slips through an inversion of GPS data during the earthquake. The distributions of recovered coseismic slips and back slip rates bear a close resemblance to each other. They also calculated the recurrence period of such a megathrust event to be about 400 years using the coseismic moment releases and moment accumulation rate. They confirmed these relations by conducting seismic cycle simulations.The national program of seismic hazard assessment, which was initiated by the Japanese government after the 1995 Kobe earthquake, failed to foresee the Tohoku earthquake. However, the above results suggest the Tohoku earthquake could be foreseen with respect to at least its location and extent, if we monitored GPS data. In addition, the above method can be applicable to consider the Mmax of an other subduction zone, because the size of the Tohoku earthquake is propably the Mmax in the subduction zone along the Japan Trench. We first inspected the back slip rate distribution by Koketsu, Yokota, Kato and Kato (2012) carefully, and found similar areas of large back slip rate along the southernmost Kuril Trench and the Sagami Trough. The former area is as large as that along the Japan Trench. Therefore, the Mmax along the southernmost Kuril Trench should be around the M of the Tohoku earthquake, though Nanayama et al. (2003) estimated it to be 8.4 from tsunami deposit surveys. The latter area looks like the source region of the 1703 Genroku earthquake. Since this region is twice larger than that of the 1923 Kanto earthquake, the Mmax along the Sagami Trough should be

  6. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    PubMed Central

    Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-01

    A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082

  7. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch.

    PubMed

    Nakamura, Sumiko; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2015-01-01

    Not only amylose but also amylopectin greatly affects the gelatinization properties of rice starch and the quality of cooked rice grains. We here characterized the starches of 32 rice cultivars and evaluated the relationship between their iodine absorption curve, apparent amylose content (AAC), pasting property, resistant starch (RS) content, and chain length distribution of amylopectin. We found that the iodine absorption curve differed among the various sample rice cultivars. Using the wavelength at which absorbance becomes maximum on iodine staining of starch (λmax), we propose a novel index, "new λmax" (AAC/(λmax of sample rice starches-λmax of glutinous rice starch)). We developed the novel estimation formulae for AAC, RS contents, and amylopectin fractions with the use of λmax and "new λmax." These formulae would lead to the improved method for estimating starch properties using an easy and rapid iodine colorimetric method.

  8. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2016-07-01

    principle that equates the seismic moment rate with the tectonic moment rate inferred from geodesy and geology, we obtain a consistent estimate of the corner moment largely independent of seismic history. These evaluations confirm the above-mentioned corner magnitude value. The new estimates of corner magnitudes are important both for the forecast part based on seismicity as well as the part based on geodetic strain rates. We examine rate variations as expressed by annual earthquake numbers. Earthquakes larger than magnitude 6.5 obey the Poisson distribution. For smaller events the negative-binomial distribution fits much better because it allows for earthquake clustering.

  9. Non-negative matrix factorization for the near real-time interpretation of absorption effects in elemental distribution images acquired by X-ray fluorescence imaging.

    PubMed

    Alfeld, Matthias; Wahabzada, Mirwaes; Bauckhage, Christian; Kersting, Kristian; Wellenreuther, Gerd; Barriobero-Vila, Pere; Requena, Guillermo; Boesenberg, Ulrike; Falkenberg, Gerald

    2016-03-01

    Elemental distribution images acquired by imaging X-ray fluorescence analysis can contain high degrees of redundancy and weakly discernible correlations. In this article near real-time non-negative matrix factorization (NMF) is described for the analysis of a number of data sets acquired from samples of a bi-modal α+β Ti-6Al-6V-2Sn alloy. NMF was used for the first time to reveal absorption artefacts in the elemental distribution images of the samples, where two phases of the alloy, namely α and β, were in superposition. The findings and interpretation of the NMF results were confirmed by Monte Carlo simulation of the layered alloy system. Furthermore, it is shown how the simultaneous factorization of several stacks of elemental distribution images provides uniform basis vectors and consequently simplifies the interpretation of the representation. PMID:26917147

  10. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    SciTech Connect

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.

  11. Distribution, host preference and infection rates of malaria vectors in Mauritania

    PubMed Central

    2009-01-01

    This study reports for the first time on the distribution, host preference and infection rates of malaria vectors in Mauritania. It was conducted during an outbreak of Rift valley fever. Three anopheline species were reported. An. arabiensis was the predominant species observed in all regions whereas An. pharoensis and An. funestus were observed along the south border in the Senegal River valley where extensive irrigation schemes are present. The distribution limits of anopheline species were observed from the Senegal River basin in the Trarza region up to the south limit of the Saharan desert in Tidjikja city. Overall, all An. funestus and An. pharoensis were fed respectively on human and ovine hosts whereas the mean anthropophilic rate of An. gambiae s.l. was 53%. A low Plasmodium falciparum infection rate was observed for species of the An. gambiae complex (0.17%) represented mainly by An. arabiensis. Because of the specific nature of this investigation, longitudinal studies are essential to better characterize the malaria vectors and their respective role in malaria transmission. PMID:19961573

  12. Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance

    NASA Astrophysics Data System (ADS)

    Shah, Pragnesh; Bhalja, Bhavesh

    2013-08-01

    Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.

  13. Is it reasonable to assume a uniformly distributed cooling-rate along the microslide of a directional solidification stage?

    PubMed

    Rabin

    2000-10-01

    It is commonly assumed that the cooling-rate along the microslide of a directional solidification stage is uniformly distributed, an assumption which is typically applied in low cooling-rates studies. A new directional solidification stage has recently been presented, which is specified to achieve high cooling-rates of up to 1.8 x 104 degrees C min-1, where cooling-rates are still assumed to be uniformly distributed. The current study presents a closed-form solution to the temperature distribution and to the cooling-rate in the microslide. Thermal analysis shows that the cooling-rate is by no means uniformly distributed and can vary by several hundred percent along the microslide in some cases. Therefore, the mathematical solution presented in this study is essential for experimental planning of high cooling-rate experiments.

  14. Absorption and distribution of deuterium-labeled trans- and cis-11-octadecenoic acid in human plasma and lipoprotein lipids

    SciTech Connect

    Emken, E.A.; Rohwedder, W.K.; Adlof, R.O.; DeJarlais, W.J.; Gulley, R.M.

    1986-09-01

    Triglycerides of deuterium-labeled trans-11-, trans-11-cis-11- and cis-9-octadecenoic acid (11t-18:1-2H, 11c-18:1-2H) were simultaneously fed to two young adult male subjects. Plasma lipids from blood samples collected periodically for 48 hr were analyzed by gas chromatography-mass spectroscopy. The results indicate the delta 11-18:1-2H acids and 9c-18:1-2H were equally well absorbed; relative turnover rates were higher for the delta 11-18-1-2H acids in plasma triglycerides; incorporation of the delta 11-18:1-2H acids into plasma phosphatidylcholine was similar to 9c-18:1-2H, but distribution at the 1- and 2-acyl positions was substantially different; esterification of cholesterol with 11t-18:1 was extremely low; chain shortening of the delta 11-18:1-2H acids was 2-3 times greater than for 9c-18:1-2H; no evidence for desaturation or elongation of the 18:1-2H acids was detected; and a 40% isotopic dilution of the 18:1-2H acids in the chylomicron triglyceride fraction indicated the presence of a substantial intestinal triglyceride pool. Based on our present knowledge, these metabolic results for delta 11-18:1 acids present in hydrogenated oils and animal fats indicate that the delta 11 isomers are no more likely than 9c-18:1 to contribute to dietary fat-related health problems.

  15. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  16. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  17. Measuring heart rate variability by means of information entropies based on Choi-Williams distribution.

    PubMed

    Vallverdú, Montserrat; Clariá, Francesc; Melia, Umberto; Bayés de Luna, Antonio; Caminal, Pere

    2015-08-01

    The Shannon entropy theory was applied to the Choi-Williams time-frequency distribution (CWD) of cardiac time series (RR series) in order to extract entropy information in both time and frequency domains. From this distribution, four indexes were defined: (1) instantaneous partial entropy; (2) spectral partial entropy; (3) instantaneous complete entropy; (4) spectral complete entropy. These indexes were used for analyzing the heart rate variability of ischemic cardiomyopathy patients (ICM) with different sudden cardiac death risk. The results have shown that the values of these indexes tend to decrease, with different proportion, when the severity of pathological condition increases. Statistical differences (p-value < 0.0005) of these indexes were found comparing low risk and high risk of cardiac death during night and between daytime and nighttime periods of ICM patients. Finally, these indexes have demonstrated to be useful tools to quantify the different complex components of the cardiac time series.

  18. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    SciTech Connect

    Li, Xue; Hjorth, Jens; Richard, Johan E-mail: jens@dark-cosmology.dk

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10{sup −4}Δt{sup β-tilde}/M{sub 250}{sup 2β-tilde}, with β-tilde = 0.77, where M{sub 250} is the projected cluster mass inside 250 kpc (in 10{sup 14}M{sub ☉}), and β-tilde is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M{sub 250} = 2 × 10{sup 14}M{sub ☉}, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ≥500kms{sup −1}, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of m{sub AB} = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to m{sub AB} ∼ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  19. Two-dimensional temperature distribution measurement of flames by absorption CT employing CO{sub 2} (Experimental study on the wave number employed and the accuracy of measurement)

    SciTech Connect

    Wakai, Kazunori; Moroto, Masakazu; Takahashi, Shuhei; Bhattacharjee, S.

    1999-07-01

    The authors have developed the algorithm of infrared two-band absorption CT (computed tomography) not only for short optical path where Lambert-Beer law is applicable but also for long optical path where some band model should be applied. The authors have also shown employing CO{sub 2} as an absorption medium, statistical model as a band model and Curtis-Godson model to treat non-uniform temperature fields that when optical path is long and spectrum has steep change, there are suitable wavelengths and widths to keep good accuracy. However, it was done only by computer simulation, and in this report, those results are discussed experimentally. The flat burner was used to compare temperature measured by above method with the temperature measured by sodium D-line reversal method. The results showed good correspondence and it means that the predicted suitable wavelengths and widths are experimentally confirmed. The accuracy, namely, standard deviation of the temperature, at the best wavelength conditions was lower than 20K. Temperature distributions around non-uniform temperature distribution on the flat disk burner and domestic boiler were also measured as applications and the results show that this method is applicable for the measurement of rather complicated two-dimensional temperature distributions.

  20. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  1. Evolution of earthquake rupture potential along active faults, inferred from seismicity rates and size distributions

    NASA Astrophysics Data System (ADS)

    Tormann, Thessa; Wiemer, Stefan; Enescu, Bogdan; Woessner, Jochen

    2016-04-01

    One of the major unresolved questions in seismology is the evolution in time and space of the earthquake rupture potential and thus time-dependent hazard along active faults. What happens after a major event: is the potential for further large events reduced as predicted from elastic rebound, or increased as proposed by current-state short-term clustering models? How does the rupture potential distribute in space, i.e. does it reveal imprints of stress transfer? Based on the rich earthquake record from the Pacific Plate along the Japanese coastline we investigate what information on spatial distributions and temporal changes of a normalized rupture potential (NRP) for different magnitudes can be derived from time-varying, local statistical characteristics of well and frequently observed small-to-moderate seismicity. Seismicity records show strong spatio-temporal variability in both activity rates and size distribution. We analyze 18 years of seismicity, including the massive 2011 M9 Tohoku earthquake and its aftermath. We show that the size distribution of earthquakes has significantly changed before (increased fraction of larger magnitudes) and after that mainshock (increased fraction of smaller magnitudes), strongest in areas of highest coseismic slip. Remarkably, a rapid recovery of this effect is observed within only few years. We combine this significant temporal variability in earthquake size distributions with local activity rates and infer the evolution of NRP distributions. We study complex spatial patterns and how they evolve, and more detailed temporal characteristics in a simplified spatial selection, i.e. inside and outside the high slip zone of the M9 earthquake. We resolve an immediate and strong NRP increase for large events prior to the Tohoku event in the subsequent high slip patch and a very rapid decrease inside this high-stress-release area, coupled with a lasting increase of NRP in the immediate surroundings. Even in the center of the Tohoku

  2. Aggregate size distribution evolution for Brownian coagulation-sensitivity to an improved rate constant.

    PubMed

    Zurita-Gotor, M; Rosner, D E

    2004-06-15

    Brownian motion causes small aggregates to encounter one another and grow in gaseous environments, often under conditions in which the coalescence rate (say, spheroidization by "sintering") cannot compete. The polydisperse nature of the aerosol population formed by this mechanism is typically accounted for by formulating an evolution equation for the joint PDF of the state variables needed for describing individual particles. In the simple case of fractal-like aggregates (prescribed morphology and state, characterized just by the number of aggregated spherules, or total aggregate volume), we use the quadrature method of moments and Monte Carlo simulations to show that recent improvements in the laws governing free molecule regime coagulation frequency (rate "constant") of these aggregates cause systematic changes in the shape of the asymptotic aggregate size distribution, with significant implications for the light-scattering power and inertial impaction behavior of such aggregate populations.

  3. Constraining halo occupation distribution and cosmic growth rate using multipole power spectrum

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki

    2014-06-01

    We propose a new method of measuring halo occupation distribution (HOD) together with cosmic growth rate using multipole components of galaxy power spectrum Pl(k). The non-linear redshift-space distortion due to the random motion of satellite galaxies, i.e. Fingers-of-God, generates high-l multipole anisotropy in galaxy clustering, such as the hexadecapole (l = 4) and tetra-hexadecapole (l = 6), which are sensitive to the fraction and the velocity dispersion of satellite galaxies. Using simulated samples following the HOD of luminous red galaxies, we find that the input HOD parameters are successfully reproduced from Pl(k), and that high-l multipole information help to break the degeneracy among HOD parameters. We also show that the measurements of the cosmic growth rate as well as the satellite fraction and velocity dispersions are significantly improved by adding the small-scale information of high-l multipoles.

  4. Use of tube radial distribution of ternary mixed carrier solvents for introduction of absorption reagent for metal ion separation and online detection into capillary.

    PubMed

    Fujinaga, Satoshi; Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-10-01

    When ternary mixed solvents consisting of water-hydrophilic/hydrophobic organic solvents are fed into a micro-space under laminar flow conditions, the solvent molecules are radially distributed in the micro-space. The specific fluidic behavior of the solvents is called the "tube radial distribution phenomenon (TRDP)". A novel capillary chromatography method was developed based on the TRDP that creates the inner major and outer minor phases in a tube, where the outer phase acts as a pseudo-stationary phase. This is called "tube radial distribution chromatography (TRDC)". In this study, Chrome Azurol S as an absorption reagent was introduced into the TRDC system for metal ion separation and online detection. The fused-silica capillary tube (75 μm id and 110 cm length) and water-acetonitrile-ethyl acetate mixture (3:8:4 volume ratio) including 20 mM Chrome Azurol S as a carrier solution were used. Metal ions, i.e. Co(II), Cu(II), Ni(II), Al(III), and Fe(III), as models were injected into the present TRDC system. Characteristic individual absorption characteristics and elution times were obtained as the result of complex formation between the metal ions and Chrome Azurol S in the water-acetonitrile-ethyl acetate mixture solution. The elution times of the metal ions were examined based on their absorption behavior; Co(II), Ni(II), Al(III), Fe(III), and Cu(II) were eluted in this order over the elution times of 4.7-6.8 min. The elution orders were determined from the molar ratios of metal ion to Chrome Azurol S and Irving-Williams series for bivalent metal ions.

  5. Geochemical constraints on the distribution and rates of debromination in the deep subseafloor biosphere

    NASA Astrophysics Data System (ADS)

    Berg, Richard D.; Solomon, Evan A.

    2016-02-01

    Organic matter in marine sediments is degraded through a range of diverse metabolic pathways which are dependent on substrate availability, environmental conditions, and microbial ecology. The rates and systematics of these metabolic pathways affect long-term global geochemical cycles and the degradation of organic matter in the subsurface marine environment. Organohalide respiration is one of these pathways that has been hypothesized to be widely active in the deep biosphere, with the carbon-halogen bonds being broken through microbially-mediated redox reactions. Besides directly providing energy to microbes in marine sediments and allowing bromine to cycle back into the overlying ocean, organobromine respiration may also be closely linked to nitrogen and carbon cycling in anoxic marine sediments. Here we investigate the distribution and rates of debromination by tracking the production of dissolved bromide (Br-) with depth in pore water sampled at several continental margins. Pore water profiles of Br- and ammonium (NH4+) concentrations from the Krishna-Godavari (K-G) basin on the southeastern margin of India indicate a common distribution of rates of debromination and NH4+ production in continental margin sediments, and suggest that the pools of bioavailable nitrogen and organobromine compounds are likely geochemically associated at these sites. Dissolved Br- and total solid-phase bromine concentration profiles from the K-G basin and Costa Rica margin indicate the most rapid debromination occurs in the upper 10-20 m of the sediment column. The rates of debromination in the sediment column from the Costa Rica, Cascadia, and Nankai convergent margins are estimated using numerical reaction-transport modeling of pore water Br- concentration profiles to constrain the maximum amount of metabolic energy that could be provided to the microbial communities through organobromine respiration. The modeled rates of debromination provide an upper limit to organobromine

  6. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast.

    PubMed

    Lang, Gregory I; Parsons, Lance; Gammie, Alison E

    2013-09-01

    DNA mismatch repair is a highly conserved DNA repair pathway. In humans, germline mutations in hMSH2 or hMLH1, key components of mismatch repair, have been associated with Lynch syndrome, a leading cause of inherited cancer mortality. Current estimates of the mutation rate and the mutational spectra in mismatch repair defective cells are primarily limited to a small number of individual reporter loci. Here we use the yeast Saccharomyces cerevisiae to generate a genome-wide view of the rates, spectra, and distribution of mutation in the absence of mismatch repair. We performed mutation accumulation assays and next generation sequencing on 19 strains, including 16 msh2 missense variants implicated in Lynch cancer syndrome. The mutation rate for DNA mismatch repair null strains was approximately 1 mutation per genome per generation, 225-fold greater than the wild-type rate. The mutations were distributed randomly throughout the genome, independent of replication timing. The mutation spectra included insertions/deletions at homopolymeric runs (87.7%) and at larger microsatellites (5.9%), as well as transitions (4.5%) and transversions (1.9%). Additionally, repeat regions with proximal repeats are more likely to be mutated. A bias toward deletions at homopolymers and insertions at (AT)n microsatellites suggests a different mechanism for mismatch generation at these sites. Interestingly, 5% of the single base pair substitutions might represent double-slippage events that occurred at the junction of immediately adjacent repeats, resulting in a shift in the repeat boundary. These data suggest a closer scrutiny of tumor suppressors with homopolymeric runs with proximal repeats as the potential drivers of oncogenesis in mismatch repair defective cells. PMID:23821616

  7. Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Dove, Justin; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-07-01

    The channel loss incurred in long-distance transmission places a significant burden on quantum key distribution (QKD) systems: they must defeat a passive eavesdropper who detects all the light lost in the quantum channel and does so without disturbing the light that reaches the intended destination. The current QKD implementation with the highest long-distance secret-key rate meets this challenge by transmitting no more than one photon per bit [M. Lucamarini et al., Opt. Express 21, 24550 (2013), 10.1364/OE.21.024550]. As a result, it cannot achieve the Gbps secret-key rate needed for one-time pad encryption of large data files unless an impractically large amount of multiplexing is employed. We introduce floodlight QKD (FL-QKD), which floods the quantum channel with a high number of photons per bit distributed over a much greater number of optical modes. FL-QKD offers security against the optimum frequency-domain collective attack by transmitting less than one photon per mode and using photon-coincidence channel monitoring, and it is completely immune to passive eavesdropping. More importantly, FL-QKD is capable of a 2-Gbps secret-key rate over a 50-km fiber link, without any multiplexing, using available equipment, i.e., no new technology need be developed. FL-QKD achieves this extraordinary secret-key rate by virtue of its unprecedented secret-key efficiency, in bits per channel use, which exceeds those of state-of-the-art systems by two orders of magnitude.

  8. Trends in rain rate distribution derived from gauges in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lau, Stephen Pw; Chiu, Long S.; Lee, T. C.

    2010-05-01

    The impact of the increase in emission of greenhouse gases and changes in land cover/land use pattern have resulted in change in the general circulation of the atmosphere and the energy and water cycles. While there is general concensus in trends in temperature, the changes in the water cycle, in particular precipitation is still uncertain. Climate models predict relatively small change in the total rainfall, however, the distribution of rain rates becomes more extreme, i.e. increases in heavy and light or no/rain and decrease in the moderate rain categories. These complicated issues are compounded by the increase aerosols resulted from pollution, particularly in Megacities such as Hong Kong. To assess the changes associated with the regional hydrologic cycle due to these factors, we examine a long time series (starting in the late 1940s) of hourly rainfall of all gauge stations in Hong Kong maintained by the Hong Kong Observatory. In this presentation, annual variations of the rain rate distribuitons, the diurnal cycle, and rain event characteristics (duration, storm total, conditional rain rates, and separation) for the winter monsoon, summer monsoon, mid-summer rain and typhoon periods will be presented. Trends of the rain rate categories, event statistics, diurnal variabiltiy, will be examined by linear regression analysis, Empirical Mode Decomposition and wavelet analysis.

  9. The ℓ-distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media

    NASA Astrophysics Data System (ADS)

    André, Frédéric

    2016-08-01

    The ℓ-distribution modeling is proposed for radiative heat transfer in uniform and non-uniform non-gray gaseous media. The method is partly based on the application of results from the k-moment method. It combines this technique with several concepts from probability theory: the notion of rank transmutation maps allows extending the k-moment method to an infinite number of k-moments; copula models appear naturally to extend the method from uniform to non-uniform gas paths. The ℓ-distribution approach is shown to provide results: (1) more accurate - up to three orders of magnitude - than usual k-distribution approaches in uniform media, (2) as precise as correlated-k models in non-uniform situations. All these results are obtained at a computational cost lower than k-distribution models. Differences and similarities between k- and ℓ-distribution methods are discussed.

  10. Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback.

    PubMed

    Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun

    2015-09-01

    A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.

  11. Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-07-21

    We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 10(16) exp(-42 200 K/T) cm(3)/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data. PMID:27380878

  12. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  13. Development and performance of a fluence rate distribution model for a cylindrical excimer lamp.

    PubMed

    Naunovic, Zorana; Pennell, Kelly G; Blatchley, Ernest R

    2008-03-01

    Ultraviolet disinfection systems employing excimer lamp technology represent a suitable choice in situations where lamp mercury content is restricted, or otherwise undesirable. The XeBr* excimer lamp emits nearly monochromatic radiation at 282 nm, and dose-response experiments with Bacillus subtilis spores have shown that it is germicidally effective. A numerical model was developed to describe the fluence rate (E') distribution emanating from a cylindrical XeBr* excimer lamp, based on liquid water or air as the surrounding medium. The E' distribution model is based on physical phenomena that are known to govern excimer lamps; the model also accounts for refraction, reflection, and absorbance effects of the quartz lamp envelope and the media surrounding the lamp. Measurements of the E' distribution by local actinometry supported the validity of the numerical model. This model can be used as a component (submodel) of a more general model to simulate the behavior of photochemical reactors that employ excimer lamps as their source of electromagnetic radiation.

  14. Spatial distribution of carbon dioxide absorption and emission in Chungcheongbuk-do, South Korea using RS and GIS method

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Na, Sang-il; Park, Jong-Hwa

    2011-11-01

    Climate change has been an important issue particularly in recent years. Climate change has been reported as a phenomena caused by human activities as identified in the IPCC Fourth Assessment Report (AR4) in 2007, and in order to prevent negative impacts to our planet, conscious efforts to reduce greenhouse gases are necessary worldwide. In addition, Korea's interest in global climate change is growing. In reality, symptoms of global warming on the Korean Peninsula are visible in the air, on the land and in changes patterns to the normal levels and contents of Korea's oceans. Impacts of global warming result in abnormal temperature fluctuation, typhoons, regional flooding and desertification with such extreme and that are arguably more frequent occurrences of natural disasters quickly becoming a general problem for the community as a whole. On the other hand, the development of IT technology and the improvement and use of satellite technology have ensured better access to RS technique and utilization. Due to RS technology is ability to monitor it has become widely used in farming applications, environment prediction and planning and ecology studies and analysis. The purpose of this study is to assess emission and absorption in relation to geographical features and to be better able to deliver environment information to produce a spatial map of carbon dioxide in Chungbuk by using RS and GIS with a focus on carbon dioxide emission and its direct absorption caused by tree growth according to energy consumption.

  15. Tectonic controls on earthquake size distribution and seismicity rate: slab buoyancy and slab bending

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2014-12-01

    There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and

  16. Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus.

    PubMed

    Mathias, Paul M; Zheng, Feng; Heldebrant, David J; Zwoster, Andy; Whyatt, Greg; Freeman, Charles M; Bearden, Mark D; Koech, Phillip

    2015-11-01

    The kinetics of the absorption of CO2 into two nonaqueous CO2-binding organic liquid (CO2 BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO2 loadings were run with a so-called "first-generation" CO2 BOL, comprising an independent base and alcohol, and a "second-generation" CO2 BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g ) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of the k'g value was also observed, which suggests that the physical solubility of CO2 in organic liquids may be making CO2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2 BOL solvents. Previous work established the thermodynamic properties related to CO2 capture. The present paper quantitatively studies the kinetics of CO2 capture and develops a rate-based model.

  17. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    PubMed

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration.

  18. Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus.

    PubMed

    Mathias, Paul M; Zheng, Feng; Heldebrant, David J; Zwoster, Andy; Whyatt, Greg; Freeman, Charles M; Bearden, Mark D; Koech, Phillip

    2015-11-01

    The kinetics of the absorption of CO2 into two nonaqueous CO2-binding organic liquid (CO2 BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO2 loadings were run with a so-called "first-generation" CO2 BOL, comprising an independent base and alcohol, and a "second-generation" CO2 BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g ) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of the k'g value was also observed, which suggests that the physical solubility of CO2 in organic liquids may be making CO2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2 BOL solvents. Previous work established the thermodynamic properties related to CO2 capture. The present paper quantitatively studies the kinetics of CO2 capture and develops a rate-based model. PMID:26377774

  19. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    PubMed

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration. PMID:25277061

  20. Measurement verification of dose distributions in pulsed-dose rate brachytherapy in breast cancer

    PubMed Central

    Mantaj, Patrycja; Zwierzchowski, Grzegorz

    2013-01-01

    Aim The aim of the study was to verify the dose distribution optimisation method in pulsed brachytherapy. Background The pulsed-dose rate brachytherapy is a very important method of breast tumour treatment using a standard brachytheraphy equipment. The appropriate dose distribution round an implant is an important issue in treatment planning. Advanced computer systems of treatment planning are equipped with algorithms optimising dose distribution. Materials and methods The wax-paraffin phantom was constructed and seven applicators were placed within it. Two treatment plans (non-optimised, optimised) were prepared. The reference points were located at a distance of 5 mm from the applicators’ axis. Thermoluminescent detectors were placed in the phantom at suitable 35 chosen reference points. Results The dosimetry verification was carried out in 35 reference points for the plans before and after optimisation. Percentage difference for the plan without optimisation ranged from −8.5% to 1.4% and after optimisation from −8.3% to 0.01%. In 16 reference points, the calculated percentage difference was negative (from −8.5% to 1.3% for the plan without optimisation and from −8.3% to 0.8% for the optimised plan). In the remaining 19 points percentage difference was from 9.1% to 1.4% for the plan without optimisation and from 7.5% to 0.01% for the optimised plan. No statistically significant differences were found between calculated doses and doses measured at reference points in both dose distribution non-optimised treatment plans and optimised treatment plans. Conclusions No statistically significant differences were found in dose values at reference points between doses calculated by the treatment planning system and those measured by TLDs. This proves the consistency between the measurements and the calculations. PMID:24416545

  1. Comparing ligo merger rate observations with theory: distribution of star-forming conditions

    SciTech Connect

    Belczynski, Kryzysztof; Kopparapu, R; O' Shaughnessy, R

    2008-01-01

    Within the next decade, ground based gravitational wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. Though these measurements can constrain our models of stellar, binary, and cluster evolution in the nearby present-day and ancient universe, we argue that the universe is sufficiently heterogeneous (in age and metallicity distribution at least) and that merger rates predicted by these models can be sufficiently sensitive to those heterogeneities so that a fair comparison of models per unit similar star forming mass necessarily introduces at least an additional 30%--50% systematic error into any constraints on compact binary evolution models. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g. , binary masses and spins), as few as the {approx_equal}5 merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example immediately relevant to analysis of initial and enhanced LIGO results, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can be consistently used to constrain merger rates without introducing a systematic error of order 0(30%) at 90% confidence (depending on the type of binary involved). For example, though binary black holes typically take many Gyr to merge, binary neutron stars often merge rapidly; different tracers of stellar content are required for these two types. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions -- even assuming no uncertainty in binary evolution model -- that the distribution of star forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. We emphasize that the degree of sensitivity to star

  2. Estimation of customer lifetime value of a health insurance with interest rates obeying uniform distribution

    NASA Astrophysics Data System (ADS)

    Widyawan, A.; Pasaribu, U. S.; Henintyas, Permana, D.

    2015-12-01

    Nowadays some firms, including insurer firms, think that customer-centric services are better than product-centric ones in terms of marketing. Insurance firms will try to attract as many new customer as possible while maintaining existing customer. This causes the Customer Lifetime Value (CLV) becomes a very important thing. CLV are able to put customer into different segments and calculate the present value of a firm's relationship with its customer. Insurance customer will depend on the last service he or she can get. So if the service is bad now, then customer will not renew his contract though the service is very good at an erlier time. Because of this situation one suitable mathematical model for modeling customer's relationships and calculating their lifetime value is Markov Chain. In addition, the advantages of using Markov Chain Modeling is its high degree of flexibility. In 2000, Pfeifer and Carraway states that Markov Chain Modeling can be used for customer retention situation. In this situation, Markov Chain Modeling requires only two states, which are present customer and former ones. This paper calculates customer lifetime value in an insurance firm with two distinctive interest rates; the constant interest rate and uniform distribution of interest rates. The result shows that loyal customer and the customer who increase their contract value have the highest CLV.

  3. Measurement of vapor/liquid distributions in a binary-component fuel spray using laser imaging of droplet scattering and vapor absorption

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhang, Yuyin; Wu, Shenqi; Xu, Bin

    2014-08-01

    Fuel volatility has a great effect on its evaporation processes and the mixture formation and thus combustion and emissions formation processes in internal combustion engines. To date, however, instead of the actual gasoline or diesel fuel, many researchers have been using single-component fuel in their studies, because the composition of the former is too complicated to understand the real physics behind the evaporation and combustion characteristics. Several research groups have reported their results on droplets evaporation in a spray of multi-component fuel, carried out both numerically and experimentally. However, there are plenty of difficulties in quantitative determination of vapor concentration and droplet distributions of each component in a multicomponent fuel spray. In this study, to determine the vapor phase concentration and droplet distributions in an evaporating binary component fuel spray, a laser diagnostics based on laser extinction by droplet scattering and vapor absorption was developed. In practice, measurements of the vapor concentration distributions of the lower (n-tridencane) and higher (n-octane) volatility components in the binary component fuel sprays have been carried out at ambient temperatures of 473K and 573K, by substituting p-xylene for noctane or α-methylnaphthalene for n-tridecane. p-Xylene and α-methylnaphthalene were selected as the substitutes is because they have strong absorption band near 266nm and transparent near 532nm and, their thermo-physical properties are similar to those of the original component. As a demonstration experiment, vapor/liquid distribution of the lower boiling point (LBP) and higher boiling point (HBP) components in the binary component fuel spray have been obtained.

  4. The COS/UVES absorption survey of the Magellanic stream. III. Ionization, total mass, and inflow rate onto the Milky Way

    SciTech Connect

    Fox, Andrew J.; Thom, Christopher; Tumlinson, Jason; Ely, Justin; Kumari, Nimisha; Wakker, Bart P.; Hernandez, Audra K.; Haffner, L. Matthew; Barger, Kathleen A.; Lehner, Nicolas; Howk, J. Christopher; Richter, Philipp; Charlton, Jane C.; Westmeier, Tobias; Misawa, Toru; Rodriguez-Hidalgo, Paola

    2014-06-01

    Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way. The result is a spectacular arrangement of gaseous structures, including the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30° of the 21 cm emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross-section of the Magellanic System is ≈11,000 deg{sup 2}, or around one-quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate the total gas mass (atomic plus ionized) of the Magellanic System to be ≈2.0 × 10{sup 9} M {sub ☉} (d/55 kpc){sup 2}, with the ionized gas contributing around three times as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ∼0.5-1.0 Gyr, it will represent an average inflow rate of ∼3.7-6.7 M {sub ☉} yr{sup –1}, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Magellanic gas may not survive its journey to the disk fully intact and will instead add material to (and cool) the corona.

  5. The failure of brittle materials under overall compression: Effects of loading rate and defect distribution

    NASA Astrophysics Data System (ADS)

    Paliwal, Bhasker

    brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.

  6. Non-invasive respiration rate estimation using ultra-wideband distributed cognitive radar system.

    PubMed

    Chen, Yifan; Gunawan, Erry; Low, Kay Soon; Kim, Yongmin; Soh, Cheong Boon; Leyman, A Rahim; Thi, Lin Lin

    2006-01-01

    It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare, rescue, and security applications. In this paper, a geometry-based statistical channel model is developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs.

  7. One-way quantum key distribution: Simple upper bound on the secret key rate

    SciTech Connect

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2006-11-15

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol.

  8. Estimation of Distributed Groundwater Pumping Rates in Yolo County,CA—Intercomparison of Two Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Harter, T.

    2015-12-01

    Accurate estimation of groundwater (GW) budgets and effective management of agricultural GW pumping remains a challenge in much of California's Central Valley (CV) due to a lack of irrigation well metering. CVHM and C2VSim are two regional-scale integrated hydrologic models that provide estimates of historical and current CV distributed pumping rates. However, both models estimate GW pumping using conceptually different agricultural water models with uncertainties that have not been adequately investigated. Here, we evaluate differences in distributed agricultural GW pumping and recharge estimates related to important differences in the conceptual framework and model assumptions used to simulate surface water (SW) and GW interaction across the root zone. Differences in the magnitude and timing of GW pumping and recharge were evaluated for a subregion (~1000 mi2) coincident with Yolo County, CA, to provide similar initial and boundary conditions for both models. Synthetic, multi-year datasets of land-use, precipitation, evapotranspiration (ET), and SW deliveries were prescribed for each model to provide realistic end-member scenarios for GW-pumping demand and recharge. Results show differences in the magnitude and timing of GW-pumping demand, deep percolation, and recharge. Discrepancies are related, in large part, to model differences in the estimation of ET requirements and representation of soil-moisture conditions. CVHM partitions ET demand, while C2VSim uses a bulk ET rate, resulting in differences in both crop-water and GW-pumping demand. Additionally, CVHM assumes steady-state soil-moisture conditions, and simulates deep percolation as a function of irrigation inefficiencies, while C2VSim simulates deep percolation as a function of transient soil-moisture storage conditions. These findings show that estimates of GW-pumping demand are sensitive to these important conceptual differences, which can impact conjunctive-use water management decisions in the CV.

  9. X-ray absorption spectroscopy of an investigational anticancer gallium(III) drug: interaction with serum proteins, elemental distribution pattern, and coordination of the compound in tissue.

    PubMed

    Hummer, Alfred A; Bartel, Caroline; Arion, Vladimir B; Jakupec, Michael A; Meyer-Klaucke, Wolfram; Geraki, Tina; Quinn, Paul D; Mijovilovich, Ana; Keppler, Bernhard K; Rompel, Annette

    2012-06-14

    Tris(8-quinolinolato)gallium(III) (1, KP46) is a very promising investigational anticancer drug. Its interaction with serum proteins, elemental distribution, and coordination in tissue were investigated with X-ray absorption (XAS) methods. Model compounds with mixed O, N, and/or S donor atoms are reported. The coordination and structure of 1 in cell culture medium (minimum essential medium, MEM) and fetal calf serum (FCS) were probed by XANES and EXAFS. The interaction of 1 with the serum proteins apotransferrin (apoTf) and human serum albumin (HSA) was addressed as well. By application of micro-XAS to tissue samples from mice treated with 1, the gallium distribution pattern was analyzed and compared to those of physiological trace elements. The complex 1 turned out to be very stable under physiological conditions, in cell culture media and in tissue samples. The coordination environment of the metal center remains intact in the presence of apoTf and HSA. The gallium distribution pattern in tumor and liver tissue revealed high similarities to the distribution patterns of Zn and Fe, minor similarities to Cu and Ni, and no similarity to Ca.

  10. Distribution and speciation of bromine in mammalian tissue and fluids by X-ray fluorescence imaging and X-ray absorption spectroscopy.

    PubMed

    Ceko, Melanie J; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy; James, Simon A; Kirby, Jason K; Rodgers, Raymond J; Harris, Hugh H

    2015-05-01

    Bromine is one of the most abundant and ubiquitous trace elements in the biosphere and until recently had not been shown to perform any essential biological function in animals. A recent study demonstrated that bromine is required as a cofactor for peroxidasin-catalysed formation of sulfilimine crosslinks in Drosophila. In addition, bromine dietary deficiency is lethal in Drosophila, whereas bromine replenishment restores viability. The aim of this study was to examine the distribution and speciation of bromine in mammalian tissues and fluids to provide further insights into the role and function of this element in biological systems. In this study we used X-ray fluorescence (XRF) imaging and inductively coupled plasma-mass spectrometry (ICP-MS) to examine the distribution of bromine in bovine ovarian tissue samples, follicular fluid and aortic serum, as well as human whole blood and serum and X-ray absorption spectroscopy (XAS) to identify the chemical species of bromine in a range of mammalian tissue (bovine, ovine, porcine and murine), whole blood and serum samples (bovine, ovine, porcine, murine and human), and marine samples (salmon (Salmo salar), kingfish (Seriola lalandi) and Scleractinian coral). Bromine was found to be widely distributed across all tissues and fluids examined. In the bovine ovary in particular it was more concentrated in the sub-endothelial regions of arterioles. Statistical comparison of the near-edge region of the X-ray absorption spectra with a library of bromine standards led to the conclusion that the major form of bromine in all samples analysed was bromide.

  11. Distribution and speciation of bromine in mammalian tissue and fluids by X-ray fluorescence imaging and X-ray absorption spectroscopy.

    PubMed

    Ceko, Melanie J; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy; James, Simon A; Kirby, Jason K; Rodgers, Raymond J; Harris, Hugh H

    2015-05-01

    Bromine is one of the most abundant and ubiquitous trace elements in the biosphere and until recently had not been shown to perform any essential biological function in animals. A recent study demonstrated that bromine is required as a cofactor for peroxidasin-catalysed formation of sulfilimine crosslinks in Drosophila. In addition, bromine dietary deficiency is lethal in Drosophila, whereas bromine replenishment restores viability. The aim of this study was to examine the distribution and speciation of bromine in mammalian tissues and fluids to provide further insights into the role and function of this element in biological systems. In this study we used X-ray fluorescence (XRF) imaging and inductively coupled plasma-mass spectrometry (ICP-MS) to examine the distribution of bromine in bovine ovarian tissue samples, follicular fluid and aortic serum, as well as human whole blood and serum and X-ray absorption spectroscopy (XAS) to identify the chemical species of bromine in a range of mammalian tissue (bovine, ovine, porcine and murine), whole blood and serum samples (bovine, ovine, porcine, murine and human), and marine samples (salmon (Salmo salar), kingfish (Seriola lalandi) and Scleractinian coral). Bromine was found to be widely distributed across all tissues and fluids examined. In the bovine ovary in particular it was more concentrated in the sub-endothelial regions of arterioles. Statistical comparison of the near-edge region of the X-ray absorption spectra with a library of bromine standards led to the conclusion that the major form of bromine in all samples analysed was bromide. PMID:25675086

  12. The microlensing rate and distribution of free-floating planets towards the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Ban, M.; Kerins, E.; Robin, A. C.

    2016-10-01

    Context. Ground-based optical microlensing surveys have provided tantalising, if inconclusive, evidence for a significant population of free-floating planets (FFPs). Both ground- and space-based facilities are being used and developed which will be able to probe the distrubution of FFPs with much better sensitivity. It is also vital to develop a high-precision microlensing simulation framework to evaluate the completeness of such surveys. Aims: We present the first signal-to-noise limited calculations of the FFP microlensing rate using the Besançon Galactic model. The microlensing distribution towards the Galactic centre is simulated for wide-area ground-based optical surveys (I-band) such as OGLE or MOA, a wide-area ground-based near-infrared survey (K-band), and a targeted space-based near-infrared survey (H-band) which could be undertaken with Euclid or WFIRST. Methods: We present a calculation framework for the computation of the optical and near-infrared microlensing rate and optical depth for simulated stellar catalogues which are signal-to-noise limited, and take account of extinction, unresolved stellar background light, and finite source size effects, which can be significant for FFPs. Results: We find that the global ground-based I-band yield over a central 200 deg2 region covering the Galactic centre ranges from 20 Earth-mass FFPs yr-1 up to 3500 yr-1 for Jupiter FFPs in the limit of 100% detection efficiency, and almost an order of magnitude larger for a K-band survey. For ground-based surveys we find that the inclusion of finite source and the unresolved background reveals a mass-dependent variation in the spatial distribution of FFPs. For a targeted space-based H-band covering 2 deg2, the yield depends on the target field but maximises close to the Galactic centre with around 76 Earth to 1700 Jupiter FFPs per year. For near-IR space-based surveys like Euclid or WFIRST the spatial distribution of FFPs is found to be largely insensitive to the FFP mass

  13. Earthquake Rate Changes and Interevent Distance Distributions in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Michael, A. J.

    2013-12-01

    The Brawley Seismic Zone (BSZ), located in the Salton Trough of southern California, has a long history of earthquake swarm activity and a high level of geothermal energy exploitation activity. A swarm occurred in August 2012 near the North Brawley Geothermal Field (NBGF), which raised the question of whether it and other recent earthquake rate changes may have been induced by fluid extraction and injection activity (e.g., Chen and Shearer, JGR, 2011; Brodsky and Lajoie, Science, 2013). We explore this issue by examining earthquake rate changes and interevent distance distributions in two geothermal fields in the region, the NBGF and the Salton Sea Geothermal Field (SSGF). In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance have been diagnostic of fluid-injection induced seismicity (Llenos and Michael, BSSA, in press). Here we test if similar changes occur that may be associated with fluid injection and extraction at the two geothermal fields. We identify clusters in earthquake catalogs from 1981-2012 in the SSGF and the NBGF, then compute interevent distances within each cluster. Preliminary results suggest that in both fields, the interevent spacing does not appear to change significantly with the start of fluid injection or extraction in 1982. We also use the stochastic Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to determine if changes in the underlying earthquake driving processes, either natural or due to geothermal exploitation activities, have occurred in the BSZ, as shown by statistically significant changes in the model parameters. While increases in the background seismicity rate and aftershock productivity parameters were associated with fluid-injection induced earthquake rate changes in Oklahoma and Arkansas, preliminary results indicate that similar changes are not as apparent in the BSZ. The higher heat

  14. Foraminiferal Distributions, Sedimentation Rates and Patterns in the Albemarle Estuarine System, North Carolina

    NASA Astrophysics Data System (ADS)

    Vance, D. J.; Corbett, D. R.; Culver, S. J.

    2002-12-01

    The modern distribution of benthic foraminifera of the Albemarle Estuarine System (AES) has been characterized by studying 50 strategically chosen sites to provide a model for paleoenvironmental interpretations of short sediment cores (15-75 cm). Water bodies studied within the AES include Albemarle Sound, Currituck Sound, Roanoke Sound, Croatan Sound, northern Pamlico Sound, North River, Pasquotank River, Alligator River, as well as Oregon Inlet and the adjacent foreshore and shoreface of the Atlantic Ocean. Sedimentation rates in the study area have been addressed using 210Pb and 137Cs dating methods. Five foraminiferal assemblages are present: an inner estuary biofacies characterized by two dominant genera, Ammobaculites and Ammotium, with moderate percentages of Miliammina fusca and minor percentages of Ammoastuta salsa; an outer estuary biofacies characterized again by Ammobaculites and Ammotium, but with lower percentages of Miliammina fusca; a marsh shoreline biofacies characterized by a mixed assemblage dominated by Ammobaculites and Ammotium with minor to moderate percentages of adjacent marsh foraminifera; a marsh biofacies characterized by varying abundances of Ammoastuta inepta, Arenoparella mexicana, Haplophragmoides wilberti, Jadammina macrescens, Miliammina earlandi, Miliammina fusca, Tiphotrocha comprimata, Trochammina inflata, as well as the genera Ammobaculites and Ammotium; and a marine (normal salinity) biofacies characterized mainly by Elphidium excavatum and minor percentages of other elphidiids. Sedimentation rates were studied from 28 short cores taken along transects in all the major water bodies. Rates were as high as 0.45 cm/yr at the head of Albemarle Sound and as little as 0.05 cm/yr 60 km away in the eastern part of the Albemarle. The embayed tributaries exhibited sedimentation rates on the order of 0.25 cm/yr. Limited information on sedimentation rates was provided by cores in eastern sounds, which had only a few centimeters of recent

  15. Distribution of Liquid Flow Rates in the Process of Bubbling with Gas Through Gas-Permeable Inserts

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Valuev, D. V.; Dariev, R. S.; Trifonov, V. A.; Borovikov, I. F.

    2016-08-01

    The authors studied the distribution of the vertical components of the rate in the ascending gas-liquid flow when blowing through the bottom nozzle at two levels under three modes of neutral gas supply. It was estimated that under the intensities of gas (nitrogen) of 2 and 4 L/min-t the type of rates distribution in both cross-sections does not differ from the generally accepted one and practically does not depend upon the intensity of gas supply.

  16. Vertical distribution of radiation dose rates in the water of a brackish lake in Aomori Prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Iyogi, Takashi; Ueda, Shinji; Hisamatsu, Shun'ichi

    2015-11-01

    Seasonal radiation dose rates were measured with glass dosemeters housed in watertight cases at various depths in the water of Lake Obuchi, a brackish lake in Aomori Prefecture, Japan, during fiscal years 2011-2013 to assess the background external radiation dose to aquatic biota in the lake. The mean radiation dose in the surface water of the lake was found to be 27 nGy h(-1), which is almost the same as the absorption dose rate due to cosmic ray reported in the literature. Radiation dose rates decreased exponentially with water depth down to a depth of 1 m above the bottom sediment. In the water near the sediment, the dose rate increased with depth owing to the emission of γ-rays from natural radionuclides in the sediment.

  17. Detection Rate, Distribution, Clinical and Pathological Features of Colorectal Serrated Polyps

    PubMed Central

    Cao, Hai-Long; Chen, Xue; Du, Shao-Chun; Song, Wen-Jing; Wang, Wei-Qiang; Xu, Meng-Que; Wang, Si-Nan; Piao, Mei-Yu; Cao, Xiao-Cang; Wang, Bang-Mao

    2016-01-01

    Background: Colorectal serrated polyp is considered as histologically heterogeneous lesions with malignant potential in western countries. However, few Asian studies have investigated the comprehensive clinical features of serrated polyps in symptomatic populations. The aim of the study was to evaluate the features of colorectal serrated polyps in a Chinese symptomatic population. Methods: Data from all consecutive symptomatic patients were documented from a large colonoscopy database and were analyzed. Chi-square test or Fisher's exact test and logistic regression analysis were used for the data processing. Results: A total of 9191 (31.7%) patients were detected with at least one colorectal polyp. The prevalence of serrated polyps was 0.53% (153/28,981). The proportions of hyperplastic polyp (HP), sessile serrated adenoma/polyp (SSA/P), and traditional serrated adenoma (TSA) of all serrated polyps were 41.2%, 7.2%, and 51.6%, respectively, which showed a lower proportion of HP and SSA/P and a higher proportion of TSA. Serrated polyps appeared more in males and elder patients while there was no significant difference in the subtype distribution in gender and age. The proportions of large and proximal serrated polyps were 13.7% (21/153) and 46.4% (71/153), respectively. In total, 98.9% (89/90) serrated adenomas were found with dysplasia. Moreover, 14 patients with serrated polyps were found with synchronous advanced colorectal neoplasia, and large serrated polyps (LSPs) (odds ratio: 3.446, 95% confidence interval: 1.010–11.750, P < 0.05), especially large HPs, might have an association with synchronous advanced neoplasia (AN). Conclusions: The overall detection rate of colorectal serrated polyps in Chinese symptomatic patient population was low, and distribution pattern of three subtypes is different from previous reports. Moreover, LSPs, especially large HPs, might be associated with an increased risk of synchronous AN. PMID:27748334

  18. Architecture Studies Done for High-Rate Duplex Direct Data Distribution (D4) Services

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A study was sponsored to investigate a set of end-to-end system concepts for implementing a high-rate duplex direct data distribution (D4) space-to-ground communications link. The NASA Glenn Research Center is investigating these systems (both commercial and Government) as a possible method of providing a D4 communications service between NASA spacecraft in low Earth orbit and the respective principal investigators using or monitoring instruments aboard these spacecraft. Candidate commercial services were assessed regarding their near-term potential to provide a D4 type of service. The candidates included K-band and V-band geostationary orbit and nongeostationary orbit satellite relay services and direct downlink (D3) services. Internet protocol (IP) networking technologies were evaluated to enable the user-directed distribution and delivery of science data. Four realistic, near-future concepts were analyzed: 1) A duplex direct link (uplink plus downlink communication paths) between a low-Earth-orbit spacecraft and a principal-investigator-based autonomous Earth station; 2) A space-based relay using a future K-band nongeosynchronous-orbit system to handle both the uplink and downlink communication paths; 3) A hybrid link using both direct and relay services to achieve full duplex capability; 4) A dual-mode concept consisting of both a duplex direct link and a space relay duplex link operating independently. The concepts were analyzed in terms of contact time between the NASA spacecraft and the communications service and the achievable data throughput. Throughput estimates for the D4 systems were based on the infusion of advanced communications technology products (single and multibeam K-band phased-arrays and digital modems) being developed by Glenn. Cost estimates were also performed using extrapolated information from both terrestrial and current satellite communications providers. The throughput and cost estimates were used to compare the concepts.

  19. The pre-clinical absorption, distribution, metabolism and excretion properties of IPI-926, an orally bioavailable antagonist of the hedgehog signal transduction pathway.

    PubMed

    Smith, Sherri; Hoyt, Jennifer; Whitebread, Nigel; Manna, Joseph; Peluso, Marisa; Faia, Kerrie; Campbell, Veronica; Tremblay, Martin; Nair, Somarajan; Grogan, Michael; Castro, Alfredo; Campbell, Matthew; Ferguson, Jeanne; Arsenault, Brendan; Nevejans, Jylle; Carter, Bennett; Lee, John; Dunbar, Joi; McGovern, Karen; Read, Margaret; Adams, Julian; Constan, Alexander; Loewen, Gordon; Sydor, Jens; Palombella, Vito; Soglia, John

    2013-10-01

    1. IPI-926 is a novel semisynthetic cyclopamine derivative that is a potent and selective Smoothened inhibitor that blocks the hedgehog signal transduction pathway. 2. The in vivo clearance of IPI-926 is low in mouse and dog and moderate in monkey. The volume of distribution is high across species. Oral bioavailability ranges from moderate in monkey to high in mouse and dog. Predicted human clearance using simple allometry is low (24 L h(-1)), predicted volume of distribution is high (469 L) and predicted half-life is long (20 h). 3. IPI-926 is highly bound to plasma proteins and has minimal interaction with human α-1-acid glycoprotein. 4. In vitro metabolic stability ranges from stable to moderately stable. Twelve oxidative metabolites were detected in mouse, rat, dog, monkey and human liver microsome incubations and none were unique to human. 5. IPI-926 is not a potent reversible inhibitor of CYP1A2, 2C8, 2C9 or 3A4 (testosterone). IPI-926 is a moderate inhibitor of CYP2C19, 2D6 and 3A4 (midazolam) with KI values of 19, 16 and 4.5 µM, respectively. IPI-926 is both a substrate and inhibitor (IC50 = 1.9 µM) of P-glycoprotein. 6. In summary, IPI-926 has desirable pre-clinical absorption, distribution, metabolism and excretion properties. PMID:23527529

  20. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  1. Cataract surgery in Southern Ethiopia: distribution, rates and determinants of service provision

    PubMed Central

    2013-01-01

    Background Cataract is the leading cause of blindness worldwide, with the greatest burden found in low-income countries. Cataract surgery is a curative and cost-effective intervention. Despite major non-governmental organization (NGO) support, the cataract surgery performed in Southern Region, Ethiopia is currently insufficient to address the need. We analyzed the distribution, productivity, cost and determinants of cataract surgery services. Methods Confidential interviews were conducted with all eye surgeons (Ophthalmologists & Non-Physician Cataract Surgeons [NPCS]) in Southern Region using semi-structured questionnaires. Eye care project managers were interviewed using open-ended qualitative questionnaires. All eye units were visited. Information on resources, costs, and the rates and determinants of surgical output were collected. Results Cataract surgery provision is uneven across Southern Region: 66% of the units are within 200 km of the regional capital. Surgeon to population ratios varied widely from 1:70,000 in the capital to no service provision in areas containing 7 million people. The Cataract Surgical Rate (CSR) in 2010 was 406 operations/million/year with zonal CSRs ranging between 204 and 1349. Average number of surgeries performed was 374 operations/surgeon/year. Ophthalmologists and NPCS performed a mean of 682 and 280 cataract operations/surgeon/year, respectively (p = 0.03). Resources are underutilized, at 56% of capacity. Community awareness programs were associated with increased activity (p = 0.009). Several factors were associated with increased surgeon productivity (p < 0.05): working for >2 years, working in a NGO/private clinic, working in an urban unit, having a unit manger, conducting outreach programs and a satisfactory work environment. The average cost of cataract surgery in 2010 was US$141.6 (Range: US$37.6–312.6). Units received >70% of their consumables from NGOs. Mangers identified poor staff motivation, community

  2. Cation distribution in Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} using X-ray absorption spectroscopy

    SciTech Connect

    Yadav, A. K. Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K.; Jadhav, J.; Biswas, S.

    2014-04-24

    Spinel ferrite samples of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (for x=0.2, 0.4, 0.5, 0.6 and 0.8) nanoparticles prepared by a novel chemical synthesis method have been characterized by X-ray Absorption Spectroscopy (XAS) technique to investigate the distribution of cations in the unit cell. XANES region clearly shows that as Ni concentration increases, the pre-edge feature, which is a characteristic of tetrahedral coordination of Fe, is enhanced. A quantitative determination of the relative occupancy of iron cation in the octahedral and tetrahedral sites of the spinel structure was obtained from EXAFS data analysis. It has been found that as atomic fraction of Ni is increased from 0.2 to 0.8, Fe occupancy at tetrahedral to octahedral sites is increased from 13:87 and to 39:61.

  3. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity.

    PubMed

    Gonzales, Gerard Bryan; Smagghe, Guy; Grootaert, Charlotte; Zotti, Moises; Raes, Katleen; Van Camp, John

    2015-05-01

    Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs. PMID:25633078

  4. 26 CFR 1.963-5 - Foreign corporations with variation in foreign tax rate because of distributions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subject to foreign income tax at a flat rate of 40 percent; and B Corporation is subject to a foreign... tax rate because of distributions. 1.963-5 Section 1.963-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Controlled Foreign...

  5. 26 CFR 1.963-5 - Foreign corporations with variation in foreign tax rate because of distributions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... subject to foreign income tax at a flat rate of 40 percent; and B Corporation is subject to a foreign... tax rate because of distributions. 1.963-5 Section 1.963-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Controlled...

  6. The Impact of Instructional Set on Distributions of Self-Report Ratings on a Survey of Personality Characteristics.

    ERIC Educational Resources Information Center

    McDonald, Jo-Anne; Hall, Lisa

    The purpose of this study was to examine the effect of instrument completion instructions on univariate and multivariate distributional characteristics and relationships among variables. Instructions allowed free-choice allotment of ratings (unforced instructions) or requested the subject to assign a certain number of ratings to either the highest…

  7. Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets.

    PubMed

    Pepin, Xavier J H; Flanagan, Talia R; Holt, David J; Eidelman, Anna; Treacy, Don; Rowlings, Colin E

    2016-09-01

    In silico absorption modeling has been performed, to assess the impact of in vitro dissolution on in vivo performance for ZURAMPIC (lesinurad) tablets. The dissolution profiles of lesinurad tablets generated using the quality control method were used as an input to a GastroPlus model to estimate in vivo dissolution in the various parts of the GI tract and predict human exposure. A model was set up, which accounts for differences of dosage form transit, dissolution, local pH in the GI tract, and fluid volumes available for dissolution. The predictive ability of the model was demonstrated by confirming that it can reproduce the Cmax observed for independent clinical trial. The model also indicated that drug product batches that pass the proposed dissolution specification of Q = 80% in 30 min are anticipated to be bioequivalent to the clinical reference batch. To further explore the dissolution space, additional simulations were performed using a theoretical dissolution profile below the proposed specification. The GastroPlus modeling indicates that such a batch will also be bioequivalent to standard clinical batches despite having a dissolution profile, which would fail the proposed dissolution specification of Q = 80% in 30 min. This demonstrates that the proposed dissolution specification sits comfortably within a region of dissolution performance where bioequivalence is anticipated and is not near an edge of failure for dissolution, providing additional confidence to the proposed specifications. Finally, simulations were performed using a virtual drug substance batch with a particle size distribution at the limit of the proposed specification for particle size. Based on these simulations, such a batch is also anticipated to be bioequivalent to clinical reference, demonstrating that the proposed specification limits for particle size distribution would give products bioequivalent to the pivotal clinical batches. PMID:27438964

  8. Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets.

    PubMed

    Pepin, Xavier J H; Flanagan, Talia R; Holt, David J; Eidelman, Anna; Treacy, Don; Rowlings, Colin E

    2016-09-01

    In silico absorption modeling has been performed, to assess the impact of in vitro dissolution on in vivo performance for ZURAMPIC (lesinurad) tablets. The dissolution profiles of lesinurad tablets generated using the quality control method were used as an input to a GastroPlus model to estimate in vivo dissolution in the various parts of the GI tract and predict human exposure. A model was set up, which accounts for differences of dosage form transit, dissolution, local pH in the GI tract, and fluid volumes available for dissolution. The predictive ability of the model was demonstrated by confirming that it can reproduce the Cmax observed for independent clinical trial. The model also indicated that drug product batches that pass the proposed dissolution specification of Q = 80% in 30 min are anticipated to be bioequivalent to the clinical reference batch. To further explore the dissolution space, additional simulations were performed using a theoretical dissolution profile below the proposed specification. The GastroPlus modeling indicates that such a batch will also be bioequivalent to standard clinical batches despite having a dissolution profile, which would fail the proposed dissolution specification of Q = 80% in 30 min. This demonstrates that the proposed dissolution specification sits comfortably within a region of dissolution performance where bioequivalence is anticipated and is not near an edge of failure for dissolution, providing additional confidence to the proposed specifications. Finally, simulations were performed using a virtual drug substance batch with a particle size distribution at the limit of the proposed specification for particle size. Based on these simulations, such a batch is also anticipated to be bioequivalent to clinical reference, demonstrating that the proposed specification limits for particle size distribution would give products bioequivalent to the pivotal clinical batches.

  9. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage

    PubMed Central

    Moreno, Jose Antonio; Díaz-Gómez, Joana; Nogareda, Carmina; Angulo, Eduardo; Sandmann, Gerhard; Portero-Otin, Manuel; Serrano, José C. E.; Twyman, Richard M.; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are important dietary nutrients with health-promoting effects. The biofortification of staple foods with carotenoids provides an efficient delivery strategy but little is known about the fate and distribution of carotenoids supplied in this manner. The chicken provides a good model of human carotenoid metabolism so we supplemented the diets of laying hens using two biofortified maize varieties with distinct carotenoid profiles and compared the fate of the different carotenoids in terms of distribution in the feed, the hen’s livers and the eggs. We found that after a period of depletion, pro-vitamin A (PVA) carotenoids were preferentially diverted to the liver and relatively depleted in the eggs, whereas other carotenoids were transported to the eggs even when the liver remained depleted. When retinol was included in the diet, it accumulated more in the eggs than the livers, whereas PVA carotenoids showed the opposite profile. Our data suggest that a transport nexus from the intestinal lumen to the eggs introduces bottlenecks that cause chemically-distinct classes of carotenoids to be partitioned in different ways. This nexus model will allow us to optimize animal feed and human diets to ensure that the health benefits of carotenoids are delivered in the most effective manner. PMID:27739479

  10. High-accuracy measurements of OH(•) reaction rate constants and IR and UV absorption spectra: ethanol and partially fluorinated ethyl alcohols.

    PubMed

    Orkin, Vladimir L; Khamaganov, Victor G; Martynova, Larissa E; Kurylo, Michael J

    2011-08-11

    Rate constants for the gas phase reactions of OH(•) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(•) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.

  11. Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution

    PubMed Central

    Ryerson, Thomas B.; Camilli, Richard; Kessler, John D.; Kujawinski, Elizabeth B.; Reddy, Christopher M.; Valentine, David L.; Atlas, Elliot; Blake, Donald R.; de Gouw, Joost; Meinardi, Simone; Parrish, David D.; Peischl, Jeff; Seewald, Jeffrey S.; Warneke, Carsten

    2012-01-01

    Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 106 kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) × 106 kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) × 106 kg/d derived using physical and optical methods. PMID:22233807

  12. Effects of the turnover rate on the size distribution of firms: An application of the kinetic exchange models

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.

    2012-12-01

    We address the issue of the distribution of firm size. To this end we propose a model of firms in a closed, conserved economy populated with zero-intelligence agents who continuously move from one firm to another. We then analyze the size distribution and related statistics obtained from the model. There are three well known statistical features obtained from the panel study of the firms i.e., the power law in size (in terms of income and/or employment), the Laplace distribution in the growth rates and the slowly declining standard deviation of the growth rates conditional on the firm size. First, we show that the model generalizes the usual kinetic exchange models with binary interaction to interactions between an arbitrary number of agents. When the number of interacting agents is in the order of the system itself, it is possible to decouple the model. We provide exact results on the distributions which are not known yet for binary interactions. Our model easily reproduces the power law for the size distribution of firms (Zipf’s law). The fluctuations in the growth rate falls with increasing size following a power law (though the exponent does not match with the data). However, the distribution of the difference of the firm size in this model has Laplace distribution whereas the real data suggests that the difference of the log of sizes has the same distribution.

  13. Biases in grant proposal success rates, funding rates and award sizes affect the geographical distribution of funding for biomedical research.

    PubMed

    Wahls, Wayne P

    2016-01-01

    The ability of the United States to most efficiently make breakthroughs on the biology, diagnosis and treatment of human diseases requires that physicians and scientists in each state have equal access to federal research grants and grant dollars. However, despite legislative and administrative efforts to ensure equal access, the majority of funding for biomedical research is concentrated in a minority of states. To gain insight into the causes of such disparity, funding metrics were examined for all NIH research project grants (RPGs) from 2004 to 2013. State-by-state differences in per application success rates, per investigator funding rates, and average award size each contributed significantly to vast disparities (greater than 100-fold range) in per capita RPG funding to individual states. To the extent tested, there was no significant association overall between scientific productivity and per capita funding, suggesting that the unbalanced allocation of funding is unrelated to the quality of scientists in each state. These findings reveal key sources of bias in, and new insight into the accuracy of, the funding process. They also support evidence-based recommendations for how the NIH could better utilize the scientific talent and capacity that is present throughout the United States. PMID:27077009

  14. Biases in grant proposal success rates, funding rates and award sizes affect the geographical distribution of funding for biomedical research.

    PubMed

    Wahls, Wayne P

    2016-01-01

    The ability of the United States to most efficiently make breakthroughs on the biology, diagnosis and treatment of human diseases requires that physicians and scientists in each state have equal access to federal research grants and grant dollars. However, despite legislative and administrative efforts to ensure equal access, the majority of funding for biomedical research is concentrated in a minority of states. To gain insight into the causes of such disparity, funding metrics were examined for all NIH research project grants (RPGs) from 2004 to 2013. State-by-state differences in per application success rates, per investigator funding rates, and average award size each contributed significantly to vast disparities (greater than 100-fold range) in per capita RPG funding to individual states. To the extent tested, there was no significant association overall between scientific productivity and per capita funding, suggesting that the unbalanced allocation of funding is unrelated to the quality of scientists in each state. These findings reveal key sources of bias in, and new insight into the accuracy of, the funding process. They also support evidence-based recommendations for how the NIH could better utilize the scientific talent and capacity that is present throughout the United States.

  15. Biases in grant proposal success rates, funding rates and award sizes affect the geographical distribution of funding for biomedical research

    PubMed Central

    2016-01-01

    The ability of the United States to most efficiently make breakthroughs on the biology, diagnosis and treatment of human diseases requires that physicians and scientists in each state have equal access to federal research grants and grant dollars. However, despite legislative and administrative efforts to ensure equal access, the majority of funding for biomedical research is concentrated in a minority of states. To gain insight into the causes of such disparity, funding metrics were examined for all NIH research project grants (RPGs) from 2004 to 2013. State-by-state differences in per application success rates, per investigator funding rates, and average award size each contributed significantly to vast disparities (greater than 100-fold range) in per capita RPG funding to individual states. To the extent tested, there was no significant association overall between scientific productivity and per capita funding, suggesting that the unbalanced allocation of funding is unrelated to the quality of scientists in each state. These findings reveal key sources of bias in, and new insight into the accuracy of, the funding process. They also support evidence-based recommendations for how the NIH could better utilize the scientific talent and capacity that is present throughout the United States. PMID:27077009

  16. Estimating distributions with increasing failure rate in an imperfect repair model.

    PubMed

    Kvam, Paul H; Singh, Harshinder; Whitaker, Lyn R

    2002-03-01

    A failed system is repaired minimally if after failure, it is restored to the working condition of an identical system of the same age. We extend the nonparametric maximum likelihood estimator (MLE) of a system's lifetime distribution function to test units that are known to have an increasing failure rate. Such items comprise a significant portion of working components in industry. The order-restricted MLE is shown to be consistent. Similar results hold for the Brown-Proschan imperfect repair model, which dictates that a failed component is repaired perfectly with some unknown probability, and is otherwise repaired minimally. The estimators derived are motivated and illustrated by failure data in the nuclear industry. Failure times for groups of emergency diesel generators and motor-driven pumps are analyzed using the order-restricted methods. The order-restricted estimators are consistent and show distinct differences from the ordinary MLEs. Simulation results suggest significant improvement in reliability estimation is available in many cases when component failure data exhibit the IFR property. PMID:11878225

  17. Forced distribution rating systems: when does "rank and yank" lead to adverse impact?

    PubMed

    Giumetti, Gary W; Schroeder, Amber N; Switzer, Fred S

    2015-01-01

    Despite widespread use of forced distribution rating systems (FDRSs), the potential for this performance appraisal method to lead to adverse impact (AI) in a layoff context has yet to be examined empirically. Thus, the current study uses a Monte Carlo simulation to examine the likelihood of encountering AI violations when an FDRS is used in the context of layoffs. The primary research questions included an examination of how AI violations change depending on the definition of the employment action (i.e., retention vs. layoff), the length of the repeated layoffs, and whether or not laid off employees are replaced each year. The current study also examined the impact of the size of the organization, the percentage of the workforce laid off, and the type of AI calculation method used on the likelihood of AI violations. Results suggest that defining the employment action as layoffs (rather than as retentions) may result in a greater likelihood of AI violations, and AI violations are likely to peak in the 1st year of use. Further, replacing laid off employees may result in higher levels of AI over time as compared with not replacing layoffs. Additionally, the greatest risk for AI occurs when the organization size is large (i.e., N = 10,000) and when certain AI calculation methods are used. Results are discussed in terms of their practical and legal implications for organizations.

  18. High-rate serial interconnections for embedded and distributed systems with power and resource constraints

    NASA Astrophysics Data System (ADS)

    Sheynin, Yuriy; Shutenko, Felix; Suvorova, Elena; Yablokov, Evgenej

    2008-04-01

    High rate interconnections are important subsystems in modern data processing and control systems of many classes. They are especially important in prospective embedded and on-board systems that used to be multicomponent systems with parallel or distributed architecture, [1]. Modular architecture systems of previous generations were based on parallel busses that were widely used and standardised: VME, PCI, CompactPCI, etc. Busses evolution went in improvement of bus protocol efficiency (burst transactions, split transactions, etc.) and increasing operation frequencies. However, due to multi-drop bus nature and multi-wire skew problems the parallel bussing speedup became more and more limited. For embedded and on-board systems additional reason for this trend was in weight, size and power constraints of an interconnection and its components. Parallel interfaces have become technologically more challenging as their respective clock frequencies have increased to keep pace with the bandwidth requirements of their attached storage devices. Since each interface uses a data clock to gate and validate the parallel data (which is normally 8 bits or 16 bits wide), the clock frequency need only be equivalent to the byte rate or word rate being transmitted. In other words, for a given transmission frequency, the wider the data bus, the slower the clock. As the clock frequency increases, more high frequency energy is available in each of the data lines, and a portion of this energy is dissipated in radiation. Each data line not only transmits this energy but also receives some from its neighbours. This form of mutual interference is commonly called "cross-talk," and the signal distortion it produces can become another major contributor to loss of data integrity unless compensated by appropriate cable designs. Other transmission problems such as frequency-dependent attenuation and signal reflections, while also applicable to serial interfaces, are more troublesome in parallel

  19. Spatial distribution of microorganisms and measurements of oxygen uptake rate and ammonia uptake rate activity in a drinking water biofilter.

    PubMed

    Madoni, P; Davoli, D; Fontani, N; Cucchi, A; Rossi, F

    2001-04-01

    The biofilm characteristics (population dynamics and biofilm composition) in a biological filter for the removal of iron, manganese and ammonium were studied in a drinking water treatment plant. The objective was to examine the spatial distribution and biological composition of active biomass that grows in a biological filter and to verify the effect of the backwashing on the quantity of fixed biomass and on the density and activity of the biological population. Heterotrophic microorganisms activity was higher in the upper layer of the filter. Nitrifying microorganisms colonized the biofilter in a stratified manner and their activity was higher in the second layer of the filter. A total of 14 species of ciliated protozoa and 7 species of filamentous microorganisms were found in the biofilters. Ciliates were concentrated in the filterbed layer in which the heterotrophic activity was higher. The grazing activity of ciliates on heterotrophic bacteria reduced the competition pressure on nitrifying microorganisms, supporting their growth and thus raising the ammonium removal efficiency. In general, filamentous microorganisms appeared to be indifferent to operating changes in the plant such as backwashing and filtering cycles. Crenothrix was the prevalent filamentous microorganism in terms of both frequency and abundance; it was found prevalently in the first layer where the oxidisation of iron and manganese occurred.

  20. Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1-30 GHz

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryota; Laakso, Ilkka; De Santis, Valerio; Hirata, Akimasa

    2016-07-01

    This study investigates the relationship between the peak temperature elevation and the peak specific absorption rate (SAR) averaged over 10 g of tissue in human head models in the frequency range of 1-30 GHz. As a wave source, a half-wave dipole antenna resonant at the respective frequencies is located in the proximity of the pinna. The bioheat equation is used to evaluate the temperature elevation by employing the SAR, which is computed by electromagnetic analysis, as a heat source. The computed SAR is post-processed by calculating the peak spatial-averaged SAR with six averaging algorithms that consider different descriptions provided in international guidelines and standards, e.g. the number of tissues allowed in the averaging volume, different averaging shapes, and the consideration of the pinna. The computational results show that the SAR averaging algorithms excluding the pinna are essential when correlating the peak temperature elevation in the head excluding the pinna. In the averaging scheme considering an arbitrary shape, for better correlation, multiple tissues should be included in the averaging volume rather than a single tissue. For frequencies higher than 3-4 GHz, the correlation for peak temperature elevation in the head excluding the pinna is modest for the different algorithms. The 95th percentile value of the heating factor as well as the mean and median values derived here would be helpful for estimating the possible temperature elevation in the head.

  1. Proton Resonance Spectroscopy Study of the Effects of L-Ornithine-L-Aspartate on the Development of Encephalopathy, Using Localization Pulses with Reduced Specific Absorption Rate

    NASA Astrophysics Data System (ADS)

    Slotboom, J.; Vogels, B. A. P. M.; Dehaan, J. G.; Creyghton, J. H. N.; Quack, G.; Chamuleau, R. A. F. M.; Bovee, W. M. M. J.

    Using the SADLOVE ( single-shot adiabatic localized volume excitation) localization technique with reduced specific absorption rate phase-compensated 2π pulses for localization, in vivo rat brain spectra were obtained in order to study the possible beneficial effects of L-ornithine-L-aspartate (OA) on the development of encephalopathy induced by hyperammonemia in portacaval shunted rats, an experimental model for subacute hepatic encephalopathy. The in vivo1H spectra were quantified using a conjugate-gradient-based frequency-domain fitting procedure. OA treatment resulted in an about threefold lower increase in train lactate ( P < 0.0001) and a slower increase of brain glutamine ( P = 0.022) concentration. However, these changes in brain metabolism, including a significantly lower ammonia concentration during OA treatment, were not associated with a sig significant improvement in clinical symptoms of encephalopathy, suggesting either insufficient decrease in brain ammonia concentration or another effect of OA treatment counteracting the lowering effect on blood and brain ammonia and on brain glutamine and lactate. It is concluded that localized in vivo1H MRS of the brain in combination with other analytical techniques, such as in vivo microdialysis, is helpful in explaining pathophysiological changes during hyperammonemia-induced encephalopathy.

  2. Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1–30 GHz

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryota; Laakso, Ilkka; De Santis, Valerio; Hirata, Akimasa

    2016-07-01

    This study investigates the relationship between the peak temperature elevation and the peak specific absorption rate (SAR) averaged over 10 g of tissue in human head models in the frequency range of 1–30 GHz. As a wave source, a half-wave dipole antenna resonant at the respective frequencies is located in the proximity of the pinna. The bioheat equation is used to evaluate the temperature elevation by employing the SAR, which is computed by electromagnetic analysis, as a heat source. The computed SAR is post-processed by calculating the peak spatial-averaged SAR with six averaging algorithms that consider different descriptions provided in international guidelines and standards, e.g. the number of tissues allowed in the averaging volume, different averaging shapes, and the consideration of the pinna. The computational results show that the SAR averaging algorithms excluding the pinna are essential when correlating the peak temperature elevation in the head excluding the pinna. In the averaging scheme considering an arbitrary shape, for better correlation, multiple tissues should be included in the averaging volume rather than a single tissue. For frequencies higher than 3–4 GHz, the correlation for peak temperature elevation in the head excluding the pinna is modest for the different algorithms. The 95th percentile value of the heating factor as well as the mean and median values derived here would be helpful for estimating the possible temperature elevation in the head.

  3. Effect of a hands-free wire on specific absorption rate for a waist-mounted 1.8 GHz cellular telephone handset

    NASA Astrophysics Data System (ADS)

    Troulis, S. E.; Scanlon, W. G.; Evans, N. E.

    2003-06-01

    A common feature of cellular telephony is the use of a 'hands-free' audio extension lead connected to a waist-worn handset. Interaction between the transmitting antenna, the wire and the user's body can occur, with detrimental effects including polar pattern degradation, reduced efficiency and localized increases in specific absorption rate (SAR). Using a realistic full-body model of an adult male, finite difference time domain analysis was employed to investigate the coupling between a hip-mounted 1.8 GHz handset fitted with a monopole antenna and a 1 m long wire representing a hands-free wire. Conduction current densities were computed for three identifiable coupling modes: magnetic-only, conductive-only and combined conductive-and-magnetic. Magnetic-only coupling was dominant. Without the lead, placing the handset at waist height led to a 42.8% increase in the total energy deposited in the body, compared to use at the head. Introducing the lead further increased the body loss, with a reduction in system radiation efficiency from 52% to 43.7%. Without the hands-free lead, the peak 1 g and 10 g SARs were 0.450 W kg-1 and 0.265 W kg-1, respectively, for 125 mW transmit power. With the hands-free lead connected, these values increased to 1.14 W kg-1 and 0.430 W kg-1, respectively.

  4. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  5. Effect of partial absorption on diffusion with resetting.

    PubMed

    Whitehouse, Justin; Evans, Martin R; Majumdar, Satya N

    2013-02-01

    The effect of partial absorption on a diffusive particle which stochastically resets its position with a finite rate r is considered. The particle is absorbed by a target at the origin with absorption "velocity" a; as the velocity a approaches ∞ the absorption property of the target approaches that of a perfectly absorbing target. The effect of partial absorption on first-passage time problems is studied, in particular, it is shown that the mean time to absorption (MTA) is increased by an additive term proportional to 1/a. The results are extended to multiparticle systems where independent searchers, initially uniformly distributed with a given density, look for a single immobile target. It is found that the average survival probability P(av) is modified by a multiplicative factor which is a function of 1/a, whereas the decay rate of the typical survival probability P(typ) is decreased by an additive term proportional to 1/a.

  6. Effect of partial absorption on diffusion with resetting

    NASA Astrophysics Data System (ADS)

    Whitehouse, Justin; Evans, Martin R.; Majumdar, Satya N.

    2013-02-01

    The effect of partial absorption on a diffusive particle which stochastically resets its position with a finite rate r is considered. The particle is absorbed by a target at the origin with absorption “velocity” a; as the velocity a approaches ∞ the absorption property of the target approaches that of a perfectly absorbing target. The effect of partial absorption on first-passage time problems is studied, in particular, it is shown that the mean time to absorption (MTA) is increased by an additive term proportional to 1/a. The results are extended to multiparticle systems where independent searchers, initially uniformly distributed with a given density, look for a single immobile target. It is found that the average survival probability Pav is modified by a multiplicative factor which is a function of 1/a, whereas the decay rate of the typical survival probability Ptyp is decreased by an additive term proportional to 1/a.

  7. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  8. Absorption, tissue distribution, and elimination of residues after 2,4,6-trinitro[14C]toluene administration to sheep.

    PubMed

    Smith, D J; Craig, A M; Duringer, J M; Chaney, R L

    2008-04-01

    The compound 2,4,6-trinitrotoluene (TNT) is a persistent contaminant of some industrial and military sites. Biological bioremediation techniques typically rely on the immobilization of TNT reduction products rather than on TNT mineralization. We hypothesized that sheep ruminal microbes would be suitable for TNT destruction after phytoremediation of TNT-contaminated soils by cool-season grasses. Therefore we investigated the fate of [14C]TNT in ruminating sheep to determine the utility of ruminant animals as a portion of the bioremediation process. Three wether sheep were dosed with 35.5 mg each of dietary unlabeled TNT for 21 consecutive days. On day 22 sheep (41.9 +/- 3.0 kg) were orally dosed with 35.5 mg of [14C]TNT (129 microCi; 99.1% radiochemical purity). Blood, urine, and feces were collected at regular intervals for 72 h. At slaughter, tissues were quantitatively collected. Tissues and blood were analyzed for total radioactive residues (TRR); excreta were analyzed for TRR, bound residues, and TNT metabolites. Plasma radioactivity peaked within 1 h of dosing and was essentially depleted within 18 h. Approximately 76% of the radiocarbon was excreted in feces, 17% in urine, with 5% being retained in the gastrointestinal tract and 1% retained in tissues. Parent TNT, dinitroamino metabolites, and diaminonitro metabolites were not detected in excreta. Ruminal and fecal radioactivity was essentially nonextractable using ethyl acetate, acetone, and methanol; covalent binding of fecal radioactive residues was evenly distributed among extractable organic molecules (i.e., soluble organic matter, soluble carbohydrate, protein, lipid, and nucleic acid fractions) and undigested fibers (cellulose, hemicellulose, and lignin). This study demonstrated that TNT reduction within the ruminant gastrointestinal tract leads to substantial immobilization of residues to organic matter, a fate similar to TNT in other strongly reducing environments. PMID:18504997

  9. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-01

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg-1 with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings were confirmed

  10. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil.

  11. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. PMID:26408835

  12. Drop size distributions and kinetic energy rates in variable intensity rainfall

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2016-04-01

    Temporal variability in rainfall intensity reflects on the drop size distribution (DSD), and affects the rainfall kinetic energy during the event. Smith et al. (2009) reported on 1-min interval rainfall intensity and corresponding DSD variability during a storm on the 22/7/06 at Princeton, NJ. They reported also on DSDs characteristics of heavy convective rainfall events during the whole summer. Applying the DSD model of Assouline and Mualem (1997), it is shown that: (a) a similar relationship between the mean drop size and the rainfall intensity characterized the local rainfall at both the seasonal and the single storm scale; (b) using the mean drop size as a scaling factor of the DSD removes the rainfall intensity dependence at the intrastorm scale, providing a powerful tool to deal with temporal variability of rainfall rates during rainfall events. For a storm characterized by a given temporal variability of intensities, three different ways of evaluating kinetic energy per unit mass or time were applied. By comparison to estimates accounting for rainfall temporal variability and related full DSDs, representing the storm by mean intensity and drop diameter tends to overestimate kinetic energy for low intensities and underestimate it for the higher ones. The relative error for the kinetic energy per unit of mass is ±45% and shifts from negative to positive sign for I>25 mm/h. For the kinetic energy per unit of time, the relative error ranges from -100% to +210% and changes sign for I>45 mm/h. When temporal variation of intensity is accounted for but drops are characterized by their mean values instead of the full DSD, kinetic energy is underestimated by 20% on average. Consequently, accounting for temporal variability in rainfall intensity during a storm has a notable impact on the erosive power of the rainfall.

  13. Optimal reconstruction of concentrations, gradients and reaction rates from particle distributions

    NASA Astrophysics Data System (ADS)

    Fernàndez-Garcia, D.; Sanchez-Vila, X.

    2011-03-01

    Random walk particle tracking methodologies to simulate solute transport of conservative species constitute an attractive alternative for their computational efficiency and absence of numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from particle distributions have typically prevented its use in reactive transport problems. The numerical problem mainly arises from the need to first reconstruct the concentrations of species/components from a discrete number of particles, which is an error prone process, and then computing a spatial functional of the concentrations and/or its derivatives (either spatial or temporal). Errors are then propagated, so that common strategies to reconstruct this functional require an unfeasible amount of particles when dealing with nonlinear reactive transport problems. In this context, this article presents a methodology to directly reconstruct this functional based on kernel density estimators. The methodology mitigates the error propagation in the evaluation of the functional by avoiding the prior estimation of the actual concentrations of species. The multivariate kernel associated with the corresponding functional depends on the size of the support volume, which defines the area over which a given particle can influence the functional. The shape of the kernel functions and the size of the support volume determines the degree of smoothing, which is optimized to obtain the best unbiased predictor of the functional using an iterative plug-in support volume selector. We applied the methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem involving the mixing of two different waters carrying two aqueous species in chemical equilibrium and moving through a randomly heterogeneous porous medium.

  14. An optimized pre-moderator improves uniformity of activation rate distribution in an ORNL phantom-IVNAA facility

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Khankook, Atiyeh; Rafat-Motavalli, Laleh; Miri-Hakimabad, Seyyed Hashem

    2013-04-01

    Uniformity of activation rate distribution through the human body is extremely important for in vivo analysis of the body elements by neutron activation method. Achieving uniformity can be difficult because of the non-homogenous body shape and compositions. Pre-moderator is one of the most essential parts of the irradiation facility to provide uniform distribution over the sample. The aim of the present study was designation of an optimum pre-moderator, in terms of shape and material, which compensates the destructive effects of body shape and allows a satisfactory uniformity of activation rate in the sample. Our final calculations indicated that using two slabs of paraffin with a thickness of 1.8 cm as a pre-moderator in the presence of a reflector/moderator, achieve the most uniform distribution of activation rate in the body.

  15. Absorption, distribution and excretion of GT31-104, a novel bile acid sequestrant, in rats and dogs after acute and subchronic administration.

    PubMed

    Rosenbaum, D P; Petersen, J S; Ducharme, S; Markham, P; Goldberg, D I

    1997-05-01

    The absorption, distribution, and excretion of GT31-104, a novel bile acid sequestrant, was studied in rats and dogs after both acute and subchronic oral administration. The polyallylamine backbone of GT31-104 was labeled with tritium and one of the alkyl side chains was labeled with 14C. The mean blood and plasma concentration of [3H, 14C]GT31-104 in rats, in both treatment regimens, was negligible at all time points, with the highest amount observed being 0.69 microgram eq/g blood; in dogs the mean blood and plasma concentration of [3H, 14C]GT31-104 was below the limit of quantitation (< 0.001% total dose) at all time points. In both rats and dogs, the mean total urinary excretion of [3H, 14C]GT31-104 was approximately 0.06% of the total dose. The fecal excretion data indicates that both 3H- and 14C-derived radioactivity was excreted entirely in the feces. Mean total radioactivity excreted in the feces ranged from approximately 95 to 105% in the rats and 92 to 102% in the dogs. Across the different treatment regimens, in both species, tissue concentrations were negligible (< 0.01% total dose) and no differences in tissue profile were noted, indicating that there was no effect of pretreatment on [3H, 14C]GT31-104 absorption. GT31-104 was extracted with water, and the water-soluble portion contained radioactivity that would correlate to approximately 0.19% of the 3H dose and 0.41% of the 14C dose; this portion probably accounted for the negligible radioactivity observed systemically. Analysis of gastrointestinal (GI) tract tissues with contents indicated that GT31-104 is rapidly cleared from the GI tract. These data indicate that GT31-104 is not absorbed from the GI tract in rats and dogs.

  16. Impact of model geometry and recharge rates on catchment's residence time distributions - numerical experiments

    NASA Astrophysics Data System (ADS)

    Neubauer, M.; Musolff, A.; Fleckenstein, J. H.

    2013-12-01

    Residence time distributions (RTD) of water in catchments are promising tools to characterize and model solute transport on a larger scale. In the last decade, much research has been conducted on the estimation and the application of RTD's. However, there are still some major issues to be addressed to complex derivation, parameterization and transient behavior. Through improved remote sensing data, the surface elevation can mostly be resolved in detail, while subsurface volumes and boundaries remain highly undetermined. Our objectives are to systematically evaluate the impact of different depths and geometries of the domain bottom and groundwater recharge rates on RTD's. The study site is a small (1.6 km2) headwater catchment located within the Harz Mountains, Germany. For this catchment long time series of climate, discharge and hydrochemistry are available while groundwater flow field and subsurface structure are less known. The site is intensively influenced by agricultural land use and exhibits strong seasonal dynamics of water flow and hydrochemistry due to the snowmelt. The modeling was performed using HydroGeoSphere, a coupled surface and subsurface model, which solves the Richards Equation for variable saturated soils. The Open Source software Paraview and R was chosen as postprocessors to perform and analyze forward particle tracking algorithms under steady state conditions. Ten depth and geometry scenarios of the domain bottom were created (5 horizontal bottom geometries - constant base and 5 variable bottom geometries - parallel to surface topography; both minimum depths ranging from 2 m to 50 m). The model's internal structure was discretized by two homogenous layers (averaged catchment representation) parallel to the input digital elevation model (2x2 m). The geometry scenarios were combined with fifteen steady state simulations for different groundwater recharge rate scenarios (0.1 mm up to 15 mm per day). Model results indicate a strong influence of

  17. Understanding the growth rate patterns of ion Bernstein instabilities driven by ring-like proton velocity distributions

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-04-01

    Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.

  18. 18 CFR 284.268 - Local distribution company emergency transportation rates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... city-gate transportation services must determine its rates and charges for transportation of emergency... company that does not have a rate on file with an appropriate state regulatory agency for...

  19. Geographic distribution of habitat, development, and population growth rates of the Asian citrus psyllid, Diaphorina citri, in Mexico.

    PubMed

    López-Collado, José; Isabel López-Arroyo, J; Robles-García, Pedro L; Márquez-Santos, Magdalena

    2013-01-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an introduced pest in Mexico and a vector of huanglongbing, a lethal citrus disease. Estimations of the habitat distribution and population growth rates of D. citri are required to establish regional and areawide management strategies and can be used as a pest risk analysis tools. In this study, the habitat distribution of D. citri in Mexico was computed with MaxEnt, an inductive, machine-learning program that uses bioclimatic layers and point location data. Geographic distributions of development and population growth rates were determined by fitting a temperature-dependent, nonlinear model and projecting the rates over the target area, using the annual mean temperature as the predictor variable. The results showed that the most suitable regions for habitat of D. citri comprise the Gulf of Mexico states, Yucatán Peninsula, and areas scattered throughout the Pacific coastal states. Less suitable areas occurred in northern and central states. The most important predictor variables were related to temperature. Development and growth rates had a distribution wider than habitat, reaching some of the northern states of México. Habitat, development, and population growth rates were correlated to each other and with the citrus producing area. These relationships indicated that citrus producing states are within the most suitable regions for the occurrence, development, and population growth of D. citri, therefore increasing the risk of huanglongbing dispersion. PMID:24735280

  20. Geographic distribution of habitat, development, and population growth rates of the Asian citrus psyllid, Diaphorina citri, in Mexico.

    PubMed

    López-Collado, José; Isabel López-Arroyo, J; Robles-García, Pedro L; Márquez-Santos, Magdalena

    2013-01-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an introduced pest in Mexico and a vector of huanglongbing, a lethal citrus disease. Estimations of the habitat distribution and population growth rates of D. citri are required to establish regional and areawide management strategies and can be used as a pest risk analysis tools. In this study, the habitat distribution of D. citri in Mexico was computed with MaxEnt, an inductive, machine-learning program that uses bioclimatic layers and point location data. Geographic distributions of development and population growth rates were determined by fitting a temperature-dependent, nonlinear model and projecting the rates over the target area, using the annual mean temperature as the predictor variable. The results showed that the most suitable regions for habitat of D. citri comprise the Gulf of Mexico states, Yucatán Peninsula, and areas scattered throughout the Pacific coastal states. Less suitable areas occurred in northern and central states. The most important predictor variables were related to temperature. Development and growth rates had a distribution wider than habitat, reaching some of the northern states of México. Habitat, development, and population growth rates were correlated to each other and with the citrus producing area. These relationships indicated that citrus producing states are within the most suitable regions for the occurrence, development, and population growth of D. citri, therefore increasing the risk of huanglongbing dispersion.

  1. Geographic Distribution of Habitat, Development, and Population Growth Rates of the Asian Citrus Psyllid, Diaphorina citri, in Mexico

    PubMed Central

    López-Collado, José; Isabel López-Arroyo, J.; Robles-García, Pedro L.; Márquez-Santos, Magdalena

    2013-01-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an introduced pest in Mexico and a vector of huanglongbing, a lethal citrus disease. Estimations of the habitat distribution and population growth rates of D. citri are required to establish regional and areawide management strategies and can be used as a pest risk analysis tools. In this study, the habitat distribution of D. citri in Mexico was computed with MaxEnt, an inductive, machine-learning program that uses bioclimatic layers and point location data. Geographic distributions of development and population growth rates were determined by fitting a temperature-dependent, nonlinear model and projecting the rates over the target area, using the annual mean temperature as the predictor variable. The results showed that the most suitable regions for habitat of D. citri comprise the Gulf of Mexico states, Yucatán Peninsula, and areas scattered throughout the Pacific coastal states. Less suitable areas occurred in northern and central states. The most important predictor variables were related to temperature. Development and growth rates had a distribution wider than habitat, reaching some of the northern states of México. Habitat, development, and population growth rates were correlated to each other and with the citrus producing area. These relationships indicated that citrus producing states are within the most suitable regions for the occurrence, development, and population growth of D. citri, therefore increasing the risk of huanglongbing dispersion. PMID:24735280

  2. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system.

    PubMed

    Hirtl, Rene; Schmid, Gernot

    2013-09-21

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues. PMID:24002053

  3. Specific absorption rate in neonates undergoing magnetic resonance procedures at 1.5 T and 3 T

    PubMed Central

    Beqiri, Arian; Price, Anthony N.; Teixeira, Jose Nuno; Hand, Jeffrey W.; Hajnal, Joseph V.

    2015-01-01

    MRI is finding increased clinical use in neonatal populations; the extent to which electromagnetic models used for quantification of specific absorption rate (SAR) by commercial MRI scanners accurately reflect this alternative scenario is unclear. This study investigates how SAR predictions relating to adults can be related to neonates under differing conditions when imaged using 1.5 T and 3 T MRI scanners. Electromagnetic simulations were produced in neonatal subjects of different sizes and positions within a generic MRI body transmit device operating at both 64 MHz and 128 MHz, corresponding to 1.5 T and 3 T MRI scanners, respectively. An adult model was also simulated, as was a spherical salt‐water phantom, which was also used in a calorimetry experiment. The SAR in neonatal subjects was found to be less than that experienced in an adult in all scenarios; however, the overestimation factor was variable. For example a 3 T body scan resulting in local 10 g SAR of 10.1 W kg−1 in an adult would deposit 2.6 W kg−1 in a neonate: an approximately fourfold difference. The SAR experienced by neonatal subjects undergoing MRI is lower than that in adults in equivalent situations. If the safety of such procedures is assessed using adult‐appropriate models then the result is a conservative estimate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25594939

  4. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system

    NASA Astrophysics Data System (ADS)

    Hirtl, Rene; Schmid, Gernot

    2013-09-01

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.

  5. Specific absorption rate levels measured in a phantom head exposed to radio frequency transmissions from analog hand-held mobile phones

    SciTech Connect

    Anderson, V.; Joyner, K.H.

    1995-05-01

    Electric fields (E-fields) induced within a phantom head from exposure to three different advanced mobile phone system (AMPS) hand-held telephones were measured using an implantable E-Field probe. Measurements were taken in the eye nearest the phone and along a lateral scan through the brain from its center to the side nearest the phone. During measurement, the phones were positioned alongside the phantom head as in typical use and were configured to transmit at maximum power (600 mW nominal). The specific absorption rate (SAR) was calculated from the in situ E-field measurements, which varied significantly between phone models and antenna configuration. The SARs induced in the eye ranged from 0.007 to 0.21 W/kg. Metal-framed spectacles enhanced SAR levels in the eye by 9--29%. In the brain, maximum levels were recorded at the measurement point closest to the phone and ranged from 0.12 to 0.83 W/kg. These SARs are below peak spatial limits recommended in the US and Australian national standards and the IRPA guidelines for safe exposure to radio frequency (RF) electromagnetic fields. Furthermore, a detailed thermal analysis of the eye indicated only a 0.022 C maximum steady-state temperature rise in the eye from a uniform SAR loading of 0.21 W/kg. A more approximate thermal analysis in the brain also indicated only a small maximum temperature rise of 0.034 C for a local SAR loading of 0.83 W/kg.

  6. Natural and anthropogenic radionuclide distributions in the Nansen Basin, Artic Ocean: Scavenging rates and circulation timescales

    NASA Astrophysics Data System (ADS)

    Kirk Cochran, J.; Hirschberg, David J.; Livingston, Hugh D.; Buesseler, Ken O.; Key, Robert M.

    Determination of the naturally occurring radionuclides 232Th, 230Th, 228 Th and 210Pb, and the anthropogenic radionuclides 241Am, 239,240Pu, 134Cs and 137Cs in water samples collected across the Nansen Basin from the Barents Sea slope to the Gakkel Ridge provides tracers with which to characterize both scavenging rates and circulation timescales in this portion of the Arctic Ocean. Large volume water samples (˜ 15001) were filtered in situ to separate particulate (> 0.5 μm) and dissolved Th isotopes and 241Am. Thorium-230 displays increases in both particulate and dissolved activities with depth, with dissolved 230Th greater and particulate 230Th lower in the deep central Nansen Basin than at the Barents Sea slope. Dissolved 228Th activities also are greater relative to 228Ra, in the central basin. Residence times for Th relative to removal from solution onto particles are ˜1 year in surface water, ˜10 years in deep water adjacent to the Barents Sea slope, and ˜20 years in the Eurasian Basin Deep Water. Lead-210 in the central basin deep water also has a residence time of ˜20 years with respect to its removal from the water column. This texture of scavenging is reflected in distributions of the particle-reactive anthropogenic radionuclide 241Am, which shows higher activities relative to Pu in the central Nansen Basin than at the Barents Sea slope. Distributions Of 137Cs show more rapid mixing at the basin margins (Barents Sea slope in the south, Gakkel Ridge in the north) than in the basin interior. Cesium-137 is mixed throughout the water column adjacent to the Barents Sea slope and is present in low but detectable activities in the Eurasian Basin Deep Water in the central basin. At the time of sampling (1987) the surface water at all stations had been labeled with 134Cs released in the 1986 accident at the Chernobyl nuclear power station. In the ˜1 year since the introduction of Chernobyl 134Cs to the Nansen Basin, it had been mixed to depths of ˜800 m at

  7. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    SciTech Connect

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  8. Distribution of Cold (≲300 K) Atomic Gas in Galaxies: Results from the GBT H i Absorption Survey Probing the Inner Halos (ρ < 20 kpc) of Low-z Galaxies

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta

    2016-10-01

    We present the Green Bank Telescope absorption survey of cold atomic hydrogen (≲300 K) in the inner halo of low-redshift galaxies. The survey aims to characterize the cold gas distribution and to address where the condensation—the process where ionized gas accreted by galaxies condenses into cold gas within the disks of galaxies—occurs. Our sample consists of 16 galaxy–quasar pairs with impact parameters of ≤20 kpc. We detected an H i absorber associated with J0958+3222 (NGC 3067) and H i emission from six galaxies. We also found two Ca ii absorption systems in the archival SDSS data associated with galaxies J0958+3222 and J1228+3706. Our detection rate of H i absorbers with optical depths of ≥0.06 is ∼7%. We also find that the cold H i phase (≲300 K) is 44(±18)% of the total atomic gas in the sightline probing J0958+3222. We find no correlation between the peak optical depth and impact parameter or stellar and H i radii normalized impact parameters, ρ/R 90 and ρ/R H i . We conclude that the process of condensation of inflowing gas into cold (≲300 K) H i occurs at the ρ ≪ 20 kpc. However, the warmer phase of neutral gas (T ∼ 1000 K) can exist out to much larger distances, as seen in emission maps. Therefore, the process of condensation of warm to cold H i is likely occurring in stages from ionized to warm H i in the inner halo and then to cold H i very close to the galaxy disk. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  9. Trends in Incarceration in the United States since 1880: A Summary of Reported Rates and the Distribution of Offenses.

    ERIC Educational Resources Information Center

    Cahalan, Margaret

    1979-01-01

    An examination of government reports on penal facilities in the United States, published since 1880, reveals that the rate of incarceration in federal, state, local, and juvenile correctional institutions has increased. Changes in offense distribution are increases in the proportion of persons reported to be incarcerated for robbery and drug…

  10. Simultaneous detection of tissue autofluorescence decay distribution and time-gated photo-bleaching rates

    NASA Astrophysics Data System (ADS)

    Lihachev, Alexey; Ferulova, Inesa; Spigulis, Janis; Tamosiunas, Mindaugas

    2015-05-01

    Experimental methodology for parallel measurements of in-vivo skin autofluorescence (AF) lifetimes and photobleaching dynamic has been developed and tested. The AF lifetime decay distributions were periodically collected from fixed tissue area with subsequent detection of the fluorescence intensity decrease dynamic at different time gates after the pulse excitation. Temporal distributions of human in-vivo skin AF lifetimes and bleaching kinetics were collected and analyzed by means of commercial time-correlated single photon counting system.

  11. Investigation of exposure rates and radionuclide and trace metal distributions along the Hanford Reach of the Columbia River

    SciTech Connect

    Cooper, A.T.; Woodruff, R.K.

    1993-09-01

    Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates.

  12. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  13. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, Stacey L.; Pratson, Lincoln F.; Karson, Jeffrey A.; Klein, Emily M.

    2016-06-01

    It has recently been estimated that serpentinization within continental lithosphere produces H2 at rates comparable to oceanic lithosphere (both are ~1011 mol H2/yr). Here we present a simple model that suggests that H2 production rates along the mid-oceanic ridge alone (i.e., excluding other marine settings) may exceed continental production by an order of magnitude (~1012 mol H2/yr). In our model, H2 production rates increase with spreading rate and the net thickness of serpentinizing peridotite (S-P) in a column of lithosphere. Lithosphere with a faster spreading rate therefore requires a relatively smaller net thickness of S-P to produce H2 at the same rate as lithosphere with a slower rate and greater thickness of S-P. We apply our model globally, incorporating an inverse relationship between spreading rate and net thickness of S-P to be consistent with observations that serpentinization is more common within lithosphere spreading at slower rates.

  14. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    PubMed

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  15. Changes in the divorce rate and age distribution in China since the 1980s.

    PubMed

    Zeng, Y; Wu, D

    1997-01-01

    "The divorce rate in China during the 1980s was much higher than before for a number of reasons. In order to understand this phenomenon, the authors will make a comparison between the divorce rates, and the age and duration of the marriage at the time of divorce in the early 1980s and in the late 1980s and early 1990s."

  16. Application of egs4 computer code for determination of gamma ray spectrum and dose rate distribution in gammacell 220

    NASA Astrophysics Data System (ADS)

    Raisali, G. R.; Sohrabpour, M.

    1993-10-01

    The EGS4 a Monte Carlo electron-photon transport simulation package together with a locally developed computer program "GCELL" has been used to simulate the transport of the gamma rays in Gammacell 220. An additional lead attenuator has been inserted in the chamber, has been included for those cases where lower dose rates were required. For three cases of 0, 1.35 and 4.0 cm thickness of added lead attenuators, the gamma spectrum, and dose rate distribution inside the chamber have been determined. For the case of no attenuator present, the main shield around the source cage has been included in the simulation program and its albedo effects have been investigated. The calculated dose rate distribution in the Gammacell chamber has been compared against measurements carried out with Fricke, PMMA and Gafchromic film dosimeters.

  17. Tracing the incidence of X-ray AGN and their distribution of accretion rates across the galaxy population

    NASA Astrophysics Data System (ADS)

    Aird, James; Coil, Alison; Georgakakis, Antonis; Nandra, Kirpal

    2016-08-01

    X-ray selection provides a powerful method of identifying AGN across a variety of host galaxies and with a wide range of accretion rates. However, careful consideration of the underlying selection biases are vital to reveal the true underlying distribution of accretion rates and determine how the incidence of AGN is related to the properties of the galaxies that host them. I will present new measurements of the distribution of specific accretion rates (scaled relative to the total host galaxy mass, roughly tracing the Eddington ratio) within both star-forming and quiescent galaxy populations. We combine near-infrared selected samples of galaxies from the CANDELS/3D-HST and UltraVISTA surveys with deep Chandra X-ray data and use an advanced Bayesian technique to constrain the underlying distribution of specific accretion rates as a function of stellar mass and redshift. Our results reveal a broad distribution of accretion rates (reflecting long-term variability in the level of AGN fuelling) in both galaxy types. The probability of a star-forming galaxy hosting an AGN (above a fixed specific accretion rate) has a strong stellar mass dependence - revealing an intrinsically higher incidence of AGN in massive star-forming galaxies - and undergoes a stellar-mass-dependent evolution with redshift. The probability of a quiescent galaxy hosting an AGN is generally lower but does not depend on stellar mass and evolves differently with redshift. These results provide vital insights into the relationship between the growth of black hole and the physical properties of their host galaxies.

  18. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  19. Thermal structure and CO distribution for the Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO absorption line observations

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Sandor, Brad J.; Moriarty-Schieven, Gerald

    2012-02-01

    Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed in the mesosphere and lower thermosphere of Venus (70-120 km), have been mapped across the nightside Venus disk during 2001-2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as well as Doppler wind fields (described in the companion paper, Clancy et al., 2012). Temporal sampling over the hourly, daily, weekly and interannual timescales was obtained over 2001-2009. On timescales inferred as several weeks, we observe changes between very distinctive CO and temperature nightside distributions. Retrieved nightside CO, temperature distributions for January 2006 and August 2007 observations display strong local time, latitudinal gradients consistent with early morning (2-3 am), low-to-mid latitude (0-40NS) peaks of 100-200% in CO and 20-30 K in temperature. The temperature increases are most pronounced above 100 km altitudes, whereas CO variations extend from 105 km (top altitude of retrieval) down to below 80 km in the mesosphere. In contrast, the 2004 and 2009 periods of observation display modest temperature (5-10 K) and CO (30-60%) increases, that are centered on antisolar (midnight) local times and equatorial latitudes. Doppler wind derived global (zonal and should be SSAS) circulations from the same data do not exhibit variations correlated with these CO, temperature short-term variations. However, large-scale residual wind fields not fit by the zonal, SSAS circulations are observed in concert with the strong temperature, CO gradients observed in 2006 and 2007 (Clancy et al., 2010). These short term variations in nightside CO, temperature distributions may also be related to observed nightside variations in O 2 airglow (Hueso, H., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., Migliorini, A. [2008]. J

  20. Distribution of energy storage rate in area of strain localization during tension of austenitic steel

    NASA Astrophysics Data System (ADS)

    Oliferuk, W.; Maj, M.; Zembrzycki, K.

    2015-01-01

    The present work is devoted to experimental determination of the energy storage rate in the area of strain localization. The experimental procedure involves two complementary techniques: i.e. infrared thermography (IRT) and visible light imaging. The results of experiments have shown that during the evolution of plastic strain localization the energy storage rate in some areas of the deformed specimen drops to zero. To interpret the decrease of the energy storage rate in terms of micro-mechanisms, microstructural observations using electron back scattered diffraction (EBSC) were performed.

  1. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  2. Habitat heterogeneity and intraguild interactions modify distribution and injury rates in two coexisting genera of damselflies

    USGS Publications Warehouse

    Witt, Jonathan W.; Forkner, Rebecca E.; Kraus, Richard T.

    2013-01-01

    4. The relative importance of factors hypothesised to structure odonate communities varied between coexisting Enallagma and Ischnura. Distinctive distributions and patterns of injury for each genus provided new insights on the potential for intraguild interactions to modify habitat associations in tidal freshwater ecosystems.

  3. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  4. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents

    PubMed Central

    Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R

    2013-01-01

    Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of hydrothermal deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents. PMID:23535916

  5. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents.

    PubMed

    Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R

    2013-07-01

    Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that--within anaerobic niches of hydrothermal deposits--heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents.

  6. Deep-sea spherules from Pacific clay - Mass distribution and influx rate. [extraterrestrial origins from optical and electron microscopy

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Davis, P. A., Jr.; Nishiizumi, K.; Millard, H. T., Jr.

    1980-01-01

    From 411 kg of Pacific clay, 22 mg of stony spherules and 50 mg of iron spherules larger than 150 microns were concentrated. The extraterrestrial origin of these particles was evaluated with the aid of optical and electron microscopy and atomic absorption elemental analysis. An expression for the integral number of stony particles from this sediment in the mass range 20-300 micrograms was derived. The world-wide influx rate of stony particles in the mass range which survive atmospheric heating and ocean sediment storage is calculated to be 90 tons/yr. The relative contributions of ablation debris vs fused interplanetary dust to the influx of stony spherules is discussed, but no conclusions could be made.

  7. Population ecology of the mallard VIII: Winter distribution patterns and survival rates of winter-banded mallards

    USGS Publications Warehouse

    Nichols, James D.; Hines, James E.

    1987-01-01

    In the present report we address questions about winter distribution patterns and survival rates of North American mallards Anas platyrhynchos. Inferences are based on analyses of banding and recovery data from both winter and preseason banding period. The primary wintering range of the mallard was dividded into 45 minor reference areas and 15 major reference areas which were used to summarize winter banding data. Descriptive tables and figures on the recovery distributions of winter-banded mallards are presented. Using winter recoveries of preseason-banded mallards, we found apparent differences between recovery distribution of young versus adult birds from the same breeding ground reference areas. However, we found no sex-specific differences in winter recovery distribution patterns. Winter recovery distributions of preseason-banded birds also provided evidence that mallards exhibited some degree of year-to-year variation in wintering ground location. The age- and sex-specificity of such variation was tested using winter recoveries of winter-banded birds, and results indicated that subadult (first year) birds were less likely to return to the same wintering grounds the following year than adults. Winter recovery distributions of preseason-banded mallards during 1950-58 differed from distributions in 1966-76. These differences could have resulted from either true distributional shifts or geographic changes in hunting pressure. Survival and recovery rates were estimated from winter banding data. We found no evidence of differences in survival or recovery rates between subadult and adult mallards. Thus, the substantial difference between survival rates of preseason-banded young and adult mallards must result almost entirely from higher mortality of young birds during the approximate period, August-January. Male mallards showed higher survival than females, corroborating inferences based on preseason data. Tests with winter banding and band recovery data indicated

  8. Tidal influence on O(1S) airglow emission rate distributions at the geographic equator as observed by WINDII

    NASA Technical Reports Server (NTRS)

    Shephere, G. G.; Mclandress, C.; Solheim, B. H.

    1995-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, observes winds, temperatures and emission rates in the upper mesosphere and thermosphere. In this paper we report on nighttime observations of the vertical distribution of the O(1S) 557.7 nm emission near the geographic equator for March/April, 1993. The airglow volume emission rate distribution is found to be strongly dependent on local time. Beginning at dusk, an intense airglow emission layer descends from a mean altitude of 95 km, reaching 89 km by midnight after which the emission rapidly decays. Shortly after midnight it reappears weakly at a higher altitude and remains at this level as the emission rate gradually increases towards dawn. This strong local time dependence leads us to conclude that the effect is tidally driven. Comparison with the Forbes (1982a,b) model suggest that total density perturbations and changes in the atomic oxygen mixing ratio may the cause of the changes in emission rate distribution between dusk and midnight. The reappearance of the emission after midnight may be caused by downward winds bringing oxygen-rich air from above.

  9. A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz

    NASA Astrophysics Data System (ADS)

    Onuma, Takashi; Otani, Yukitoshi

    2014-03-01

    A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.

  10. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  11. Vertical distribution, migration rates, and model comparison of actinium in a semi-arid environment.

    PubMed

    McClellan, Y; August, R A; Gosz, J R; Gann, S; Parmenter, R R; Windsor, M

    2006-01-01

    Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment.

  12. Vertical distribution, migration rates, and model comparison of actinium in a semi-arid environment.

    PubMed

    McClellan, Y; August, R A; Gosz, J R; Gann, S; Parmenter, R R; Windsor, M

    2006-01-01

    Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment. PMID:16243414

  13. General closed-form bit-error rate expressions for coded M-distributed atmospheric optical communications.

    PubMed

    Balsells, José M Garrido; López-González, Francisco J; Jurado-Navas, Antonio; Castillo-Vázquez, Miguel; Notario, Antonio Puerta

    2015-07-01

    In this Letter, general closed-form expressions for the average bit error rate in atmospheric optical links employing rate-adaptive channel coding are derived. To characterize the irradiance fluctuations caused by atmospheric turbulence, the Málaga or M distribution is employed. The proposed expressions allow us to evaluate the performance of atmospheric optical links employing channel coding schemes such as OOK-GSc, OOK-GScc, HHH(1,13), or vw-MPPM with different coding rates and under all regimes of turbulence strength. A hyper-exponential fitting technique applied to the conditional bit error rate is used in all cases. The proposed closed-form expressions are validated by Monte-Carlo simulations.

  14. The distribution of cosmic-ray ionization rates in diffuse molecular clouds as probed by H3+.

    PubMed

    Indriolo, Nick

    2012-11-13

    Owing to its simple chemistry, H(3)(+) is widely regarded as the most reliable tracer of the cosmic-ray ionization rate in diffuse interstellar clouds. At present, H(3)(+) observations have been made in over 50 sight lines that probe the diffuse interstellar medium (ISM) throughout the Galaxy. This small survey presents the opportunity to investigate the distribution of cosmic-ray ionization rates in the ISM, as well as any correlations between the ionization rate and line-of-sight properties. Some of the highest inferred ionization rates are about 25 times larger than the lowest upper limits, suggesting variations in the underlying low-energy cosmic-ray flux across the Galaxy. Most likely, such variations are caused predominantly by the distance between an observed cloud and the nearest site of particle acceleration.

  15. General closed-form bit-error rate expressions for coded M-distributed atmospheric optical communications.

    PubMed

    Balsells, José M Garrido; López-González, Francisco J; Jurado-Navas, Antonio; Castillo-Vázquez, Miguel; Notario, Antonio Puerta

    2015-07-01

    In this Letter, general closed-form expressions for the average bit error rate in atmospheric optical links employing rate-adaptive channel coding are derived. To characterize the irradiance fluctuations caused by atmospheric turbulence, the Málaga or M distribution is employed. The proposed expressions allow us to evaluate the performance of atmospheric optical links employing channel coding schemes such as OOK-GSc, OOK-GScc, HHH(1,13), or vw-MPPM with different coding rates and under all regimes of turbulence strength. A hyper-exponential fitting technique applied to the conditional bit error rate is used in all cases. The proposed closed-form expressions are validated by Monte-Carlo simulations. PMID:26125336

  16. Fault connectivity, distributed shortening, and impacts on geologic- geodetic slip rate discrepancies in the central Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Selander, J.; Oskin, M. E.; Cooke, M. L.; Grette, K.

    2015-12-01

    Understanding off-fault deformation and distribution of displacement rates associated with disconnected strike-slip faults requires a three-dimensional view of fault geometries. We address problems associated with distributed faulting by studying the Mojave segment of the East California Shear Zone (ECSZ), a region dominated by northwest-directed dextral shear along disconnected northwest- southeast striking faults. We use a combination of cross-sectional interpretations, 3D Boundary Element Method (BEM) models, and slip-rate measurements to test new hypothesized fault connections. We find that reverse faulting acts as an important means of slip transfer between strike-slip faults, and show that the impacts of these structural connections on shortening, uplift, strike-slip rates, and off-fault deformation, help to reconcile the overall strain budget across this portion of the ECSZ. In detail, we focus on the Calico and Blackwater faults, which are hypothesized to together represent the longest linked fault system in the Mojave ECSZ, connected by a restraining step at 35°N. Across this restraining step the system displays a pronounced displacement gradient, where dextral offset decreases from ~11.5 to <2 km from south to north. Cross-section interpretations show that ~40% of this displacement is transferred from the Calico fault to the Harper Lake and Blackwater faults via a set of north-dipping thrust ramps. Late Quaternary dextral slip rates follow a similar pattern, where 1.4 +0.8/-0.4 mm/yr of slip along the Calico fault south of 35°N is distributed to the Harper Lake, Blackwater, and Tin Can Alley faults. BEM model results using revised fault geometries for the Mojave ECSZ show areas of uplift consistent with contractional structures, and fault slip-rates that more closely match geologic data. Overall, revised fault connections and addition of off-fault deformation greatly reduces the discrepancy between geodetic and geologic slip rates.

  17. Variability of raindrop size distributions and radar reflectivity-rain rate relations in extreme Mediterranean precipitation

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Yu, Nan; Boudevillain, Brice; Delrieu, Guy; Uijlenhoet, Remko

    2010-05-01

    Relationships between radar reflectivity and rainfall intensity can be derived by correlating weather radar and raingauge measurements. However, one should be cautious in applying such methods because of differences in the sampling characteristics of both instruments. A more appropriate manner to establish such relations is to employ raindrop size distributions sampled by a disdrometer. In literature different methods have been applied using such disdrometer data, all leading to different results. In this paper, closer attention is given to four of such techniques. The main assumption is that there exist a power-law relationship between the radar reflectivity and rainfall intensity. Two of them are based on statistical least-squares regression methods. The other two methods apply a normalization theory for the raindrop size distribution (DSD), which assumes that all DSD variability can be related to one reference variable. Here it is assumed that the normalized DSD either follows an exponential or a gamma distribution. A new method is presented to estimate the parameters of this normalized distribution, which is easy to calculate and has a shorter overall calculation time with respect to previously reported methods. Although the four different methods obtain different power-law relationships, especially for convective storm systems, they all produce appropriate results. As such, no single optimal relationship is valid but there exists a larger optimal region in the space of the Z-R relationship parameters. Those parameters obtained by the least-squares methods contain a larger amount of uncertainty. For stratiform type of events both micro-physical techniques perform less good as a result of intra-event rainfall variability.

  18. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  19. Novel method of determination of the internal enzyme distribution within porous solid supports and the deactivation rate constant

    SciTech Connect

    Do, D.D.; Hossain, M.M.

    1986-04-01

    This article presents a method for determining the rate constant for deactivation and the internal distribution of immobilized enzyme. This method makes use of the parallel deactivation process in a diffusion-controlled regime, in which the internal activity profile behaves like a penetration front. This front basically traces through the initial active enzymatic profile, and one can determine the internal profile and the rate constant for deactivation from the experimentally observable bulk concentration versus time. This method is applied to the experimental data of the system of hydrogen peroxide-immobilized catalase on controlled pore glas and Si-Al particles. 26 references.

  20. Absorption, Distribution, and Excretion of the Investigational Agent Orteronel (TAK-700) in Healthy Male Subjects: A Phase 1, Open-Label, Single-Dose Study.

    PubMed

    Suri, Ajit; Pusalkar, Sandeepraj; Li, Yuexian; Prakash, Shimoga

    2016-05-01

    This study evaluated the absorption, distribution, and excretion of orteronel, an investigational, nonsteroidal, reversible, selective 17,20-lyase inhibitor. Six healthy male subjects received a single 400-mg dose of radiolabeled [(14) C]-orteronel (18.5 kBq). The pharmacokinetics of [(14) C]-radioactivity, orteronel, and the primary metabolite M-I were characterized by ultra-performance liquid chromatography-tandem mass spectrometry, and mass balance recovery of [(14) C]-radioactivity was determined by liquid scintillation counting and accelerator mass spectrometry. Median time to maximum observed concentration of [(14) C]-radioactivity was 2.5 hours (plasma/whole blood) and of orteronel was 1 hour (plasma). Mean terminal half-life for [(14) C]-radioactivity in plasma and whole blood was 9.46 and 7.39 hours, respectively. For [(14) C]-radioactivity, the geometric mean whole blood-to-plasma ratios for maximum observed plasma/whole-blood concentration, area under the plasma concentration-time curve from time 0 to last quantifiable concentration (AUC0-last ), and AUC0-inf (AUC from time 0 to infinity) were 1.04, 0.92, and 0.93, respectively. Dose recovery accounted for 95.9% of the administered orteronel dose; the majority of excretion occurred by 96 hours postdose. The principal excretion route was via urine (mean, 77.5%; including 49.7% unchanged drug and 16.3% M-I) compared with 18.4% via feces. Three mild adverse events were reported; none were considered serious or related to orteronel. PMID:27163496

  1. Development and validation of an UPLC-MS/MS method for the quantification of ethoxzolamide in plasma and bioequivalent buffers: Applications to absorption, brain distribution, and pharmacokinetic studies

    PubMed Central

    Gao, Song; Zhao, Jing; Yin, Taijun; Ma, Yong; Xu, Beibei; Moore, Anthony N.; Dash, Pramod K.; Hu, Ming

    2015-01-01

    The purpose of this study is to develop and validate an UPLC-MS/MS method to quantify ethoxzolamide in plasma (EZ) and apply the method to absorption, brain distribution, as well as pharmacokinetic studies. A C18 column was used with 0.1% of formic acid in acetonitrile and 0.1% of formic acid in water as the mobile phases to resolve EZ. The mass analysis was performed in a triple quadrupole mass spectrometer using multiple reaction monitoring (MRM) with positive scan mode. The results show that the linear range of EZ is 4.88–10,000.00 nM. The intra-day variance is less than 12.43 % and the accuracy is between 88.88–08.00 %. The inter-day variance is less than 12.87 % and accuracy is between 89.27–115.89 %. Protein precipitation was performed using methanol to extract EZ from plasma and brain tissues. Only 40 µL of plasma is needed for analysis due to the high sensitivity of this method, which could be completed in less than three minutes. This method was used to study the pharmacokinetics of EZ in SD rats, and the transport of EZ in Caco-2 and MDCK-MDR1 overexpressing cell culture models. Our data show that EZ is not a substrate for p-glycoprotein (P-gp) and its entry into the brain may not limited by the blood-brain barrier. PMID:25706567

  2. Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements

    NASA Technical Reports Server (NTRS)

    Mcdade, Ian. C.; Llewellyn, Edward J.

    1991-01-01

    This paper demonstrates how the spatial distribution of optical emission rates within an auroral arc may be recovered from rocket photometer measurements made in a tomographic spin scan mode. The tomographic inversion procedures required to recover this information and the implementation of two inversion algorithms that are particularly well suited for dealing with the problem of noise in the observational data are described. The performance of the inversion algorithms and the limitations of the rocket tomography technique are assessed using various sets of simulated rocket measurements that were generated from 'known' auroral emission-rate distributions. The simulations are used to investigate how the quality of the tomographic recovery may be influenced by various factors such as noise in the data, rocket penetration of the auroral form, background sources of emission, smearing due to the photometer field of view, and temporal variations in the auroral form.

  3. Quantifying velocity, strain rate and stress distribution in coalescing salt sheets for safer drilling

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2015-03-01

    Reaching sub-salt hydrocarbon targets in the deeper part of the Gulf of Mexico requires drilling through a salt canopy. The suture zones in the salt canopy are potential drilling hazards due to anomalous pressure behaviour of entrapped sediments. The Pólya vector field of coalescing salt sheets inside the canopy is used to explain suture formation and distinguish between upright and inclined suture contacts. Our analytical models, based on complex potentials, provide exact solutions for multiple source flows as they compete for space when spreading into the viscous continuum of the salt canopy. The velocity gradient tensor yields the strain rate tensor, which is used to map the principal strain rate magnitude inside the canopy. Quantification of one of the principal strain rates is sufficient because the plane deformation assumption ensures the two principal strain rates are equal in magnitude (but of opposite sign); the third principal dimension can have neither strain nor deviatoric stress. Visualization of the locations where the principal stress vanishes or peaks (with highs and lows) is useful for pre-drilling plans because such peaks must be avoided and the stress-free locations provide the safer drilling sites. A case study-of the Walker Ridge region-demonstrates the practical application of our new method.

  4. 76 FR 590 - Adjustment or Determination of Compulsory License Rates for Making and Distributing Phonorecords

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ..., starting in the year 2006. A proceeding was commenced in 2006, 71 FR 1454 (January 9, 2006); on ] January... FR 4510 (January 26, 2009). Thus, in accordance with section 804(b)(4), a party may file a petition... Copyright Royalty Board Adjustment or Determination of Compulsory License Rates for Making and...

  5. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    PubMed Central

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  6. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.

  7. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    PubMed

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  8. Effect of Diffusion on Resonance Energy Transfer Rate Distributions: Implications for Distance Measurements.

    PubMed

    Toptygin, Dmitri; Chin, Alexander F; Hilser, Vincent J

    2015-10-01

    Intrinsically disordered protein regions and many other biopolymers lack the three-dimensional structure that could be determined by X-ray crystallography or NMR, which encourages the application of alternative experimental methods. Time-resolved resonance energy transfer data are often used to measure distances between two fluorophores attached to a flexible biopolymer. This is complicated by the rotational and translational diffusion of the fluorophores and by nonmonoexponential donor decay in the absence of the acceptor. Equation I(DA)(t) = I(D)(t)·F(t) is derived here, which is applicable regardless of whether I(D)(t) is monoexponential. I(D)(t) and I(DA)(t) are the δ-excitation donor emission decays in the absence and in the presence of the acceptor; F(t) contains information about energy transfer, donor-acceptor distance distribution, and diffusion dynamics. It is shown that in the absence of rotational and translational diffusion, F(t) is a continuous distribution of exponentials, whereas in the presence of rotational and translational diffusion, F(t) is a sum of discrete exponentials. For each case it is shown how F(t) is related to the distance distribution. Experimental data obtained with a flexible tetradecapeptide in aqueous solution clearly demonstrate that F(t) is a sum of discrete exponential terms. A partial differential equation describing resonance energy transfer in the presence of both rotational and translational diffusion of the donor and acceptor tethered to the ends of a semiflexible chain is solved in this work using a combination of analytical and numerical methods; the solution is used to fit time-resolved emission of the donor, which makes it possible to determine the model parameters: contour length, persistence length, and the end-to-end translational diffusion coefficient.

  9. Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running.

    PubMed

    Lenhart, Rachel L; Smith, Colin R; Vignos, Michael F; Kaiser, Jarred; Heiderscheit, Bryan C; Thelen, Darryl G

    2015-08-20

    Interventions used to treat patellofemoral pain in runners are often designed to alter patellofemoral mechanics. This study used a computational model to investigate the influence of two interventions, step rate manipulation and quadriceps strengthening, on patellofemoral contact pressures during running. Running mechanics were analyzed using a lower extremity musculoskeletal model that included a knee with six degree-of-freedom tibiofemoral and patellofemoral joints. An elastic foundation model was used to compute articular contact pressures. The lower extremity model was scaled to anthropometric dimensions of 22 healthy adults, who ran on an instrumented treadmill at 90%, 100% and 110% of their preferred step rate. Numerical optimization was then used to predict the muscle forces, secondary tibiofemoral kinematics and all patellofemoral kinematics that would generate the measured primary hip, knee and ankle joint accelerations. Mean and peak patella contact pressures reached 5.0 and 9.7MPa during the midstance phase of running. Increasing step rate by 10% significantly reduced mean contact pressures by 10.4% and contact area by 7.4%, but had small effects on lateral patellar translation and tilt. Enhancing vastus medialis strength did not substantially affect pressure magnitudes or lateral patellar translation, but did shift contact pressure medially toward the patellar median ridge. Thus, the model suggests that step rate tends to primarily modulate the magnitude of contact pressure and contact area, while vastus medialis strengthening has the potential to alter mediolateral pressure locations. These results are relevant to consider in the design of interventions used to prevent or treat patellofemoral pain in runners.

  10. Influence of Step Rate and Quadriceps Load Distribution on Patellofemoral Cartilage Contact Pressures during Running

    PubMed Central

    Lenhart, Rachel L.; Smith, Colin R.; Vignos, Michael F.; Kaiser, Jarred; Heiderscheit, Bryan C.; Thelen, Darryl G.

    2015-01-01

    Interventions used to treat patellofemoral pain in runners are often designed to alter patellofemoral mechanics. This study used a computational model to investigate the influence of two interventions, step rate manipulation and quadriceps strengthening, on patellofemoral contact pressures during running. Running mechanics were analyzed using a lower extremity musculoskeletal model that included a knee with six degree-of-freedom tibiofemoral and patellofemoral joints. An elastic foundation model was used to compute articular contact pressures. The lower extremity model was scaled to anthropometric dimensions of 22 healthy adults, who ran on an instrumented treadmill at 90%, 100% and 110% of their preferred step rate. Numerical optimization was then used to predict the muscle forces, secondary tibiofemoral kinematics and all patellofemoral kinematics that would generate the measured hip, knee and ankle joint accelerations. Mean and peak patella contact pressures reached 5.0 and 9.7 MPa during the midstance phase of running. Increasing step rate by 10% significantly reduced mean contact pressures by 10.4% and contact area by 7.4%, but had small effects on lateral patella translation and tilt. Enhancing vastus medialis strength did not substantially affect pressure magnitudes or lateral patella translation, but did shift contact pressure medially toward the patellar median ridge. Thus, the model suggests that step rate tends to primarily modulate the magnitude of contact pressure and contact area, while vastus medialis strengthening has the potential to alter mediolateral pressure locations. These results are relevant to consider in the design of interventions used to prevent or treat patellofemoral pain in runners. PMID:26070646

  11. Embedded electronics for a video-rate distributed aperture passive millimeter-wave imager

    NASA Astrophysics Data System (ADS)

    Curt, Petersen F.; Bonnett, James; Schuetz, Christopher A.; Martin, Richard D.

    2013-05-01

    Optical upconversion for a distributed aperture millimeter wave imaging system is highly beneficial due to its superior bandwidth and limited susceptibility to EMI. These features mean the same technology can be used to collect information across a wide spectrum, as well as in harsh environments. Some practical uses of this technology include safety of flight in degraded visual environments (DVE), imaging through smoke and fog, and even electronic warfare. Using fiber-optics in the distributed aperture poses a particularly challenging problem with respect to maintaining coherence of the information between channels. In order to capture an image, the antenna aperture must be electronically steered and focused to a particular distance. Further, the state of the phased array must be maintained, even as environmental factors such as vibration, temperature and humidity adversely affect the propagation of the signals through the optical fibers. This phenomenon cannot be avoided or mitigated, but rather must be compensated for using a closed-loop control system. In this paper, we present an implementation of embedded electronics designed specifically for this purpose. This novel architecture is efficiently small, scalable to many simultaneously operating channels and sufficiently robust. We present our results, which include integration into a 220 channel imager and phase stability measurements as the system is stressed according to MIL-STD-810F vibration profiles of an H-53E heavy-lift helicopter.

  12. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae.

    PubMed Central

    Zeyl, C; DeVisser, J A

    2001-01-01

    The per-genome, per-generation rate of spontaneous mutation affecting fitness (U) and the mean fitness cost per mutation (s) are important parameters in evolutionary genetics, but have been estimated for few species. We estimated U and sh (the heterozygous effect of mutations) for two diploid yeast strains differing only in the DNA mismatch-repair deficiency used to elevate the mutation rate in one (mutator) strain. Mutations were allowed to accumulate in 50 replicate lines of each strain, during 36 transfers of randomly chosen single colonies (approximately 600 generations). Among wild-type lines, fitnesses were bimodal, with one mode showing no change in mean fitness. The other mode showed a mean 29.6% fitness decline and the petite phenotype, usually caused by partial deletion of the mitochondrial genome. Excluding petites, maximum-likelihood estimates adjusted for the effect of selection were U = 9.5 x 10(-5) and sh = 0.217 for the wild type. Among the mutator lines, the best fit was obtained with 0.005 < or = U < or = 0.94 and 0.049 > or = sh > or = 0.0003. Like other recently tested model organisms, wild-type yeast have low mutation rates, with high mean fitness costs per mutation. Inactivation of mismatch repair increases the frequency of slightly deleterious mutations by approximately two orders of magnitude. PMID:11139491

  13. Distributed Patterns of Event-Related Potentials Predict Subsequent Ratings of Abstract Stimulus Attributes

    PubMed Central

    Bode, Stefan; Bennett, Daniel; Stahl, Jutta; Murawski, Carsten

    2014-01-01

    Exposure to pleasant and rewarding visual stimuli can bias people's choices towards either immediate or delayed gratification. We hypothesised that this phenomenon might be based on carry-over effects from a fast, unconscious assessment of the abstract ‘time reference’ of a stimuli, i.e. how the stimulus relates to one's personal understanding and connotation of time. Here we investigated whether participants' post-experiment ratings of task-irrelevant, positive background visual stimuli for the dimensions ‘arousal’ (used as a control condition) and ‘time reference’ were related to differences in single-channel event-related potentials (ERPs) and whether they could be predicted from spatio-temporal patterns of ERPs. Participants performed a demanding foreground choice-reaction task while on each trial one task-irrelevant image (depicting objects, people and scenes) was presented in the background. Conventional ERP analyses as well as multivariate support vector regression (SVR) analyses were conducted to predict participants' subsequent ratings. We found that only SVR allowed both ‘arousal’ and ‘time reference’ ratings to be predicted during the first 200 ms post-stimulus. This demonstrates an early, automatic semantic stimulus analysis, which might be related to the high relevance of ‘time reference’ to everyday decision-making and preference formation. PMID:25271850

  14. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media.

    PubMed

    Suess, D; Fuger, M; Abert, C; Bruckner, F; Vogler, C

    2016-06-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media.

  15. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media

    PubMed Central

    Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.

    2016-01-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287

  16. Gamow-Teller strength distributions and neutrino energy loss rates due to chromium isotopes in stellar matter

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Shehzadi, Ramoona; Fayaz, Muhammad

    2016-03-01

    Gamow-Teller transitions in isotopes of chromium play a consequential role in the presupernova evolution of massive stars. β-decay and electron capture rates on chromium isotopes significantly affect the time rate of change of lepton fraction (dot{Ye}). Fine-tuning of this parameter is one of the key for simulating a successful supernova explosion. The (anti)neutrinos produced as a result of electron capture and β-decay are transparent to stellar matter during presupernova phases. They carry away energy and this result in cooling the stellar core. In this paper we present the calculations of Gamow-Teller strength distributions and (anti)neutrino energy loss rates due to weak interactions on chromium isotopes of astrophysical importance. We compare our results with measured data and previous calculations wherever available.

  17. Study and Application on Cloud Covered Rate for Agroclimatical Distribution Using In Guangxi Based on Modis Data

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua

    Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.

  18. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    NASA Astrophysics Data System (ADS)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  19. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    USGS Publications Warehouse

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  20. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico

    USGS Publications Warehouse

    Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, S.W.

    2011-01-01

    Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.

  1. Impacts of land use on spatial distribution of mortality rates of cancers caused by naturally occurring asbestos.

    PubMed

    Wei, Binggan; Jia, Xianjie; Ye, Bixiong; Yu, Jiangping; Zhang, Biao; Zhang, Xiuwu; Lu, Rongan; Dong, Tingrong; Yang, Linsheng

    2012-09-01

    This study investigated the spatial distributions of mortality rates of six cancers: mesothelioma, lung cancer, intestinal cancer, nasopharyngeal and laryngeal cancer, liver cancer, and stomach cancer in Dayao using Geographic Information Systems. Relationships between the mortality rates of the six cancers and land use patterns were investigated by Pearson Correlation Coefficients. The results indicated that the mortality rates of nasopharyngeal and laryngeal cancer, lung cancer, intestinal cancer, and mesothelioma were significantly associated with outcropped asbestos. Both the proportions of farmland and urban area were positively related to the mortality rates of nasopharyngeal and laryngeal cancer, lung cancer, intestinal cancer, and mesothelioma, and significant negative correlations were found between the proportion of forestland and nasopharyngeal and laryngeal cancer and intestinal cancer. It can be concluded that naturally occurring asbestos may significantly elevate the mortality rates of nasopharyngeal and laryngeal cancer, intestinal cancer, lung cancer, and mesothelioma. Moreover, higher proportions of farmland, urban area, and lower proportions of forested land may elevate the mortality rate of the four cancers.

  2. Oral vaccination against raccoon rabies: landscape heterogeneity and timing of distribution influence wildlife contact rates with the ONRAB vaccine bait.

    PubMed

    Boyer, Jean-Philippe; Canac-Marquis, Pierre; Guérin, Daniel; Mainguy, Julien; Pelletier, Fanie

    2011-07-01

    Aerial distribution of oral vaccine baits is one of the available strategies for controlling the spread of infectious wildlife diseases. This technique has commonly been used to control rabies in wild carnivores and, together with other techniques, was used to immunize wild populations of raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) after the detection of the first rabid raccoon in the province of Quebec, Canada, in 2006. Vaccine bait distribution was conducted over large areas where agricultural land is dominant but interspersed with residual forest patches. Our objective was to evaluate the effect of habitat (forest vs. agricultural crops) in space and time on the contact rate between wildlife and the ONRAB(®) vaccine bait, a recent alternative to the V-RG(®). Four transects of eight vaccine baits each were installed parallel to, and at different distances from, the forest's edge (under forest cover, at field-forest edge, and at 50 and 200 m from forest edge in agricultural crops) at three sites composed of various crop types interspersed with forest patches. This experiment was conducted during three periods (late spring, 1-7 June; summer, 27 July-2 August; and fall, 24-30 October) in 2009. Contact rates with vaccine baits were monitored for 7 days in each period to evaluate the potential temporal variations generated within the habitat types. Contact rates with ONRAB vaccine baits were highest under forest cover and in the fall. Of 13 species observed in proximity to the vaccine baits, raccoons were the most frequent (49.5%, n=55 visits). Our study underlines the importance of taking into account landscape heterogeneity and timing of distribution when planning the distribution of vaccine baits to control rabies in raccoons. PMID:21719823

  3. An Update on Oceanic Precipitation Rate and its Zonal Distribution in Light of Advanced Observations from Space

    NASA Technical Reports Server (NTRS)

    Behrangi, Ali; Stephens, Graeme; Adler, Robert F.; Huffman, George J.; Lambrigsten, Bjorn; Lebstock, Matthew

    2014-01-01

    This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation rate using complementary information from advanced precipitation measuring sensors and provides an independent reference to assess current precipitation products. Precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR) were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist, precipitation estimates from Aqua's Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM, and Aqua platforms (this estimate is abbreviated to MCTA), the authors' estimate for 3-yr (2007-09) nearglobal (80degS-80degN) oceanic mean precipitation rate is approx. 2.94mm/day. This new estimate of mean global ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) value (2.68mm/day) and about 4% higher than that of the Global Precipitation Climatology Project (GPCP; 2.82mm/day). Furthermore, MCTA suggests distinct differences in the zonal distribution of precipitation rate from that depicted in GPCPand CMAP, especially in the Southern Hemisphere.

  4. Comparison of dose distributions around the pulsed-dose-rate Fletcher Williamson and the low-dose-rate Fletcher Suit Delclos ovoids: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Price, Michael J.; Gifford, Kent A.; Horton, John; Lawyer, Ann; Eifel, Patricia; Mourtada, Firas

    2006-08-01

    We performed a Monte Carlo study to compare dose distributions for a Fletcher-Suit-Delclos (FSD) ovoid used with 137Cs low-dose-rate (LDR) sources with those for a Fletcher-Williamson (FW) ovoid used with an 192Ir pulsed-dose-rate (PDR) source for intracavitary brachytherapy of cervical cancer. We recently reported on extensive validation of Monte Carlo MCNPX models of these ovoids using radiochromic film measurements. Here, we compared these models assuming identical loading of 10, 15 and 20 mgRaEq (72, 108 and 145 cGy cm2 h-1, respectively) in three dose mesh planes: one perpendicular to the ovoid long axis bisecting the ovoid, one parallel to and displaced 2 cm medially from the long axis of the ovoid, and a 'rectal' plane perpendicular to the long axis located 1 cm distal to the distal face of the ovoid cap. The FW ovoid delivered slightly higher doses (within 10%) over all loadings to regions away from the bladder and rectal shields when compared to the FSD ovoid. However, the FW ovoid delivered much higher doses (>50%) in regions near these shields. In the rectal plane, the FW ovoid delivered a slightly higher dose, but within the region directly behind the rectal shield, the FW ovoid delivered a dose ranging from +35% to -35% of the FSD dose distribution. We attribute these differences to intrinsic differences in source characteristics (radial dose function and anisotropy factors) and extrinsic factors such as the solid-angle effect between sources and shields and applicator design.

  5. Distributions and accumulation rates of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico sediments.

    PubMed

    Adhikari, Puspa L; Maiti, Kanchan; Overton, Edward B; Rosenheim, Brad E; Marx, Brian D

    2016-05-01

    Sediment samples collected from shelf, slope and interior basin of the northern Gulf of Mexico during 2011-2013, 1-3 years after the Deepwater Horizon (DWH) oil spill, were utilized to characterize PAH pollution history, in this region. Results indicate that the concentrations of surface ΣPAH43 and their accumulation rates vary between 44 and 160 ng g(-1) and 6-55 ng cm(-2) y(-1), respectively. ΣPAH43 concentration profiles, accumulation rates and Δ(14)C values are significantly altered only for the sediments in the immediate vicinity of the DWH wellhead. This shows that the impact of DWH oil input on deep-sea sediments was generally limited to the area close to the spill site. Further, the PAHs source diagnostic analyses suggest a noticeable change in PAHs composition from higher to lower molecular weight dominance which reflects a change in source of PAHs in the past three years, back to the background composition. Results indicate low to moderate levels of PAH pollution in this region at present, which are unlikely to cause adverse effects on benthic communities. PMID:26895564

  6. Variability of raindrop size distributions and radar reflectivity-rain rate relations in extreme Mediterranean precipitation

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Hazenberg, P.; Yu, N.; Boudevillain, B.; Delrieu, G.

    2010-12-01

    In radar hydrology the relationship between the reflectivity factor (Z) and the rainfall intensity (R) is generally assumed to follow a power law of which the parameters change both in space and time and depend on the drop size distribution (DSD). Based on disdrometer data, this study tries to improve our understanding of the temporal variability of the power-law relationship between Z and R using the scaling law formalism for the raindrop size distribution. In particular, this study focuses on the inter-event variability of Z-R coefficients and associated DSD-parameters and their relationship to the type of precipitation. This is crucial for developing improved quantitative precipitation estimation algorithms for extreme, flash-flood triggering rainfall. Within the DSD scaling-law framework a new normalized parameter estimation method is presented, which calculates significantly faster than the original method and leads to bulk event estimates of the DSD-parameters and associated Z-R coefficients. Based on a 2.5-year disdrometer dataset collected in the Cevennes-Vivarais region in the South of France, comprising a total of 70 events, it is shown that the quality of the resulting Z-R relationships obtained by the new method compares well to two standard least-squares fitting techniques. A major benefit of the new implementation, as compared to such purely statistical methods, is that it also provides information concerning the intrinsic properties of the DSD. For each of the 70 events this study also estimates the convective activity based on a threshold technique. Results show that convective events generally tend to have smaller Z-R exponents, which is expected to result from an increased amount of drop interaction. For stratiform events, a much larger range in exponents is obtained, which is expected to depend on differences in meteorological origin (snow vs. ice). For the types of precipitation events observed in the Cevennes region, for a given value of the

  7. Quantum-locked key distribution at nearly the classical capacity rate.

    PubMed

    Lupo, Cosmo; Lloyd, Seth

    2014-10-17

    Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit.

  8. Quantum-locked key distribution at nearly the classical capacity rate.

    PubMed

    Lupo, Cosmo; Lloyd, Seth

    2014-10-17

    Quantum data locking is a protocol that allows for a small secret key to (un)lock an exponentially larger amount of information, hence yielding the strongest violation of the classical one-time pad encryption in the quantum setting. This violation mirrors a large gap existing between two security criteria for quantum cryptography quantified by two entropic quantities: the Holevo information and the accessible information. We show that the latter becomes a sensible security criterion if an upper bound on the coherence time of the eavesdropper's quantum memory is known. Under this condition, we introduce a protocol for secret key generation through a memoryless qudit channel. For channels with enough symmetry, such as the d-dimensional erasure and depolarizing channels, this protocol allows secret key generation at an asymptotic rate as high as the classical capacity minus one bit. PMID:25361242

  9. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    USGS Publications Warehouse

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  10. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  11. Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate.

    PubMed

    Huber, Reto; Schuderer, Jürgen; Graf, Thomas; Jütz, Kathrin; Borbély, Alexander A; Kuster, Niels; Achermann, Peter

    2003-05-01

    In two previous studies we demonstrated that radiofrequency electromagnetic fields (RF EMF) similar to those emitted by digital radiotelephone handsets affect brain physiology of healthy young subjects exposed to RF EMF (900 MHz; spatial peak specific absorption rate [SAR] 1 W/kg) either during sleep or during the waking period preceding sleep. In the first experiment, subjects were exposed intermittently during an 8 h nighttime sleep episode and in the second experiment, unilaterally for 30 min prior to a 3 h daytime sleep episode. Here we report an extended analysis of the two studies as well as the detailed dosimetry of the brain areas, including the assessment of the exposure variability and uncertainties. The latter enabled a more in depth analysis and discussion of the findings. Compared to the control condition with sham exposure, spectral power of the non-rapid eye movement sleep electroencephalogram (EEG) was initially increased in the 9-14 Hz range in both experiments. No topographical differences with respect to the effect of RF EMF exposure were observed in the two experiments. Even unilateral exposure during waking induced a similar effect in both hemispheres. Exposure during sleep reduced waking after sleep onset and affected heart rate variability. Exposure prior to sleep reduced heart rate during waking and stage 1 sleep. The lack of asymmetries in the effects on sleep EEG, independent of bi- or unilateral exposure of the cortex, may indicate involvement of subcortical bilateral projections to the cortex in the generation of brain function changes, especially since the exposure of the thalamus was similar in both experiments (approx. 0.1 W/kg).

  12. Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact

    SciTech Connect

    Dirras, G.; Ouarem, A.; Couque, H.; Gubicza, J.; Szommer, P.; Brinza, O.

    2011-05-15

    Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardening effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.

  13. Motor Switching Rates in Caulobacter Crescentus Follow First Passage Time Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Jay; Morse, Michael; Bell, Jordan; Li, Guanglai

    2015-03-01

    The flagellar motor of uni-flagellated bacterium Caulobacter crescentus switches stochastically between clockwise (CW) and counterclockwise (CCW) rotation. We performed measurements of the time intervals between switches in order to gain insight on motor dynamics and regulation. Our measurements were performed both on free swimming cells and tethered cells with their flagella attached to a glass slide. A peak time of approximately one second was observed in both motor directions with counterclockwise intervals more sharply peaked. The distributions of switching times can be fitted using biased first passage time statistics. We present a model of motor switching dynamics, which is controlled by the binding of CheY-P to motor subunits FliM. A lower threshold number of FliM with CheY-P bound triggers a switch in motor rotation from CW to CCW, whereas a higher threshold triggers an opposing switch from CCW to CW. The time intervals between alternating switches may be increased or decreased by regulating CheY-P concentration, resulting in biased directional motion in the cells swimming trajectory over many motor cycles under external spatial or temporal gradients. Work funded by the United States National Science Foundation.

  14. The distribution of Extremely High Accretion Rates and Metallicities of QSO's as a Function of Redshift over Cosmic Evolution

    NASA Astrophysics Data System (ADS)

    Abu Seif, Nasser; Kazanas, Demosthenes

    2016-07-01

    The investigation of how QSOs' extremity of accretion rates vary with redshift has remained a major focus of our study in the last five years. How does the evolution of QSOs trace the accretion history of early SMBH? What does accretion at super-Eddington rates look like? Does the correlation between SMBHs and metallicity of QSOs emission line evolve differently at high redshift? Is it a surprise that metallicity is high at high redshift, or is this expected? Here, we establish a new database for the width of an emission line (e.g., Hβ, Mg II and C IV) to obtain a large statistical sample of QSOs at different redshifts. We calculated L/LEdd that determined mass from previous studies (Sloan Digital Sky Survey (SDSS)). We investigated the significant evolution of L/ LEdd for any value of MBH as a function of redshift. Also, we investigated the evolution and distribution of the accretion rate (L/LEdd) over cosmic time with a concentration on the extremely high accretion rate sources at high redshift. The current study investigated the accretion rate (L/LEdd) correlation to other QSO properties and investigated how the accretion of Black Holes L/LEdd and MBH occurs within heavily obscured environments. Our research found that some QSOs are radiating near the Eddington limit with L/ Ledd ~ 1 and those QSOs have extreme accretion. We also found that the lowest M BH has the highest accretion rate, a result that was already noted by McClure & Dunlop (2004). The distribution of Eddington ratio displayed by QSOs clearly shows that all luminous QSOs accreted at their Eddington limit have a poor approximation. This result is important because it is often assumed that optically luminous QSOs are accreting at their Eddington limit within the models of QSOs evolution. We determined the peak of the L/LEdd versus redshift and we found the largest of those peaks to be at the interval of redshift (1< Z < 2). We noted that the highest peak of the distribution of L/LEdd at all

  15. Improving the rainfall rate estimation in the midstream of the Heihe River Basin using rain drop size distribution

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Chu, R.; Li, X.; Zhang, T.; Shen, J.; Wu, Z.

    2009-09-01

    During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, a latest state of the art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modeling behavior was not well-done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar, in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the rain drop and the diameter (mm) of a rain drop: v(D)=4.67 D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R(Z) is most sensitive to variations in DSD and the estimator R (KDP, Z, ZDR) is the best estimator for estimating the rain rate. The lowest sensitivity of the rain rate estimator R (KDP, Z, ZDP) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross section, which contributes to Z, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than Z.

  16. Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Chu, R.; Zhang, T.; Li, J.; Shen, J.; Wu, Z.

    2011-03-01

    During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, the latest state-of-the-art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modelling behaviour was not well done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the raindrop and the diameter (mm) of a raindrop: v(D) = 4.67D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R (ZH) is most sensitive to variations in DSD and the estimator R (KDP, ZH, ZDR) is the best estimator for estimating the rain rate. An X-band polarimetric radar (714XDP) is used for verifying these estimators. The lowest sensitivity of the rain rate estimator R (KDP, ZH, ZDR) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross-section, which contributes to ZH, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than ZH.

  17. Effect of Saline Waste Solution Infiltration Rates on UraniumRetention and Spatial Distribution in Hanford Sediments

    SciTech Connect

    Wan, Jiamin; Tokunaga, Tetsu K.; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R. Jeffrey

    2007-03-15

    The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 metric tons of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes occurred during the initial infiltration and help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagating through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates ({ge} 5 cm/day) permitted practically unretarded U transport. Therefore, given the very high K{sub sat} of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.

  18. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea

    2016-06-01

    The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently obtained in experiments at single-cell resolution can be explained in terms of a trade-off between the higher fitness of fast-growing phenotypes and the higher entropy of slow-growing ones. Based on this, we propose a minimal model for the evolution of a large bacterial population that captures this trade-off. The scaling relationships observed in experiments encode, in such frameworks, for the same distance from the maximum achievable growth rate, the same degree of growth rate maximization, and/or the same rate of phenotypic change. Being grounded on genome-scale metabolic network reconstructions, these results allow for multiple implications and extensions in spite of the underlying conceptual simplicity.

  19. Relation Between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People With Coronary Disease.

    PubMed

    Tonelli, Marcello; Sacks, Frank; Arnold, Malcolm; Moye, Lemuel; Davis, Barry; Pfeffer, Marc

    2008-01-15

    BACKGROUND: Higher levels of red blood cell distribution width (RDW) may be associated with adverse outcomes in patients with heart failure. We examined the association between RDW and the risk of all-cause mortality and adverse cardiovascular outcomes in a population of people with coronary disease who were free of heart failure at baseline. METHODS AND RESULTS: We performed a post hoc analysis of data from the Cholesterol and Recurrent Events study. Baseline RDW was measured in 4111 participants who were randomized to receive pravastatin 40 mg daily or placebo and followed for a median of 59.7 months. We used Cox proportional hazards models to examine the association between RDW and adverse clinical outcomes. During nearly 60 months of follow-up, 376 participants died. A significant association was noted between baseline RDW level and the adjusted risk of all-cause mortality (hazard ratio per percent increase in RDW, 1.14; 95% confidence interval, 1.05 to 1.24). After categorization based on quartile of baseline RDW and further adjustment for hematocrit and other cardiovascular risk factors, a graded independent relation between RDW and death was observed (P for trend=0.001). For instance, participants with RDW in the highest quartile had an adjusted hazard ratio for death of 1.78 (95% confidence interval, 1.28 to 2.47) compared with those in the lowest quartile. Higher levels of RDW were also associated with increased risk of coronary death/nonfatal myocardial infarction, new symptomatic heart failure, and stroke. CONCLUSIONS: We found a graded independent relation between higher levels of RDW and the risk of death and cardiovascular events in people with prior myocardial infarction but no symptomatic heart failure at baseline. PMID:18172029

  20. An empirically derived basis for calculating the area, rate, and distribution of water-drop impingement on airfoils

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R

    1952-01-01

    An empirically derived basis for predicting the area, rate, and distribution of water-drop impingement on airfoils of arbitrary section is presented. The concepts involved represent an initial step toward the development of a calculation technique which is generally applicable to the design of thermal ice-prevention equipment for airplane wing and tail surfaces. It is shown that sufficiently accurate estimates, for the purpose of heated-wing design, can be obtained by a few numerical computations once the velocity distribution over the airfoil has been determined. The calculation technique presented is based on results of extensive water-drop trajectory computations for five airfoil cases which consisted of 15-percent-thick airfoils encompassing a moderate lift-coefficient range. The differential equations pertaining to the paths of the drops were solved by a differential analyzer.

  1. Predicting laser-induced bulk damage and conditioning for deuterated potassium di-hydrogen phosphate crystals using ADM (absorption distribution model)

    SciTech Connect

    Liao, Z M; Spaeth, M L; Manes, K; Adams, J J; Carr, C W

    2010-02-26

    We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated Potassium dihydrogen Phosphate (DKDP) crystals in a self-consistent way. The model expands on an existing nanoabsorber precursor model and the multi-step absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of ns pulse widths relevant to ICF lasers such as the National Ignition Facility (NIF). In addition, this work predicts the damage behavior of laser-conditioned DKDP and explains the upper limit to the laser conditioning effect. The ADM model has been successfully used during the commissioning and early operation of the NIF.

  2. Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes.

    PubMed

    Eory, Lél; Halligan, Daniel L; Keightley, Peter D

    2010-01-01

    Protein-coding sequences make up only about 1% of the mammalian genome. Much of the remaining 99% has been long assumed to be junk DNA, with little or no functional significance. Here, we show that in hominids, a group with historically low effective population sizes, all classes of noncoding DNA evolve more slowly than ancestral transposable elements and so appear to be subject to significant evolutionary constraints. Under the nearly neutral theory, we expected to see lower levels of selective constraints on most sequence types in hominids than murids, a group that is thought to have a higher effective population size. We found that this is the case for many sequence types examined, the most extreme example being 5'UTRs, for which constraint in hominids is only about one-third that of murids. Surprisingly, however, we observed higher constraints for some sequence types in hominids, notably 4-fold sites, where constraint is more than twice as high as in murids. This implies that more than about one-fifth of mutations at 4-fold sites are effectively selected against in hominids. The higher constraint at 4-fold sites in hominids suggests a more complex protein-coding gene structure than murids and indicates that methods for detecting selection on protein-coding sequences (e.g., using the d(N)/d(S) ratio), with 4-fold sites as a neutral standard, may lead to biased estimates, particularly in hominids. Our constraint estimates imply that 5.4% of nucleotide sites in the human genome are subject to effective negative selection and that there are three times as many constrained sites within noncoding sequences as within protein-coding sequences. Including coding and noncoding sites, we estimate that the genomic deleterious mutation rate U = 4.2. The mutational load predicted under a multiplicative model is therefore about 99% in hominids.

  3. Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; Gavilán, M.; Terlevich, R.; Terlevich, E.; Hoyos, C.; Díaz, A. I.

    2015-07-01

    This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity - the equivalent width of the Hα line and the (u - r) colour - with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of ˜82 500 galaxies extracted from the Sloan Digital Sky Survey. The existence of a relatively tight `ageing sequence' in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive' (metal-poor and intensely star-forming) state to a `chemically evolved' (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching' and `rejuvenation' episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(Hα) and bluer (u - r) colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing' scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time-scale in dense environments, where many objects are found on a `quenched sequence' in the colour-equivalent width plane.

  4. Design and development of a probe-based multiplexed multi-species absorption spectroscopy sensor for characterizing transient gas-parameter distributions in the intake systems of I.C. engines

    DOE PAGES

    Jatana, Gurneesh; Geckler, Sam; Koeberlein, David; Partridge, William

    2016-09-01

    We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuring gasmore » temperature, pressure, and H2O concentration, and a CO2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

  5. Relationship of high molecular weight glutenin subunit composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colors of noodle doughs made from hard white winter wheat flours from Oregon were measured at optimum noodle water absorptions (NWA). Partial correlations, removing effect of protein concentration, indicated that NWA had negative relationships with 0 hr L* and 24 hr b*, and positive relationships wi...

  6. Aspirin absorption rates and platelet inhibition times with 325-mg buffered aspirin tablets (chewed or swallowed intact) and with buffered aspirin solution.

    PubMed

    Feldman, M; Cryer, B

    1999-08-15

    Large clinical trials such as the second International Study of Infarct Survival routinely gave patients with myocardial infarction a chewed aspirin, yet there are no data to show whether chewing of aspirin is better, or worse, than swallowing a whole tablet. We performed a randomized, placebo-controlled study to determine whether chewing aspirin or administering it in solution accelerates its absorption and antiplatelet activity. On separate days, 12 fasting volunteers ingested 325 mg of buffered aspirin, either by chewing a tablet for 30 seconds before swallowing it with 4 ounces of water, swallowing a whole tablet with 4 ounces of water, or drinking 4 ounces of Alka Seltzer. Frequent blood samples were obtained for serum aspirin, salicylate, and thromboxane B2 (TxB2) concentrations. With all formulations of aspirin, serum TxB2 decreased 50% when the plasma aspirin concentration reached approximately 1,000 ng/ml. A 50% and 90% decrease in serum TxB2 occurred more quickly after chewing a tablet than after a tablet was swallowed whole. For example, the t 50% for serum TxB2 inhibition was 5.0 +/- 0.6 minutes with the chewed tablet versus 12.0 +/- 2.3 minutes when the tablet was swallowed (p = 0.01). A 50% decrease in serum TxB2 occurred 7.6 +/- 1.2 minutes after Alka Seltzer solution (p = 0.04 vs chewing a tablet; p = 0.13 vs swallowing a whole tablet). Chewing an aspirin tablet is the most effective way of accelerating absorption of aspirin into the blood and shortening the time required for an antiplatelet effect. PMID:10468077

  7. Mesoscale distributions of ultraviolet spectral irradiance, actinic flux, and photolysis rates derived from multispectral satellite data and radiative transfer models

    NASA Astrophysics Data System (ADS)

    Wetzel, Melanie A.; Slusser, James R.

    2005-04-01

    Global atmospheric trends in ozone column amount have focused attention on the environmental risk of exposure to ultraviolet (UV) radiation. Monitoring UV irradiance in diverse and remote locations is necessary to understand the variability of exposure, dose rates, and resultant vulnerability of ecological systems. The U.S. Department of Agriculture (USDA) UV-B Monitoring Program maintains a wide network for ground-based continuous measurement of solar radiation in several wavelengths of interest for photosynthesis, plant growth, UV exposure to humans, and photochemistry. This network provides data for analysis of UV climatology and trends at those sites. A satellite-based method to produce mesoscale-resolution mapped distributions of UV spectral irradiance has been developed that utilizes this network data for verification. The methodology combines radiative transfer modeling, multispectral image pixel classification, cloud optical depth retrievals, and auxiliary remote sensing data. Retrieved parameters are compared with ground-based measurements from the USDA network instrumentation at two sites [Poker Flat Research Range, Alaska; 65.12 deg N, 147.43 deg W, 550 m mean sea level (MSL); and Storm Peak Laboratory, Colorado, 40.45 deg N, 106.73 deg W, 3220 m MSL]. The results are used to evaluate the effects of cloud distribution and surface albedo in determining mesoscale variability of UV exposure and photolysis rates in high-latitude and high-altitude environments.

  8. Impact of Stronger Production and Loss Rates of Secondary Organic Aerosols on their Global Distribution and Budget

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Kasibhatla, P. S.; Cappa, C. D.; Madronich, S.; Jo, D. S.; Park, R.; Jimenez, J. L.

    2015-12-01

    Organic aerosols are observed to be the major constituents of submicron particles worldwide, and yet their atmospheric lifecycle including formation, ageing, and removal processes is poorly understood. Recent laboratory and ambient measurements suggest that both production yields and removal rates of chemically produced secondary organic aerosols (SOA) are much stronger and more diverse than currently assumed in chemistry-climate models (which typically consider wet deposition as the major loss process). In this study, we re-assess the global SOA distribution and budget with newly proposed SOA production and loss processes derived from these recent measurements, as well as from theoretical calculations. We evaluate and discuss the relative importance of removal pathways for organic vapors and particles (e.g. dry and wet deposition, photo-dissociation, evaporation, and heterogeneous surface reactions), and their effect on the SOA vertical distribution and budget using the GEOS-Chem global chemistry-transport model. We compare simulated SOA from various model configurations against ground, aircraft and satellite measurements to assess the extent to which these new developments in our understanding of SOA formation and removal processes are consistent with observed characteristics of the SOA distribution. Our results show strong changes in predicted vertical profiles of organic aerosols with higher SOA concentrations in the boundary layer and lower concentrations in the upper troposphere, which appear to be in a better agreement with aircraft measurements.

  9. Growth of (1 1 1) and (2 0 0) orientation cubic MgZnO thin films under different oxygen flow rate by PLD method and its difference in element composition and optical absorption characteristics

    SciTech Connect

    Han, S.; Shao, Y.K.; Lu, Y.M. Cao, P.J.; Liu, W.J.; Zeng, Y.X.; Jia, F.; Zhu, D.L.

    2015-04-15

    Under different migration energy of reactive Mg, Zn and O atoms from MgZnO target at different oxygen flow rate, (2 0 0) and (1 1 1) orientations MgZnO thin films with cubic structure were fabricated on fused quartz substrate by PLD method. And MgZnO thin film possesses relatively higher Zn composition and lower Mg composition when deposited more along (1 1 1) orientation. The band gap and UV absorption characteristics of MgZnO thin film do not change completely in accordance with the Mg/Zn atom ratio of MgZnO thin films deposited at different oxygen flow rate, but influenced more by the ratio between Mg and Zn atoms that combined with O atoms in MgZnO crystal lattice and the grain boundary density of MgZnO thin films deposited at different oxygen flow rate.

  10. Local structure of germanium selenide glasses around the rigidity percolation threshold using atomic pair distribution function and X-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Shatnawi, Moneeb Taiseer

    A search for a structural response to a recently proposed self-organized and stress-free intermediate phase [1, 2] in semiconductor chalcogenide Ge xSe1-x glasses has been performed in this study. These glasses, according to the mean-field approach, undergo a structural phase transition from floppy to rigid network that occurs at a mean coordination number of 2.4. Based on thermodynamic and spectroscopic measurements, these glasses appear to exhibit two transitions instead of one [3]. The region between these transitions has been called the intermediate phase (IP) [3, 4]. The original theoretical work assumed that the network was generic and the connectivity random [5]. It was therefore suggested [1] that the IP phase is a region of finite width in composition where the network could self-organize in such a way that maintains a rigid but unstressed state. However, it has proved difficult to establish this result experimentally. High-resolution atomic pair distribution functions (PDF), derived from high energy synchrotron radiation, coupled with high-resolution X-ray absorption fine structure (XAFS) measurements on 18 compositions of well-prepared Ge xSe1-x glasses that span the range of the IP have been performed to elucidate aspects of rigidity percolation and the IP. These data sets are the most complete and the highest resolution data set on this system to date. Analysis of the structure functions (in reciprocal space) and the PDFs (in real space) as well as the XAFS data at both Ge and Se edges show no correlations with the IP. The network evolves smoothly without any break in slope or discontinuity that might be linked due to the IP. The results obtained in this study contradict previously published work [1, 2] that claim experimental evidence for a structural origin of the IP. The so-called first sharp diffraction peak (FSDP), which is a signature of the medium range order in these glasses, changes systematically with Ge content. It develops smoothly from a

  11. New Estimates of Late Pleistocene Slip Rate Along the Panamint Valley Fault System: Implications for Distributed Shear in Eastern California

    NASA Astrophysics Data System (ADS)

    Choi, N. H.; Kirby, E.; McDonald, E.

    2015-12-01

    Despite decades of study, the distribution of fault slip within the eastern California shear zone (ECSZ) remains incompletely understood. Along the Panamint Valley fault system (PVFS), Late Pleistocene - Holocene slip rates are sparse, limited to a single site along the southernmost fault segment (~2-3 mm/yr). However, geodetic results along the Hunter Mountain fault, a strike-slip fault linked to the northern PVFS, suggest slip rates as high as 5-6 mm/yr. Here, we present preliminary results from an investigation of displaced alluvial fan surfaces along the central PVFS, near Jail Canyon. We utilize LiDAR-derived high resolution topography, field mapping, and soil characterization to reconstruct displacement. Comparison of soil characteristics to a calibrated regional soil chronosequence constrains the age of alluvial surfaces; analysis of a depth profile using 10Be cosmogenic isotopes is underway. The PVFS near the mouth of Jail Canyon is characterized by a ~500 m wide zone of distributed deformation. Dextral offset of channels and associated alluvial surfaces across a N45W strike-slip fault marks lateral displacement, while N-S striking normal faults accomplish E-W extension. We exploit the preservation of a large relict channel to reconstruct the cumulative displacement from these faults. Offset crests of the channel levees suggest 115±10 m of right-lateral displacement, while the sum of extension across the fault zone is 34±3 m. Together, these suggest a cumulative slip of 148±13m oriented in a 310° direction, consistent with dextral-oblique motion across the PVFS. Soil development in alluvial surfaces is consistent with soils dated regionally between 30 - 50 ka. These preliminary results suggest that a minimum slip rate across the central PVFS is 4.1±1.3 mm/yr. Our results imply that the PVFS accomplishes a greater fraction of dextral shear, north of the Garlock fault, than previously thought.

  12. The distribution of Yin-Deficient symptoms and their relationship on survival rate in cancer patients with Yin-Deficiency.

    PubMed

    Lin, Shu-Chuan; Chen, Ming-Feng; Li, Tsai-Chung; Hsieh, Yu-Ho; Liu, Shwu-Jiuan

    2008-01-01

    Yin-Deficiency (YD), representing a status of the human body under lack of nutrition and fluid in traditional Chinese medicine, is commonly seen in late stage of cancer patients. It is not known whether the severity of YD related symptoms/signs can predict the survival rate of cancer patients. This study evaluated the distribution of Yin-deficiency symptoms/signs (YDS) in cancer patients with YD, and investigated whether the severity of YDS can predict the survival rate of cancer patients with YD. From 5 January 2007 to 5 May 2007, we selected 43 cancer patients with diagnosis of YD from hospitalized patients and outpatients. The severity of YD was evaluated by a questionnaire. We further estimated the cumulative probabilities of the survival rates over 4 months since the start of study by the Kaplan-Meier product-limit method, and compared the differences among groups with various severities in each symptom/sign with the use of the log-rank test. The results revealed that, the 3 most common YDS were sleeplessness with annoyance, less or non-coated tongue with or without redness and dry mouth. In the survival rate analysis, only 2 parameters, rapidly small pulse (p = 0.002) and less-or non-coated tongue with paleness (p = 0.017), were found to be related to the decrease of cancer patients with YD. This suggests that, both rapidly small pulse and less-or non-coated tongue without redness may be used as predictors for the estimation of survival rate in cancer patients with YD. PMID:18711763

  13. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  14. Temperature dependence of water loss rates in scorpions and its effect on the distribution of Buthotus judaicus (Buthidae) in Israel.

    PubMed

    Gefen, Eran; Ar, Amos

    2006-05-01

    Scorpions of the family Buthidae have been shown to be more desiccation resistant in comparison with sympatric Scorpionidae species. This has been attributed to the surface-dwelling existence of the former, which unlike most other scorpion species do not avoid environmental extremes by burrowing. Still, within Buthidae, the mesic Buthotus judaicus showed better osmoregulatory capacities than the xeric Leiurus quinquestriatus, largely as a result of its high resistance to water loss. However, B. judaicus exhibited poor ability to regulate its haemolymph osmolarity at 37 degrees C. In this study we report a sharp increase in water loss rates of B. judaicus at the 30-35 degrees C temperature range compared to that measured for L. quinquestriatus, which could explain the poor osmoregulatory performance of the former at higher ambient temperatures. The increase in water loss rates of B. judaicus at high temperatures is not coupled with a similar increase in respiratory rate, suggesting an increase in cuticular permeability. We suggest that this increase in cuticular permeability, which may result from a relatively low critical transition temperature, contributes to limiting the distribution of B. judaicus to habitats of moderate environmental conditions.

  15. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  16. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution.

    PubMed

    Miller, Maria A; Rodrigues, Miguel A; Glass, Matthew A; Singh, Satish K; Johnston, Keith P; Maynard, Jennifer A

    2013-04-01

    Freezing of protein solutions perturbs protein conformation, potentially leading to aggregate formation during long-term storage in the frozen state. Macroscopic protein concentration profiles in small cylindrical vessels were determined for a monoclonal antibody frozen in a trehalose-based formulation for various freezing protocols. Slow cooling rates led to concentration differences between outer edges of the tank and the center, up to twice the initial concentration. Fast cooling rates resulted in much smaller differences in protein distribution, likely due to the formation of dendritic ice, which traps solutes in micropockets, limiting their transport by convection and diffusion. Analysis of protein stability after more than 6 months storage at either -10°C or -20°C [above glass transition temperature (T'g )] or -80°C (below T'g ) revealed that aggregation correlated with the cooling rate. Slow-cooled vessels stored above T'g exhibited increased aggregation with time. In contrast, fast-cooled vessels and those stored below T'g showed small to no increase in aggregation at any position. Rapid entrapment of protein in a solute matrix by fast freezing results in improved stability even when stored above T'g . © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1194-1208, 2013.

  17. Influence of spatial distribution and size of clones on the realized outcrossing rate of the marsh cinquefoil (Comarum palustre)

    PubMed Central

    Somme, L.; Mayer, C.; Raspé, O.; Jacquemart, A.-L.

    2014-01-01

    Background and Aims Clonal growth is a common feature in flowering plants. As clone size increases, the selfing rate in self-compatible species is likely to increase due to more frequent geitono-pollination events (i.e. pollination among flowers within the same genet). This study investigated the breeding system of the marsh cinquefoil (Comarum palustre) and assessed spatial distribution of clones, clone size and architecture, and their effects on realized outcrossing rates. In addition, pollen dispersal was investigated in two patchy populations. Methods The species' breeding system was investigated under controlled conditions through hand pollinations (self- vs. cross-pollination). Using microsatellite markers, an assessment was made of the realized outcrossing rates and the genetic diversity in four natural populations, the clonal structure in two populations within five 15 × 15 m sampling plots following 0·5 × 0·5 m grids, and the pollen dispersal through paternity assignment tests in those two populations. Key Results Comarum palustre is a self-compatible species but only presents a low rate of spontaneous self-pollination. The occurrence of inbreeding depression was not detected at the seed set stage (δSS = 0·04). Clones were spatially clumped (AC = 0·60–0·80), with intermediate to no intermingling of the ramets (DC = 0·40–1·00). Genet size ranged from one to 171 ramets. Patchy populations had low outcrossing rates (tm = 0·33–0·46). Large clones showed lower outcrossing rates than small clones. Pollen dispersal mainly occurred within patches as only 1–7 % of the pollination events occurred between patches of >25 m separation. Seedling recruitment events were detected. Conclusions Genet size together with distances between patches, through increasing geitono-pollination events, appeared to be important factors influencing realized outcrossing rates. The study also revealed seed flow allowing seedling recruitment, which may contribute to

  18. Does absorption of ultraviolet B by stratospheric ozone and urban aerosols influence colon and breast cancer mortality rates? Contributions from NASA and NOAA data

    NASA Astrophysics Data System (ADS)

    Gorham, Edward D.; Garland, Frank C.; Mohr, Sharif B.; Grant, William B.; Garland, Cedric F.

    2005-08-01

    Although most ultraviolet B (UVB) radiation is absorbed by stratospheric ozone, dense anthropogenic sulfate aerosols in the troposphere may further attenuate UVB in some regions. Mortality rates from colon and breast cancer tend to be much higher in areas with low levels of UVB radiation. These high rates may be due in part to inadequate cutaneous photosynthesis of vitamin D. Satellite data on atmospheric aerosols, stratospheric ozone, and cloud cover were obtained from the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA). These data were combined with age-adjusted mortality rates from 175 countries reporting to the World Health Organization. Regression was used to assess the relationship of stratospheric ozone thickness, aerosol optical depth, cloud cover, solar UVB irradiance at the top of the atmosphere, average skin exposure, and a dietary factor with colon and breast cancer mortality rates. Solar UVB irradiance at the top of the atmosphere, total cloud cover, and atmospheric aerosols had the strongest associations with mortality rates, apart from a strong influence of diet. Since 95% of circulating vitamin D is derived from current or stored products of photosynthesis, which may be nonexistent or minimal much of the year above 37°N or below 37°S, attenuation of UVB by atmospheric aerosols and clouds may have a greater than expected adverse effect on human health.

  19. The absorption, distribution, excretion, and metabolism of a single oral dose of O-ethyl O-4-nitrophenyl phenylphosphonothioate in hens

    SciTech Connect

    Abou-Donia, M.B.; Reichert, B.L.; Ashry, M.A.

    1983-08-01

    The disposition and metabolism of a single oral 10 mg/kg (LD50) of uniformly phenyl-labeled (/sup 14/C)EPN (O-ethyl O-4-nitrophenyl (/sup 14/C)phenylphosphonothioate) were studied in adult hens. The birds were protected from acute toxicity with atropine sulfate. Three treated hens were killed at each time interval (days): 0.5, 2, 4, 8, 12. Radioactivity was adsorbed from the gastrointestinal tract and distributed in all tissues. Most of the dose was excreted in the combined urinary-fecal excreta (74%). Only traces of the radioactivity (0.2%) were detected in expired CO/sub 2/. Most of the excreted radioactive materials were identified as phenylphosphonic acid (PPA), O-ethyl phenylphosphonic acid (EPPA), and O-ethyl phenylphosphonothioc acid (EPPTA). Radioactivity in tissues reached a peak of 11.8% in 12 days. The highest concentration of radioactivity was present in the liver followed by bile, kidney, adipose tissue, and muscle. EPN was the major compound identified in brain, spinal cord, sciatic nerve, kidney, and plasma. Most of the radioactivity in the liver was identified as EPPA followed by EPPTA and PPA. Kinetic studies showed that EPN disappeared exponentially from tissues. The half-life of the elimination of EPN from plasma was 16.5 days corresponding to a constant rate value of 0.04 day-1. Relative residence (RR) of EPN relative to plasma was shortest in liver and longest in adipose tissue followed by sciatic nerve and spinal cord.

  20. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  1. The size dependence of sublimation rates for interplanetary ice particles

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1975-01-01

    The sublimation rates for water ice have been computed as a function of particle size for various solar distances. Because of the size dependence of the absorption and emission properties of the particles, a sublimation-rate minimum evolves whose depth and position are sensitive to the spectral-absorption properties of the particle in combination with the spectral distribution of solar radiation. As a consequence, a quasistable size of interplanetary ice particles is predicted which is independent of solar distance.

  2. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  3. THE ABSORPTION OF ADRENALIN

    PubMed Central

    Lyon, D. Murray

    1923-01-01

    1. Adrenalin solution given subcutaneously is usually rapidly absorbed, probably by lymphatic channels. 2. The speed of this process may be influenced by the circulation rate. 3. The relative amounts of adrenalin at any moment unabsorbed at the site of inoculation, carried in the circulating fluids, and taken up by the reacting tissues can be calculated from figures extracted from the curve of the blood pressure changes. The relative rates of transference of adrenalin into the blood and from the circulation into the tissues can also be estimated. 4. When absorption takes place rapidly a large quantity of the drug comes into action at once and the maximum occurs early, the curve of blood pressure reaches a considerable height, and subsides quickly. When absorption is slow the apex appears later and does not reach so high a level. 5. The response to adrenalin bears a logarithmic relationship to the dose employed and a method of allowing for this is indicated. PMID:19868816

  4. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  5. Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles

    NASA Astrophysics Data System (ADS)

    Kopanakis, I.; Chatoutsidou, S. E.; Torseth, K.; Glytsos, T.; Lazaridis, M.

    2013-10-01

    Particle number concentration was measured between June 2009 and June 2010 at Akrotiri research station in a rural/suburban region of western Crete (Greece). Overall, the available data covered 157 days during the aforementioned period of measurements. The objectives were to study the number size distribution characteristics of ambient aerosols and furthermore to identify new particle formation events and to evaluate particle formation rates and growth rates of the newborn particles. Aerosol particles with mobility diameters between 10 and 1100 nm were measured using a Scanning Mobility Particle Sizer (SMPS) system. Measurements were performed at ambient relative humidities. The median total particle number concentration was 525 #/cm3 whereas the number concentration ranged between 130 #/cm3 and 9597 #/cm3. The average percentage of particles with diameters between 10 nm and 100 nm (N10-100) to total particles was 53% during summer and spring, but reached 80% during winter. Maximum average contribution of nano-particles (10 nm < Dp < 50 nm) to total particles was recorded also in winter and was attributed partly to the effect of local heating. Furthermore, back trajectories (HYSPLIT model) showed that different air mass origins are linked to different levels of particle number concentrations, with higher values associated with air masses passing from polluted areas before reaching the Akrotiri station. Modal analysis of the measured size distribution data revealed a strong nucleation mode during winter (15-25 nm), which can be correlated with emissions from local sources (domestic heating). The nucleation mode was observed also during the spring campaigns and was partly linked to new particle formation events. On the contrary, an accumulation mode (80-120 nm) prevailed in the measurements during summer campaigns, when the station area was influenced by polluted air masses arriving mainly from Eastern Europe. In total, 13 new particle formation events were recorded

  6. Modelling the Effects of Prey Size and Distribution on Prey Capture Rates of Two Sympatric Marine Predators

    PubMed Central

    Thaxter, Chris B.; Daunt, Francis; Grémillet, David; Harris, Mike P.; Benvenuti, Silvano; Watanuki, Yutaka; Hamer, Keith C.; Wanless, Sarah

    2013-01-01

    Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from bird-borne data loggers, observations of prey fed to chicks, and adult diet from water-offloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0-group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0-group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely

  7. Modelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators.

    PubMed

    Thaxter, Chris B; Daunt, Francis; Grémillet, David; Harris, Mike P; Benvenuti, Silvano; Watanuki, Yutaka; Hamer, Keith C; Wanless, Sarah

    2013-01-01

    Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from bird-borne data loggers, observations of prey fed to chicks, and adult diet from water-offloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5 ± 0.8 items per dive (0.8 ± 0.4 and 1.1 ± 0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7 ± 2.4 items per dive (4.9 ± 3.1 and 7.3 ± 4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0-group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0-group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in

  8. Single-site transcription rates through fitting of ensemble-averaged data from fluorescence recovery after photobleaching: A fat-tailed distribution

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Liat; Kepten, Eldad; Yunger, Sharon; Shav-Tal, Yaron; Garini, Yuval

    2015-09-01

    The stochastic process of gene expression is commonly controlled at the level of RNA transcription. The synthesis of messenger RNA (mRNA) is a multistep process, performed by RNA polymerase II and controlled by many transcription factors. Although mRNA transcription is intensively studied, real-time in vivo dynamic rates of a single transcribing polymerase are still not available. A popular method for examining transcription kinetics is the fluorescence recovery after photobleaching (FRAP) approach followed by kinetic modeling. Such analysis has yielded a surprisingly broad range of transcription rates. As transcription depends on many variables such as the chromatin state, binding and unbinding of transcription factors, and cell phase, transcription rates are stochastic variables. Thus, the distribution of rates is expected to follow Poissonian statistics, which does not coincide with the wide range of transcription rate results. Here we present an approach for analyzing FRAP data for single-gene transcription. We find that the transcription dynamics of a single gene can be described with a constant rate for all transcribing polymerases, while cell population transcription rates follow a fat-tailed distribution. This distribution suggests a larger probability for extreme rates than would be implied by normal distribution. Our analysis supports experimental results of transcription from two different promoters, and it explains the puzzling observation of extreme average rate values of transcription.

  9. Effect of colchicine on rat small intestinal absorptive cells. II. Distribution of label after incorporation