Science.gov

Sample records for absorption ratio based

  1. Impact of O2-Based Surface Pressure Uncertainties on Laser Absorption Spectrometer Retrievals of Column CO2 Mixing Ratios (XCO2)

    NASA Astrophysics Data System (ADS)

    Pernini, T.; Zaccheo, T. S.; Pernak, R.; Botos, C.; Browell, E. V.

    2015-12-01

    In this work we assess the overall impact of surface pressure uncertainties, derived from either laser-based O2 column measurements or numerical weather prediction (NWP) models, and water vapor uncertainties on laser-based retrievals of CO2 column mixing ratios (XCO2). Laser Absorption Spectrometer (LAS) estimates of column XCO2 can be derived from a combination of observed CO2 differential optical depths ( ) and measured/estimated values of temperature (T), pressure (P), and moisture (q) along the viewing path. XCO2 can be related to CO2 as (equation 1) where Δτother represents residual observed due to other species, is CO2 differential absorption cross section, psfc is surface pressure, q is local specific humidity and / represent the observation on/off-line wavelengths. The accuracy of retrieved XCO2 values depends on both the error characteristics of the observed and the ability to accurately characterize T, P, and q along the observed path. A radiative transfer (RT)-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences in vertical T, vertical moisture, and surface P on estimates of column CO2 and O2concentrations. Additionally we characterize the impact of a combined XCO2 retrieval approach based on either O2 LAS measurements or NWP data, as well as the additional impact due to water vapor. These analyses focus on characterizing the errors for a combined retrieval approach for LAS CO2 measurements in the 1.57 and 2.05 μm regions and O2 measurements in the 0.76 and 1.27 μm. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved XCO2 associated with uncertainties in knowledge of the atmospheric state, and provide a method for selecting optimal differential line pairs for both CO2 and O2 measurements to minimize the impact of this noise term.

  2. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration. PMID:3724702

  3. Photoacoustic determination of optical absorption to extinction ratio in aerosols.

    PubMed

    Roessler, D M; Faxvog, F R

    1980-02-15

    The photoacoustic technique has been used in conjunction with an optical transmission measurement to determine the fraction of light absorbed in cigarette and acetylene smoke aerosols. At 0.5145-microm wavelength,the absorption-to-extinction fraction is 0.01 +/- 0.003 for cigarette smoke and is in excellent agreement with predictions from Mie theory for smoke particles having a refractive index of 1.45-0.00133i and a median diameter in the 0.15-0.65-microm range. For acetylene smoke the absorbed fraction was 0.85 +/- 0.05. PMID:20216896

  4. Determination of LIII subshell absorption jump ratio and jump factor of wolfram

    NASA Astrophysics Data System (ADS)

    Cengiz, Erhan; Saritas, Nuriye

    2014-04-01

    The LIII subshell absorption jump ratio and jump factor of wolfram have been measured by two different methods. In the first method the mass attenuation coefficients have been obtained by narrow beam transmission geometry to calculate the LIII subshell absorption jump ratio and jump factor. In the latter these parameters have been derived from the LIII subshell X-ray production and the photoionization cross sections of the LIII subshell and higher subshells determined by Energy Dispersive X-ray Fluorescence technique and narrow beam transmission geometry, respectively. The results obtained by both methods have been compared with theoretical and experimental values. They are in good agreement with each other.

  5. Correction of radiation absorption on biological samples using Rayleigh to Compton scattering ratio

    NASA Astrophysics Data System (ADS)

    Pereira, Marcelo O.; Conti, Claudio de Carvalho; dos Anjos, Marcelino J.; Lopes, Ricardo T.

    2012-06-01

    The aim of this work was to develop a method to correct the absorbed radiation (the mass attenuation coefficient curve) in low energy (E < 30 keV) applied to a biological matrix based on the Rayleigh to Compton scattering ratio and the effective atomic number. For calibration, scattering measurements were performed on standard samples of radiation produced by a gamma-ray source of 241Am (59.54 keV) also applied to certified biological samples of milk powder, hay powder and bovine liver (NIST 1557B). In addition, six methods of effective atomic number determination were used as described in literature to determinate the Rayleigh to Compton scattering ratio (R/C), in order to calculate the mass attenuation coefficient. The results obtained by the proposed method were compared with those obtained using the transmission method. The experimental results were in good agreement with transmission values suggesting that the method to correct radiation absorption presented in this paper is adequate for biological samples.

  6. Electron mobility and free-carrier absorption in GaAs - Determination of the compensation ratio

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Lagowski, L.; Jastrzebski, L.; Lichtensteiger, M.; Gatos, H. C.

    1979-01-01

    Theoretical calculations of electron mobility and free-carrier absorption in n-type GaAs at room temperature were carried out taking into consideration all major scattering processes. It was found that satisfactory agreement between theoretical and experimental results on free-carrier absorption is obtained only when the effect of compensation is quantitatively taken into account. In conjunction with experimental studies it is shown that the electron mobility (for n greater than 10 to the 15th per cu cm) and free-carrier absorption (for n greater than 10 to the 16th per cu cm) are sufficiently sensitive to the ionized impurity concentration to provide a reliable means for determining the compensation ratio. Convenient procedures are presented for the determination of the compensation ratio from the free-carrier absorption coefficient and from the computed values of room-temperature electron mobility. Values of the compensation ratio obtained by these two procedures are in good agreement provided the carrier-concentration variations in the material are not appreciably greater than 10%.

  7. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.

    PubMed

    Andreo, Pedro; Burns, David T; Salvat, Francesc

    2012-04-21

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for ¹⁹²Ir and ⁶⁰Co gamma-ray spectra. The aim of this work was to establish 'an envelope of uncertainty' based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µ(en)/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, u(c), for the µ(en)/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For ⁶⁰Co and ¹⁹²Ir, u(c) is approximately 0.1%. The Type B uncertainty analysis for the ratios of µ(en)/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µ(en)/ρ)(graphite,air) and (µ(en)/ρ)(graphite,water) are 1.5%, and 0.5% for (µ(en)/ρ)(water,air), decreasing gradually down to u(c) = 0.1% for the three µ(en)/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well

  8. Effect of dietary calcium: Phosphorus ratio on bone mineralization and intestinal calcium absorption in ovariectomized rats.

    PubMed

    Koshihara, Moyuru; Masuyama, Ritsuko; Uehara, Mariko; Suzuki, Kazuharu

    2004-01-01

    We investigated the effect of dietary calcium:phosphorus (Ca:P) ratio on bone mineralization and intestinal Ca absorption in ovariectomized (OVX) rat models of osteoporosis and sham-operated rats. Thirty 12-wk-old female Wistar rats were divided into three groups of OVX rats and three groups of sham rats. Thirty days after the adaptation period, OVX rats and sham rats were fed a diet formulated Ca:P, 1:0.5, 1:1 or 1:2 (each diet containing 0.5% Ca), respectively for 42 d. In both sham and OVX rats, serum osteocalcin, a marker of bone turnover, was increased by decreasing Ca:P ratio (1:2). In contrast, rats fed the Ca:P = 1:0.5 diet (dietary P restriction) suppressed the increased serum parathyroid hormone, osteocalcin and urinary deoxypyridinoline, and increased Ca absorption in both sham and OVX rats compared to the Ca:P = 1:1 and 1:2 diets. Especially, in OVX rats, the decreased bone mineral density of the fifth lumbar was also suppressed when rats were fed the Ca:P = 1:0.5 diet. These results indicated that the elevation of dietary Ca:P ratio may inhibit bone loss and increase intestinal Ca absorption in OVX rats.

  9. Estimation of boron isotope ratios using high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Wiltsche, Helmar; Prattes, Karl; Zischka, Michael; Knapp, Günter

    2009-04-01

    In the production of 10B enriched steels, the production-recycling process needs to be closely monitored for inadvertent mix-up of materials with different B isotope levels. A quick and simple method for the estimation of boron isotope ratios in high alloyed steels using high resolution continuum source flame AAS (HR-CS-FAAS) was developed. On the 208.9 nm B line the wavelength of the peak absorption of 10B and 11B differs by 2.5 pm. The wavelength of the peak absorption of boron was determined by fitting a Gauss function through spectra simultaneously recorded by HR-CS-FAAS. It was shown that a linear correlation between the wavelength of the peak absorption and the isotope ratio exists and that this correlation is independent of the total boron concentration. Internal spectroscopic standards were used to compensate for monochromator drift and monochromator resolution changes. Accuracy and precision of the analyzed samples were thereby increased by a factor of up to 1.3. Three steel reference materials and one boric acid CRM, each certified for the boron isotope ratio were used to validate the procedure.

  10. Impacts Of Atmospheric State On Differential Absorption Spectroscopy Retrievals Of Column XCO2 Mixing Ratios

    NASA Astrophysics Data System (ADS)

    Pernini, T.; Zaccheo, T. S.; Botos, C.; Browell, E. V.; Henderson, J.; Obland, M. D.

    2014-12-01

    This work assesses the impact of uncertainties in atmospheric state on laser absorption spectroscopy (LAS)-based retrievals of CO2 column mixing ratios (XCO2). LAS estimates of column XCO2 are normally derived from a combination of observed CO2 differential optical depths (∆τ) and measured/estimated values of temperature, moisture and pressure along the viewing path. XCO2 can be related to CO2 ∆τ as(see equation)where Δτother represents residual observed ∆τ due to other species, ∆σ is the CO2 differential absorption cross section, psfc is the surface pressure, q is the local specific humidity and λon/λoff represent the observation on/off-line wavelengths. As shown by these equations, the accuracy of retrieved XCO2 values depends on both the error characteristics of the observed ∆τ and the ability to accurately characterize P, T, and q along the observed path. In the case of global space-based monitoring systems it is often not possible to provide collocated in situ measurements of the ancillary quantities for all observations. Therefore, retrievals often rely on collocated remotely sensed data or values derived from Numerical Weather Predictions (NWP) models to describe the atmospheric state. A radiative transfer (RT)-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences in vertical T, vertical moisture, and psfc on estimates of column CO2 and O2 concentrations. These analyses focus on characterizing these errors for several CO2 features in the 1.57- and 2.05-μm region, and representative O2 features near 0.76 and 1.27 μm. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved values associated with uncertainties in knowledge of the atmospheric state, and provide a method for selecting optimal differential line pairs to minimize the impact of this noise term. These metrics may help define the

  11. Nanofibrous membrane-based absorption refrigeration system

    SciTech Connect

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature, and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.

  12. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.

    PubMed

    Langhammer, Christoph; Kasemo, Bengt; Zorić, Igor

    2007-05-21

    Localized surface plasmons (LSPs) of metallic nanoparticles decay either radiatively or via an electron-hole pair cascade. In this work, the authors have experimentally and theoretically explored the branching ratio of the radiative and nonradiative LSP decay channels for nanodisks of Ag, Au, Pt, and Pd, with diameters D ranging from 38 to 530 nm and height h=20 nm, supported on a fused silica substrate. The branching ratio for the two plasmon decay channels was obtained by measuring the absorption and scattering cross sections as a function of photon energy. The former was obtained from measured extinction and scattering coefficients, using an integrating sphere detector combined with particle density measurements obtained from scanning electron microscopy images of the nanoparticles. Partly angle-resolved measurements of the scattered light allowed the authors to clearly identify contributions from dipolar and higher plasmonic modes to the extinction, scattering, and absorption cross sections. Based on these experiments they find that absorption dominates the total scattering cross section in all the examined cases for small metallic nanodisks (D<100 nm). For D>100 nm absorption still dominates for Pt and Pd nanodisks, while scattering dominates for Au and Ag. A theoretical approach, where the metal disks are approximated as oblate spheroids, is used to account for the trends in the measured cross sections. The field problem is solved in the electrostatic limit. The spheroid is treated as an induced dipole for which the dipolar polarizability is calculated based on spheroid geometry and the (bulk) dielectric response function of the metal the spheroid consists of and the dielectric medium surrounding it. One might expect this model to be inappropriate for disks with D>100 nm since effects due to the retardation of the incoming field across the metallic nanodisk and contributions from higher plasmonic modes are neglected. However, this model describes quite well

  13. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  14. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  15. Constraining the ortho-to-para ratio of H2 with anomalous H_2CO absorption

    NASA Astrophysics Data System (ADS)

    Troscompt, N.; Faure, A.; Maret, S.; Ceccarelli, C.; Hily-Blant, P.; Wiesenfeld, L.

    2009-11-01

    Context: The ortho-to-para ratio (OPR) of molecular hydrogen is a fundamental parameter in understanding the physics and chemistry of molecular clouds. In dark and cold regions, however, H2 is not directly observable and the OPR of H2 in these sources has so far remained elusive. Aims: We show that the 6 cm absorption line of ortho-formaldehyde (H2CO) can be employed to constrain both the density and the OPR of H2 in dark clouds. Methods: Green Bank Telescope (GBT) observations of ortho-H2CO toward the molecular cloud Barnard 68 (B68) are reported. Non-LTE radiative transfer calculations combined with the well-constrained structure of B68 are then employed to derive the physical conditions in the absorption region. Results: We provide the first firm confirmation of the Townes & Cheung mechanism: propensity rules for the collisions of H2CO with H2 molecules are responsible for the sub-2.7 K cooling of the 6 cm doublet. Non-LTE calculations show that in the absorption region of B68, the kinetic temperature is ˜ 10 K, the ortho-H2CO column density amounts to ˜ 2.2× 1013 cm-2, the H2 density is in the range 1.4{-}2.4× 10 4 cm-3, and the OPR of H2 is close to zero. Our observations thus provide fresh evidence that H2 is mostly in its para form in the cold gas, as expected from theoretical considerations. Our results also suggest that formaldehyde absorption originates in the edge of B68, at visual extinctions A_V⪉ 0.5 mag. This work has been inspired by our colleague and friend Pierre Valiron, who passed away in August 2008. This paper is dedicated to his memory.

  16. Tunable Microwave Absorption Frequency by Aspect Ratio of Hollow Polydopamine@α-MnO2 Microspindles Studied by Electron Holography.

    PubMed

    She, Wen; Bi, Han; Wen, Zhiwei; Liu, Qinghe; Zhao, Xuebing; Zhang, Jie; Che, Renchao

    2016-04-20

    A tunable response frequency is highly desirable for practical applications of microwave absorption materials but remains a great challenge. Here, hollow lightweight polydopamine@α-MnO2 microspindles were facilely synthesized with the tunable absorption frequency governed by the aspect ratio. The size of the hard template is a key factor to achieve the unique shape; the polymer layer with uniform thickness plays an important role in obtaining spindles with homogeneous size. With the aspect ratio increasing, the maximum reflection loss, as well as the absorption bandwidth (<-10 dB), increases and then decreases; meanwhile, the microwave absorption band shifts to the low frequency. The optimized aspect ratio of the cavity about the hollow polydopamine@α-MnO2 microspindles is ∼2.8. With 3 mm thickness at 9.7 GHz, the strongest reflection reaches -21.8 dB, and the width of the absorbing band (<-10 dB) is as wide as 3.3 GHz. Via electron holography, it is confirmed that strong charge accumulates around the interface between the polydopamine and α-MnO2 layers, which mainly contributes to the dielectric polarization absorption. This study proposes a reliable strategy to tune the absorption frequency via different aspect ratio polymer@α-MnO2 microspindles. PMID:27027922

  17. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  18. Scavenging ratios based on inflow air concentrations

    SciTech Connect

    Davis, W.E.; Dana, M.T.; Lee, R.N.; Slinn, W.G.N.; Thorp, J.M.

    1991-07-01

    Scavenging ratios were calculated from field measurements made during April 1985. Event precipitation samples were collected at the surface, but air chemistry measurements in the air mass feeding the precipitation were made from an aircraft. In contrast, ratios calculated in previous studies have used air concentration and precipitation chemistry data from only surface measurements. Average scavenging ratios were calculated for SO{sub 4}{sup 2{minus}}, NO{sub 3}{sup {minus}}, NH{sub 4}{sup +}, total sulfate, total nitrate, and total ammonium for 5 events; the geometric mean of these scavenging ratios were 8.5 {times} 10{sup 5}, 5.6 {times} 10{sup 6}, 4.3 {times} 10{sup 5}, 3.4 {times} 10{sup 5}, 2.4 {times} 10{sup 6}, and 9.7 {times} 10{sup 4}, respectively. These means are similar to but less variable than previous ratios formed using only surface data.

  19. Influence of Ni/Co molar ratio on electromagnetic properties and microwave absorption performances for Ni/Co paraffin composites

    NASA Astrophysics Data System (ADS)

    Yan, S. J.; Dai, S. L.; Ding, H. Y.; Wang, Z. Y.; Liu, D. B.

    2014-05-01

    Ni and Co metallic microparticles with submicron size were synthesized with a simple wet chemical reduction method at a relatively low temperature. Then their morphologies and structures were characterized by SEM and XRD. Ni metallic microparticles have spherical-shape morphology with fcc crystalline structure, however, Co has a distinct leaf-like morphology with the fcc and hcp mixed phases crystalline structures. For the characterization of their electromagnetic properties, paraffin matrix composites containing different molar ratio Ni and Co mixture powder as fillers were prepared. It was found that both the electromagnetic properties and electromagnetic microwave absorption performances of absorber layer were remarkably influenced by Ni/Co molar ratio. The electromagnetic microwave absorption performances were significantly improved by blending Ni and Co metallic microparticles into paraffin matrix with changing Ni/Co molar ratio, and enhanced mechanism were discussed.

  20. Analysis of molecular hydrogen absorption toward QSO B0642–5038 for a varying proton-to-electron mass ratio

    SciTech Connect

    Bagdonaite, J.; Ubachs, W.; Murphy, M. T.; Whitmore, J. B.

    2014-02-10

    Rovibronic molecular hydrogen (H{sub 2}) transitions at redshift z {sub abs} ≅ 2.659 toward the background quasar B0642–5038 are examined for a possible cosmological variation in the proton-to-electron mass ratio μ. We utilize an archival spectrum from the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (UVES) with a signal-to-noise ratio of ∼35 per 2.5 km s{sup –1} pixel at the observed H{sub 2} wavelengths (335-410 nm). Some 111 H{sub 2} transitions in the Lyman and Werner bands have been identified in the damped Lyα system for which a kinetic gas temperature of ∼84 K and a molecular fraction log f = –2.18 ± 0.08 are determined. The H{sub 2} absorption lines are included in a comprehensive fitting method, which allows us to extract a constraint on a variation of the proton-electron mass ratio Δμ/μ from all transitions at once. We obtain Δμ/μ = (17.1 ± 4.5{sub stat} ± 3.7{sub sys}) × 10{sup –6}. However, we find evidence that this measurement has been affected by wavelength miscalibration errors recently identified in UVES. A correction based on observations of objects with solar-like spectra gives a smaller Δμ/μ value and contributes to a larger systematic uncertainty: Δμ/μ = (12.7 ± 4.5{sub stat} ± 4.2{sub sys}) × 10{sup –6}.

  1. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  2. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  3. Methods for Retrievals of CO2 Mixing Ratios from JPL Laser Absorption Spectrometer Flights During a Summer 2011 Campaign

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2013-01-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.

  4. CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties

    PubMed Central

    Lv, Hualiang; Ji, Guangbin; Zhang, Haiqian; Li, Meng; Zuo, Zhongzheng; Zhao, Yue; Zhang, Baoshan; Tang, Dongming; Du, Youwei

    2015-01-01

    The shell on the nano-magnetic absorber can prevent oxidation, which is very important for its practical utilization. Generally, the nonmagnetic shell will decrease the integral magnetic loss and thus weaken the electromagnetic absorption. However, maintaining the original absorption properties of the magnetic core is a major challenge. Here, we designed novel and facile CoxFey@C composites by reducing CoxFe3−xO4@phenolic resin (x = 1, 0.5 and 0.25). High saturation magnetization value (Ms) of CoxFey particle, as a core, shows the interesting magnetic loss ability. Meanwhile, the carbon shell may increase the integral dielectric loss. The resulting composite shows excellent electromagnetic absorption properties. For example, at a coating thickness of 2 mm, the RLmin value can reach to −23 dB with an effective frequency range of 7 GHz (11–18 GHz). The mechanisms of the improved microwave absorption properties are discussed. PMID:26659124

  5. CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties

    NASA Astrophysics Data System (ADS)

    Lv, Hualiang; Ji, Guangbin; Zhang, Haiqian; Li, Meng; Zuo, Zhongzheng; Zhao, Yue; Zhang, Baoshan; Tang, Dongming; Du, Youwei

    2015-12-01

    The shell on the nano-magnetic absorber can prevent oxidation, which is very important for its practical utilization. Generally, the nonmagnetic shell will decrease the integral magnetic loss and thus weaken the electromagnetic absorption. However, maintaining the original absorption properties of the magnetic core is a major challenge. Here, we designed novel and facile CoxFey@C composites by reducing CoxFe3-xO4@phenolic resin (x = 1, 0.5 and 0.25). High saturation magnetization value (Ms) of CoxFey particle, as a core, shows the interesting magnetic loss ability. Meanwhile, the carbon shell may increase the integral dielectric loss. The resulting composite shows excellent electromagnetic absorption properties. For example, at a coating thickness of 2 mm, the RLmin value can reach to -23 dB with an effective frequency range of 7 GHz (11-18 GHz). The mechanisms of the improved microwave absorption properties are discussed.

  6. Impacts of Uncertainties in Atmospheric State on Differential Absorption Spectroscopy Retrievals of Column XCO2 Mixing Ratios

    NASA Astrophysics Data System (ADS)

    Zaccheo, T.; Pernini, T.; Browell, E. V.; Dobler, J. T.; Harrison, F. W.; Henderson, J.; Ismail, S.; Obland, M. D.

    2013-12-01

    This work assesses the impact of uncertainties in atmospheric state knowledge on laser absorption spectroscopy (LAS) based retrievals of carbon dioxide column mixing ratios (XCO2). LAS estimates of column XCO2 are normally derived from a combination of observed CO2 differential optical depths (ΔOD) and measured, or estimated, values of temperature, moisture and pressure along the viewing path. The observed CO2 differential optical depth from space, associated with a given CO2 spectral feature, is given by ΔOD=∫psfcΔσ(λon, λoff,T,p) η(T,WV,p)dp where Δσ is the CO2 differential absorption cross section, η is the dry air CO2 number density, psfc is the surface pressure, and λon/λoff represent the on/off-line wavelengths. XCO2 is given by XCO2= ΔOD / ∫psfcΔσ(λon, λoff,T,p) dp Both Δσ and η vary as a function of pressure (P) and depend on temperature (T), and water vapor concentration (WV), which vary as a function of pressure. In addition, absorption due to other trace gas features (including water vapor), which are not considered in this simplified formulation, may also impact the observed ΔOD. As illustrated by these equations, the accuracy of retrieved XCO2 values depends not only on the error characteristics of the observed ΔOD, but also the ability to accurately characterize the ,P, T, and WV concentration along the observed path. In the case of global space-based monitoring systems it is often difficult, if not impossible, to provide collocated in situ measurements of the ancillary quantities for all observations. Therefore, retrievals often rely on collocated remotely sensed data or values derived from Numerical Weather Predictions (NWP) models to describe the atmospheric state. A radiative transfer (RT)-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences in vertical temperature, vertical moisture and surface pressure on

  7. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.; Abo-Talib, Nisreen F.; El-Ghobashy, Mohamed R.

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39 ± 1.60 and 100.51 ± 1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method.

  8. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. PMID:26253440

  9. HAB detection based on absorption and backscattering properties of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Pan, Delu; Bai, Yan; Chen, Xiaoyan; Zhou, Yan; Zhu, Qiankun

    2011-11-01

    The coastal area of East China Sea (ECS) suffers from the harmful algal blooms (HAB) frequently every year in the warm season. The most common causative phytoplankton algal species of HAB in the ECS in recent years are Prorocentrum donghaiense (dinoflagellates), Karenia mikimotoi (dinoflagellates which could produce hemolytic and ichthyotoxins) and Skeletonema costatum (diatom). The discrimination between the dinoflagellates and diatom HAB through ocean color remote sensing approach can add the knowledge of HAB events in ECS and help to the precaution. A series of in-situ measurement consisted of absorption coefficient, total scattering and particulate backscattering coefficient was conducted in the southern coast of Zhejiang Province in May 2009, and the estuary of Changjiang River in August 2009 and December 2010, which encountered two HAB events and a moderate bloom. The Inherent Optical Properties (IOPs) of the bloom waters have significant difference between phytoplankton species in absorption and backscattering properties. The chlorophyll a specific absorption coefficient (a*phy(λ)) for the bloom patches (chlorophyll a concentration >6mg m-3) differ greatly from the adjacent normal seawater, with the a*phy(λ) of bloom water lower than 0.03 m2 mg-1 while the a*phy(λ) of the adjacent normal seawater is much higher (even up to 0.06 m2 mg-1). Meanwhile, the backscattering coefficients at 6 wavebands (420, 442, 470, 510, 590 and 700nm) are also remarkably lower for bloom waters (<0.01 m-1) than the normal seawater (> 0.02 m-1). The backscattering coefficient ratio (Rbp(λ)) is much lower for diatom bloom waters than for dinoflagellates types (0.01079 vs. 0.01227). A discrimination model based on IOPs is established, and several typical dinoflagellates and diatom bloom events including Prorocentrum donghaiense, Karenia mikimotoi and Skeletonema costatum in the ECS are picked out for testing with the MODIS-L2 and L3 ocean color remote sensing products from NASA

  10. Effect of water vapor on sound absorption in nitrogen at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1981-01-01

    Sound absorption measurements were made in N2-H2O binary mixtures at 297 K over the frequency/pressure range f/P of 0.1-2500 Hz/atm to investigate the vibrational relaxation peak of N2 and its location on f/P axis as a function of humidity. At low humidities the best fit to a linear relationship between the f/P(max) and humidity yields an intercept of 0.013 Hz/atm and a slope of 20,000 Hz/atm-mole fraction. The reaction rate constants derived from this model are lower than those obtained from the extrapolation of previous high-temperature data.

  11. [Simulation of TDLAS direct absorption based on HITRAN database].

    PubMed

    Qi, Ru-birn; He, Shu-kai; Li, Xin-tian; Wang, Xian-zhong

    2015-01-01

    Simulating of the direct absorption TDLAS spectrum can help to comprehend the process of the absorbing and understand the influence on the absorption signal with each physical parameter. Firstly, the basic theory and algorithm of direct absorption TDLAS is studied and analyzed thoroughly, through giving the expressions and calculating steps of parameters based on Lambert-Beer's law, such as line intensity, absorption cross sections, concentration, line shape and gas total partition functions. The process of direct absorption TDLAS is simulated using MATLAB programs based on HITRAN spectra database, with which the absorptions under a certain temperature, pressure, concentration and other conditions were calculated, Water vapor is selected as the target gas, the absorptions of which under every line shapes were simulated. The results were compared with that of the commercial simulation software, Hitran-PC, which showed that, the deviation under Lorentz line shape is less than 0. 5%, and that under Gauss line shape is less than 2. 5%, while under Voigt line shape it is less than 1%. It verified that the algorithm and results of this work are correct and accurate. The absorption of H2O in v2 + v3 band under different pressure and temperature is also simulated. In low pressure range, the Doppler broadening dominant, so the line width changes little with varied.pressure, while the line peak increases with rising pressure. In high pressure range, the collision broadening dominant, so the line width changes wider with increasing pressure, while the line peak approaches to a constant value with rising pressure. And finally, the temperature correction curve in atmosphere detection is also given. The results of this work offer the reference and instruction for the application of TDLAS direct absorption. PMID:25993843

  12. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.

    PubMed

    Sjögren, Erik; Thörn, Helena; Tannergren, Christer

    2016-06-01

    Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and

  13. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  14. Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations.

    PubMed

    Mitra, Amitava; Zhu, Wei; Kesisoglou, Filippos

    2016-09-01

    Amorphous solid dispersion (ASD) formulations are routinely used to enable the delivery of poorly soluble compounds. This type of formulations can enhance bioavailability due to higher kinetic solubility of the drug substance and increased dissolution rate of the formulation, by the virtue of the fact that the drug molecule exists in the formulation in a high energy amorphous state. In this article we report the application of physiologically based absorption models to mechanistically understand the clinical pharmacokinetics of solid dispersion formulations. Three case studies are shown here to cover a wide range of ASD bioperformance in human and modeling to retrospectively understand their in vivo behavior. Case study 1 is an example of fairly linear PK observed with dose escalation and the use of amorphous solubility to predict bioperformance. Case study 2 demonstrates the development of a model that was able to accurately predict the decrease in fraction absorbed (%Fa) with dose escalation thus demonstrating that such model can be used to predict the clinical bioperformance in the scenario where saturation of absorption is observed. Finally, case study 3 shows the development of an absorption model with the intent to describe the observed incomplete and low absorption in clinic with dose escalation. These case studies highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of ASD performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients. PMID:27442959

  15. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio.

    PubMed

    Noel, Vincent; Chepfer, Helene; Ledanois, Guy; Delaval, Arnaud; Flamant, Pierre H

    2002-07-20

    A shape classification technique for cirrus clouds that could be applied to future spaceborne lidars is presented. A ray-tracing code has been developed to simulate backscattered and depolarized lidar signals from cirrus clouds made of hexagonal-based crystals with various compositions and optical depth, taking into account multiple scattering. This code was used first to study the sensitivity of the linear depolarization rate to cloud optical and microphysical properties, then to classify particle shapes in cirrus clouds based on depolarization ratio measurements. As an example this technique has been applied to lidar measurements from 15 mid-latitude cirrus cloud cases taken in Palaiseau, France. Results show a majority of near-unity shape ratios as well as a strong correlation between shape ratios and temperature: The lowest temperatures lead to high shape ratios. The application of this technique to space-borne measurements would allow a large-scale classification of shape ratios in cirrus clouds, leading to better knowledge of the vertical variability of shapes, their dependence on temperature, and the formation processes of clouds.

  16. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  17. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    NASA Astrophysics Data System (ADS)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  18. [A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar].

    PubMed

    Fan, Guang-Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Dong, Yun-Sheng; Zhao, Xue-Song

    2012-12-01

    Aerosols interfere with differential absorption lidar ozone concentration measurement and can introduce significant errors. A new retrieval method was introduced, and ozone concentration and aerosol extinction coefficient were gained simultaneously based on the retrieval method. The variables were analyzed by experiment including aerosol lidar ratio, aerosol wavelength exponent, and aerosol-molecular ratio at the reference point. The results show that these parameters introduce error less than 8% below 1 km. The measurement error derives chiefly from signal noise and the parameters introduce error less than 3% above 1 km. Finally the vertical profile of tropospheric ozone concentration and aerosol extinction coefficient were derived by using this algorithm. The retrieval results of the algorithm and traditional dual-wavelength difference algorithm are compared and analyzed. Experimental results indicate that the algorithm is feasible, and the algorithm can reduce differential absorption lidar measurement error introduced by aerosol.

  19. Constraint on a Cosmological Variation in the Proton-to-electron Mass Ratio from Electronic CO Absorption

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Niu, M. L.; Salumbides, E. J.; Murphy, M. T.; Ubachs, W.

    2016-08-01

    Carbon monoxide (CO) absorption in the sub-damped Lyα absorber at redshift {z}{abs}≃ 2.69 toward the background quasar SDSS J123714.60+064759.5 (J1237+0647) was investigated for the first time in order to search for a possible variation of the proton-to-electron mass ratio, μ, over a cosmological timescale. The observations were performed with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph with a signal-to-noise ratio of 40 per 2.5 km s-1 per pixel at ˜5000 Å. Thirteen CO vibrational bands in this absorber are detected: the {{{A}}}1{{\\Pi }} - {{{X}}}1{{{Σ }}}+ (ν \\prime , 0) for ν \\prime =0{--}8, {{{B}}}1{{{Σ }}}+ - {{{X}}}1{{{Σ }}}+ (0, 0), {{{C}}}1{{{Σ }}}+ - {{{X}}}1{{{Σ }}}+ (0, 0), and {{{E}}}1{{\\Pi }} - {{{X}}}1{{{Σ }}}+ (0, 0) singlet-singlet bands and the {d}3{{Δ }} - {{{X}}}1{{{Σ }}}+ (5, 0) singlet-triplet band. An updated database including the most precise molecular inputs needed for a μ-variation analysis is presented for rotational levels J = 0-5, consisting of transition wavelengths, oscillator strengths, natural lifetime damping parameters, and sensitivity coefficients to a variation of the proton-to-electron mass ratio. A comprehensive fitting method was used to fit all the CO bands at once and an independent constraint of {{Δ }}μ /μ =(0.7+/- {1.6}{stat}+/- {0.5}{syst})× {10}-5 was derived from CO only. A combined analysis using both molecular hydrogen and CO in the same J1237+0647 absorber returned a final constraint on the relative variation of {{Δ }}μ /μ =(-5.6+/- {5.6}{stat}+/- {3.1}{syst})× {10}-6, which is consistent with no variation over a look-back time of ˜11.4 Gyr.

  20. Constraint on a Cosmological Variation in the Proton-to-electron Mass Ratio from Electronic CO Absorption

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Niu, M. L.; Salumbides, E. J.; Murphy, M. T.; Ubachs, W.

    2016-08-01

    Carbon monoxide (CO) absorption in the sub-damped Lyα absorber at redshift {z}{abs}≃ 2.69 toward the background quasar SDSS J123714.60+064759.5 (J1237+0647) was investigated for the first time in order to search for a possible variation of the proton-to-electron mass ratio, μ, over a cosmological timescale. The observations were performed with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph with a signal-to-noise ratio of 40 per 2.5 km s‑1 per pixel at ˜5000 Å. Thirteen CO vibrational bands in this absorber are detected: the {{{A}}}1{{\\Pi }} ‑ {{{X}}}1{{{Σ }}}+ (ν \\prime , 0) for ν \\prime =0{--}8, {{{B}}}1{{{Σ }}}+ ‑ {{{X}}}1{{{Σ }}}+ (0, 0), {{{C}}}1{{{Σ }}}+ ‑ {{{X}}}1{{{Σ }}}+ (0, 0), and {{{E}}}1{{\\Pi }} ‑ {{{X}}}1{{{Σ }}}+ (0, 0) singlet–singlet bands and the {d}3{{Δ }} ‑ {{{X}}}1{{{Σ }}}+ (5, 0) singlet–triplet band. An updated database including the most precise molecular inputs needed for a μ-variation analysis is presented for rotational levels J = 0–5, consisting of transition wavelengths, oscillator strengths, natural lifetime damping parameters, and sensitivity coefficients to a variation of the proton-to-electron mass ratio. A comprehensive fitting method was used to fit all the CO bands at once and an independent constraint of {{Δ }}μ /μ =(0.7+/- {1.6}{stat}+/- {0.5}{syst})× {10}-5 was derived from CO only. A combined analysis using both molecular hydrogen and CO in the same J1237+0647 absorber returned a final constraint on the relative variation of {{Δ }}μ /μ =(-5.6+/- {5.6}{stat}+/- {3.1}{syst})× {10}-6, which is consistent with no variation over a look-back time of ˜11.4 Gyr.

  1. A theoretically based determination of bowen-ratio fetch requirements

    USGS Publications Warehouse

    Stannard, D.I.

    1997-01-01

    Determination of fetch requirements for accurate Bowen-ratio measurements of latent- and sensible-heat fluxes is more involved than for eddy-correlation measurements because Bowen-ratio sensors are located at two heights, rather than just one. A simple solution to the diffusion equation is used to derive an expression for Bowen-ratio fetch requirements, downwind of a step change in surface fluxes. These requirements are then compared to eddy-correlation fetch requirements based on the same diffusion equation solution. When the eddy-correlation and upper Bowen-ratio sensor heights are equal, and the available energy upwind and downwind of the step change is constant, the Bowen-ratio method requires less fetch than does eddy correlation. Differences in fetch requirements between the two methods are greatest over relatively smooth surfaces. Bowen-ratio fetch can be reduced significantly by lowering the lower sensor, as well as the upper sensor. The Bowen-ratio fetch model was tested using data from a field experiment where multiple Bowen-ratio systems were deployed simultaneously at various fetches and heights above a field of bermudagrass. Initial comparisons were poor, but improved greatly when the model was modified (and operated numerically) to account for the large roughness of the upwind cotton field.

  2. Light absorption of black and brown carbon aerosols: comparison of an inventory-based model estimate and observations

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Liu, X.

    2015-12-01

    Spectrally resolved absorption measurements have been used to attribute the absorption and radiative effects due to brown carbon (BrC), and suggest a significant contribution. Since black carbon (BC) and BrC are co-emitted from combustion and burning processes, BrC absorption in global models has either been implicitly included in absorption by BC or more recently, characterized by a global constant refractive index. An inventory-based optical treatment for the brown carbon absorption has been developed for primary organic aerosol emissions. Results of a simple radiative transfer model with a global emission inventory show that the BrC absorptivity leads to a ˜27% reduction in the cooling effect by organic aerosols compared to the non-absorbing assumption. Here we implement the wavelength-dependent absorption properties of brown carbon parameterized as a function of BC to organic carbon ratio into a global climate model (CAM5) for different fuel emission sectors and biomass burning. This version of CAM5 also simulates the aging of freshly emitted BC and BrC into the aged accumulation-mode aerosols due to condensation of sulfate and organics. The calculated aerosol light absorption properties and spectral dependence will be compared with ground-based AERONET measurements and field observations available. Sensitivity studies of BrC radiative effects based on a global constant refractive index and the inventory-based method in this study will be discussed.

  3. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  4. Large infrared absorptance of bimaterial microcantilevers based on silicon high contrast grating

    NASA Astrophysics Data System (ADS)

    Kwon, Beomjin; Seong, Myunghoon; Liu, Jui-Nung; Rosenberger, Matthew R.; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.; King, William P.

    2013-10-01

    Manufacturing sensors for the mid-IR spectral region (3-11 μm) are especially challenging given the large spectral bandwidth, lack of convenient material properties, and need for sensitivity due to weak sources. Here, we present bimaterial microcantilevers based on silicon high contrast grating (HCG) as alternatives. The grating integrated into the cantilevers leverages the high refractive index contrast between the silicon and its surrounding medium, air. The cantilevers with HCG exhibit larger active spectral range and absorptance in mid-IR as compared to cantilevers without HCG. We design and fabricate two types of HCG bimaterial cantilevers such that the HCG resonance modes occur in mid-IR spectral region. Based on the measurements using a Fourier transform infrared (FTIR) microspectrometer, we show that the HCG cantilevers have 3-4X wider total IR absorptance bandwidths and 30% larger absorptance peak amplitude than the cantilever without HCG, over the 3-11 μm wavelength region. Based on the enhanced IR absorptance, HCG cantilevers show 13-47X greater responsivity than the cantilever without HCG. Finally, we demonstrate that the enhanced IR sensitivity of the HCG cantilever enables transmission IR spectroscopy with a Michelson interferometer. The HCG cantilever shows comparable signal to noise ratio to a low-end commercial FTIR system and exhibits a linear response to incident IR power.

  5. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    PubMed

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications. PMID:16707316

  6. Determining Type Ia Supernova Host Galaxy Extinction Probabilities and a Statistical Approach to Estimating the Absorption-to-reddening Ratio RV

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; Deustua, Susana; Marleau, Francine

    2016-03-01

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B - V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, RV, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B - V) with RV = 3.1 and investigate the color excess probabilities E(B - V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa-Sap, Sab-Sbp, Sbc-Scp, Scd-Sdm, S0, and irregular galaxy classes as a function of R/R25. We find that the largest expected reddening probabilities are in Sab-Sb and Sbc-Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio RV using color excess probability functions and find values of RV = 2.71 ± 1.58 for 21 SNe Ia observed in Sab-Sbp galaxies, and RV = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc-Scp galaxies.

  7. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    PubMed

    Kaçal, Mustafa Recep; Han, Ibrahim; Akman, Ferdi

    2014-10-29

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. PMID:25464198

  8. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  9. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  10. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    PubMed

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  11. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  12. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  13. Selection of principal components based on Fisher discriminant ratio

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangyan; Naghedolfeizi, Masoud; Arora, Sanjeev; Yousif, Nabil; Aberra, Dawit

    2016-05-01

    Principal component analysis transforms a set of possibly correlated variables into uncorrelated variables, and is widely used as a technique of dimensionality reduction and feature extraction. In some applications of dimensionality reduction, the objective is to use a small number of principal components to represent most variation in the data. On the other hand, the main purpose of feature extraction is to facilitate subsequent pattern recognition and machine learning tasks, such as classification. Selecting principal components for classification tasks aims for more than dimensionality reduction. The capability of distinguishing different classes is another major concern. Components that have larger eigenvalues do not necessarily have better distinguishing capabilities. In this paper, we investigate a strategy of selecting principal components based on the Fisher discriminant ratio. The ratio of between class variance to within class variance is calculated for each component, based on which the principal components are selected. The number of relevant components is determined by the classification accuracy. To alleviate overfitting which is common when there are few training data available, we use a cross-validation procedure to determine the number of principal components. The main objective is to select the components that have large Fisher discriminant ratios so that adequate class separability is obtained. The number of selected components is determined by the classification accuracy of the validation data. The selection method is evaluated by face recognition experiments.

  14. Score-based likelihood ratios for handwriting evidence.

    PubMed

    Hepler, Amanda B; Saunders, Christopher P; Davis, Linda J; Buscaglia, JoAnn

    2012-06-10

    Score-based approaches for computing forensic likelihood ratios are becoming more prevalent in the forensic literature. When two items of evidential value are entangled via a scorefunction, several nuances arise when attempting to model the score behavior under the competing source-level propositions. Specific assumptions must be made in order to appropriately model the numerator and denominator probability distributions. This process is fairly straightforward for the numerator of the score-based likelihood ratio, entailing the generation of a database of scores obtained by pairing items of evidence from the same source. However, this process presents ambiguities for the denominator database generation - in particular, how best to generate a database of scores between two items of different sources. Many alternatives have appeared in the literature, three of which we will consider in detail. They differ in their approach to generating denominator databases, by pairing (1) the item of known source with randomly selected items from a relevant database; (2) the item of unknown source with randomly generated items from a relevant database; or (3) two randomly generated items. When the two items differ in type, perhaps one having higher information content, these three alternatives can produce very different denominator databases. While each of these alternatives has appeared in the literature, the decision of how to generate the denominator database is often made without calling attention to the subjective nature of this process. In this paper, we compare each of the three methods (and the resulting score-based likelihood ratios), which can be thought of as three distinct interpretations of the denominator proposition. Our goal in performing these comparisons is to illustrate the effect that subtle modifications of these propositions can have on inferences drawn from the evidence evaluation procedure. The study was performed using a data set composed of cursive writing

  15. 13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 micrometers

    NASA Technical Reports Server (NTRS)

    Erdelyi, M.; Richter, D.; Tittel, F. K.

    2002-01-01

    A portable modular gas sensor for measuring the 13C/12C isotopic ratio in CO2 with a precision of 0.8%(+/-1 sigma) was developed for volcanic gas emission studies. This sensor employed a difference frequency generation (DFG)-based spectroscopic source operating at 4.35 micrometers (approximately 2300 cm-1) in combination with a dual-chamber gas absorption cell. Direct absorption spectroscopy using this specially designed cell permitted rapid comparisons of isotopic ratios of a gas sample and a reference standard for appropriately selected CO2 absorption lines. Special attention was given to minimizing undesirable precision degrading effects, in particular temperature and pressure fluctuations.

  16. Prodrug/Enzyme based acceleration of absorption of hydrophobic drugs: an in vitro study.

    PubMed

    Kapoor, Mamta; Siegel, Ronald A

    2013-09-01

    Poor water solubility of APIs is a key challenge in drug discovery and development as it results in low drug bioavailability upon local or systemic administration. The prodrug approach is commonly utilized to enhance solubility of hydrophobic drugs. However, for accelerated drug absorption, supersaturated solutions need to be employed. In this work, a novel prodrug/enzyme based system was developed wherein prodrug and enzyme are coadministered at the point of absorption (e.g., nasal cavity) to form in situ supersaturated drug solutions for enhanced bioavailability. A combination of fosphenytoin/alkaline phosphatase was used as a model system. Prodrug conversion kinetics were evaluated with various prodrug/enzyme ratios at pH 7.4 and 32 °C. Phenytoin permeation rates were determined at various degrees of supersaturation (S = 0.8-6.1), across confluent Madin Darby canine kidney II-wild type monolayers (a nasal epithelium model), with prodrug and enzyme spiked into the apical chamber. Membrane intactness was confirmed by measuring transepithelial electrical resistance and inulin permeability. Fosphenytoin and phenytoin concentrations were analyzed using HPLC. Results indicated that a supersaturated solution could be formed using such prodrug/enzyme systems. Drug absorption increased proportionately with increasing degrees of supersaturation; this flux was 1.5-6 fold greater than that for the saturated phenytoin solution. The experimental data fitted reasonably well to a two compartment pharmacokinetic (PK) model with first order conversion of prodrug to drug. This prodrug/enzyme system markedly enhances drug transport across the model membrane. Applied in vivo, this strategy could be used to facilitate drug absorption through mucosal membranes when absorption is limited by solubility.

  17. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  18. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-01

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers. PMID:24921786

  19. Novel carbon dioxide gas sensor based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  20. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-01

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  1. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    PubMed

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  2. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  3. Stratospheric N(2)O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1).

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, D G; Smith, M A; Seals, R K; Larsen, J C; Rinsland, P L

    1982-12-01

    A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km. PMID:20401069

  4. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-12-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  5. Prospects for determining the cosmological helium-3 to helium-4 ratio via absorption-line studies of the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Hurwitz, M.; Bowyer, S.

    1985-01-01

    The prospects for determining the interstellar (He-3)/(He-4) ratio via absorption-line studies in the extreme ultraviolet are considered. A high-resolution extreme-ultraviolet spectrometer fed by a 1-meter-class telescope similar to that discussed in the Far Ultraviolet Spectroscopic Explorer Report (1983) is assumed, and it is found that detection of He-3 may be possible with less than three days of observing time. To measure the (He-3)/(He-4) ratio with sufficient precision to determine the number of light neutrino species will require over 50 days of integration time for each object studied.

  6. A novel CO 2 gas analyzer based on IR absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Wu, Xiaoli

    2004-08-01

    Carbon dioxide (CO 2) gas analyzer can be widely used in many fields. A novel CO 2 gas analyzer based on infrared ray (IR) absorption is presented sufficiently in this paper. Applying Lambert-Beer Law, a novel space-double-beam optical structure is established successfully. The optical structure includes an IR source, a gas cell, a bandpass filter with a transmission wavelength at 4.26 μm, another bandpass filter with a transmission wavelength at 3.9 μm, and two IR detectors. Based on Redial Basic Function (RBF) artificial neural network, the measuring model of IR CO 2 analyzer is established with a high accuracy. A dynamic compensation filter is effectively designed to improve the dynamic characteristic of the IR CO 2 analyzer without gas pump. The IR CO 2 analyzer possesses the advantages of high accuracy and mechanical reliability with small volume, lightweight, and low-power consumption. Therefore, it can be used in such relevant fields as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  7. Analysis of acoustic damping in duct terminated by porous absorption materials based on analytical models and finite element simulations

    NASA Astrophysics Data System (ADS)

    Guan Qiming

    Acoustic absorption materials are widely used today to dampen and attenuate the noises which exist almost everywhere and have adverse impact upon daily life of human beings. In order to evaluate the absorption performance of such materials, it is necessary to experimentally determine acoustic properties of absorption materials. Two experimental methods, one is Standing Wave Ratio Method and the other is Transfer-Function Method, which also totally called as Impedance Tube Method, are based on two analytical models people have used to evaluate and validate the data obtained from acoustic impedance analyzers. This thesis first reviews the existing analytical models of previous two experimental methods in the literature by looking at their analytical models, respectively. Then a new analytical model is developed is developed based on One-Microphone Method and Three-Microphone Method, which are two novel experimental approaches. Comparisons are made among these analytical models, and their advantages and disadvantages are discussed.

  8. Comparison of Fourier Transform Infrared Spectroscopy (FTIR) and Tunable Diode Laser Absorption Spectroscopy (TDLAS) Methods for Determining Stable Isotope Ratios of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Ubierna Lopez, N.; Cambaliza, M. L.; Griffith, D. W.; Mount, G. H.; Cousins, A. B.

    2011-12-01

    Worldwide, biosphere-atmosphere carbon exchange and net ecosystem exchange (NEE) are determined using eddy-covariance methods. Information from isotopic CO2 measurements provides valuable constraints to partition NEE into its component fluxes. Stable isotope measurements have traditionally been constrained in frequency by the need to collect and analyze field samples in a laboratory using isotope ratio mass spectrometry (MS). New techniques based on absorption spectroscopy allow for high temporal sampling resolution in the field, but with concerns about precision and accuracy of the isotope-ratios. We tested two absorption spectroscopy systems, a Fourier transformed infrared analyzer (FTIR, Vector 22, Bruker Optics, Ettlingen, Germany) and a tunable diode laser absorption spectrometer (TDLAS, model TGA 100, Campbell Scientific, Inc. Logan, UT, USA), by comparing them with continuous-flow MS (Delta plus XP IRMS, ThermoFinnigan, Bremen, Germany). We conducted a laboratory comparison of gases mixed with various CO2 concentrations and isotopic signatures as well as field-collected samples. The mixed tanks were balanced in ultra-zero air with CO2 concentrations ranging from 353 to 553 ppm, and isotopic compositions (δ13C) between -11.7% to -39.3%. The field samples were collected at four different locations (forest, wheat field, dairy farm, and paper mill) by pumping ambient air into 44- L tanks. Gas from each sample tank was simultaneously delivered to the FTIR and TDLAS systems and subsequently analyzed with continuous-flow MS. The [CO2] determined with the TDLAS or FTIR differed by <1 ppm for CO2-tanks and <2.4 ppm for ambient air samples. The δ13C offset of the CO2 tanks between the MS and the TDLAS and FTIR were on average 0.1% and 0.3%, respectively. However, the offset in TDLAS δ13C values increased for ambient air samples to values of 0.4%, with a maximum of 0.9% for the dairy farm and paper mill samples. Ambient air samples analyzed with the FTIR were on

  9. Signal to Noise Ratio in Digital Lock-in Detection for Multiple Intensity-Modulated Signals in CO2 Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    CHEN, S.; Lin, B.; Harrison, F. W.; Nehrir, A. R.; Campbell, J. F.; Refaat, T.; Abedin, N. M.; Obland, M. D.; Ismail, S.; Meadows, B. L.

    2013-12-01

    NASA Langley Research Center is investigating Intensity-Modulated, Continuous-Wave Laser Absorption Spectrometers (LASs) for the measurement of atmospheric carbon dioxide (CO2) column mixing ratio from both air- and space-borne platforms. The LAS system uses high-power fiber lasers/amplifiers in the 1.57-um CO2 absorption band and the 1.26-um O2 absorption band in the transmitters and simultaneous digital lock-in detection for the multiple intensity-modulated signals with different modulation waveforms , such as simple sinusoidal waves at different frequencies, associated with different wavelengths in the receivers. The Signal to Noise Ratio (SNR) of the simultaneous digital lock-in detection in the system is of interest for the system designs and the performance prediction of airborne and space-borne implementations in the future. This paper will discuss the properties of the signals and various noises in the LAS system, especially for the simultaneous digital lock-in detection with a single detector for the multiple intensity-modulated signals at different frequencies. The numerical simulation of the SNR for the simultaneous digital lock-in detection in terms of relative intensity of the multiple modulated signals and the integration time, and an initial experimental verification will be presented.

  10. Black carbon over Mexico: The effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios

    SciTech Connect

    Subramanian, R.; Kok, G. L.; Baumgardner, Darrel; Clarke, A. D.; Shinozuka, Y.; Campos, Teresa; Heizer, CG; Stephens, Britton; de Foy, B.; Voss, Paul B.; Zaveri, Rahul A.

    2010-01-13

    A single particle soot photometer (SP2) was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 Fg/m34 ) and over hill fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC suggests a CO background of around 65 ppbv, and a backgroundcorrected BC/COnet ratio of 2.89±0.89 (ng/m39 -STP)/ppbv (average ± standard deviation). This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC) of 10.9±2.1 m212 /g at 660 nm (or 13.1 m213 /g @ 550 nm, assuming MAC is inversely dependent on wavelength). This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.

  11. Inter-comparison of 2 microm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio.

    PubMed

    Gibert, Fabien; Joly, Lilian; Xuéref-Rémy, Irène; Schmidt, Martina; Royer, Adrien; Flamant, Pierre H; Ramonet, Michel; Parvitte, Bertrand; Durry, Georges; Zéninari, Virginie

    2009-01-01

    Remote sensing and in situ instruments are presented and compared in the same location for accurate CO(2) mixing ratio measurements in the atmosphere: (1) a 2.064 microm Heterodyne DIfferential Absorption Lidar (HDIAL), (2) a field deployable infrared Laser Diode Spectrometer (LDS) using new commercial diode laser technology at 2.68 microm, (3) LICOR NDIR analyzer and (4) flasks. LDS, LICOR and flasks measurements were made in the same location, LICOR and flasks being taken as reference. Horizontal HDIAL measurements of CO(2) absorption using aerosol backscatter signal are reported. Using new spectroscopic data in the 2 microm band and meteorological sensor measurements, a mean CO(2) mixing ratio is inferred by the HDIAL in a 1 km long path above the 15m height location of the CO(2) in situ sensors. We compare HDIAL and LDS measurements with the LICOR data for 30 min of time averaging. The mean standard deviation of the HDIAL and the LDS CO(2) mixing ratio results are 3.3 ppm and 0.89 ppm, respectively. The bias of the HDIAL and the LDS measurements are -0.54 ppm and -0.99 ppm, respectively. PMID:18718810

  12. Using Synchrotron-based X-ray Absorption Spectrometry to Identify the Arsenic Chemical Forms in Mine Waste Materials

    SciTech Connect

    Matanitobua, Vitukawalu P.; Noller, Barry N.; Chiswell, Barry; Ng, Jack C.; Bruce, Scott L.; Huang, Daphne; Riley, Mark; Harris, Hugh H.

    2007-01-19

    X-ray Absorption Near Edge Spectroscopy (XANES) gives arsenic form directly in the solid phase and has lower detection limits than extraction techniques. An important and common application of XANES is to use the shift of the edge position to determine the valence state. XANES speciation analysis is based on fitting linear combinations of known spectra from model compounds to determine the ratios of valence states and/or phases present. As(V)/As(III) ratios were determined for various Australian mine waste samples and dispersed mine waste samples from river/creek sediments in Vatukoula, Fiji.

  13. The retrieval of atmospheric constituent mixing-ratio profiles from solar absorption spectra. Ph.D. Thesis. Interim Technical Report

    NASA Technical Reports Server (NTRS)

    Shaffer, W. A.

    1983-01-01

    Methods used to determine various atmospheric gas distributions are summarized. The experimentally determined mixing ratio profiles (the mixing ratio of a gas is the ratio of the number of gas molecules to the number of air molecules) of some atmospheric gases are shown. In most in situ experiments stratospheric gas samples are collected at several altitudes by balloon, aircraft, or rocket. These samples are then analyzed by various methods. Mixing ratio profiles of Ci, ClO, and OH were determined by laser induced fluorescence of samples. Others have analyzed gas samples by gas chromatography in order to determine the molecular abundances of CCl2F2, CCl4, CCl3F, CFCl3, CF2Cl2, CHClF2, CH3CCl3, CH4, CO, C2Cl3F3, C2Cl4, C2HCl3, C2H2, C2H4, C2H6, C3H8, C6H6, C7H8, H2, and N2O.

  14. Wideband absorption in fibonacci quasi-periodic graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Liu, Shaobin; Zhang, Haifeng; Kong, Xiangkun; Bian, Borui; Bao, Jie

    2014-12-01

    A heterostructure containing a Fibonacci quasi-periodic layer and a resonant metal back reflector is proposed, which can realize wideband absorption. The Fibonacci layer is composed of graphene-based hyperbolic metamaterials and isotropic media to obtain wideband absorption. To enhance absorption, an impedance-matching layer is put on top of the Fibonacci layer. It is shown to absorb roughly 90% of all available electromagnetic waves in an 11 terahertz absorption bandwidth for a transverse magnetic mode at normal angle incidence. The absorption bandwidth is affected by the reflection band gap. Compared with some previous designs, our proposed structure has a larger absorption bandwidth and higher absorption in the mid-infrared range. The results should be valuable in the design of infrared stealth and broadband optoelectronic devices.

  15. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method.

  16. Determination of Phase Ratio in Polymorphic Materials by X-Ray Absorption Spectroscopy: The Case of Anatase and Rutile Phase Mixture in TiO2

    SciTech Connect

    Smith, M. F.; Klysubun, W.; Kityakarn, S.; Worayingyong, A.; Zhang, S. B.; Wei, S. H.; Onkaw, D.; Songsiriritthigul, P.; Rujirawat, S.; Limpijumnong, S.

    2009-01-01

    We demonstrate that x-ray absorption spectroscopy (XAS) can be used as an unconventional characterization technique to determine the proportions of different crystal phases in polymorphic samples. As an example, we show that ratios of anatase and rutile phases contained in the TiO{sub 2} samples obtained by XAS are in agreement with conventional x-ray diffraction (XRD) measurements to within a few percent. We suggest that XAS measurement is a useful and reliable technique that can be applied to study the phase composition of highly disordered or nanoparticle polymorphic materials, where traditional XRD technique might be difficult.

  17. Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes

    NASA Astrophysics Data System (ADS)

    Gosciniak, J.; Tan, D. T. H.; Corbett, B.

    2015-06-01

    Electro-absorption modulators based on electrically contacted double-layer graphene optimally incorporated in plasmonic and photonic waveguide configurations were simulated and analyzed in terms of the device performance at telecom wavelengths. It is shown that increasing the mode electric field strength on the graphene layers enhances absorption of graphene and, in consequence, improves the electro-optic performances. The ratio of the change in extinction ratio and the waveguide loss (Δα/α) is used as a figure of merit. A plasmonic waveguide configuration with a silicon ridge has a simulated 3 dB modulation depth for a device length of ~140 nm and Δα/α ~ 20. The calculated energy consumption per bit is as low as ~240 aJ bit-1 and ~1.8 aJ bit-1 for plasmonic modulators with polymer and silicon ridge waveguides respectively. Much higher figures of merit were obtained for modulators based on photonic waveguides with Δα/α exceeding 220 for a waveguide with a TM-supported mode. This comes at the cost of the modulator length, which increases to over 500 nm, and the calculated energy per bit of 1.93 fJ bit-1 for polymer and ~10.3 aJ bit-1 for silicon waveguides. The photonic waveguides were designed to support both TM and TE modes. The TE mode requires a much longer modulation length of ~10 µm to achieve a 3 dB modulation depth and shows a lower figure of merit of ~12 compared to the TM mode, but has a low energy per bit of ~44.0 aJ bit-1. The TE mode is in the OFF state at low applied voltage.

  18. In-line absorption sensor based on coiled optical microfiber

    NASA Astrophysics Data System (ADS)

    Lorenzi, Roberto; Jung, Yongmin; Brambilla, Gilberto

    2011-04-01

    We fabricated and tested an evanescent-wave absorption sensor consisting of an optical microfiber coil resonator embedded in fluidic channel walls. Low concentrations of flowing analyte show optical losses in agreement with a modified Beer-Lambert law. Higher concentration causes a limit value of the measured optical losses arising from adsorption mechanisms.

  19. Hollow-fiber membrane-based rapid pressure swing absorption

    SciTech Connect

    Bhaumik, S.; Majumdar, S.; Sirkar, K.K.

    1996-02-01

    A novel gas purification technique called rapid pressure swing absorption (RAPSAB) was developed by integrating the best features of membrane contacting, gas-liquid absorption, and pressure swing adsorption (PSA). In this cyclic separation process, a well-packed microporous hydrophobic hollow-fiber module was used to achieve nondispersive gas absorption from a high-pressure feed gas into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by desorption of absorbed gases from the liquid in the rest of the cycle. The total cycle time varies between 20 s and upwards. Separation of mixtures of N{sub 2} and CO{sub 2} (around 10%) where CO{sub 2} is the impurity to be removed was studied using absorbent liquids such as pure water and a 19.5% aqueous solution of diethanolamine (DEA). Three RAPSAB cycles studied differ in the absorption part. Virtually pure N{sub 2} streams were obtained with DEA as absorbent demonstrating the capability of bulk separation to very high levels of purification. Numerical models developed predict the extent of purification for pure water and the DEA solution for one of the simpler cycles. Model simulations describe the observed behavior well.

  20. Aspect ratio-related three-photon absorption and mechanism of α-FeOOH nanorods in the near-infrared.

    PubMed

    Zhu, Baohua; Wang, Fangfang; Wang, Chong; Cao, Yawan; Guo, Lijun; Zhang, Jiayu; Gu, Yuzong

    2016-07-20

    Tuning a semiconductor nanomaterial with large three-photon absorption (3PA) cross section in the near infrared and investigating the relationship between the nanostructure and nonlinear optical properties is a challenging topic, which is of significance in potential applications. Here, we report the aspect ratio-related 3PA response of α-FeOOH nanorods (NRs) in the near infrared. Large 3PA cross section at room temperature is achieved as high as ~10(-77) cm(6) s(2) photon(-2) when the distribution of photo-induced and intrinsic surface polarization charges of excitons to both ends of NRs is tuned through the aspect ratio, yielding total enhancement more than three times larger than that of NRs with 12.1 nm diameter. PMID:27218307

  1. Diode laser-based standoff absorption measurement of water film thickness in retro-reflection

    NASA Astrophysics Data System (ADS)

    Pan, R.; Brocksieper, C.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-09-01

    A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.

  2. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  3. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  4. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  5. Simultaneous detection of the absorption spectrum and refractive index ratio with a spectrophotometer: monitoring contaminants in bioethanol

    NASA Astrophysics Data System (ADS)

    Kontturi, V.; Hyvärinen, S.; García, A.; Carmona, R.; Murzin, D. Yu; Mikkola, J.-P.; Peiponen, K.-E.

    2011-05-01

    The optical properties of a biofuel resulting from the fungi-treated lignocellulosic biomass in an ethanol matrix were studied. The matrix simulates the case that the bioethanol is contaminated by sugars, water and colour pigments that reduce the quality of the biofuel and compromise the combustion process. It is suggested that by applying a spectrophotometer only, it is possible to obtain valid information, i.e. the spectral features of the contaminants as well as the refractive index ratio of bioethanol. This allows for simultaneous purity and density detection of biomass-derived liquids or liquid biofuels, in comparison to a reference representing an ideal bioethanol (pure ethyl alcohol, ethanol of 99.5% purity (v/v)).

  6. Lambertian thermal emitter based on plasmonic enhanced absorption.

    PubMed

    Wang, Chih-Ming; Tsai, Din Ping

    2016-08-01

    In this paper, a narrow band thermal emission at 10 μm is demonstrated using a one dimensional metasurface. The proposed metasurface structure provides magnetic resonance mode that enhances the phonon absorption of SiO2. The proposed metasurface thermal emitter shows a Lambertian distribution. Additionally, 5.8-folds enhancement of emissivity is achieved by optimizing the cavity thickness of the metasurfaces. This type of thermal emitter will be useful for IR sensing applications. PMID:27505801

  7. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    NASA Astrophysics Data System (ADS)

    Vudyasetu, Praveen K.; Camacho, Ryan M.; Howell, John C.

    2010-11-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  8. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Zhang, Mingda; Zhang, Xiangdong

    2015-02-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides.

  9. Ultrasensitive optical absorption in graphene based on bound states in the continuum.

    PubMed

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides. PMID:25652437

  10. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    PubMed Central

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides. PMID:25652437

  11. Beyond the Golden Ratio: A Calculator-Based Investigation.

    ERIC Educational Resources Information Center

    Glidden, Peter L.

    2001-01-01

    Describes computation of a continued radical to approximate the golden ratio and presents two well-known geometric interpretations of it. Uses guided-discovery to investigate different repeated radicals to see what values they approximate, the golden-rectangle interpretation of these continued radicals, and the golden-section interpretation. (KHR)

  12. Absorption-polarization characteristics of rhodamine 6G and its base in poly(methyl methacrylate)

    SciTech Connect

    Prishchepov, A.S.; Nizamou, N.

    1986-01-01

    Results are presented of the measurement and analysis of the absorption-polarization characteristics of rhodamine 6G and the base of rhodamine 6G (BR6G) in polymeric films of poly(methylmethacrylate) (PMMA). The absorption spectrum of a PMMA film containing BR6G and the cationic dye in the monomeric and associated states are shown.

  13. Copper-zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model.

    PubMed

    Obinna Obiakor, Maximilian; Damian Ezeonyejiaku, Chigozie

    2015-07-01

    A significant number of studies have centred on the single actions of heavy metals against test animals in predicting aquatic toxicity. However, practical existence of environmental toxicants is in multiple mixtures and variable undefined ratio combinatorial concentrations. Pollution abatement approaches in setting representative safe boundaries for metal contaminants is crucial with factual data on predictively modelled exposures of organisms to multiple mixtures. In continuance of our approach to toxicity of individual heavy metals, we determined the toxicity of binary mixtures of copper and zinc at predetermined ratios against tilapia species and also evaluated the coergisms based on synergistic ratio model for effective formulations of safe limits. Orecohromis niloticus species were exposed to copper and zinc (Cu:Zn) at ratios of 1:1 and 1:2 on 96hLC₅₀ index and mortality response analysed following the probit-log-dose regression with metal-metal interactions effectively modelled. The 96hLC₅₀ values for Cu:Zn were calculated to be 68.898 and 51.197 mg/l for ratios 1:1 and 1:2, respectively. The joint action toxicity of the metal mixtures was observed to differ from the metals acting singly against the same animal species. Synergistic coergisms were realized in most of the ratio mixtures except the antagonistic effect displayed by the combination of Cu:Zn in the ratio 1:1 when compared to the single action of copper. Biological toxicity of heavy metals however still appears uncertain, and consideration of multiple mixtures and interactions of toxicants in natural milieu is very crucial in environmental management of the existing and emerging contaminating metals.

  14. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  15. A complete diet-based algorithm for predicting nonheme iron absorption in adults.

    PubMed

    Armah, Seth M; Carriquiry, Alicia; Sullivan, Debra; Cook, James D; Reddy, Manju B

    2013-07-01

    Many algorithms have been developed in the past few decades to estimate nonheme iron absorption from the diet based on single meal absorption studies. Yet single meal studies exaggerate the effect of diet and other factors on absorption. Here, we propose a new algorithm based on complete diets for estimating nonheme iron absorption. We used data from 4 complete diet studies each with 12-14 participants for a total of 53 individuals (19 men and 34 women) aged 19-38 y. In each study, each participant was observed during three 1-wk periods during which they consumed different diets. The diets were typical, high, or low in meat, tea, calcium, or vitamin C. The total sample size was 159 (53 × 3) observations. We used multiple linear regression to quantify the effect of different factors on iron absorption. Serum ferritin was the most important factor in explaining differences in nonheme iron absorption, whereas the effect of dietary factors was small. When our algorithm was validated with single meal and complete diet data, the respective R(2) values were 0.57 (P < 0.001) and 0.84 (P < 0.0001). The results also suggest that between-person variations explain a large proportion of the differences in nonheme iron absorption. The algorithm based on complete diets we propose is useful for predicting nonheme iron absorption from the diets of different populations.

  16. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers.

    PubMed

    Amat, S; McKinnon, J J; Penner, G B; Hendrick, S

    2014-02-01

    This study evaluated the effects of dietary S concentration and forage-to-concentrate ratio (F:C) on ruminal fermentation, S metabolism, and short-chain fatty acid (SCFA) absorption in beef heifers. Sixteen ruminally cannulated heifers (initial BW 628 ± 48 kg) were used in a randomized complete block design with a 2 × 2 factorial treatment arrangement. The main factors included F:C (4% forage vs. 51% forage, DM basis) and the S concentration, which was modified using differing sources of wheat dried distillers grains with solubles (DDGS) to achieve low- and high-S diets (LS = 0.30% vs. HS = 0.67% S on a DM basis). Elemental S was also added to increase the S content for the HS diets. Serum sulfate concentration from blood, sulfide (S(2-)), and SCFA concentrations from ruminal fluid, hydrogen sulfide (H2S) concentration from the ruminal gas cap, and urinary sulfate concentration were determined. Continuous rumen pH and SCFA (acetate, butyrate, and propionate) absorption were measured. There were no interactions between S concentration and F:C. The F:C did not affect DMI (P = 0.26) or ruminal S metabolite concentrations (P ≥ 0.19), but ruminal pH was lower (P < 0.01) and SCFA absorption was greater (P < 0.01) for low F:C diets. Heifers fed HS diets had less DMI (P < 0.01) but greater ruminal pH (P < 0.01), greater concentrations of ruminal H2S (P < 0.01) and serum sulfate (P < 0.01), and greater urinary sulfate concentration (P < 0.01) and output (P < 0.01) relative to heifers fed LS diets. Ruminal H2S was positively correlated with serum sulfate (r = 0.89; P < 0.01). Ruminal acetate concentration was not affected (P = 0.26) by dietary S concentration. Heifers fed the HS diet had lower (P = 0.01) ruminal propionate concentration and tended to have lower (P = 0.06) butyrate concentration than heifers fed the LS diet. Ruminal acetate was greater (P = 0.01) and butyrate was less (P < 0.01) with the high F:C diet than the low F:C diet. Both HS (P = 0.06) and low F

  17. A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model.

    PubMed

    Ando, Hirotaka; Hisaka, Akihiro; Suzuki, Hiroshi

    2015-04-01

    This study aimed to construct a new local pharmacokinetic model of gastrointestinal absorption, the translocation model (TLM), using an anatomically relevant, minimally segmented structure to explain linear and nonlinear intestinal absorption, metabolism, and transport. The TLM was based on the concept of a single absorption site that flexibly moves, expands, and shrinks along with the length of the gastrointestinal tract after the intake of an oral dose. The structure of the small intestine is continuous, and various time- and location-dependent issues are freely incorporated in the analysis. Since the model has only one absorption site, understanding and modification of factors affecting absorption are simple. The absorption site is composed of four compartments: solid drug in the lumen, solution drug in the lumen, concentration in the enterocytes, and concentration in the lamina propria. The lamina propria includes the blood capillaries. Blood flow in the absorption site of the lamina propria appropriately accounts for the absorption. In the TLM, the permeability of the apical membrane and that of the basolateral membrane are distinct. By considering plicate, villi, and microvilli expansions of the surface area, the apparent permeability measured in Caco-2 experiments was converted to the effective permeability in vivo. The intestinal availability, bioavailability, and dose product of intestinal availability and absorption rate relationship of the model drugs were well explained using the TLM. The TLM would be a useful tool for the consideration of local pharmacokinetics in the gastrointestinal tract in various situations.

  18. Hydrogen Absorption in Pd-based Nanostructures - Final Report

    SciTech Connect

    David Lederman

    2012-10-22

    Pd is known to absorb hydrogen. Molecules are normally chemisorbed at the surface in a process where the molecule breaks into two hydrogen atoms, and the protons are then absorbed into the bulk. This process consists of electron filling holes in the Pd 4d band near the Fermi energy, which due to the high density of states at the Fermi energy, is an energetically favorable process. Our aim with this project was to determine possible changes in magnetic properties with Pd nm-length-scale thick layers intercalated by magnetic materials. Before the start of this work, the literature indicated that there were several possible scenarios by which this could happen: i) the Pd will be magnetized due to a proximity effect with nearby magnetic layers, resulting in changes in the magnetization due to H2 absorption; ii) some H will be absorbed into the magnetic layers, causing a change in the magnetic exchange interactions; or iii) absorption of H2 will cause an expansion of the lattice, resulting in a magnetoelastic effect which changes the magnetic properties.

  19. [Decomposing total suspended particle absorption based on the spectral correlation relationship].

    PubMed

    Wang, Gui-Fen; Cao, Wen-Xi; Yang, Ding-Tian; Zhao, Jun

    2009-01-01

    A model for estimating the contributions of phytoplankton and nonalgal particles to the total particulate absorption coefficient was developed based on their separate spectral relationships, and a constrained nonlinear optimization code was used to realize the spectral decomposition. The spectral absorption of total particulate matter including phytoplankton and nonalgal particles was measured using the filter-pad method during two cruises in autumn in Northern South China Sea. Using the dataset collected in 2004, the spectral relationships of particle absorption coefficients were examined and the results showed that the phytoplankton absorption coefficients at various wavebands could be well expressed by aph (443) as the second-order quadratic equations; and the nonalgal particle absorption (aNAP(lambda)) could be successfully modeled with the simple exponential function. Based on these spectral relationships, we developed this partition model. The model was tested using the independently measured absorption by phytoplankton and nonalgal materials which were obtained in 2005 from the same area. The test results showed that the computed spectral absorption coefficients of phytoplankton and nonalgal particles were consistent with in situ measurement. Good correlations were fo und between the comput ed phytoplankton absorption coefficient and the measured value,with the determination coefficients (r2) being higher than 0.97 and slopes being around 1.0; and the RMSE values could be controlled within 17% over the main absorption wavebands such as 443, 490 and 683 nm. Compared with the other two existing models from Bricaud et al. and Oubelkheir et al., this method shows many advantages for local applications. Moreover, this model does not need any information about pigment concentrations and the selected spectral bands are consistent with the ocean color satellite sensor. This method could also be used in the total absorption coefficient decomposition which provides

  20. Analysis of transmission spectra for large ratio of emission-to-absorber linewidths: extension of differential absorption lidar analysis for finite laser linewidths.

    PubMed

    Klett, James D

    2005-07-10

    A simple algorithm is presented for the analysis of transmission spectra provided by a lidar with an emission linewidth that is comparable with or larger than the absorption features of interest. The spreading of line shapes as seen by the lidar precludes use of the classical differential absorption lidar (DIAL) approach. However, it is assumed that, as with the DIAL method, small spectral intervals exist where single absorbers are dominant, and an inversion process for the transmission over such intervals is carried out for the absorber concentration. A second-stage algorithm based on singular-value decomposition is also provided to improve further the concentration estimates. An example situation for use of the algorithms is included wherein the objective is to estimate the concentration of a known trace gas in a composite transmission spectrum in the mid-infrared, where the dominant absorbers are water vapor and methane.

  1. Absorption Spectroscopy Study of Acid-Base and Metal-Binding Properties of Flavanones

    NASA Astrophysics Data System (ADS)

    Shubina, V. S.; Shatalina, Yu. V.

    2013-11-01

    We have used absorption spectroscopy to study the acid-base and metal-binding properties of two structurally similar flavanones: taxifolin and naringenin. We have determined the acid dissociation constants for taxifolin (pKa1 = 7.10 ± 0.05, pKa2 = 8.60 ± 0.09, pKa3 = 8.59 ± 0.19, pKa4 = 11.82 ± 0.36) and naringenin (pKa1 = 7.05 ± 0.05, pKa2 = 8.85 ± 0.09, pKa3 = 12.01 ± 0.38). The appearance of new absorption bands in the visible wavelength region let us determine the stoichiometric composition of the iron (II) complexes of the flavanones. We show that at pH 5, in solution there is a mixture of complexes between taxifolin and iron (II) ions in stoichiometric ratio 2:1 and 1:2, while at pH 7.4 and pH 9, we detect a 1:1 taxifolin:Fe(II) complex. We established that at these pH values, naringenin forms a 2:1 complex with iron (II) ions. We propose structures for the complexes formed. Comprehensive study of the acid-base properties and the metal-binding capability of the two structurally similar flavanones let us determine the structure-properties relation and the conditions under which antioxidant activity of the polyphenols appears, via chelation of variable-valence metal ions.

  2. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  3. Semiempirical Model for Ionospheric Absorption based on the NRLMSISE-00 atmospheric model

    NASA Astrophysics Data System (ADS)

    Pederick, L. H.; Cervera, M. A.

    2014-02-01

    The strength of high-frequency radio signals, when refracted by the ionosphere, can be strongly influenced by ionospheric absorption. Accurate modeling of the amount of this absorption is a vital part of many studies of radio waves propagating in the ionosphere. We have developed a new, flexible model of ionospheric absorption, the Semiempirical Model for Ionospheric Absorption based on the NRLMSISE-00 atmospheric model (SiMIAN). This article describes the methods and formulae used by SiMIAN, a comparison of SiMIAN with an older absorption model, and validation work performed by simulating the power returned in vertical incidence soundings of the ionosphere and comparing the results with real soundings.

  4. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-07-01

    Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied

  5. HIGH-LYING OH ABSORPTION, [C II] DEFICITS, AND EXTREME L {sub FIR}/M {sub H2} RATIOS IN GALAXIES

    SciTech Connect

    González-Alfonso, E.; Blasco, A.; Fischer, J.; Sturm, E.; Graciá-Carpio, J.; Lutz, D.; Poglitsch, A.; Contursi, A.; Veilleux, S.; Meléndez, M.; Aalto, S.; Falstad, N.; Spoon, H. W. W.; Farrah, D.; Henkel, C.; Verma, A.; Spaans, M.; Smith, H. A.; Ashby, M. L. N.; Hailey-Dunsheath, S.; and others

    2015-02-10

    Herschel/PACS observations of 29 local (ultra)luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 μm Π{sub 3/2} J = 9/2-7/2 line (W {sub eq}(OH65)) with lower level energy E {sub low} ≈ 300 K, is anticorrelated with the [C II]158 μm line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 μm far-infrared color. While all sources are in the active L {sub IR}/M {sub H2} > 50L {sub ☉}/M {sub ☉} mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at L {sub FIR}/M {sub H2} ≈ 100 L {sub ☉}/M {sub ☉}. In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 μm absorption. Combined with observations of the OH 71 μm Π{sub 1/2} J = 7/2-5/2 doublet (E {sub low} ≈ 415 K), radiative transfer models characterized by the equivalent dust temperature, T {sub dust}, and the continuum optical depth at 100 μm, τ{sub 100}, indicate that strong [C II]158 μm deficits are associated with far-IR thick (τ{sub 100} ≳ 0.7, N {sub H} ≳ 10{sup 24} cm{sup –2}), warm (T {sub dust} ≳ 60 K) structures where the OH 65 μm absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high L {sub FIR}/M {sub H2} ratios and columns, the presence of these structures is expected to give rise to strong [C II] deficits. W {sub eq}(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is ≳ 30%-50% in sources with high W {sub eq}(OH65). Sources with high W {sub eq}(OH65) have surface densities of both L {sub IR} and M {sub H2} higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum)nuclear starburst

  6. Highly-sensitive Eu3+ ratiometric thermometers based on excited state absorption with predictable calibration

    NASA Astrophysics Data System (ADS)

    Souza, Adelmo S.; Nunes, Luiz A. O.; Silva, Ivan G. N.; Oliveira, Fernando A. M.; da Luz, Leonis L.; Brito, Hermi F.; Felinto, Maria C. F. C.; Ferreira, Rute A. S.; Júnior, Severino A.; Carlos, Luís D.; Malta, Oscar L.

    2016-02-01

    Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu3+ emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be

  7. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  8. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  9. A new concept for sensitive in situ stable isotope ratio infrared spectroscopy based on sample modulation.

    PubMed

    Werle, Peter; Dyroff, Christoph; Zahn, Andreas; Mazzinghi, Piero; D'amato, Francesco

    2005-12-01

    Diode-laser absorption spectroscopy finds increasing applications in the emerging field of stable isotope research. To meet the requirements of the water isotopes measurement challenge in environmental research, ways have to be found to cope with the present limitations of spectroscopic systems. In this article, we discuss an approach based on the Stark effect in molecular spectra to reduce the influence of time-dependent, unwanted background structures generally superimposed on the desired signal from the spectral feature under investigation. A road map to high-sensitivity isotopic ratio measurements of water isotopes is presented. On the basis of an Allan Variance analysis of measured data, the detection limits have been calculated as a function of the integration time. To achieve the required optical density of about 6 x 10(-7) for H(2)(17)O measurements, the duty cycle has to be optimized and the implementation of a sample modulation within an optical multipass cell is a promising approach to increase the stability of spectroscopic instrumentation required for ecosystem research and airborne atmospheric platforms.

  10. Intersubband absorption of silicon-based quantum wells for infrared imaging

    NASA Technical Reports Server (NTRS)

    Yang, Chan-Ion; Pan, Dee-Son

    1988-01-01

    The 10-micron intersubband absorption in quantum wells made of the silicon-based system, Si/Si(1-x)Ge(x), has been calculated. The necessary details of the effective-mass anisotropy are included in the present analysis. It is found that it is readily possible to achieve an absorption constant of order of 10,000/cm in Si quantum wells with current doping technology. For 110-line and 111-line growth directions, a further advantage of Si quantum wells is pointed out, namely, an allowed absorption at normal incidence due to the anisotropic effective mass in Si.

  11. A Parallel Reconstruction Scheme in Fluorescence Tomography Based on Contrast of Independent Inversed Absorption Properties

    PubMed Central

    Yi, Ji; Bai, Jing

    2006-01-01

    Based on an independent forward model in fluorescent tomography, a parallel reconstructed scheme for inhomogeneous mediums with unknown absorption property is proposed in this paper. The method considers the two diffusion equations as separately describing the propagation of excited light in tissues with and without fluorescent probes inside. Then the concentration of fluorophores is obtained directly through the difference between two estimations of absorption coefficient which can be parallel inversed. In this way, the multiparameter estimation problem in fluorescent tomography is transformed into two independent single-coefficient determined schemes of diffusion optical tomography (DOT). Any algorithms proved to be efficient and effective in DOT can be directly applied here. In this study the absorption property is estimated from the independent diffusion equations by a gradient-based optimization method with finite element method (FEM) solving the forward model. Simulation results of three representative occasions show that the reconstructed method can well estimate fluorescent property and tissue absorption distribution. PMID:23165045

  12. A polar cap absorption model optimization based on the vertical ionograms analysis

    NASA Astrophysics Data System (ADS)

    Zaalov, N. Y.; Moskaleva, E. V.

    2016-11-01

    Space weather events significantly affect the high frequency (HF) radio wave propagation. The now-casting and forecasting of HF radio wave absorption is important for the HF communication industries. This paper assimilates vertical sounding data into an absorption model to improve its performance as a now-casting tool. The approach is a modification of the algorithm elaborated by Sauer and Wilkinson, which is based on the riometer data. The optimization is focused on accounting for short timescale variation of the absorption. It should be noted that the expression of the frequency dependence of absorption induced by the energetic particle precipitation employed in Sauer and Wilkinson model is based on the riometer data at frequencies of 20, 30, and 50 MHz. The approach suggested in this paper provides an opportunity for expanding the frequency dependence of the absorption for frequencies below 10 MHz. The simulation of the vertical ionograms in the polar cap region uses a computational model designed to overcome the high frequency wave propagation problem in high latitude of the Earth. HF radio wave absorption induced by solar UV illumination, X-ray flares and energetic particles precipitation is taken into consideration in our model. The absorption caused by the energetic particle precipitation is emphasized, because the study is focused on HF wave propagation in polar cap region. A comparison of observed and simulated vertical ionograms enables the coefficients, which relate absorption (day-time and night-time) to integral proton flux to be refined. The values of these coefficients determined from evaluation of the data recorded by any reliable ionosonde are valid for absorption calculation in high-latitude region.

  13. Design and measurements of the absorption section of an up-conversion device based on PbSe quantum-dots

    NASA Astrophysics Data System (ADS)

    Hechster, Elad; Sarusi, Gabby

    2015-12-01

    The absorption section of quantum dots (QD) based night vision devices consists of the OQ sensitizing layer which absorbs the Infrared radiation, the substrate on which the QD are placed, the electrode and, in several cases, a blocking layer that prevents the flow of charge carriers toward the inverse direction. The absorption section plays a dominant role in determining the absorption spectral ranges and the signal-to-noise ratios of the devices. In this work, we show the design of the absorption section of a short wavelength infrared (SWIR) to visible direct up-conversion device. The growth was 300 nm thick PbSe quantum dots (QD) separated by PbSe grain boundaries layer on intrinsic GaAs substrate. Photo-luminescence and absorption measurements suggested that the quantum dots spectral response is blue-shifted to the spectral range in which the up-conversion device is operated i.e., SWIR. We preformed sheet resistance measurements in dark and under illumination that showed that the device exhibits an improvement in the signal-to-noise ratio after annealing ion chloride atmosphere compare with annealing in oxygen atmosphere. These samples have great potential for the use as the absorption section of low-cost, compact, low power consumption, and cooler free up-conversion devices.

  14. Optical depth ratios and metal-line absorption around z≈2.3 star-forming galaxies: insights from observations and simulations

    NASA Astrophysics Data System (ADS)

    Turner, Monica; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison

    2015-01-01

    We study metal-line absorption around 854 z≈2.3 star-forming galaxies taken from the Keck Baryonic Structure Survey. The galaxies in this survey lie in the fields of 15 hyper-luminous background QSOs, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centered 2-D maps of the median absorption by OVI, NV, CIV, CIII, and SiIV, as well as updated results for HI. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and ±240 km s-1 along the line-of-sight (LOS, ˜1 pMpc in the case of pure Hubble flow) for all ions except NV. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction, which rules out redshift errors as the source of the observed redshift-space anisotropy and implies that we have detected the signature of gas peculiar velocities from infall, outflows, or virial motions. Looking next at optical depth ratios, we isolate pixel pairs at small galactocentric distances (within 180 pkpc in the transverse direction and 170 km s-1 along the LOS) and find that the optical depth of OVI at fixed HI is enhanced with respect to the full sample. Comparison with CLOUDY models, and assuming photoionisation, results in nearly solar metallicities at intergalactic overdensities, which we consider to be unphysical. Invoking collisional ionisation, we are able to place a lower limit on [O/H] of ˜1/100th solar, and conclude that we are likely probing collisionally ionised gas near galaxies. Finally, we turn to the EAGLE cosmological hydrodynamical simulations to interpret our results, and furthermore to study the evolution of the column density profiles as a function of impact parameter for different

  15. Highly-sensitive Eu(3+) ratiometric thermometers based on excited state absorption with predictable calibration.

    PubMed

    Souza, Adelmo S; Nunes, Luiz A O; Silva, Ivan G N; Oliveira, Fernando A M; da Luz, Leonis L; Brito, Hermi F; Felinto, Maria C F C; Ferreira, Rute A S; Júnior, Severino A; Carlos, Luís D; Malta, Oscar L

    2016-03-01

    Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu(3+) ion. The thermometer is based on the simple Eu(3+) energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K(-1). The thermometric parameter is defined as the ratio between the emission intensities of the (5)D0 → (7)F4 transition when the (5)D0 emitting level is excited through the (7)F2 (physiological range) or (7)F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu(3+) were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu(3+) emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.

  16. [A novel hyperspectra absorption enhancing method based on morphological top-hat transformation].

    PubMed

    Li, Hui; Lin, Qi-zhong; Wang, Qin-jun; Liu, Qing-jie; Chen, Yu

    2010-09-01

    Hyperspectral characteristics analysis of ground features is the basis for applications of high-resolution imaging technology to ground target identification and ground features classification. Based on morphological multi-scale Top-Hat transformation, a novel spectral absorption enhancing algorithms was put forward, which enhanced spectral absorption features while maintaining shape features of the absorption peak bands. Eleven reflectance spectra of different mineral groups were chosen from the mineral spectral library of the United States Geological Survey (USGS), and we used a K-means clustering analysis on both the absorption-enhanced spectra and the original reflectance spectra. Results showed that, firstly, clustering groups of the absorption-enhanced spectra (AES) had better similarity within the same clustering group, and greater difference between different groups, furthermore, they were more consistent with the geological background of these minerals compared with clustering result of the original spectra (OS). Secondly, while all the original spectra were re-sampled to their ASTER spectra and the AES clustering result was displayed in the form of ASTER spectra of the minerals, we could easily describe both the representative spectral feature of each clustering group, and the typical spectral differences between every two groups. These fully demonstrate that the absorption-enhanced spectra have enhanced absorption features of the mineral spectra, and improved the separability of hyper-spectra. Accordingly, feature analysis based on absorption enhanced spectra can be used as reference for information extracting based on multi-spectral remote sensing image data, and it is a very useful method of hyperspectral analysis. PMID:21105412

  17. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  18. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  19. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Jiao, Zheng; Ning, Renxia; Xu, Yuan; Bao, Jie

    2016-06-01

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident angle and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.

  20. Thickness Optimization for Petroleum Coke in Microwave Dehydrating Based on the Analysis of Dynamic Absorption Efficiency

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobiao; Chen, Junruo; Peng, Jinhui; Chen, Hua; Zhang, Weifeng; Guo, Shenghui; Chen, Guo

    2015-07-01

    An analytical approach is proposed to optimize the thickness of petroleum coke for achieving maximum microwave power absorption in microwave heating based on analysis of reflection loss (RL). The microwave RL of the petroleum coke layer was studied over the moisture content range of 1%-5% at 20 °C and the petroleum coke (10% moisture content) in the temperature range of 20 to 100 °C at 2.45 GHz. The results show that RL depends sensitively on the thickness of the petroleum coke and the absorption peak shifts towards a larger thickness as the moisture content of the petroleum coke increases. There exists a matching thickness corresponding to the maximum microwave absorption, the maximum absorbing peak decreases when the thickness of petroleum coke exceeds the matching thickness. We also show that the absorption peak is found to move towards a smaller thickness region with increasing petroleum coke temperature.

  1. Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat

    SciTech Connect

    Sandstroem, B.A.; Almgren, A.; Kivistoe, B.C.; Cederblad, A.

    1987-11-01

    The absorption of zinc from meals based on 60 g of rye, barley, oatmeal, triticale or whole wheat was studied by use of extrinsic labelling with /sup 65/Zn and measurement of the whole-body retention of the radionuclide. The cereals were prepared in the form of bread or porridge and were served with 200 mL of milk. The oatmeal flakes were also served without further preparation. The absorption of zinc was negatively correlated to the phytic acid content of the meal with the highest absorption, 26.8 +/- 7.4%, from the rye bread meal containing 100 mumol of phytic acid and the lowest, 8.4 +/- 1.0%, from oatmeal porridge with a phytic acid content of 600 mumol. It is concluded that food preparation that decreases the phytic acid content improves zinc absorption.

  2. Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat.

    PubMed

    Sandström, B; Almgren, A; Kivistö, B; Cederblad, A

    1987-11-01

    The absorption of zinc from meals based on 60 g of rye, barley, oatmeal, triticale or whole wheat was studied by use of extrinsic labelling with 65Zn and measurement of the whole-body retention of the radionuclide. The cereals were prepared in the form of bread or porridge and were served with 200 mL of milk. The oatmeal flakes were also served without further preparation. The absorption of zinc was negatively correlated to the phytic acid content of the meal with the highest absorption, 26.8 +/- 7.4%, from the rye bread meal containing 100 mumol of phytic acid and the lowest, 8.4 +/- 1.0%, from oatmeal porridge with a phytic acid content of 600 mumol. It is concluded that food preparation that decreases the phytic acid content improves zinc absorption.

  3. Thermooptic-based differential measurements of weak solute absorptions with an interferometer.

    PubMed

    Cremers, D A; Keller, R A

    1982-05-01

    An interferometric method of measuring small differences between weak optical absorptions of solutions has been developed using the thermooptic effect. To record the small changes in optical path length ~lambda/200 due to heating, it was necessary to stabilize the fringe pattern with respect to slow thermal drift using a galvanometer-driven compensator plate controlled by a closed feedback loop. Fringe shifts from background absorptions were nulled out to better than 1 part in 400, permitting the measurement of differences in absorptions between two solutions that were l/100th of background. Using laser powers of 100 mW, absorptions approximately 5 x 10(-6) cm(-1) (base e) could be measured with CC1(4) solutions. PMID:20389912

  4. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    SciTech Connect

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  5. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  6. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  7. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  8. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  9. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  10. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  11. Signal to Noise Ratio Estimation for a Space-borne Swept-Frequency Intensity-Modulated CO2 Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Chen, S.; Lin, B.; Petway, L. B.; Ismail, S.; Campbell, J. F.; Bai, Y.; Harrison, F. W.; Refaat, T. F.; Obland, M. D.; Meadows, B.; Browell, E. V.

    2014-12-01

    The Signal to Noise Ratio (SNR) in the digital lock-in detection for a space-borne swept-frequency Intensity-Modulated Continuous-Wave (IM-CW) CO2 Laser Absorption Spectrometer (LAS) has a direct influence on the accuracy of the CO2 measurement. According to the Maximum Likelihood Estimation (MLE) method, we have theoretically analyzed a linear swept-frequency sine wave signal in an additive high Gaussian-distributed noise with a constant variance, which is a good approximation for the detector-noise-limited system or the solar background noise dominated space-borne IM-CW CO2 LAS. The general MLE equations for the amplitude and the phase of the swept-frequency IM_CW signal have been generated and solved by a nonlinear optimization procedure. The variances of the amplitude and the phase have been obtained by using the Cramer-Rao lower bound, a lower bound on the variance of the estimated parameters. Under the large sampling numbers, the SNR, signal amplitude divided by the square-root of the amplitude variance, increases as the square-root of the total sampling numbers. Thousands of numerical simulations with randomly generated uniform distributed Gaussian noise were completed for the statistical verification of the estimation. The estimation has also been applied to a space-borne IM-CW CO2 LAS with typical parameters under averaged daytime solar background to confirm the feasibilities of the instrument design of the space-borne IM-CW CO2 LAS.

  12. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.; Cappiello, C.C.; Gardner, S.D.; Hollas, C.L.; Ussery, L.E.; White, J.M.; Zahrt, J.D.; Krauss, R.A.

    1993-12-01

    A-prototype explosives detection system that was developed for experimental evaluation of a nuclear resonance absorption techniques is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection- alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  13. Prototype explosives-detection system based on nuclear-resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.; Cappiello, C.C.; Gardner, S.D.; Hollas, C.L.; Ussery, L.E.; White, J.M.; Zahrt, J.D.; Krauss, R.A.

    1994-06-01

    A prototype explosives-detection system (EDS) that was developed for experimental evaluation of a nuclear-resonance absorption technique is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  14. Research of difference absorption optical fiber CO gas sensor based on FBG

    NASA Astrophysics Data System (ADS)

    Wang, Yanju; Liu, Zhihua; Kang, Yueyi; Wang, Yutian

    2009-07-01

    Based on analysis of the near infrared spectral absorption of CO molecule and considering factors such as compatibility with the transmission characteristics of silica optical fiber and the price, a kind of allfiber remote sensor utilizing Fiber Bragg Grating(FBG) filters and 1.567μm high power light-emitting diode (LED) was developed for real time absorption measurement. FBG has a low insert loss and can be produced easily compared with dielectric interference filters. Theory and experiment proved that the system has simple construct and high sensibility.

  15. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  16. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  17. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  18. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    PubMed

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  19. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    NASA Astrophysics Data System (ADS)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  20. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  1. Dual-gated tunable absorption in graphene-based hyperbolic metamaterial

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Liu, Shaobin; Zhang, Haifeng; Jiao, Zheng

    2015-06-01

    The use of a dual-gated tunable absorber in graphene-based hyperbolic metamaterial (GHMM) in the near-infrared frequency range was investigated. The horizontal and vertical parts for relative permittivity of GHMM, which consists of monolayer graphene and conventional dielectric, were tuned using the chemical potential. To obtain a large absorption, GHMM was placed on top of a stacked structure containing dielectric and graphene layers and a copper reflector was placed at the bottom. The dual-gated absorber had multiband absorption, which was tuned using the chemical potential of graphene and GHMM. This study focuses on the variation of the absorption with change in the chemical potential and dielectric thickness. The results show that multiband absorption could be attained when chemical potential and dielectric thickness was changed. Broadband absorption could be generated when the frequency ranged from 215 THz to 250 THz. This phenomenon may be valuable for a variety of important applications including optical communication technology and near-infrared stealth communication.

  2. Joint absorption and phase retrieval in grating-based x-ray radiography.

    PubMed

    Nilchian, Masih; Bostan, Emrah; Wang, Zhentian; Nilchiyan, Mohammad Reza; Stampanoni, Marco; Unser, Michael

    2016-04-01

    Given the raw absorption and differential phase-contrast images obtained from a grating-based x-ray radiography, we formulate the joint denoising of the absorption image and retrieval of the non-differential phase image as a regularized inverse problem. The choice of the regularizer is driven by the existing correlation between absorption and differential phase; it leads to the linear combination of a total-variation norm with a total-variation nuclear norm. We then develop the corresponding algorithm to efficiently solve this inverse problem. We evaluate our method using different experiments, including mammography data. We conclude that our method provides useful information in the context of mammography screening and diagnosis.

  3. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  4. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  5. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  6. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  7. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  8. Site-selective nitrogen isotopic ratio measurement of nitrous oxide using a TE-cooled CW-RT-QCL based spectrometer.

    PubMed

    Li, Jingsong; Zhang, Lizhu; Yu, Benli

    2014-12-10

    The feasibility of laser spectroscopic isotopic composition measurements of atmospheric N2O was demonstrated, although making them useful will require further improvements. The system relies on a thermoelectrically (TE) cooled continuous-wave (CW) room temperature (RT) quantum cascade laser source emitting wavelength of around 4.6μm, where strong fundamental absorption bands occur for the considered specie and its isotopomers. The analysis technique is based on wavelength modulation spectroscopy with second-harmonic detection and the combination of long-path absorption cell. Primary laboratory tests have been performed to estimate the achievable detection limits and the signal reproducibility levels in view of possible measurements of (15)N/(14)N and (18)O/(16)O isotope ratios. The experiment results showed that the site-selective (15)N/(14)N ratio can be measured with a precision of 3‰ with 90s averaging time using natural-abundance N2O sample of 12.7ppm.

  9. Retrieval of water vapor mixing ratios from a laser-based sensor

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  10. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  11. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-05-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  12. Fuzzy classifier based support vector regression framework for Poisson ratio determination

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2013-09-01

    Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.

  13. Modeling of the Temperature Effect on Oxygen Absorption by Iron-Based Oxygen Scavengers.

    PubMed

    Polyakov, Vladimir A; Miltz, Joseph

    2016-01-01

    A new engineering-oriented model for prediction of the effect of temperature on the kinetics of oxygen absorption by iron-based oxygen scavengers (IOSs) was developed. The model is based on the physicochemical mechanism of the O2 scavenging process by the active component of the IOS (iron powder). The conclusions of this study are: (1) the iron deposits formed on the iron particles are composed of 2 different layers: an inner layer of Fe3 O4 and an outer layer of FeOOH that vanishes with the depletion of oxygen. (2) The model considers the chemical processes in the heterogeneous closed system "Fe-H2 O-NaCl-O2 " and describes the kinetics of oxygen absorption by the powder, depending on the characteristics of the system. (3) The nonlinear ordinary differential equation (ODE) of the O2 absorption kinetics was derived and a simple approximate solution to this ODE was obtained theoretically that is similar to the empirical exponential formula published in the relevant literature. (4) The temperature dependence of the oxygen absorption rate is more complicated than that described by the Arrhenius equation. PMID:26650762

  14. Modeling of the Temperature Effect on Oxygen Absorption by Iron-Based Oxygen Scavengers.

    PubMed

    Polyakov, Vladimir A; Miltz, Joseph

    2016-01-01

    A new engineering-oriented model for prediction of the effect of temperature on the kinetics of oxygen absorption by iron-based oxygen scavengers (IOSs) was developed. The model is based on the physicochemical mechanism of the O2 scavenging process by the active component of the IOS (iron powder). The conclusions of this study are: (1) the iron deposits formed on the iron particles are composed of 2 different layers: an inner layer of Fe3 O4 and an outer layer of FeOOH that vanishes with the depletion of oxygen. (2) The model considers the chemical processes in the heterogeneous closed system "Fe-H2 O-NaCl-O2 " and describes the kinetics of oxygen absorption by the powder, depending on the characteristics of the system. (3) The nonlinear ordinary differential equation (ODE) of the O2 absorption kinetics was derived and a simple approximate solution to this ODE was obtained theoretically that is similar to the empirical exponential formula published in the relevant literature. (4) The temperature dependence of the oxygen absorption rate is more complicated than that described by the Arrhenius equation.

  15. Accurate Young's modulus measurement based on Rayleigh wave velocity and empirical Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Li, Mingxia; Feng, Zhihua

    2016-07-01

    This paper presents a method for Young's modulus measurement based on Rayleigh wave speed. The error in Poisson's ratio has weak influence on the measurement of Young's modulus based on Rayleigh wave speed, and Poisson's ratio minimally varies in a certain material; thus, we can accurately estimate Young's modulus with surface wave speed and a rough Poisson's ratio. We numerically analysed three methods using Rayleigh, longitudinal, and transversal wave speed, respectively, and the error in Poisson's ratio shows the least influence on the result in the method involving Rayleigh wave speed. An experiment was performed and has proved the feasibility of this method. Device for speed measuring could be small, and no sample pretreatment is needed. Hence, developing a portable instrument based on this method is possible. This method makes a good compromise between usability and precision.

  16. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    PubMed

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified.

  17. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    PubMed

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified. PMID:27393630

  18. Searching for variations in the fine-structure constant and the proton-to-electron mass ratio using quasar absorption lines

    NASA Astrophysics Data System (ADS)

    King, Julian A.

    2012-02-01

    (abridged) Quasar absorption lines provide a precise test of the assumed constancy of the fundamental constants of physics. We have investigated potential changes in the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu. The many-multiplet method allows one to use optical fine-structure transitions to constrain (Delta alpha)/alpha at better than the 10^(-5) level. We present a new analysis of 154 quasar absorbers with 0.2 < z <3.7 in VLT/UVES spectra. From these absorbers we find 2.2 sigma evidence for angular variations in alpha under a dipole+monopole model. Combined with previous Keck/HIRES observations, we find 4.1 sigma evidence for angular (and therefore spatial) variations in alpha, with maximal increase of alpha occurring in the direction RA=(17.3 +/- 1.0) hr, dec=(-61 +/- 10) deg. Under a model where the observed effect is proportional to the lookback-time distance the significance increases to 4.2 sigma. Dipole models fitted to the VLT and Keck samples and models fitted to z<1.6 and z>1.6 sub-samples independently yield consistent estimates of the dipole direction, which suggests that the effect is not caused by telescope systematics. We consider a number of systematic effects and show that they are unable to explain the observed dipole effect. We have used spectra of the quasars Q0405-443, Q0347-383 and Q0528-250 from VLT/UVES to investigate the absorbers at z=2.595, 3.025 and 2.811 in these spectra respectively. We find that (Delta mu)/mu=(10.1 +/- 6.6) x 10^(-6), (8.2 +/- 7.5) x 10^(-6) and (-1.4 +/- 3.9) x 10^(-6) in these absorbers respectively. A second spectrum of Q0528-250 provides an additional constraint of (Delta mu)/mu=(0.2 +/- 3.2_stat +/- 1.9_sys) x 10^(-6). The weighted mean of these values yields (Delta mu)/mu=(1.7 +/- 2.4) x 10^(-6), the most precise constraint on evolution in mu at z>1.

  19. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  20. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  1. A practical acoustical absorption analysis of coir fiber based on rigid frame modeling

    NASA Astrophysics Data System (ADS)

    Ayub, Md.; Nor, Mohd Jailani Mohd; Fouladi, Mohammad Hosseini; Zulkifli, Rozli; Amin, Nowshad

    2012-03-01

    An analytical study based on rigid frame model is demonstrated to evaluate the acoustic absorption of coir fiber. Effects of different conditions such as combination of air gap and perforated plate (PP) are studied in this work. Materials used here are treated as rigid rather than elastic, since the flow resistivity of coir fiber is very low. The well-known rigid frame Johnson-Allard equivalent-fluid model is applied to obtain the acoustic impedance of single layer coir fiber. Atalla and Sgard model is employed to estimate the surface impedance of PP. Acoustic transmission approach (ATA) is utilized for adding various consecutive layers in multilayer structure. Models are examined in different conditions such as single layer coir fiber, coir fiber backed with air gap, single layer PP in combination with coir fiber and air gap. Experiments are conducted in impedance tube on normal incidence sound absorption to validate the results. Results from the measurement are found to be in well agreement with the theoretical absorption coefficients. The performance of the rigid frame modeling method is checked more specifically in all conditions, by the mean prediction error rate of normal incidence sound absorption coefficients. Comparison between the measured absorption coefficients and predicted by rigid frame method shows discrepancy lower than 20 and 15% for most of the conditions in the frequency range of 0.2-1.5 and 1.5-5 kHz, respectively. Moreover, acoustic absorption of various single and multilayer structures is compared with the simpler empirical methods such as Delany-Bazley and Miki model; and complicated method such as Biot-Allard Model and Allard Transfer Function (TF) method. Comparisons show that the presented method offers a better accuracy of the results than the empirical models. Subsequently, it can provide almost same absorption plot with Biot-Allard model (single layer combination) and TF method (multilayer combination) proving it to be a

  2. Selectivity of the optical-absorption method based on an instrumental pick out of Fourier components in the absorption spectrum

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Yu. V.; Kolesnikov, S. A.; Kolesnikova, E. S.; Turutin, Yu. A.; Konopelko, L. A.; Shor, N. B.

    2016-06-01

    The introduction of interference-polarization filters (IPFs) in the structure of an optical-absorption analyzer makes it possible to pick out a harmonic (a Fourier component of the absorption spectrum) providing measurement with the highest sensitivity. The selectivity of such a method of analysis is determined by overlapping the oscillations of the measured and interfering components. By the example of measurement in benzene in the presence of an interfering component (toluene), the possibility is considered for the optimization of selectivity due to the variation of the path-difference dispersion for ordinary and extraordinary interfering rays. The metrological characteristics of the interference-polarization analyzer of C6H6 confirming the results of calculations are given.

  3. Measurement of the D/H, ¹⁸O/¹⁶O, and ¹⁷O/¹⁶O isotope ratios in water by laser absorption spectroscopy at 2.73 μm.

    PubMed

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-05-21

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated.

  4. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  5. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.

    PubMed

    Moradi, A; Sani, E; Simonetti, M; Francini, F; Chiavazzo, E; Asinari, P

    2015-05-01

    Direct solar absorption has been often considered in the past as a possible solution for solar thermal collectors for residential and small commercial applications. A direct absorption could indeed improve the performance of solar collectors by skipping one step of the heat transfer mechanism in standard devices and having a more convenient temperature distribution inside the collector. Classical solar thermal collectors have a metal sheet as absorber, designed such that water has the minimum temperature in each transversal section, in order to collect as much solar thermal energy as possible. On the other hand, in a direct configuration, the hottest part of the system is the operating fluid and this allows to have a more efficient conversion. Nanofluids, i.e., fluids with a suspension of nanoparticles, such as carbon nanohorns, could be a good and innovative family of absorbing fluids owing to their higher absorption coefficient compared to the base fluid and stability under moderate temperature gradients. Moreover, carbon nanohorns offer the remarkable advantage of a reduced toxicity over other carbon nanoparticles. In this work, a three-dimensional model of the absorption phenomena in nanofluids within a cylindrical tube is coupled with a computational fluid dynamics (CFD) analysis of the flow and temperature field. Measured optical properties of nanofluids at different concentrations have been implemented in the model. Heat losses due to conduction, convection and radiation at the boundaries are considered as well.

  6. Carbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.

    PubMed

    Moradi, A; Sani, E; Simonetti, M; Francini, F; Chiavazzo, E; Asinari, P

    2015-05-01

    Direct solar absorption has been often considered in the past as a possible solution for solar thermal collectors for residential and small commercial applications. A direct absorption could indeed improve the performance of solar collectors by skipping one step of the heat transfer mechanism in standard devices and having a more convenient temperature distribution inside the collector. Classical solar thermal collectors have a metal sheet as absorber, designed such that water has the minimum temperature in each transversal section, in order to collect as much solar thermal energy as possible. On the other hand, in a direct configuration, the hottest part of the system is the operating fluid and this allows to have a more efficient conversion. Nanofluids, i.e., fluids with a suspension of nanoparticles, such as carbon nanohorns, could be a good and innovative family of absorbing fluids owing to their higher absorption coefficient compared to the base fluid and stability under moderate temperature gradients. Moreover, carbon nanohorns offer the remarkable advantage of a reduced toxicity over other carbon nanoparticles. In this work, a three-dimensional model of the absorption phenomena in nanofluids within a cylindrical tube is coupled with a computational fluid dynamics (CFD) analysis of the flow and temperature field. Measured optical properties of nanofluids at different concentrations have been implemented in the model. Heat losses due to conduction, convection and radiation at the boundaries are considered as well. PMID:26504968

  7. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  8. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  9. A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin.

    PubMed

    Kasting, G B; Saiyasombati, P

    2001-02-01

    Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.

  10. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  11. Probabilistic modeling of percutaneous absorption for risk-based exposure assessments and transdermal drug delivery.

    SciTech Connect

    Ho, Clifford Kuofei

    2004-06-01

    Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skin that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.

  12. Is There a Common Correction for Biases in Historic Filter-Based Aerosol Absorption Measurements?

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Jefferson, A.; Dubey, M. K.; Aiken, A. C.; Fast, J. D.; Flynn, C. J.; Kassianov, E.

    2014-12-01

    Improved characterization of aerosol absorption is a pressing need for improving estimates of climate forcing by aerosols. Measurements of aerosol absorption are difficult to make with the accuracy and precision demanded by climate science. While several different approaches have been employed and new techniques have emerged, none can yet be considered a true 'gold standard'. Instruments that use filter-based methods have been the most widely used and are the basis of historic records. However, several studies using direct photoacoustic techniques have shown that filter-based measurements can be biased relative to these direct measurements. It has been demonstrated that this bias depends strongly on aerosol chemical composition, specifically concentration of organic mass. The wealth of information in the extensive set of historical filter-based data demands that this bias be diagnosed and corrected. A correction is critical for proper evaluation and development of chemical transport models, improved retrievals from remote sensing measurements, and integrating aerosol absorption surface and sub-orbital in situ measurements with knowledge gained from these other approaches. We have performed an intercomparison of absorption coefficients from a photoacoustic and two filter-based instruments with co-located organic mass concentrations from continuous, half-hourly averaged measurements over six months at a remote, continental site in the US (ARM SGP). The results show a bias in the filter-based measurements with organic concentration that is consistent with previous studies. Previous results come from controlled lab studies or field campaigns where absorption coefficients and organic concentrations are high and may represent aerosol close to the source. The current study is important in that these quantities are much lower and the aerosol likely more aged, representing a larger portion of the global conditions, yet shows a similar bias. This site provides other measures

  13. Determination of base ratios of six ribonucleic acid bacteriophages specific to Escherichia coli

    PubMed Central

    Bishop, D. H. L.; Bradley, D. E.

    1965-01-01

    1. A method is described for the isolation of single-stranded-RNA coliphages. Two of the six RNA coliphages investigated were new strains. 2. The base ratios of six RNA coliphages were determined by labelling the host bacterium with [32P]-phosphate, purification of the radioactive coliphages and separation of 2′,3′-ribonucleotides liberated by alkaline hydrolysis of the coliphage RNA. 3. All six of the coliphages were morphologically similar, contained single-stranded RNA, and had sedimentation coefficient 80±5s. 4. The six RNA coliphages fell into two distinct groups, both serologically and in terms of their RNA base ratios. PMID:14333571

  14. Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Yang, J.

    2015-05-01

    We investigate the unique mechanical properties of reentrant 3D origami structures based on the Tachi-Miura polyhedron (TMP). We explore the potential usage as mechanical metamaterials that exhibit tunable negative Poisson's ratio and structural bistability simultaneously. We show analytically and experimentally that the Poisson's ratio changes from positive to negative and vice versa during its folding motion. In addition, we verify the bistable mechanism of the reentrant 3D TMP under rigid origami configurations without relying on the buckling motions of planar origami surfaces. This study forms a foundation in designing and constructing TMP-based metamaterials in the form of bellowslike structures for engineering applications.

  15. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  16. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  17. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  18. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  19. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    SciTech Connect

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.

  20. A colorimetric and absorption ratiometric anion sensor based on indole & hydrazide binding units

    NASA Astrophysics Data System (ADS)

    Zou, Linbo; Yan, Boren; Pan, Dingwu; Tan, Zan; Bao, Xiaoping

    2015-09-01

    A colorimetric and absorption ratiometric anion sensor (L) based on indole and hydrazide binding units was designed and synthesized, and its recognition & sensing properties towards different anions were studied by naked-eye observations, UV-vis and 1H NMR titration spectra. Sensor L could selectively recognize biologically important F-, AcO- and H2PO4- in DMSO over other anions, along with a significant change in its color and absorption spectrum, resulting from the formation of corresponding 1:2 (L/F-) and 1:1 (L/AcO- and L/H2PO4-) complexes. The 1H NMR titration experiments proved that sensor L experienced deprotonation of NH fragment and produced [HF2]- species, whereas a stable H-bonding complex was formed in the presence of AcO- and H2PO4-.

  1. Synthesis and two-photon absorption spectrum of fluorenone-based molecules

    NASA Astrophysics Data System (ADS)

    Dipold, J.; Batista, R. J. M. B.; Fonseca, R. D.; Silva, D. L.; Moura, G. L. C.; dos Anjos, J. V.; Simas, A. M.; De Boni, L.; Mendonca, C. R.

    2016-09-01

    The two-photon absorption (2PA) of five symmetrical fluorenone-based molecules is studied by femtosecond wavelength-tunable Z-scan, as well as quantum-chemical calculations. The molecules are transparent for wavelengths greater than 500 nm and two main one-photon absorption bands are observed in the blue region; one weak, centered at 450 nm, and a stronger one at approximately 360 nm. We observed a strong 2PA band located around 720 nm with maxima 2PA cross-sections between 100 and 230 GM. Quantum chemical calculations employing the response function formalism were performed at the Density Function Theory level to support the interpretation of the experimental nonlinear spectra.

  2. A colorimetric and absorption ratiometric anion sensor based on indole & hydrazide binding units.

    PubMed

    Zou, Linbo; Yan, Boren; Pan, Dingwu; Tan, Zan; Bao, Xiaoping

    2015-09-01

    A colorimetric and absorption ratiometric anion sensor (L) based on indole and hydrazide binding units was designed and synthesized, and its recognition & sensing properties towards different anions were studied by naked-eye observations, UV-vis and (1)H NMR titration spectra. Sensor L could selectively recognize biologically important F(-), AcO(-) and H2PO4(-) in DMSO over other anions, along with a significant change in its color and absorption spectrum, resulting from the formation of corresponding 1:2 (L/F(-)) and 1:1 (L/AcO(-) and L/H2PO4(-)) complexes. The (1)H NMR titration experiments proved that sensor L experienced deprotonation of NH fragment and produced [HF2](-) species, whereas a stable H-bonding complex was formed in the presence of AcO(-) and H2PO4(-). PMID:25875028

  3. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers

    PubMed Central

    2011-01-01

    In the present work, we investigated the scattering and spectrally resolved absorption properties of nanofluids consisting in aqueous and glycol suspensions of single-wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption with respect to the pure base fluids. Scattered light was found to be not more than about 5% with respect to the total attenuation of light. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device. PACS 78.40.Ri, 78.35.+c, 78.67.Bf, 88.40.fh, 88.40.fr, 81.05.U. PMID:21711795

  4. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.

    PubMed

    Ostrander, Julie Hanson; McMahon, Christine M; Lem, Siya; Millon, Stacy R; Brown, J Quincy; Seewaldt, Victoria L; Ramanujam, Nimmi

    2010-06-01

    Autofluorescence spectroscopy is a powerful imaging technique that exploits endogenous fluorophores. The endogenous fluorophores NADH and flavin adenine dinucleotide (FAD) are two of the principal electron donors and acceptors in cellular metabolism, respectively. The optical oxidation-reduction (redox) ratio is a measure of cellular metabolism and can be determined by the ratio of NADH/FAD. We hypothesized that there would be a significant difference in the optical redox ratio of normal mammary epithelial cells compared with breast tumor cell lines and that estrogen receptor (ER)-positive cells would have a higher redox ratio than ER-negative cells. To test our hypothesis, the optical redox ratio was determined by collecting the fluorescence emission for NADH and FAD via confocal microscopy. We observed a statistically significant increase in the optical redox ratio of cancer compared with normal cell lines (P < 0.05). Additionally, we observed a statistically significant increase in the optical redox ratio of ER(+) breast cancer cell lines. The level of ESR1 expression, determined by real-time PCR, directly correlated with the optical redox ratio (Pearson's correlation coefficient = 0.8122, P = 0.0024). Furthermore, treatment with tamoxifen and ICI 182,870 statistically decreased the optical redox ratio of only ER(+) breast cancer cell lines. The results of this study raise the important possibility that fluorescence spectroscopy can be used to identify subtypes of breast cancer based on receptor status, monitor response to therapy, or potentially predict response to therapy. This source of optical contrast could be a potentially useful tool for drug screening in preclinical models.

  5. Precise modulation of gold nanorods aspect ratio based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Wen, Xiaoyan; Shuai, Huang; Min, Li

    2016-10-01

    Gold nanorods (GNRs) aspect ratio is significant to GNRs-based biomedical sensors. In this paper precise modulation of GNRs aspect ratio was realized by H2O2 oxidation based on localized surface plasmon resonance (LSPR) of GNRs. The oxidation process was studied in detail. A linear relationship was revealed between H2O2 oxidation time and the longitudinal LSPR wavelength of GNR, the latter depending on GNRs aspect ratio. Using the relationship GNRs aspect ratios could be modulated by H2O2 oxidation time. Oxidation time deduced aspect ratio was verified by transmission electron microscope (TEM) characterization and the average error is 2.92%. Influences of temperature and pH value on the modulation process were investigated. Increase in temperature (from 30 °C to 60 °C) or solution acidity (pH value from 2.6 to 1.2) facilitated the oxidation process. The proposed method is characterized by its simplicity and efficiency, and would find extensive application prospects in GNRs-based biomedical sensing fields.

  6. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures. PMID:27409013

  7. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures.

  8. Response Acquisition and Fixed-Ratio Escalation Based on Interresponse Times in Rats

    ERIC Educational Resources Information Center

    Taylor, Tracy G.; Galuska, Chad M.; Banna, Kelly; Yahyavi-Firouz-Abadi, Noushin; See, Ronald E.

    2010-01-01

    The effectiveness of a fixed-ratio (FR) escalation procedure, developed by Pinkston and Branch (2004) and based on interresponse times (IRTs), was assessed during lever-press acquisition. Forty-nine experimentally naive adult male Long Evans rats were deprived of food for 24 hr prior to an extended acquisition session. Before the start of the…

  9. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    SciTech Connect

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.

  10. Systems Biology and Ratio-Based, Real-Time Disease Surveillance.

    PubMed

    Fair, J M; Rivas, A L

    2015-08-01

    Most infectious disease surveillance methods are not well fit for early detection. To address such limitation, here we evaluated a ratio- and Systems Biology-based method that does not require prior knowledge on the identity of an infective agent. Using a reference group of birds experimentally infected with West Nile virus (WNV) and a problem group of unknown health status (except that they were WNV-negative and displayed inflammation), both groups were followed over 22 days and tested with a system that analyses blood leucocyte ratios. To test the ability of the method to discriminate small data sets, both the reference group (n = 5) and the problem group (n = 4) were small. The questions of interest were as follows: (i) whether individuals presenting inflammation (disease-positive or D+) can be distinguished from non-inflamed (disease-negative or D-) birds, (ii) whether two or more D+ stages can be detected and (iii) whether sample size influences detection. Within the problem group, the ratio-based method distinguished the following: (i) three (one D- and two D+) data classes; (ii) two (early and late) inflammatory stages; (iii) fast versus regular or slow responders; and (iv) individuals that recovered from those that remained inflamed. Because ratios differed in larger magnitudes (up to 48 times larger) than percentages, it is suggested that data patterns are likely to be recognized when disease surveillance methods are designed to measure inflammation and utilize ratios.

  11. Equilibrium partition ratios, densities, and transport phenomena in nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Sung, Pil Kyung

    To simulate transport phenomena, macrosegregation and segregation defects known as "freckles" during directional solidification of Ni-base superalloys, numerical modeling can be used; hence it is essential to have reasonably accurate values of the thermodynamic and transport properties for the alloys. In this research, therefore, the equilibrium partition ratios of the solutes in the Ni-Al-Ta-Cr quaternary system, as a model alloy, were measured, and the solid- and liquid-densities in Ni-base superalloys. were estimated. Also, the importance of these properties on the sensitivity of the results of numerical simulations was studied. The partition ratios apply to equilibria between melts and gamma-phase in the range of 1615 K to 1694 K, and it was found that the equilibrium partition ratio of Ta varies from approximately 0.6 at dilute Ta to 0.85 at 17 wt.% Ta. For the same range of Ta-contents, the partition ratios of Al and Cr vary much less and range from about 0.92 to 0.96. In addition to the partition ratios, the liquidus temperatures of the liquid in equilibrium with gamma in the Ni-Al-Ta-Cr system were estimated with a multidimensional regression analysis. To calculate the densities of solid Ni-base superalloys as functions of temperature and composition, lattice parameters at 20°C and coefficients of thermal expansion (CTEs) were estimated by combining available data. The CTEs calculated from the regressions result in densities that are within 0.5% error or less for seventeen alloys. To estimate the densities of liquid Ni-base superalloys, the densities and temperature coefficients of density of the liquid transition-metals, which are used as alloy elements in Ni-base superalloys, were applied to a simple correlation. By using this approach, the estimates of the liquid densities of five Ni-base superalloys agree with the measured values to +/-2.5%. Finally, the importance of using reasonably accurate estimates of the transport properties was illustrated by

  12. Development Of A Supercontinuum Based Photoacoustic Aerosol Light Absorption And Albedo Spectrometer (PALAAS)

    NASA Astrophysics Data System (ADS)

    Arnold, Ian J.

    Aerosols are a major contributor to the global radiation budget because they modify the planetary albedo with their optical properties. These optical properties need to be measured and understood, ideally at multiple wavelengths. This thesis describes the ongoing development of a supercontinuum based multi-wavelength photoacoustic instrument to measure the light absorption and scattering coefficients of aerosols. Collimation techniques for supercontinuum sources using lens-based and off-axis parabolic mirror-based collimators were evaluated and it was determined that the off-axis mirror had superior collimation abilities for multi-spectral beams. A proof of concept supercontinuum-based photoacoustic instrument was developed using sequential measurements at multiple wavelengths. The instrument data were in good agreement with those from a commercial 3-wavelength photoacoustic instrument and the novel instrument had minimum detectable absorption and scattering coefficients of better than 4 Mm-1 and 21 Mm-1, respectively. The instrument however suffered from poor temporal resolution due to the sequential measurement and required the development of an aerosol delivery system to deliver a slowly varying aerosol concentration. In response, a spectral modulator has been developed to frequency encode different wavelength bands for simultaneous measurement with a photoacoustic instrumen.

  13. Computed Tomography Image Compressibility and Limitations of Compression Ratio-Based Guidelines.

    PubMed

    Pambrun, Jean-François; Noumeir, Rita

    2015-12-01

    Finding optimal compression levels for diagnostic imaging is not an easy task. Significant compressibility variations exist between modalities, but little is known about compressibility variations within modalities. Moreover, compressibility is affected by acquisition parameters. In this study, we evaluate the compressibility of thousands of computed tomography (CT) slices acquired with different slice thicknesses, exposures, reconstruction filters, slice collimations, and pitches. We demonstrate that exposure, slice thickness, and reconstruction filters have a significant impact on image compressibility due to an increased high frequency content and a lower acquisition signal-to-noise ratio. We also show that compression ratio is not a good fidelity measure. Therefore, guidelines based on compression ratio should ideally be replaced with other compression measures better correlated with image fidelity. Value-of-interest (VOI) transformations also affect the perception of quality. We have studied the effect of value-of-interest transformation and found significant masking of artifacts when window is widened. PMID:25804842

  14. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  15. Operating range of a differential-absorption lidar based on a CO{sub 2} laser

    SciTech Connect

    Ivashchenko, M V; Sherstov, I V

    2000-08-31

    The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)

  16. Nucleon-nucleus interaction data base: Total nuclear and absorption cross sections

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.; Chun, S. Y.; Hong, B. S.; Lamkin, S. L.

    1988-01-01

    Neutron total cross sections are represented for Li to Pu targets at energies above 0.1 MeV and less than 100 MeV using a modified nuclear Ramsauer formalism. The formalism is derived for energies above 100 MeV by fitting theoretical cross sections. Neutron absorption cross sections are represented by analytic expressions of similar form, but shape resonance phenomena of the Ramsauer effect is not present. Elastic differential cross sections are given as a renormalized impulse approximation. These cross section data bases are useful for nucleon transport applications.

  17. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    NASA Astrophysics Data System (ADS)

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-11-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices.

  18. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    PubMed Central

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660

  19. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  20. Multipoint side illuminated absorption based optical fiber sensor for relative humidity

    NASA Astrophysics Data System (ADS)

    Egalon, Claudio O.

    2013-09-01

    A side illuminated optical fiber sensor with three sensing points and an absorption-based indicator in the cladding was demonstrated for the first time. This device is easy to manufacture, uses leaky modes as the signal carrier and can measure RH in air, soil, concrete and other environments. So far, only side illuminated fluorescence sensors have been reported. They were thought, erroneously, to have their entire signal generated by evanescent wave coupling when, in fact, leaky modes also play an important role. This, coupled to the prevailing misconception that leaky modes propagate for very short lengths of fiber, prevented the earlier discovery of this absorption-based configuration. A 25 cm long fiber, with a cladding doped with an absorption dye sensitive to Relative Humidity (RH), was used in this demonstration. The fiber was side illuminated by a broadband LED, a fraction of this light was absorbed by the cladding and the remaining light guided to the fiber tip as low loss leaky modes. A total of three sensors, two with three sensing points and one with two, were calibrated using a low cost photometer. The signal was linear, stable, increased with RH and had resolutions between 0.11% and 0.25% in RH. With 5 mm diameter LEDs, devices with at least two sensing points per centimeter of fiber can be easily fabricated resulting in sensors with a very high density of sensing points. Compared to the prevailing axial illumination approach, the side illuminated sensor was found to be far simpler and inexpensive.

  1. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  2. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators. PMID:27423469

  3. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  4. A simple fiber optic humidity sensor based on water-absorption characteristic of CAB

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xu, Wei; Huang, Xuguang

    2015-02-01

    A simple fiber-optic relative humidity sensor based on cellulose acetate butyrate (CAB) and Fresnel reflection is proposed and investigated theoretically and experimentally. The sensing system is only composed of one light source, three optical couplers, two photo-detectors and two fiber sensing ends. The operation principle is based on relative Fresnel reflection and water-absorption characteristic of the CAB which simultaneously contains hydrophilic and hydrophobic groups. The water absorption process will lead to variation of the CAB's refractive index or permittivity. It has to be noted that the double-channel system can effectively eliminate the intensity fluctuation of the light source and the influence of the environment. In this paper, the relative humidity environments approximately ranging from 10 % to 100% are generated and measured both in the humidification and dehumidification processes, which shows a good repeatability and reveals a very good fitting feature with a high value of R2 above 0.99. It is of reflection type and can be simply extend to be a multi-point-monitoring system. The sensing system is of cost- effective, simple operation and high precision.

  5. Highly efficient SO₂ absorption and its subsequent utilization by weak base/polyethylene glycol binary system.

    PubMed

    Yang, Zhen-Zhen; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing

    2013-02-01

    A binary system consisting of polyethylene glycol (PEG, proton donor)/PEG-functionalized base with suitable basicity was developed for efficient gas desulfurization (GDS) and can be regarded as an alternative approach to circumvent the energy penalty problem in the GDS process. High capacity for SO(2) capture up to 4.88 mol of SO(2)/mol of base was achieved even under low partial pressure of SO(2). Furthermore, SO(2) desorption runs smoothly under mild conditions (N(2), 25 °C) and no significant drop in SO(2) absorption was observed after five-successive absorption-desorption cycles. On the other hand, the absorbed SO(2) by PEG(150)MeIm/PEG(150), being considered as the activated form of SO(2), can be directly transformed into value-added chemicals under mild conditions, thus eliminating the energy penalty for SO(2) desorption and simultaneously realizing recycle of the absorbents. Thus, this SO(2) capture and utilization (SCU) process offers an alternative way for GDS and potentially enables the SO(2) conversion from flue gas to useful chemicals as a value-added process.

  6. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip

    PubMed Central

    Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R.

    2014-01-01

    In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in poly(dimethylsiloxane) (PDMS). We apply aqueous glucose solutions with different concentrations and monitor continuously how the transmission spectrum changes due to glucose. Based on these measurements, we derived a linear regression model, to relate the measured glucose spectra with concentration with an error-of-fitting of only 1.14 mM. This paper explains the challenges involved and discusses the optimal configuration for on-chip evanescent absorption spectroscopy. In addition, the prospects for using this sensor for glucose detection in complex physiological media (e.g. serum) is briefly discussed. PMID:24877021

  7. Comparison of inlet suppressor data with approximate theory based on cutoff ratio

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Heidelberg, L. J.

    1980-01-01

    This paper represents the initial quantitative comparison of inlet suppressor far-field directivity suppression with that predicted using an approximate liner design and evaluation method based upon mode cutoff ratio. The experimental data was obtained using a series of cylindrical point-reacting inlet liners on an Avco-Lycoming YF102 engine. The theoretical prediction program is based upon simplified sound propagation concepts derived from exact calculations. These indicate that all of the controlling phenomenon can be approximately correlated with mode cutoff ratio which itself is intimately related to the angles of propagation within the duct. The objective of the theory-data comparisons is to point out possible deficiencies in the approximate theory which may be corrected. After all theoretical refinements have been made, then empirical corrections can be applied.

  8. Comparison of inlet suppressor data with approximate theory based on cutoff ratio

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Heidelberg, L. J.

    1979-01-01

    Inlet suppressor far-field directivity suppression was quantitatively compared with that predicted using an approximate linear design and evaluation method based upon mode cutoff ratio. The experimental data was obtained using a series of cylindrical point-reacting inlet liners on a YF102 engine. The theoretical prediction program is based upon simplified sound propagation concepts derived from exact calculations. These indicate that all of the controlling phenomenon can be approximately correlated with mode cutoff ratio which itself is intimately related to the angles of propagation within the duct. The theory-data comparisons are intended to point out possible deficiencies in the approximate theory which may be corrected. After all theoretical refinements are made, then empirical corrections can be applied.

  9. Improving signal-to-noise ratio performance of compressive imaging based on spatial correlation

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Zou, Yunhao; Dai, Huidong; Gu, Guohua

    2016-08-01

    In this paper, compressive imaging based on spatial correlation (CISC), which uses second-order correlation with the measurement matrix, is introduced to improve the signal-to-noise ratio performance of compressive imaging (CI). Numerical simulations and experiments are performed as well. Referred to the results, it can be seen that CISC performs much better than CI in three common noise environments. This provides the great opportunity to pave the way for real applications.

  10. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  11. Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy.

    PubMed

    Eilert, André; Roberts, F Sloan; Friebel, Daniel; Nilsson, Anders

    2016-04-21

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)-carbonate/hydroxide is also reported. This study highlights the importance of using oxidized copper precursors for constructing selective CO2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation. PMID:27045045

  12. Development of a System to Measure Recrystallization Ratio of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Nagata, Y.; Yamada, H.; Hamada, N.; Lim, C. S.; Yi, J. K.; Hong, S. T.; Choi, S. G.; Oh, K. J.

    2007-03-21

    In this study, a material property measurement system of plate steel using laser-based ultrasonics has been developed. The system consists of pulsed Nd:YAG laser for ultrasonic generation, CW single frequency laser and Fabry-Perot interferometer for ultrasonic detection. The system generates and detects shear waves and precisely calculates anisotropy parameter values of shear wave velocities of test samples. At first, the relationship between anisotropy parameter and recrystallization ratio was investigated in the laboratory experiments. Quenching the test samples just after the ultrasonic measurement, recrystallization ratio values were measured by the conventional microscopic method. According to the experimental results, the anisotropy parameter values showed a good correlation with actual recrystallization ratio values. To evaluate the applicability of the system to real steel production line, the system was installed in hot rolling pilot plant of plate steel. As the results, it was demonstrated that the system could measure the recrystallization ratio using the anisotropy parameter values of shear wave velocities, even in the environment of hot rolling pilot plant.

  13. Detection and quantification of dental plaque based on laser-induced autofluorescence intensity ratio values.

    PubMed

    Joseph, Betsy; Prasanth, Chandra Sekhar; Jayanthi, Jayaraj L; Presanthila, Janam; Subhash, Narayanan

    2015-04-01

    The aim of this study was to evaluate the applicability of laser-induced autofluorescence (LIAF) spectroscopy to detect and quantify dental plaque. LIAF spectra were recorded in situ from dental plaque (0–3 grades of plaque index) in 300 patients with 404 nm diode laser excitation. The fluorescence intensity ratio of the emission peaks was calculated from the LIAF spectral data following which their scatter plots were drawn and the area under the receiver operating characteristics were calculated. The LIAF spectrum of clinically invisible grade-1 plaque showed a prominent emission peak at 510 nm with a satellite peak around 630 nm in contrast to grade 0 that has a single peak around 500 nm. The fluorescence intensity ratio (F510/F630) has a decreasing trend with increase in plaque grade and the ratio values show statistically significant differences (p<0.01) between different grades. An overall sensitivity and specificity of 100% each was achieved for discrimination between grade-0 and grade-1 plaque. The clinical significance of this study is that the diagnostic algorithm developed based on fluorescence spectral intensity ratio (F510/F630) would be useful to precisely identify minute amounts of plaque without the need for disclosing solutions and to convince patients of the need for proper oral hygiene and homecare practices.

  14. Aggression as positive reinforcement in mice under various ratio- and time-based reinforcement schedules.

    PubMed

    May, Michael E; Kennedy, Craig H

    2009-03-01

    There is evidence suggesting aggression may be a positive reinforcer in many species. However, only a few studies have examined the characteristics of aggression as a positive reinforcer in mice. Four types of reinforcement schedules were examined in the current experiment using male Swiss CFW albino mice in a resident-intruder model of aggression as a positive reinforcer. A nose poke response on an operant conditioning panel was reinforced under fixed-ratio (FR 8), fixed-interval (FI 5-min), progressive ratio (PR 2), or differential reinforcement of low rate behavior reinforcement schedules (DRL 40-s and DRL 80-s). In the FR conditions, nose pokes were maintained by aggression and extinguished when the aggression contingency was removed. There were long postreinforcement pauses followed by bursts of responses with short interresponse times (IRTs). In the FI conditions, nose pokes were maintained by aggression, occurred more frequently as the interval elapsed, and extinguished when the contingency was removed. In the PR conditions, nose pokes were maintained by aggression, postreinforcement pauses increased as the ratio requirement increased, and responding was extinguished when the aggression contingency was removed. In the DRL conditions, the nose poke rate decreased, while the proportional distributions of IRTs and postreinforcement pauses shifted toward longer durations as the DRL interval increased. However, most responses occurred before the minimum IRT interval elapsed, suggesting weak temporal control of behavior. Overall, the findings suggest aggression can be a positive reinforcer for nose poke responses in mice on ratio- and time-based reinforcement schedules.

  15. AGGRESSION AS POSITIVE REINFORCEMENT IN MICE UNDER VARIOUS RATIO- AND TIME-BASED REINFORCEMENT SCHEDULES

    PubMed Central

    May, Michael E; Kennedy, Craig H

    2009-01-01

    There is evidence suggesting aggression may be a positive reinforcer in many species. However, only a few studies have examined the characteristics of aggression as a positive reinforcer in mice. Four types of reinforcement schedules were examined in the current experiment using male Swiss CFW albino mice in a resident–intruder model of aggression as a positive reinforcer. A nose poke response on an operant conditioning panel was reinforced under fixed-ratio (FR 8), fixed-interval (FI 5-min), progressive ratio (PR 2), or differential reinforcement of low rate behavior reinforcement schedules (DRL 40-s and DRL 80-s). In the FR conditions, nose pokes were maintained by aggression and extinguished when the aggression contingency was removed. There were long postreinforcement pauses followed by bursts of responses with short interresponse times (IRTs). In the FI conditions, nose pokes were maintained by aggression, occurred more frequently as the interval elapsed, and extinguished when the contingency was removed. In the PR conditions, nose pokes were maintained by aggression, postreinforcement pauses increased as the ratio requirement increased, and responding was extinguished when the aggression contingency was removed. In the DRL conditions, the nose poke rate decreased, while the proportional distributions of IRTs and postreinforcement pauses shifted toward longer durations as the DRL interval increased. However, most responses occurred before the minimum IRT interval elapsed, suggesting weak temporal control of behavior. Overall, the findings suggest aggression can be a positive reinforcer for nose poke responses in mice on ratio- and time-based reinforcement schedules. PMID:19794833

  16. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin.

    PubMed

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-21

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally.

  17. Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method.

    PubMed

    Yuan, Zhen; Wang, Qiang; Jiang, Huabei

    2007-12-24

    We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.

  18. Isotopic ratio based source apportionment of children's blood lead around coking plant area.

    PubMed

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2014-12-01

    Lead exposure in the environment is a major hazard affecting human health, particularly for children. The blood lead levels in the local children living around the largest coking area in China were measured, and the source of blood lead and the main pathways of lead exposure were investigated based on lead isotopic ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in blood and in a variety of media, including food, airborne particulate matter, soil, dust and drinking water. The children's blood lead level was 5.25 (1.59 to 34.36 as range) μg dL(-1), lower than the threshold in the current criteria of China defined by the US Centers for Disease Control (10 μg dL(-1)). The isotopic ratios in the blood were 2.111±0.018 for (208)Pb/(206)Pb and 0.864±0.005 for (207)Pb/(206)Pb, similar to those of vegetables, wheat, drinking water, airborne particulate matter, but different from those of vehicle emission and soil/dust, suggesting that the formers were the main pathway of lead exposure among the children. The exposure pathway analysis based on the isotopic ratios and the human health risk assessment showed that dietary intake of food and drinking water contributed 93.67% of total exposed lead. The study further indicated that the coal used in the coking plant is the dominant pollution source of lead in children's blood.

  19. Coupling between chloride absorption and base excretion in isolated skin of Rana esculenta.

    PubMed

    Ehrenfeld, J; Garcia-Romeu, F

    1978-07-01

    The net excretory fluxes of base (HCO3- or OH-) and the unidirectional fluxes of chloride were measured and their relationship examined in isolated frog skin maintained in open- or short-circuit (OC and SC) conditions. When the mucosal solution was a 2 mM choline chloride solution and the serosal solution a Ringer solution buffered with a HCO3-/CO2 mixture, the rate of base excretion was -105 +/- 10 in OC and -60 +/- 7 neq h-1 cm-2 in SC. A highly significant correlation was observed between the influx of chloride and the excretion of base. As a function of external chloride both these parameters followed saturation kinetics, Vmax being obtained for a chloride concentration below 2 mM. The removal of chloride in the external solution was followed by a 70 or 100% inhibition of base excretion in OC and SC conditions, respectively. Chloride transport is dependent on the presence of a HCO3-/CO2 mixture in the internal or the external medium. This transport, as well as base excretion, is inhibited to a considerable extent by removal of HCO3-/CO2 or by acetazolamide (10(-3) M). This investigation characterizes a saturable transport system in which chloride absorption and base excretion are coupled. PMID:307916

  20. Feature selection of fMRI data based on normalized mutual information and fisher discriminant ratio.

    PubMed

    Wang, Yanbin; Ji, Junzhong; Liang, Peipeng

    2016-03-17

    Pattern classification has been increasingly used in functional magnetic resonance imaging (fMRI) data analysis. However, the classification performance is restricted by the high dimensional property and noises of the fMRI data. In this paper, a new feature selection method (named as "NMI-F") was proposed by sequentially combining the normalized mutual information (NMI) and fisher discriminant ratio. In NMI-F, the normalized mutual information was firstly used to evaluate the relationships between features, and fisher discriminant ratio was then applied to calculate the importance of each feature involved. Two fMRI datasets (task-related and resting state) were used to test the proposed method. It was found that classification base on the NMI-F method could differentiate the brain cognitive and disease states effectively, and the proposed NMI-F method was prior to the other related methods. The current results also have implications to the future studies. PMID:27257882

  1. Large sample inference for a win ratio analysis of a composite outcome based on prioritized components.

    PubMed

    Bebu, Ionut; Lachin, John M

    2016-01-01

    Composite outcomes are common in clinical trials, especially for multiple time-to-event outcomes (endpoints). The standard approach that uses the time to the first outcome event has important limitations. Several alternative approaches have been proposed to compare treatment versus control, including the proportion in favor of treatment and the win ratio. Herein, we construct tests of significance and confidence intervals in the context of composite outcomes based on prioritized components using the large sample distribution of certain multivariate multi-sample U-statistics. This non-parametric approach provides a general inference for both the proportion in favor of treatment and the win ratio, and can be extended to stratified analyses and the comparison of more than two groups. The proposed methods are illustrated with time-to-event outcomes data from a clinical trial.

  2. Discrimination of Nuclear Explosions against Civilian Sources Based on Atmospheric Radioiodine Isotopic Activity Ratios

    NASA Astrophysics Data System (ADS)

    Kalinowski, Martin B.; Liao, Yen-Yo; Pistner, Christoph

    2014-03-01

    A global monitoring system for atmospheric radioactivity is being established as part of the International Monitoring System that will verify compliance with the comprehensive nuclear-test-ban treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support the interpretation of observed atmospheric concentrations of 135I, 133I and 131I. The goal is to distinguish nuclear explosion sources from civilian releases. Simulated nuclear explosion releases along with observational data of radioiodine releases from historic nuclear explosions at the Nevada Test Site are compared to simulated light water reactor releases in order to provide a proof of concept for source discrimination based on radioiodine isotopic activity ratios.

  3. Selective aspect ratio of CNTs based on annealing temperature by TCVD method

    NASA Astrophysics Data System (ADS)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Ikeda, Shoichiro

    2016-07-01

    Various aspect ratios of CNTs reported based on alteration of annealing temperature using thermal-chemical vapor deposition (TCVD) method. Also the growth dependent and independent parameters of the carbon nanotube (CNTs) array were studied as a function of synthesis method. The FESEM images indicate that the nanotubes are approximately perpendicular to the surface of the silicon substrate and form carbon nanotubes in different aspect ratios according to the applied annealing temperature. Furthermore, due to the optimized results it can be observed that, the mechanism of the CNTs growth is still present in the annealing step as well as deposition process and the most CNTs with crystalline aspect, produced in the annealing temperature, which was optimized at 700 - 900 ˚C. This result demonstrates that the growth rate, mass production, diameter, density, and crystallinity of CNT can be controlled by the annealing temperature.

  4. Increasing the darkfield contrast-to-noise ratio using a deconvolution-based information retrieval algorithm in X-ray grating-based phase-contrast imaging.

    PubMed

    Weber, Thomas; Pelzer, Georg; Bayer, Florian; Horn, Florian; Rieger, Jens; Ritter, André; Zang, Andrea; Durst, Jürgen; Anton, Gisela; Michel, Thilo

    2013-07-29

    A novel information retrieval algorithm for X-ray grating-based phase-contrast imaging based on the deconvolution of the object and the reference phase stepping curve (PSC) as proposed by Modregger et al. was investigated in this paper. We applied the method for the first time on data obtained with a polychromatic spectrum and compared the results to those, received by applying the commonly used method, based on a Fourier analysis. We confirmed the expectation, that both methods deliver the same results for the absorption and the differential phase image. For the darkfield image, a mean contrast-to-noise ratio (CNR) increase by a factor of 1.17 using the new method was found. Furthermore, the dose saving potential was estimated for the deconvolution method experimentally. It is found, that for the conventional method a dose which is higher by a factor of 1.66 is needed to obtain a similar CNR value compared to the novel method. A further analysis of the data revealed, that the improvement in CNR and dose efficiency is due to the superior background noise properties of the deconvolution method, but at the cost of comparability between measurements at different applied dose values, as the mean value becomes dependent on the photon statistics used.

  5. Increasing the darkfield contrast-to-noise ratio using a deconvolution-based information retrieval algorithm in X-ray grating-based phase-contrast imaging.

    PubMed

    Weber, Thomas; Pelzer, Georg; Bayer, Florian; Horn, Florian; Rieger, Jens; Ritter, André; Zang, Andrea; Durst, Jürgen; Anton, Gisela; Michel, Thilo

    2013-07-29

    A novel information retrieval algorithm for X-ray grating-based phase-contrast imaging based on the deconvolution of the object and the reference phase stepping curve (PSC) as proposed by Modregger et al. was investigated in this paper. We applied the method for the first time on data obtained with a polychromatic spectrum and compared the results to those, received by applying the commonly used method, based on a Fourier analysis. We confirmed the expectation, that both methods deliver the same results for the absorption and the differential phase image. For the darkfield image, a mean contrast-to-noise ratio (CNR) increase by a factor of 1.17 using the new method was found. Furthermore, the dose saving potential was estimated for the deconvolution method experimentally. It is found, that for the conventional method a dose which is higher by a factor of 1.66 is needed to obtain a similar CNR value compared to the novel method. A further analysis of the data revealed, that the improvement in CNR and dose efficiency is due to the superior background noise properties of the deconvolution method, but at the cost of comparability between measurements at different applied dose values, as the mean value becomes dependent on the photon statistics used. PMID:23938672

  6. A research of weak absorption measurements in crystal based on photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Liu, Zongkai; Wang, Shiwu

    2013-07-01

    It is important for testing the process of crystal growing and crystal quality. This paper built a mathematical model based on principle of photothermal common-path interferometry, the index change induced in the crystal by the heating pump beam and the phase distortion of probe beam in the heated area are presented then obtain the intensity distribution of the interference in the near filed. Optical geometry of focusing pump beam and intersecting pump and probe beams at waist position of the pump beam is used. This optical instruction can be adjusted easily and stabilized. Now CRYSTECH have the largest NLO crystals product line in the world, especially KTP crystals. With absorption measurements in nonlinear laser crystal KTP as an example to investigate the experimental parameters affecting the photothermal interference signal and high measuring precision. The analysis of experimental data showed this kind of instruction can reach the measurement accuracy of 0.1ppm.

  7. MRI-based anatomical model of the human head for specific absorption rate mapping

    PubMed Central

    Makris, Nikos; Angelone, Leonardo; Tulloch, Seann; Sorg, Scott; Kaiser, Jonathan; Kennedy, David

    2009-01-01

    In this study, we present a magnetic resonance imaging (MRI)-based, high-resolution, numerical model of the head of a healthy human subject. In order to formulate the model, we performed quantitative volumetric segmentation on the human head, using T1-weighted MRI. The high spatial resolution used (1 × 1 × 1 mm3), allowed for the precise computation and visualization of a higher number of anatomical structures than provided by previous models. Furthermore, the high spatial resolution allowed us to study individual thin anatomical structures of clinical relevance not visible by the standard model currently adopted in computational bioelectromagnetics. When we computed the electromagnetic field and specific absorption rate (SAR) at 7 Tesla MRI using this high-resolution model, we were able to obtain a detailed visualization of such fine anatomical structures as the epidermis/dermis, bone structures, bone-marrow, white matter and nasal and eye structures. PMID:18985401

  8. Monitoring of Atmospheric Hydrogen Peroxide in Houston Using Long Path-Length Laser-Based Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Cao, Y.; Jiang, W.; Tittel, F. K.; Griffin, R. J.

    2014-12-01

    Hydrogen peroxide (H2O2) is a relevant atmospheric species mainly formed by recombination of hydroperoxyl radicals. H2O2 participates in the formation of sulfate aerosol by in-cloud oxidation of S(IV) to S(VI) and has been associated with the generation of multi-functional water soluble organic compounds in atmospheric particulate matter. Furthermore, H2O2 plays an important role in the oxidative capacity of the atmosphere as it acts as a reservoir for HOx radicals (OH and HO2). Particular conditions in the Houston area (e.g. extensive presence of petrochemical industry and high ozone and humidity levels) indicate the potential relevance of this species at this location. Despite its atmospheric relevance, no reports on the levels of H2O2 in Houston have been presented previously in the scientific literature. Determination of atmospheric H2O2 usually has been conducted based on transfer of the gas-phase H2O2 to the liquid phase prior to quantification by techniques such as fluorescence spectroscopy. Although these methods allow detection of H2O2 at the sub-ppb level, they present some limitations including the interference from other atmospheric constituents and potential sampling artifacts. In this study, a high sensitivity sensor based on long-path absorption spectroscopy using a distributed-feedback quantum cascade laser was developed and used to conduct direct gas-phase H2O2 monitoring in Houston. The sensor, which targets a strong H2O2 absorption line (~7.73 μm) with no interference from other atmospheric species, was deployed at a ground level monitoring station near the University of Houston main campus during summer 2014. The performance of this novel sensor was evaluated by side-by-side comparison with a fluorescence-based instrument typically used for atmospheric monitoring of H2O2. H2O2 levels were determined, and time series of H2O2 mixing ratios were generated allowing insight into the dynamics, trends, and atmospheric inter-relations of H2O2 in the

  9. Saturable absorption and two-photon absorption of 1,2,5-thiadiazolo[3,4-g]quinoxaline based derivatives with near-infrared fluorescence

    NASA Astrophysics Data System (ADS)

    Du, Yabing; Lin, Xiaodong; Jia, Tingjian; Dong, Jun

    2015-03-01

    Organic molecules with near-infrared (NIR) fluorescence are extremely interesting for the applications in nonlinear optical devices and bioimaging. However, such kind of materials have been relatively rarely studied. In this work, the nonlinear optical properties of 1,2,5-thiadiazolo[3,4-g]quinoxaline based derivatives with NIR fluorescence emission have been investigated for the first time. Under the excitation of femtosecond pulses at 532 nm, the chromophore with dithienyl as donor (TQ2) presents saturable absorption (SA) behavior, while no SA has been observed in the derivative with biphenyl (TQ1) as donor. Moreover, TQ2 exhibits much larger two-photon absorption (TPA) cross-sections with strong NIR fluorescence in the second biological window. The larger nonlinear optical properties of TQ2 is due to the introduction of stronger electron-donating group (dithienyl) and the resultant enhanced intramolecular charge transfer properties. At the end, TPA based optical limiting behaviors of the molecules are demonstrated in THF solutions, thanks to their large solubility and strong TPA.

  10. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  11. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio.

    PubMed

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson's ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  12. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    PubMed Central

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  13. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio.

    PubMed

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-09-09

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson's ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on.

  14. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    NASA Astrophysics Data System (ADS)

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-09-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on.

  15. Bin Ratio-Based Histogram Distances and Their Application to Image Classification.

    PubMed

    Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen

    2014-12-01

    Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification. PMID:26353143

  16. Comparison of Deconvolution-Based and Absorption Modeling IVIVC for Extended Release Formulations of a BCS III Drug Development Candidate.

    PubMed

    Kesisoglou, Filippos; Xia, Binfeng; Agrawal, Nancy G B

    2015-11-01

    In vitro-in vivo correlations (IVIVC) are predictive mathematical models describing the relationship between dissolution and plasma concentration for a given drug compound. The traditional deconvolution/convolution-based approach is the most common methodology to establish a level A IVIVC that provides point to point relationship between the in vitro dissolution and the in vivo input rate. The increasing application of absorption physiologically based pharmacokinetic model (PBPK) has provided an alternative IVIVC approach. The current work established and compared two IVIVC models, via the traditional deconvolution/convolution method and via absorption PBPK modeling, for two types of modified release (MR) formulations (matrix and multi-particulate tablets) of MK-0941, a BCS III drug development candidate. Three batches with distinct release rates were studied for each formulation technology. A two-stage linear regression model was used for the deconvolution/convolution approach while optimization of the absorption scaling factors (a model parameter that relates permeability and input rate) in Gastroplus(TM) Advanced Compartmental Absorption and Transit model was used for the absorption PBPK approach. For both types of IVIVC models established, and for either the matrix or the multiparticulate formulations, the average absolute prediction errors for AUC and C max were below 10% and 15%, respectively. Both the traditional deconvolution/convolution-based and the absorption/PBPK-based level A IVIVC model adequately described the compound pharmacokinetics to guide future formulation development. This case study highlights the potential utility of absorption PBPK model to complement the traditional IVIVC approaches for MR products.

  17. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    PubMed

    Osteikoetxea, Xabier; Balogh, Andrea; Szabó-Taylor, Katalin; Németh, Andrea; Szabó, Tamás Géza; Pálóczi, Krisztina; Sódar, Barbara; Kittel, Ágnes; György, Bence; Pállinger, Éva; Matkó, János; Buzás, Edit Irén

    2015-01-01

    In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody) and ganglioside GM1 (cholera toxin subunit B). We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition), may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  18. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    NASA Astrophysics Data System (ADS)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ˜103) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  19. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts.

    PubMed

    Alaferdov, A V; Savu, R; Rackauskas, T A; Rackauskas, S; Canesqui, M A; de Lara, D S; Setti, G O; Joanni, E; de Trindade, G M; Lima, U B; de Souza, A S; Moshkalev, S A

    2016-09-16

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ∼10(3)) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  20. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts.

    PubMed

    Alaferdov, A V; Savu, R; Rackauskas, T A; Rackauskas, S; Canesqui, M A; de Lara, D S; Setti, G O; Joanni, E; de Trindade, G M; Lima, U B; de Souza, A S; Moshkalev, S A

    2016-09-16

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ∼10(3)) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing. PMID:27486955

  1. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    NASA Astrophysics Data System (ADS)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ∼103) graphite nanobelt thin films deposited by a modified Langmuir–Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain–release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  2. Broadband absorption and reduced scattering spectra of in-vivo skin can be noninvasively determined using δ-P1 approximation based spectral analysis

    PubMed Central

    Hung, Cheng-Hung; Chou, Ting-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2015-01-01

    Previously, we revealed that a linear gradient line source illumination (LGLSI) geometry could work with advanced diffusion models to recover the sample optical properties at wavelengths where sample absorption and reduced scattering were comparable. In this study, we employed the LGLSI geometry with a broadband light source and utilized the spectral analysis to determine the broadband absorption and scattering spectra of turbid samples in the wavelength range from 650 to 1350 nm. The performance of the LGLSI δ-P1 diffusion model based spectral analysis was evaluated using liquid phantoms, and it was found that the sample optical properties could be properly recovered even at wavelengths above 1000 nm where μs' to μa ratios were in the range between 1 to 20. Finally, we will demonstrate the use of our system for recovering the 650 to 1350 nm absorption and scattering spectra of in-vivo human skin. We expect this system can be applied to study deep vessel dilation induced hemoglobin concentration variation and determine the water and lipid concentrations of in-vivo skin in clinical settings in the future. PMID:25780735

  3. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  4. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Garnett Marques Brum, C.

    2013-12-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred Jan/2005, during the descendent phase of the last solar activity cycle XXIII. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65N) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  5. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    PubMed

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition. PMID:27338079

  6. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    PubMed

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands. PMID:23156790

  7. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    PubMed

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.

  8. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor

    NASA Astrophysics Data System (ADS)

    Spuler, S. M.; Repasky, K. S.; Morley, B.; Moen, D.; Hayman, M.; Nehrir, A. R.

    2015-03-01

    A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation - 50 days with a > 95% uptime - under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.

  9. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  10. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    PubMed

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-01

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered

  11. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    SciTech Connect

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-15

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al{sub 2}O{sub 3} and TiO{sub 2} processes from Me{sub 3}Al/H{sub 2}O and TiCl{sub 4}/H{sub 2}O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes.

  12. Fisher's linear discriminant ratio based threshold for moving human detection in thermal video

    NASA Astrophysics Data System (ADS)

    Sharma, Lavanya; Yadav, Dileep Kumar; Singh, Annapurna

    2016-09-01

    In video surveillance, the moving human detection in thermal video is a critical phase that filters out redundant information to extract relevant information. The moving object detection is applied on thermal video because it penetrate challenging problems such as dynamic issues of background and illumination variation. In this work, we have proposed a new background subtraction method using Fisher's linear discriminant ratio based threshold. This threshold is investigated automatically during run-time for each pixel of every sequential frame. Automatically means to avoid the involvement of external source such as programmer or user for threshold selection. This threshold provides better pixel classification at run-time. This method handles problems generated due to multiple behavior of background more accurately using Fisher's ratio. It maximizes the separation between object pixel and the background pixel. To check the efficacy, the performance of this work is observed in terms of various parameters depicted in analysis. The experimental results and their analysis demonstrated better performance of proposed method against considered peer methods.

  13. Likelihood ratio-based integrated personal risk assessment of type 2 diabetes.

    PubMed

    Sato, Noriko; Htun, Nay Chi; Daimon, Makoto; Tamiya, Gen; Kato, Takeo; Kubota, Isao; Ueno, Yoshiyuki; Yamashita, Hidetoshi; Fukao, Akira; Kayama, Takamasa; Muramatsu, Masaaki

    2014-01-01

    To facilitate personalized health care for multifactorial diseases, risks of genetic and clinical/environmental factors should be assessed together for each individual in an integrated fashion. This approach is possible with the likelihood ratio (LR)-based risk assessment system, as this system can incorporate manifold tests. We examined the usefulness of this system for assessing type 2 diabetes (T2D). Our system employed 29 genetic susceptibility variants, body mass index (BMI), and hypertension as risk factors whose LRs can be estimated from openly available T2D association data for the Japanese population. The pretest probability was set at a sex- and age-appropriate population average of diabetes prevalence. The classification performance of our LR-based risk assessment was compared to that of a non-invasive screening test for diabetes called TOPICS (with score based on age, sex, family history, smoking, BMI, and hypertension) using receiver operating characteristic analysis with a community cohort (n = 1263). The area under the receiver operating characteristic curve (AUC) for the LR-based assessment and TOPICS was 0.707 (95% CI 0.665-0.750) and 0.719 (0.675-0.762), respectively. These AUCs were much higher than that of a genetic risk score constructed using the same genetic susceptibility variants, 0.624 (0.574-0.674). The use of ethnically matched LRs is necessary for proper personal risk assessment. In conclusion, although LR-based integrated risk assessment for T2D still requires additional tests that evaluate other factors, such as risks involved in missing heritability, our results indicate the potential usability of LR-based assessment system and stress the importance of stratified epidemiological investigations in personalized medicine. PMID:25069673

  14. Knowledge-based probabilistic representations of branching ratios in chemical networks: The case of dissociative recombinations

    SciTech Connect

    Plessis, Sylvain; Carrasco, Nathalie; Pernot, Pascal

    2010-10-07

    Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information. As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.

  15. Vertical split-ring resonator based anomalous beam steering with high extinction ratio

    PubMed Central

    Hsu, Wei-Lun; Wu, Pin Chieh; Chen, Jia-Wern; Chen, Ting-Yu; Cheng, Bo Han; Chen, Wei Ting; Huang, Yao-Wei; Liao, Chun Yen; Sun, Greg; Tsai, Din Ping

    2015-01-01

    Metasurfaces created artificially with metal nanostructures that are patterned on surfaces of different media have shown to possess “unusual” abilities to manipulate light. Limited by nanofabrication difficulties, so far most reported works have been based on 2D metal structures. We have recently developed an advanced e-beam process that allowed for the deposition of 3D nanostructures, namely vertical split-ring resonators (VSRRs), which opens up another degree of freedom in the metasurface design. Here we explore the functionality of beam steering with phase modulation by tuning only the vertical dimension of the VSRRs and show that anomalous steering reflection of a wide range of angles can be accomplished with high extinction ratio using the finite-difference-time-domain simulation. We also demonstrate that metasurfaces made of 3D VSRRs can be made with roughly half of the footprint compared to that of 2D nano-rods, enabling high density integration of metal nanostructures. PMID:26054048

  16. Pilot Signal Design for Massive MIMO Systems: A Received Signal-To-Noise-Ratio-Based Approach

    NASA Astrophysics Data System (ADS)

    So, Jungho; Kim, Donggun; Lee, Yuni; Sung, Youngchul

    2015-05-01

    In this paper, the pilot signal design for massive MIMO systems to maximize the training-based received signal-to-noise ratio (SNR) is considered under two channel models: block Gauss-Markov and block independent and identically distributed (i.i.d.) channel models. First, it is shown that under the block Gauss-Markov channel model, the optimal pilot design problem reduces to a semi-definite programming (SDP) problem, which can be solved numerically by a standard convex optimization tool. Second, under the block i.i.d. channel model, an optimal solution is obtained in closed form. Numerical results show that the proposed method yields noticeably better performance than other existing pilot design methods in terms of received SNR.

  17. 6:1 aspect ratio silicon pillar based thermal neutron detector filled with {sup 10}B

    SciTech Connect

    Nikolic, R. J.; Conway, A. M.; Reinhardt, C. E.; Graff, R. T.; Wang, T. F.; Deo, N.; Cheung, C. L.

    2008-09-29

    Current helium-3 tube based thermal neutron detectors have shortcomings in achieving simultaneously high efficiency and low voltage while maintaining adequate fieldability performance. By using a three-dimensional silicon p-i-n diode pillar array filled with boron-10 these constraints can be overcome. The fabricated pillar structured detector reported here is composed of 2 {mu}m diameter silicon pillars with a 4 {mu}m pitch and height of 12 {mu}m. A thermal neutron detection efficiency of 7.3+/-0.6% and a neutron-to-gamma discrimination of 10{sup 5} at 2 V reverse bias were measured for this detector. When scaled to larger aspect ratio, a high efficiency device is possible.

  18. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  19. Effect of metal base layer on the absorptance and emittance of sputtered graded metal-carbon selective absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Harding, G. L.; Craig, S.

    1981-08-01

    Solar absorptance and temperature-dependent emittance is measured for graded metal-carbon films deposited onto smooth aluminum, copper, nickel, and stainless steel base layers, sputter-deposited onto glass tubes at relatively low argon pressure (approximately 0.5 Pa), and deposited onto textured copper using argon pressures 3 to 40 Pa. Absorptance measurements are made on surfaces deposited onto small plane glass slides attached to a glass tube in the coating system, and emittance measurements are made on coated tubes, assembled into glass envelopes. Both the small planar specimens of selective surface and coated tubes were inserted in continuously evacuated glass envelopes and annealed at 500 C for approximately 1 hr. It is shown that solar absorptance varies by only 1-2% for the different base layers, whereas the emittance of surfaces based on nickel and stainless steel is considerably higher than for surfaces based on copper and aluminum. Small changes occur in absorptances and emittances after annealing. It is concluded that the optimum selective surface for evacuated collectors used with mirrors of low concentrations consists of graded metal-carbon overlaid with smooth copper.

  20. Analysis of urinary stone based on a spectrum absorption FTIR-ATR

    NASA Astrophysics Data System (ADS)

    Asyana, V.; Haryanto, F.; Fitri, L. A.; Ridwan, T.; Anwary, F.; Soekersi, H.

    2016-03-01

    This research analysed the urinary stone by measuring samples using Fourier transform infrared-attenuated total reflection spectroscopy and black box analysis. The main objective of this study is to find kinds of urinary stone and determine a total spectrum, which is a simple model of the chemical and mineral composition urinary stone through black box analysis using convolution method. The measurements result showed that kinds of urinary stone were pure calcium oxalate monohydrate, ion amino acid calcium oxalate monohydrate, a mixture of calcium oxalate monohydrate with calcium phosphate, a mixture of ion amino acid calcium oxalate monohydrate and calcium phosphate,pure uric acid, ion amino acid uric acid, and a mixture of calcium oxalate monohydrate with ion amino acid uric acid. The results of analysis of black box showed characteristics as the most accurate and precise to confirm the type of urinary stones based on theregion absorption peak on a graph, the results of the convolution, and the shape of the total spectrum on each urinary stones.

  1. Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film

    NASA Astrophysics Data System (ADS)

    Qiu, Hengwei; Gao, Saisai; Chen, Peixi; Li, Zhen; Liu, Xiaoyun; Zhang, Chao; Xu, Yuanyuan; Jiang, Shouzhen; Yang, Cheng; Huo, Yanyan; Yue, Weiwei

    2016-05-01

    An evanescent wave absorption (EWA) sensor based on tapered multimode fiber (TMMF) coated with monolayer graphene film for the detection of double-stranded DNA (DS-DNA) is investigated in this work. The TMMF is a silica multimode fiber (nominally at 62.5 μm), which was tapered to symmetric taper with waist diameters of ~30 μm and total length of ~3 mm. Monolayer graphene film was grown on a copper foil via chemical vapor deposition (CVD) technology and transferred onto skinless tapered fiber core via dry transfer technology. All the components of the sensor are coupled together by fusion splicer in order to eliminate the external disturbance. DS-DNA is created by the assembly of two relatively complemented oligonucleotides. The measurements are obtained by using a spectrometer in the optical wavelength range of 400-900 nm. With the increase of DS-DNA concentration, the output light intensity (OPLI) arisen an obvious attenuation. Importantly, the absorbance (A) and the DS-DNA concentrations shown a reasonable linear variation in a wide range of 5-400 μM. Through a series of comparison, the accuracy of TMMF sensor with graphene (G-TMMF) is much better than that without graphene (TMMF), which can be attributed to the molecular enrichment of graphene by π-π stacking.

  2. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.

    PubMed

    Maier, Irene; Morgan, Michael R A; Lindner, Wolfgang; Pittner, Fritz

    2008-04-15

    An optical immunochip biosensor has been developed as a rapid method for allergen detection in complex food matrixes, and its application evaluated for the detection of the egg white allergens, ovalbumin and ovomucoid. The optical near-field phenomenon underlying the basic principle of the sensor design is called resonance-enhanced absorption (REA), which utilizes gold nanoparticles (Au NPs) as signal transducers in a highly sensitive interferometric setup. Using this approach, a novel, simple, and rapid colorimetric solid-phase immunoassay on a planar chip substrate was realized in direct and sandwich assay formats, with a detection system that does not require any instrumentation for readout. Semiquantitative immunochemical responses are directly visible to the naked eye of the analyst. The biosensor shows concentration-dependent color development by capturing antibody-functionalized Au NPs on allergen-coated chips and has a detection limit of 1 ng/mL. To establish a rapid method, we took advantage of the physicochemical microenvironment of the Au NP-antibody bioconjugate to be bound directly over an interacting poly(styrene-methyl methacrylate) interlayer by an immobilized antigen. In the direct assay format, a coating time with allergen of only 5 min under "soft" nondenaturing conditions was sufficient for accurate reproducibility and sensitivity. In conclusion, the REA-based immunochip sensor is easy to fabricate, is reproducible and selective in its performance, has minimal technical requirements, and will enable high-throughput screening of affinity binding interactions in technological and medical applications. PMID:18358010

  3. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells

    NASA Astrophysics Data System (ADS)

    Raja, Waseem; Bozzola, Angelo; Zilio, Pierfrancesco; Miele, Ermanno; Panaro, Simone; Wang, Hai; Toma, Andrea; Alabastri, Alessandro; de Angelis, Francesco; Zaccaria, Remo Proietti

    2016-04-01

    With the objective to conceive a plasmonic solar cell with enhanced photocurrent, we investigate the role of plasmonic nanoshells, embedded within a ultrathin microcrystalline silicon solar cell, in enhancing broadband light trapping capability of the cell and, at the same time, to reduce the parasitic loss. The thickness of the considered microcrystalline silicon (μc-Si) layer is only ~1/6 of conventional μc-Si based solar cells while the plasmonic nanoshells are formed by a combination of silica and gold, respectively core and shell. We analyze the cell optical response by varying both the geometrical and optical parameters of the overall device. In particular, the nanoshells core radius and metal thickness, the periodicity, the incident angle of the solar radiation and its wavelength are varied in the widest meaningful ranges. We further explain the reason for the absorption enhancement by calculating the electric field distribution associated to resonances of the device. We argue that both Fabry-Pérot-like and localized plasmon modes play an important role in this regard.

  4. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells

    PubMed Central

    Raja, Waseem; Bozzola, Angelo; Zilio, Pierfrancesco; Miele, Ermanno; Panaro, Simone; Wang, Hai; Toma, Andrea; Alabastri, Alessandro; De Angelis, Francesco; Zaccaria, Remo Proietti

    2016-01-01

    With the objective to conceive a plasmonic solar cell with enhanced photocurrent, we investigate the role of plasmonic nanoshells, embedded within a ultrathin microcrystalline silicon solar cell, in enhancing broadband light trapping capability of the cell and, at the same time, to reduce the parasitic loss. The thickness of the considered microcrystalline silicon (μc-Si) layer is only ~1/6 of conventional μc-Si based solar cells while the plasmonic nanoshells are formed by a combination of silica and gold, respectively core and shell. We analyze the cell optical response by varying both the geometrical and optical parameters of the overall device. In particular, the nanoshells core radius and metal thickness, the periodicity, the incident angle of the solar radiation and its wavelength are varied in the widest meaningful ranges. We further explain the reason for the absorption enhancement by calculating the electric field distribution associated to resonances of the device. We argue that both Fabry-Pérot-like and localized plasmon modes play an important role in this regard. PMID:27080420

  5. Interactions of Polyvinylpyrrolidone with Chlorin e6-Based Photosensitizers Studied by NMR and Electronic Absorption Spectroscopy.

    PubMed

    Hädener, Marianne; Gjuroski, Ilche; Furrer, Julien; Vermathen, Martina

    2015-09-10

    Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by (1)H NMR spectroscopy. xCE-PVP complex formation was confirmed by (1)H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). (1)H(1)H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV-vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

  6. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, K. O.; Olson, D. A.

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5% with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12% for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5% on average. The pressures measured using WMS have an average difference of 0.6% from the absolute pressure measured with a capacitance diaphragm sensor.

  7. Field-rugged sensitive hydrogen peroxide sensor based on tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.

    2010-04-01

    This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.

  8. [Methane optic fiber sensor network based on infrared spectrum absorption in coal mine].

    PubMed

    Wu, Xiao-jun; Wang, Peng; Wang, Zhi-bin; Li, Xiao; Tian, Er-ming

    2009-09-01

    Through analyzing the infrared absorption spectrum of methane, a multi-point optic fiber sensor network was designed based on the principle of light absorbing capability of gas which varies with gas concentration at its characteristic wavelength A distributed feedback laser diode (DFB LD) was used as the light source and an InGaAs PIN as the photodetector which features high sensitivity and low noise. Sixteen methane sensors were multiplexed in this system with space division multiple access technology (SDMAT), and the faint signals were processed by the filtering and amplifying circuit. All signals were gathered by the PCI data acquisition card, and finally, the signals were analyzed by the fast Fourier transform with software. The results showed that the sensitivity of every sensor reached 200 ppm (microg x mL(-1)), long-time accuracy and stability of all sensors could meet the practical demands, the response time of each sensor was less than 2 seconds and the detecting period was less than 32 seconds. By theoretical analysis, all sensors could be put in the mine at least 20 km from the ground, and the instruments could be applied to multi-point measurement at real-time in multiple occasions. PMID:19950630

  9. Distributed nerve gases sensor based on IR absorption in hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Viola, R.; Liberatore, N.; Luciani, D.; Mengali, S.; Pierno, L.

    2010-10-01

    The Nerve gases are persistent gases that appear as very challenging menace in homeland security scenarios, due to the low pressure vapor at ambient temperature, and the very low lethal concentrations. A novel approach to the detection and identification of these very hazardous volatile compounds in large areas such as airports, underground stations, big events arenas, aimed to a high selectivity (Low false alarm probability), has been explored under the SENSEFIB Corporate Project of Finmeccanica S.p.A. The technical demonstrator under development within the Project is presented. It is based on distributed line sensors performing infrared absorption measurements to reveal even trace amounts of target compounds from the retrieval of their spectral fingerprint. The line sensor is essentially constituted by a widely tunable external cavity quantum cascade laser (EC-QCL), coupled to IR thermoelectrically cooled MCT fast detectors by means of a infrared hollow core fibers (HCF). The air is sampled through several micro-holes along the HCF, by means of a micropump, while the infrared radiation travels inside the fiber from the source to the detector, that are optically coupled with the opposite apertures of the HCF. The architecture of the sensor and its principle of operation, in order to cover large areas with a few line sensors instead of with a grid of many point sensors, are illustrated. The sensor is designed to use the HCF as an absorption cell, exploiting long path length and very small volume, (e.g fast response), at the same time. Furthermore the distributed sensor allows to cover large areas and/or not easily accessible locations, like air ducts, with a single line sensor by extending the HCF for several tens of meters. The main components implemented in the sensor are described, in particular: the EC-QCL source to span the spectral range of wavelength between 9.15um and 9.85um; and the hollow core fiber, exhibiting a suitably low optical loss in this spectral

  10. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  11. Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizine-Based Core Skeleton.

    PubMed

    Lee, Youngjun; Jo, Ala; Park, Seung Bum

    2015-12-21

    The rational improvement of photophysical properties can be highly valuable for the discovery of novel organic fluorophores. Using our new design strategy guided by the oscillator strength, we developed a series of full-color-tunable furoindolizine analogs with improved molar absorptivity through the fusion of a furan ring into the indolizine-based Seoul fluorophore. The excellent correlation between the computable values (oscillator strength and theoretical S0 -S1 energy gap) and photophysical properties (molar absorptivity and emission wavelength) confirmed the effectualness of our design strategy.

  12. Improved water and sodium absorption from oral rehydration solutions based on rice syrup in a rat model of osmotic diarrhea.

    PubMed

    Wapnir, R A; Litov, R E; Zdanowicz, M M; Lifshitz, F

    1991-04-01

    Rice syrup solids, rice protein, and casein hydrolysate were added to experimental oral rehydration solutions in various combinations and tested in a rat intestinal perfusion system. Chronic osmotic diarrhea was induced in juvenile rats by supplying the cathartic agents, magnesium citrate and phenolphthalein, in their drinking water for 1 week. The experimental oral rehydration solutions were compared with standard oral rehydration solutions containing 20 gm/L or 30 gm/L of glucose and with each other to determine if there were significant differences in net water, sodium, or potassium absorption. An oral rehydration solution containing 30 gm/L of rice syrup solids had a net water absorption rate significantly higher than that of the standard 20 gm/L glucose-based oral rehydration solution (2.1 +/- 0.62 versus 1.5 +/- 0.48 microliters/[min x cm], p less than 0.05). Casein hydrolysate did not significantly affect net water absorption. However, combinations of 30 gm/L rice syrup solids and 5 gm/L casein hydrolysate significantly increased (p less than 0.05) net sodium and potassium absorption compared with the 20 gm/L glucose-based oral rehydration solution but not versus rice syrup solids alone. Oral rehydration solutions containing 30 gm/L rice syrup solids plus 5 gm/L rice protein, and 30 gm/L rice syrup solids plus 5 gm/L casein hydrolysate, had net water absorption rates significantly higher than the rate of a 30 gm/L glucose-based oral rehydration solution (2.5 +/- 0.36 and 2.4 +/- 0.38, respectively, versus 0.87 +/- 0.40 microliters/[min x cm], p less than 0.05). Rice protein and casein hydrolysate, however, did not significantly affect net water, sodium, or potassium absorption when added to rice protein glucose-based oral rehydration solutions. An inverse correlation between osmolality and net water absorption was observed (r = -0.653, p less than 0.02). The data suggest that substitution of rice syrup solids for glucose in oral rehydration solutions will

  13. Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption

    NASA Astrophysics Data System (ADS)

    Niti, Kant; Manzoor, Ahmad Wani

    2015-07-01

    Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The field distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear absorption coefficient. The differential equation for the beam width parameter is solved by following Wentzel-Kramers-Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density, decentered parameter and with different absorption levels in the medium. The results reveal that these parameters can affect the self-focusing significantly. Supported by a Financial Grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  14. In vivo absorption comparison of nanotechnology-based silybin tablets with its water-soluble derivative.

    PubMed

    Xu, Di; Ni, Rui; Sun, Wei; Li, Luk Chiu; Mao, Shirui

    2015-04-01

    In this study, the in vivo oral absorption of a nanocrystal tablet formulation of a BCS II poorly water-soluble drug was compared with that of its water-soluble salt form. Silybin is used as the model drug, and its nanosuspension was prepared by high-pressure homogenization. Effect of process and formulation parameters on properties of the nansuspensions was investigated. Dried powder of the nanosuspension was prepared by spray drying and used for preparing tablets. A pharmacokinetic study was performed in Beagle dogs to compare the absorption for tablets of silybin nanocrystals and silybin meglumine. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was determined. X-ray powder diffraction results indicated that silybin existed in a crystalline state after homogenization. In vivo absorption study in rats showed that the peroral absorption of silybin was enhanced remarkably by decreasing particle size. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was comparable with that of the commercially available tablet of the water-soluble salt form of silybin. In conclusion, it is possible to increase the bioavailability of poorly soluble drugs by preparing its water-soluble derivative.

  15. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches.

    PubMed

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2016-04-01

    Human intestinal absorption (HIA) of the drugs administered through the oral route constitutes an important criterion for the candidate molecules. The computational approach for predicting the HIA of molecules may potentiate the screening of new drugs. In this study, ensemble learning (EL) based qualitative and quantitative structure-activity relationship (SAR) models (gradient boosted tree, GBT and bagged decision tree, BDT) have been established for the binary classification and HIA prediction of the chemicals, using the selected molecular descriptors. The structural diversity of the chemicals and the nonlinear structure in the considered data were tested by the similarity index and Brock-Dechert-Scheinkman statistics. The external predictive power of the developed SAR models was evaluated through the internal and external validation procedures recommended in the literature. All the statistical criteria parameters derived for the performance of the constructed SAR models were above their respective thresholds suggesting for their robustness for future applications. In complete data, the qualitative SAR models rendered classification accuracy of >99%, while the quantitative SAR models yielded correlation (R(2)) of >0.91 between the measured and predicted HIA values. The performances of the EL-based SAR models were also compared with the linear models (linear discriminant analysis, LDA and multiple linear regression, MLR). The GBT and BDT SAR models performed better than the LDA and MLR methods. A comparison of our models with the previously reported QSARs for HIA prediction suggested for their better performance. The results suggest for the appropriateness of the developed SAR models to reliably predict the HIA of structurally diverse chemicals and can serve as useful tools for the initial screening of the molecules in the drug development process.

  16. Optical detection of mixture ratios and impurities in viscous materials based on fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Murr, Patrik J.; Tremmel, Anton; Schardt, Michael; Koch, Alexander W.

    2015-05-01

    This paper presents an innovative approach for an automated evaluation of mixture ratios and the detection of impurities in viscous materials. The measurement method is based on fluorescence imaging and works on a non-contact basis. The principle of the measurement setup is that three similar fluorescence images are available in different optical paths. 2D-sensor-arrays having a resolution of 1024 pixel × 1280 pixel are used for the image acquisition. A one-to-one mapping restricts the size of the fluorescence images to 5.3 mm × 6.66 mm. The vertical and horizontal resolution in the images is limited to 5.2 μm this corresponds to the dimensions of a pixel. Due to the use of an x, y-shifting table in the measurement setup, it is possible to investigate a larger area of the measurement object. To get more information of the measurement object, each image is filtered in a different wavelength range. The center wavelength of the used bandpass filters are 405 nm, 420 nm, and 440 nm. The evaluation of the mixture ratio is realized with an acceptance range in a three-dimensional coordinate system. The determination of the number, positions, areas, and maximum dimensions of contained impurities is implemented by a dedicated threshold algorithm. The minimum detectable impurity size with the used measurement setup is 5.2 μm. Both evaluation approaches work in a real-time and automated process. Advantages of the presented system are the low level of expense for the maintenance and the universality due to the use of optical standard components.

  17. GIS-based Mine Tailings Yield Mapping using RUSLE and Sediment Delivery Ratio

    NASA Astrophysics Data System (ADS)

    Kim, S.; Choi, Y.; Park, H.; Kwon, H.; Yoon, S.; Go, W.

    2010-12-01

    Erosion of mine tailings heaped up on the side of abandoned mine is an environmental problem because they contain harmful heavy metals. These harmful heavy metals such as copper, lead, arsenic in mine tailings cause contamination of surrounding streams and soil. To prevent and reduce the damage of surrounding streams caused by harmful heavy metals leaking from mine tailings, evaluating the pollution loading amount of mine tailings is required. However, it is difficult to assess its environmental impacts accurately because of its complex processes associated with it (Lal 1994). To estimate soil erosion and develop soil erosion management plans, there are some soil erosion estimation methods. Among these methods, the Revised Universal Soil Loss Equation (RUSLE) is the most widely used method. The six factors affecting soil loss such as rainfall-runoff erosivity, soil erodibility, slope length and steepness, cover management, and support practice were extracted from the spatial data and measurement data to evaluate average annual soil loss. Applying this model to mine tailings is possible, because mine tailings are regarded as soil. All the sediment generated may not be delivered at the watershed outlet because some of it may be deposited at various locations in the watershed. RUSLE does not consider the sediment delivery ratio to estimate the mine tailings delivered to the downstream point of interest. In this study, three methods are provided to compute the spatially distributed sediment delivery ratios and the results are compared with each other. Geographical Information System (GIS)-based erosion model and sediment delivery model were used to estimate the potential sediment yield from mine tailings in this study. The results achieved in this study can be used as basis data to assist mine tailings management and tailings dam installation plan. This work was supported by the Mine Reclamation Corporation funded by the Ministry of Knowledge Economy, Republic of Korea

  18. Hyper-entanglement based sensor with reduced measurement time and enhanced signal to interference ratio

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2014-05-01

    An array of hyper-entanglement based sensors made up of quantum hyper-entangled systems will be considered. Each hyper-entangled system will consists of a single hyper-entangled signal and single ancilla photon. The effect of noise in every mode as well as loss is included. The signal photon will experience classical loss and each ancilla photon will suffer a low level of loss. Forming an array offers the further advantage of a greater reduction in measurement time. It is shown mathematically that in the large d limit, where d is the number of modes, that different members of the array do not interfere with each other implying they can be put close together. This permits an enormous reduction in the measurement time, i.e. the time-on-target. Each hyper-entangled system making up the array receives a factor of d improvement in the signal-to-noise ratio (SNR), signal-to-interference ratio (SIR) and a factor of d reduction in measurement time. If M measurements are needed for a given level of resolution or decision quality then instead of having one hyper-entanglement pair, M hyper-entanglement pairs can be used. Unlike a classical radar or ladar, this system can image a target essentially with a snapshot from the many photon sources making up the array. Closed form results for the wave function, reduced density operator, gamma-expansion, probability of detection, probability of false alarm, SNR, SIR, Quantum Fisher information (QFI), quantum-Cramer-Rao lower bound (QCRLB), quantum Chernoff bound (QCB), and estimates for the number of required measurements are provided.

  19. Bandgap widening in thermochromic Mg-doped VO2 thin films: Quantitative data based on optical absorption

    NASA Astrophysics Data System (ADS)

    Li, Shu-Yi; Mlyuka, Nuru R.; Primetzhofer, Daniel; Hallén, Anders; Possnert, Göran; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-10-01

    Thermochromic Mg-doped VO2 films were deposited by reactive direct current magnetron sputtering onto heated glass and carbon substrates. Elemental compositions were inferred from Rutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurements—from both the film side and the back side of the samples—and ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 ± 0.5 eV per unit of atom ratio Mg/(Mg + V) for 0 < Mg/(Mg + V) < 0.21. The presence of ˜0.45 at. % Si enhanced the bandgap even more.

  20. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  1. Signal-to-noise ratio-based quality assessment method for ICESat/GLAS waveform data

    NASA Astrophysics Data System (ADS)

    Nie, Sheng; Wang, Cheng; Li, Guicai; Pan, Feifei; Xi, Xiaohuan; Luo, Shezhou

    2014-10-01

    Data quality determines the accuracy of results associated with remote sensing data processing and applications. However, few effective studies have been carried out on quality assessment methods for the full-waveform light detecting and ranging data. Using the geoscience laser altimeter system (GLAS) waveform data as an example, a signal-to-noise ratio (SNR)-based waveform quality assessment method is proposed to analyze the relationship between the SNR and its controlling factors, i.e., laser type, laser using time, topographic relief, and land cover type, and study the impacts of these factors on the quality of the GLAS waveform data. Results show that the SNR-based data quality assessment method can quantitatively and effectively assess the GLAS waveform data quality. The SNR linearly attenuates with the laser using time, and the attenuation rate varies with laser type. The topographic relief is inversely correlated with the SNR of the GLAS data. As the land cover structure (especially the vertical structure) becomes more complex, the SNR of the GLAS data decreases. It was found that land cover types in descending order of the SNR values are desert, farmland, water body, grassland, city, and forest.

  2. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  3. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  4. Normal and excess nitrogen uptake by iron-based Fe-Cr-Al alloys: the role of the Cr/Al atomic ratio

    NASA Astrophysics Data System (ADS)

    Jung, K. S.; Schacherl, R. E.; Bischoff, E.; Mittemeijer, E. J.

    2011-06-01

    Upon nitriding ferritic iron-based Fe-Cr-Al alloys, containing a total of 1.50 at. % (Cr + Al) alloying elements with varying Cr/Al atomic ratio (0.21-2.00), excess nitrogen uptake occurred, i.e. more nitrogen was incorporated in the specimens than compatible with only inner nitride formation and equilibrium nitrogen solubility of the unstrained ferrite matrix. The amount of excess nitrogen increased with decreasing Cr/Al atomic ratio. The microstructure of the nitrided zone was investigated by X-ray diffraction, electron probe microanalysis, transmission electron microscopy and electron energy loss spectroscopy. Metastable, fine platelet-type, mixed Cr1- x Al x N nitride precipitates developed in the nitrided zone for all of the investigated specimens. The degree of coherency of the nitride precipitates with the surrounding ferrite matrix is discussed in view of the anisotropy of the misfit. Analysis of nitrogen-absorption isotherms, recorded after subsequent pre- and de-nitriding treatments, allowed quantitative differentiation of different types of nitrogen taken up. The amounts of the different types of excess nitrogen as function of the Cr/Al atomic ratio are discussed in terms of the nitride/matrix misfit and the different chemical affinities of Cr and Al for N. The strikingly different nitriding behaviors of Fe-Cr-Al and Fe-Cr-Ti alloys could be explained on this basis.

  5. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  6. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    NASA Astrophysics Data System (ADS)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  7. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  8. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    NASA Astrophysics Data System (ADS)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  9. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route.

    PubMed

    Zhao, Hai-Bo; Fu, Zhi-Bing; Chen, Hong-Bing; Zhong, Ming-Long; Wang, Chao-Yang

    2016-01-20

    Electromagnetic microwave absorption materials have attracted a great deal of attention. Foams for the low density and tunable porosity are considered as ideal microwave absorbents, while with the requirement of improving their inherent electromagnetic properties. In this manuscript, an innovative, easy, and green method was presented to synthesize an electromagnetic functionalized Ni/carbon foam, in which the formation of Ni nanoparticles and carbon occurred simultaneously from an affordable alginate/Ni(2+) foam precursor. The resultant Ni/carbon foam had a low density (0.1 g/cm(-3)) and high Ni nanoparticles loading (42 wt %). These Ni nanoparticles with a diameter of about 50-100 nm were highly crystallized and evenly embedded in porous graphite carbon without aggregation. Also, the resultant foam had a high surface area (451 m(2) g(-1)) and porosity and showed a moderate conductivity (6 S/m) and significant magnetism. Due to these special characteristics, the Ni/carbon foam exhibited greatly enhanced microwave absorption ability. Only with 10 wt % of functional fillers being used in the test template, the Ni/carbon foam based composite could reach an effective absorption bandwidth (below -10 dB) of 4.5 GHz and the minimum reflection value of -45 dB at 13.3 GHz with a thickness of 2 mm, while the traditional carbon foam and nano-Ni powder both showed very weak microwave absorption (the minimum reflection value < -10 dB). This foam was demonstrated to be a lightweight, high performance, and low filler loading microwave absorbing material. Furthermore, the detailed absorption mechanism of the foam was investigated. The result showed that the derived strong dielectric loss, including conductivity loss, interface polarization loss, weak magnetic loss, and naoporosity, contributes a great electromagnetic absorption. PMID:26710881

  10. A small perturbation based optimization approach for the frequency placement of high aspect ratio wings

    NASA Astrophysics Data System (ADS)

    Goltsch, Mandy

    based on a Timoshenko stiffness effect separation. The formulation of respective linear changes falls back on surrogate models that approximate cross sectional properties. Corresponding functional responses are readily available. Their direct use by the small perturbation based optimizer ensures constitutive laws and eliminates a previously necessary optimization at the local level. The scope of the present work is derived from an existing configuration such as a conceptual baseline or a prototype that experiences aeroelastic instabilities. Due to the lack of respective design studies in the traditional design process it is not uncommon for an initial wing design to have such stability problems. The developed optimization scheme allows the effective redesign of high aspect ratio wings subject to natural frequency objectives. Its successful application is demonstrated by three separate optimization studies. The implementation results of all three studies confirm that the gradient liberation of the new methodology brings about great computational savings. A generic wing study is used to indicate the connection between the proposed methodology and the aeroelastic stability problems outlined in the motivation. It is also used to illustrate an important practical aspect of structural redesign, i.e., a minimum departure from the existing baseline configuration. The proposed optimization scheme is naturally conducive to this practical aspect by using a minimum change optimization criterion. However, only an elemental formulation truly enables a minimum change solution. It accounts for the spanwise significance of a structural modification to the mode of interest. This idea of localized reinforcement greatly benefits the practical realization of structural redesign efforts. The implementation results also highlight the fundamental limitation of the proposed methodology. The exclusive consideration of mass and stiffness effects on modal response characteristics disregards other

  11. Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties.

    PubMed

    Oosterwijk, Mattheus T T; Feber, Maaike Le; Burello, Enrico

    2016-08-01

    We present a conceptual framework that can be used to assign risk bands to inhaled low aspect ratio nanoparticles starting from exposure bands assigned to a specific exposure situation. The framework mimics a basic physiological scheme that captures the essential mechanisms of fate and toxicity of inhaled nanoparticles and is composed of several models and rules that estimate the result of the following processes: the deposition of particles in the respiratory tract, their (de-)agglomeration, lung burden and clearance, their diffusion through the lung mucus layer, translocation and cellular uptake and local and systemic toxicity. Each model is based on a set of particle's physicochemical properties, including the size and size distribution(s), the zeta potential (or net charge at a specific pH), the surface hydrophobicity or hydrophilicity, the conduction band energy (for metals, metal oxides, quantum dots, etc.) and the solubility at a specific pH. The framework takes the exposure bands as input and predicts, using the above-mentioned models, an internal dose band (module 1). Module 2 assigns a relative hazard ranking depending on the region of particle deposition in the respiratory tract, the likelihood of uptake and whether the toxicological effects are assumed to be local and/or systemic. By combining the results of Module 1 and 2, the framework provides a relative risk ranking. PMID:26763369

  12. Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction.

    PubMed

    Mauger, Stefan J; Dawson, Pam W; Hersbach, Adam A

    2012-01-01

    Noise reduction in cochlear implants has achieved significant speech perception improvements through spectral subtraction and signal-to-noise ratio based noise reduction techniques. Current methods use gain functions derived through mathematical optimization or motivated by normal listening psychoacoustic experiments. Although these gain functions have been able to improve speech perception, recent studies have indicated that they are not optimal for cochlear implant noise reduction. This study systematically investigates cochlear implant recipients' speech perception and listening preference of noise reduction with a range of gain functions. Results suggest an advantageous gain function and show that gain functions currently used for noise reduction are not optimal for cochlear implant recipients. Using the cochlear implant optimised gain function, a 27% improvement over the current advanced combination encoder (ACE) stimulation strategy in speech weighted noise and a 7% improvement over current noise reduction strategies were observed in babble noise conditions. The optimized gain function was also most preferred by cochlear implant recipients. The CI specific gain function derived from this study can be easily incorporated into existing noise reduction strategies, to further improve listening performance for CI recipients in challenging environments.

  13. Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties.

    PubMed

    Oosterwijk, Mattheus T T; Feber, Maaike Le; Burello, Enrico

    2016-08-01

    We present a conceptual framework that can be used to assign risk bands to inhaled low aspect ratio nanoparticles starting from exposure bands assigned to a specific exposure situation. The framework mimics a basic physiological scheme that captures the essential mechanisms of fate and toxicity of inhaled nanoparticles and is composed of several models and rules that estimate the result of the following processes: the deposition of particles in the respiratory tract, their (de-)agglomeration, lung burden and clearance, their diffusion through the lung mucus layer, translocation and cellular uptake and local and systemic toxicity. Each model is based on a set of particle's physicochemical properties, including the size and size distribution(s), the zeta potential (or net charge at a specific pH), the surface hydrophobicity or hydrophilicity, the conduction band energy (for metals, metal oxides, quantum dots, etc.) and the solubility at a specific pH. The framework takes the exposure bands as input and predicts, using the above-mentioned models, an internal dose band (module 1). Module 2 assigns a relative hazard ranking depending on the region of particle deposition in the respiratory tract, the likelihood of uptake and whether the toxicological effects are assumed to be local and/or systemic. By combining the results of Module 1 and 2, the framework provides a relative risk ranking.

  14. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS

    NASA Astrophysics Data System (ADS)

    Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B.

    2010-08-01

    A simulative investigation of noise effects in wavelength modulation spectroscopy (WMS) and direct absorption diode laser absorption spectroscopy is presented. Special attention is paid to the impact of quantization noise of the analog-to-digital conversion (ADC) of the photodetector signal in the two detection schemes with the goal of estimating the necessary ADC resolution for each technique. With laser relative intensity noise (RIN), photodetector shot noise and thermal amplifier noise included, the strategies used for noise reduction in direct and wavelength modulation spectroscopy are compared by simulating two respective systems. Results show that because of the combined effects of dithering by RIN and signal averaging, the resolutions required for the direct absorption setup are only slightly higher than for the WMS setup. Only for small contributions of RIN an increase in resolution will significantly improve signal quality in the direct scheme.

  15. Identification of Li O absorption bands based on lithium isotope substitutions

    NASA Astrophysics Data System (ADS)

    Nocuń, Marek; Handke, Mirosław

    2001-09-01

    Isotope substitution method was used to identify the Li-O absorption bands in crystalline lithium silicates (2Li 2O 3·SiO 2, Li 2O·SiO 2, Li 2O·2SiO 2) and selected aluminosilicates (β-eucriptite and β-spodumene). Isotopic shift was established after mathematical decomposition of the IR spectra. Absorption bands connected directly with internal, LiO 4 tetrahedron vibrations are observed in the range 460-250 cm -1. Bending vibrations of Si-O-Li bridges give absorption bands in the range 500-600 cm -1. The exact position of the bands and their isotopic shifts are given.

  16. Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine: Effect of Nozzle Pressure Ratio

    NASA Technical Reports Server (NTRS)

    Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.

    2010-01-01

    The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.

  17. Diode-Laser-Based Differential Absorption Lidar (DIAL) for Long Term Autonomous Field Deployment

    NASA Astrophysics Data System (ADS)

    Moen, D.; Repasky, K. S.; Spuler, S.; Nehrir, A. R.

    2015-12-01

    The rapidly changing spatial and temporal distribution of water vapor in the planetary boundary layer influences dynamical and physical processes that drive weather phenomena, general circulation patterns, radiative transfer, and the global water cycle. The ability to measure the water vapor distribution continuously within the lower troposphere has been identified as a high priority measurement capability needed by both the weather forecasting and climate science communities. This presentation provides an update on an economical and compact diode-laser-based differential absorption lidar (DIAL) which has demonstrated the capability of meeting these high priority measurement needs. The DIAL instrument utilizes two continuous wave distributed feedback diode lasers to injection seed a current modulated tapered semiconductor optical amplifier. An improved switching time between the on-line and off-line wavelength, on the order of 16.7 ms, allows the instrument to retrieve water vapor profiles in rapidly changing atmospheric conditions. A shared telescope design based on a 40.64 cm diameter Dobsonian telescope allows the outgoing beam to be eye-safe at the exit of the telescope. The DIAL receiver utilizes the Dobsonian telescope to collect the scattered light and direct it through an optical narrow bandpass filter (NBF) and a Fabry-Perot etalon with a free spectral range of 0.1 nm which is equal to the wavelength difference between the on-line and off-line DIAL wavelengths. A beam splitter directs 90% of the scattered light through a second NBF, and couples it onto a fiber coupled avalanche photodiode (APD), providing a far field measurement. The remaining 10% of the light passing through the beam splitter is incident on a free space coupled APD, providing a wider field of view for water vapor measurements at lower altitudes. The two channel receiver allows water vapor measurement between 500 m and 4 km/6km during daytime/nighttime operation, respectively. The DIAL

  18. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries

    PubMed Central

    Baurley, James W.; Edlund, Christopher K.; Pardamean, Carissa I.; Conti, David V.; Krasnow, Ruth; Javitz, Harold S.; Hops, Hyman; Swan, Gary E.; Benowitz, Neal L.

    2016-01-01

    Introduction: Metabolic enzyme variation and other patient and environmental characteristics influence smoking behaviors, treatment success, and risk of related disease. Population-specific variation in metabolic genes contributes to challenges in developing and optimizing pharmacogenetic interventions. We applied a custom genome-wide genotyping array for addiction research (Smokescreen), to three laboratory-based studies of nicotine metabolism with oral or venous administration of labeled nicotine and cotinine, to model nicotine metabolism in multiple populations. The trans-3′-hydroxycotinine/cotinine ratio, the nicotine metabolite ratio (NMR), was the nicotine metabolism measure analyzed. Methods: Three hundred twelve individuals of self-identified European, African, and Asian American ancestry were genotyped and included in ancestry-specific genome-wide association scans (GWAS) and a meta-GWAS analysis of the NMR. We modeled natural-log transformed NMR with covariates: principal components of genetic ancestry, age, sex, body mass index, and smoking status. Results: African and Asian American NMRs were statistically significantly (P values ≤ 5E-5) lower than European American NMRs. Meta-GWAS analysis identified 36 genome-wide significant variants over a 43 kilobase pair region at CYP2A6 with minimum P = 2.46E-18 at rs12459249, proximal to CYP2A6. Additional minima were located in intron 4 (rs56113850, P = 6.61E-18) and in the CYP2A6-CYP2A7 intergenic region (rs34226463, P = 1.45E-12). Most (34/36) genome-wide significant variants suggested reduced CYP2A6 activity; functional mechanisms were identified and tested in knowledge-bases. Conditional analysis resulted in intergenic variants of possible interest (P values < 5E-5). Conclusions: This meta-GWAS of the NMR identifies CYP2A6 variants, replicates the top-ranked single nucleotide polymorphism from a recent Finnish meta-GWAS of the NMR, identifies functional mechanisms, and provides pan

  19. An all fiber apparatus for microparticles selective manipulation based on a variable ratio coupler and a microfiber

    NASA Astrophysics Data System (ADS)

    Li, Baoli; Luo, Wei; Xu, Fei; Lu, Yanqing

    2016-09-01

    We propose an all fiber apparatus based on a variable ratio coupler which can transport microparticles controllably and trap particles one by one along a microfiber. By connecting two output ports of a variable ratio coupler with two end pigtails of a microfiber and launching a 980 nm laser into the variable ratio coupler, particles in suspension were trapped to the waist of microfiber due to a gradient force and then transported along the microfiber due to a total scattering force generated by two counter-propagating beams. The direction of transportation was controlled by altering the coupling ratio of the variable ratio coupler. When the intensities of two output ports were equivalent, trapped particles stayed at fixed positions. With time going, another particle around the micro fiber was trapped onto the microfiber. There were three particles trapped in total in our experiment. This technique combines with the function of conventional tweezers and optical conveyor.

  20. Current status of the Faraday Filter-Based Spectrometer to Measure Sodium Nightglow D2/D1 Intensity Ratios

    NASA Astrophysics Data System (ADS)

    Harrell, S.; She, C.; Krueger, D. A.; Yuan, T.

    2009-12-01

    Slanger et al. (2005) first observed an annual variation in the sodium nightglow intensity ratio of D2 (589.158 nm) to D1 (589.756 nm) emissions. Their proposed modified Chapman mechanism invokes two competing chemical pathways, showing that the intensity ratio is related to the concentration ratio of atomic oxygen [O] to molecular oxygen [O2]. This paper will describe laboratory and field testing of the compact, Faraday filter-based spectrometer to measure the D2/D1 intensity ratio of the nightglow--particularly results of our study on the effects of sky background on ratio measurements. This method also permits determination of the fractional contributions of the two chemical pathways to test the validity of the modified Chapman mechanism. Since delineation of the two chemical pathways requires a spectral resolution of 0.0002 nm, this is not possible with any other existing instrument.

  1. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-µm diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  2. Prediction of oral absorption of cinnarizine--a highly supersaturating poorly soluble weak base with borderline permeability.

    PubMed

    Berlin, Mark; Przyklenk, Karl-Heinz; Richtberg, Annette; Baumann, Wolfgang; Dressman, Jennifer B

    2014-11-01

    Two important driving forces for oral absorption of active pharmaceutical ingredients are drug dissolution and permeability in the gastrointestinal tract. Poorly soluble weak bases typically exhibit high solubility under fasted gastric conditions. However, the solubility of such drugs usually decreases drastically in the fasted small intestine, constraining drug absorption. Since there is a discrepancy in solubility between the fasted state stomach and intestine, it is crucial to examine the influence of dissolution, supersaturation and precipitation on the oral absorption of poorly soluble weak bases during and after fasted state gastric emptying. Cinnarizine is a poorly soluble weak base with borderline permeability, exhibiting supersaturation and precipitation under simulated fasted state gastric emptying conditions. Interestingly, supersaturation and precipitation of cinnarizine under fed state conditions is not expected to occur, since the drug shows good solubility in fed state biorelevant media and exhibits a positive food effect in pharmacokinetic studies. The present work is aimed at investigating the dissolution, supersaturation and precipitation behavior of marketed cinnarizine tablets under fasted and fed state conditions using biorelevant dissolution and transfer methods. In order to predict the in vivo performance of these cinnarizine formulations, the in vitro results were then coupled with different physiologically based pharmacokinetic (PBPK) models, which considered either only dissolution or a combination of dissolution, supersaturation and precipitation kinetics. The results of the in silico predictions were then compared with in vivo observations. The study revealed that under fasting conditions, plasma profiles could be accurately predicted only when supersaturation and precipitation as well as dissolution were taken into account. It was concluded that for poorly soluble weak bases with moderate permeability, supersaturation and precipitation

  3. The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization.

    PubMed

    Liu, Ping; Li, Zhu; Li, Bo; Shi, Guolong; Li, Minqiang; Yu, Daoyang; Liu, Jinhuai

    2013-08-01

    Time-resolved optical waveguide absorption spectroscopy (OWAS) makes use of an evanescent field to detect the polarized absorption spectra of sub-monomolecular adlayers. This technique is suitable for the investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. In this work, we demonstrate the application of positive matrix factorization (PMF) to analyze time-resolved OWAS for the first time. Meanwhile, PCA is researched to compare with PMF. The absorption/desorption kinetics of Rhodamine 6G (R6G) onto a hydrophilic glass surface and the dynamic process of Meisenheimer complex between Cysteine and TNT are selected as samples to verify experimental system and analytical methods. The results are shown that time-resolved OWAS can well record the absorption/desorption of R6G onto a hydrophilic glass surface and the dynamic formation process of Meisenheimer complexes. The feature of OWAS extracted by PMF is dynamic and consistent with the results analyzed by the traditional function of time/wavelength-absorbance. Moreover, PMF prevents the negative factors from occurring, avoids contradicting physical reality, and makes factors more easily interpretable. Therefore, we believe that PMF will provide a valuable analysis route to allow processing of increasingly large and complex data sets.

  4. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems. PMID:23805835

  5. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  6. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero. PMID:21428087

  7. Optical absorption and luminescence in neutron-irradiated, silica-based fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Clinard, F.W.

    1995-04-01

    The objectives of this work are to assess the effects of thermal annealing and photobleaching on the optical absorption of neutron-irradiated, silica fibers of the type proposed for use in ITER diagnostics, and to measure x-ray induced luminescence of unirradiated (virgin) and neutron-irradiated fibers.

  8. Traction Slip Ratio Control Based on Fuzzy DSMC for Independent AWD EV

    NASA Astrophysics Data System (ADS)

    Zou, Guangcai; Luo, Yugong; Li, Keqiang

    A traction slip ratio control method using fuzzy dynamical sliding mode strategy (Fuzzy DSMC) is proposed to reduce the slip ratio oscillations in the independent AWD EV traction control. The slip ratios are also accurately estimated in a new way to support this control process. Firstly in this control method, the fuzzy logic method is applied respectively to regulate the switching surface and the reaching law of DSMC with the estimated slip ratios, which are used to weaken the chattering and improve the convergence rate to some extent. Furthermore the control structure of DSMC is designed to obtain the smooth torque outputs from all independent traction motors, which are implemented in the anti-skid control for EV in the end. The mathematics analysis for the controller parameters choosing and simulation experiments show that the method can greatly avoid the drawback of control chattering occurred in the classical sliding mode control. Moreover, the robustness of systems for parameter uncertainties is also guaranteed.

  9. Practical in-situ determination of ortho-para hydrogen ratios via fiber-optic based Raman spectroscopy

    DOE PAGES

    Sutherland, Liese -Marie; Knudson, James N.; Mocko, Michal; Renneke, Richard M.

    2015-12-17

    An experiment was designed and developed to prototype a fiber-optic-based laser system, which measures the ratio of ortho-hydrogen to para-hydrogen in an operating neutron moderator system at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source. Preliminary measurements resulted in an ortho to para ratio of 3.06:1, which is within acceptable agreement with the previously published ratio. As a result, the successful demonstration of Raman Spectroscopy for this measurement is expected to lead to a practical method that can be applied for similar in-situ measurements at operating neutron spallation sources.

  10. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis.

  11. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. PMID:25354028

  12. Epileptic Seizure Prediction based on Ratio and Differential Linear Univariate Features

    PubMed Central

    Rasekhi, Jalil; Mollaei, Mohammad Reza Karami; Bandarabadi, Mojtaba; Teixeira, César A.; Dourado, António

    2015-01-01

    Bivariate features, obtained from multichannel electroencephalogram recordings, quantify the relation between different brain regions. Studies based on bivariate features have shown optimistic results for tackling epileptic seizure prediction problem in patients suffering from refractory epilepsy. A new bivariate approach using univariate features is proposed here. Differences and ratios of 22 linear univariate features were calculated using pairwise combination of 6 electroencephalograms channels, to create 330 differential, and 330 relative features. The feature subsets were classified using support vector machines separately, as one of the two classes of preictal and nonpreictal. Furthermore, minimum Redundancy Maximum Relevance feature reduction method is employed to improve the predictions and reduce the number of false alarms. The studies were carried out on features obtained from 10 patients. For reduced subset of 30 features and using differential approach, the seizures were on average predicted in 60.9% of the cases (28 out of 46 in 737.9 h of test data), with a low false prediction rate of 0.11 h−1. Results of bivariate approaches were compared with those achieved from original linear univariate features, extracted from 6 channels. The advantage of proposed bivariate features is the smaller number of false predictions in comparison to the original 22 univariate features. In addition, reduction in feature dimension could provide a less complex and the more cost-effective algorithm. Results indicate that applying machine learning methods on a multidimensional feature space resulting from relative/differential pairwise combination of 22 univariate features could predict seizure onsets with high performance. PMID:25709936

  13. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  14. Selecting the aspect ratio of a scatter plot based on its delaunay triangulation.

    PubMed

    Fink, Martin; Haunert, Jan-Henrik; Spoerhase, Joachim; Wolff, Alexander

    2013-12-01

    Scatter plots are diagrams that visualize two-dimensional data as sets of points in the plane. They allow users to detect correlations and clusters in the data. Whether or not a user can accomplish these tasks highly depends on the aspect ratio selected for the plot, i.e., the ratio between the horizontal and the vertical extent of the diagram. We argue that an aspect ratio is good if the Delaunay triangulation of the scatter plot at this aspect ratio has some nice geometric property, e.g., a large minimum angle or a small total edge length. More precisely, we consider the following optimization problem. Given a set Q of points in the plane, find a scale factor s such that scaling the x-coordinates of the points in Q by s and the y-coordinates by 1=s yields a point set P(s) that optimizes a property of the Delaunay triangulation of P(s), over all choices of s. We present an algorithm that solves this problem efficiently and demonstrate its usefulness on real-world instances. Moreover, we discuss an empirical test in which we asked 64 participants to choose the aspect ratios of 18 scatter plots. We tested six different quality measures that our algorithm can optimize. In conclusion, minimizing the total edge length and minimizing what we call the 'uncompactness' of the triangles of the Delaunay triangulation yielded the aspect ratios that were most similar to those chosen by the participants in the test.

  15. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    PubMed

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  16. Ground-based demonstration of a CO2 remote sensor using a 1.57μm differential laser absorption spectrometer with direct detection

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Daisuke; Kawakami, Shuji; Nakajima, Masakatsu; Sawa, Yosuke; Matsueda, Hidekazu

    2010-10-01

    A 1.57-μm laser remote sensor using differential absorption spectrometry is being developed as a candidate for the next space-based mission to observe atmospheric CO2 and/or other trace gases. The performance of the newly-developed active remote sensor has been evaluated for horizontal measurements and initial vertical measurements have been demonstrated. This study shows the results of in-house and field measurements to evaluate column-averaged CO2 mixing ratios. The in-house measurements demonstrated the instrumental response showing agreement within a correlation coefficient of 0.998 for a known CO2 density. Field measurements to evaluate horizontal and vertical column-averaged CO2 mixing ratio were made with a measured precision of 0.49% and 1.7%, respectively. The horizontal integration range was 2.1 km and the vertical range extended from the surface up to the cloud base at ~3 km with corresponding accumulation time of 25 min. Complementary measurements with a multi-positioned in-situ sensor along the observation path demonstrated that the mean horizontal column-averaged CO2 density agreed within the difference of 2.8 ppm of the atmospheric CO2 density.

  17. An airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Morino, I.; Uchino, O.

    2013-02-01

    Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (XCO2) and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer (LAS). The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on atmospheric CO2 measurements. A high correlation coefficient (R) of 0.987 between XCO2 observed by LAS and XCO2 calculated from in situ measurements was obtained. The averaged difference in XCO2 obtained from LAS and validation data was within 1.5 ppm for all spiral measurements. An interesting vertical profile was observed for both XCO2LAS and XCO2val, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where there are boundary-layer enhanced CO2 and aerosol in the winter, the difference of XCO2LAS to XCO2val is a negative bias of 1.5 ppm, and XCO2LAS is in agreement with XCO2val within the measurement precision of 2.4 ppm (1 SD).

  18. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter.

    PubMed

    Zhang, Haiwei; Lu, Ying; Duan, Liangcheng; Zhao, Zhiqiang; Shi, Wei; Yao, Jianquan

    2014-10-01

    We report the system design and experimental verification of an intracavity absorption multiplexed sensor network with hollow core photonic crystal fiber (HCPCF) sensors and dense wavelength division multiplexing (DWDM) filters. Compared with fiber Bragg grating (FBG), it is easier for the DWDM to accomplish a stable output. We realize the concentration detection of three gas cells filled with acetylene. The sensitivity is up to 100 ppmV at 1536.71 nm. Voltage gradient is firstly used to optimize the intracavity sensor network enhancing the detection efficiency up to 6.5 times. To the best of our knowledge, DWDM is firstly used as a wavelength division multiplexing device to realize intracavity absorption multiplexed sensor network. It make it possible to realize high capacity intracavity sensor network via multiplexed technique. PMID:25322029

  19. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases.

    PubMed

    Lohberger, Falko; Hönninger, Gerd; Platt, Ulrich

    2004-08-20

    We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror. PMID:15352396

  20. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  1. Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents12

    PubMed Central

    Nair, Krishnapillai Madhavan; Brahmam, Ginnela N.V.; Radhika, Madhari S.; Dripta, Roy Choudhury; Ravinder, Punjal; Balakrishna, Nagalla; Chen, Zhensheng; Hawthorne, Keli M.; Abrams, Steven A.

    2013-01-01

    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run residential schools. Participants were given a standardized rice meal (regular) and the same meal with 100 g of guava fruit (modified) with 57Fe on 2 consecutive days. A single oral dose of 58Fe in orange juice was given at a separate time as a reference dose. Zinc absorption was assessed by using 70Zn, administered intravenously, and 67Zn given orally with meals. The mean hemoglobin concentration was similar in girls (129 ± 7.8 g/L) and boys (126 ± 7.1 g/L). There were no sex differences in the indicators of iron and zinc status except for a higher hepcidin concentration in boys (P < 0.05). The regular and modified meals were similar in total iron (10–13 mg/meal) and zinc (2.7 mg/meal) content. The molar ratio of iron to phytic acid was >1:1, but the modified diet had 20 times greater ascorbic acid content. The absorption of 57Fe from the modified meal, compared with regular meal, was significantly (P < 0.05) greater in both girls (23.9 ± 11.2 vs. 9.7 ± 6.5%) and boys (19.2 ± 8.4 vs. 8.6 ± 4.1%). Fractional zinc absorption was similar between the regular and modified meals in both sexes. Hepcidin was found to be a significant predictor of iron absorption (standardized β = −0.63, P = 0.001, R2 = 0.40) from the reference dose. There was no significant effect of sex on iron and zinc bioavailability from meals. We conclude that simultaneous ingestion of guava fruit with a habitual rice-based meal enhances iron bioavailability in adolescents. PMID:23596161

  2. Collision-induced Absorption in the Infrared: A Data Base for Modelling Planetary and Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1998-01-01

    Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.

  3. Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.

    PubMed

    Chevillotte, Fabien; Perrot, Camille; Panneton, Raymond

    2010-10-01

    Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.

  4. Interband cascade laser based absorption sensor for ppb-level formaldehyde detection

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Luo, Longqiang; Cao, Yingchun; Jiang, Wenzhe; Tittel, Frank K.

    2015-01-01

    A trace gas absorption sensor for formaldehyde (H2CO) detection was developed using a continuous wave, room temperature, low-power consumption interband cascade laser (ICL) at 3.6 μm. The recent availability of ICLs with wavelength ranged between 3-4 μm enables the sensitive detection of trace gases such as formaldehyde that possesses a strong absorption band in this particular wavelength region. This absorption sensor detected a strong formaldehyde line at 2778.5 cm-1 in its v1 fundamental band. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) combined with a compact and novel multipass gas cell (7.6 cm physical length, 32 ml sampling volume, and 3.7 m optical path length) was utilized to achieve a sensitivity of ~6 ppbv for H2CO measurements at 1 Hz sampling rate. The Allan- Werle deviation plot reveals that a minimum detection limit of ~1.5 ppbv can be achieved for an averaging time of 140 seconds.

  5. Plasma dispersion effect assisted nanoscopy based on tuning of absorption and scattering resonances of nanoparticles

    NASA Astrophysics Data System (ADS)

    Danan, Yossef; Ilovitsh, Tali; Liu, Danping; Pinhas, Hadar; Sinvani, Moshe; Ramon, Yehonatan; Azougi, Jonathan; Douplik, Alexandre; Zalevsky, Zeev

    2016-03-01

    In this paper we present gold nanoparticles coated with silicon that switch the order between the scattering and the absorption magnitude at the resonance peak and tune the plasmon resonance over the spectrum. This is obtained by modifying the refractive index of the silicon coating of the nanoparticle by illuminating it with a pumping light due to the plasma dispersion effect in silicon. We also report how changing the diffraction limited point spread function through the utilization of plasma dispersion effect of the above mentioned silicon coated nanoparticles allows doing imaging with sub wavelength resolution. The plasma dispersion effect can increase the absorption coefficient of the silicon, when illuminated with a focused laser beam and as explained above it can also tune the absorption versus scattering properties of the nanoparticle. Due to the Gaussian nature of the laser illumination which has higher intensity at its peak, the plasma dispersion effect is more significant at the center of the illumination. As a consequence, the reflected light from probe beam at the near infra-red region has a sub wavelength dip that overlaps with the location of the pump illumination peak. This dip has a higher spatial frequency than an ordinary Gaussian, which enables to achieve super resolution.

  6. Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.

    PubMed

    Chevillotte, Fabien; Perrot, Camille; Panneton, Raymond

    2010-10-01

    Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed. PMID:20968350

  7. Fisher's ratio-based criterion for finding endmembers in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Chen, Shih-Yu; Chang, Chein-I.

    2014-05-01

    Endmember extraction has recently received considerable interest in hyperspectral imagery. However, several issues in endmember extraction may have been overlooked. The first and foremost is the term of using endmember extraction. Many algorithms claimed to be endmember extraction algorithms actually do not extract true endmembers but rather find potential endmember candidates, referred to as virtual endmembers (VEs). Secondly, how difficult for an algorithm to find VEs is primarily determined by two key factors, endmember variability and endmember discriminability. While the former issue has been addressed recently in the literature, the latter issue is yet explored and has not been investigated before. This paper re-invents a wheel by developing a Fisher's ratio approach to finding VEs using Fisher's ratio criterion which is defined by ratio of endmember variability to endmember discriminability.

  8. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  9. Line-ratio based ring artifact correction method using transfer function

    NASA Astrophysics Data System (ADS)

    Oh, Daejoong; Hwang, Dosik; Kim, Younguk

    2016-03-01

    Computed tomography (CT) has been used for medical purposes. However there are many artifacts at CT images and that makes distorted image. Ring artifact is caused by non-uniform sensitivity of detectors and makes ring shape artifact. Line-ratio method was proposed to solve the problem however there are some problem at specific case. Therefore we propose advanced method to correct ring artifact using transfer function. As a result, ring artifacts can be removed at more global cases. Simulation data shows the proposed method outperforms the conventional line-ratio method.

  10. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application.

    PubMed

    Yang, Fan; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Ji, Ting; Shi, Fang; Wei, Bin

    2015-12-01

    We demonstrate a visible transparent organic photovoltaic (OPV) with improved transmission and absorption based on tandem photonic crystals (TPCs) for greenhouse applications. The proposed device has an average transmittance of 40.3% in the visible range of 400-700 nm and a high quality transparency spectrum for plant growth with a crop growth factor of 41.9%, considering the weight of the AM 1.5G solar spectrum. Compared with the corresponding transparent OPV without photonic crystals, an enhancement of 20.7% in the average transmittance and of 24.5% in the crop growth factor are achieved. Detailed investigations reveal that the improved transmittance is attributed to the excitation of the optical Tamm state and the light interference effect in TPC. Concomitantly, the total absorption efficiency in the active layer of the designed TPC based transparent OPV reaches 51.5%, being 1.78% higher than that of the transparent OPV without PC and 76% of that of the opaque counterpart. The improved absorption originates from the Bragg forbidden reflectance of TPC. Overall, our proposal achieves the optimized utilization of sunlight by light manipulation of TPC. PMID:26836682

  11. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  12. Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators.

    PubMed

    Li, Yu; Feng, Shaoqi; Zhang, Yu; Poon, Andrew W

    2013-12-01

    We report a sub-bandgap linear-absorption-based photodetector in avalanche mode at 1550 nm in a PN-diode-integrated silicon microring resonator. The photocurrent is primarily generated by the defect-state absorption introduced by the boron and phosphorous ion implantation during the PN diode formation. The responsivity is enhanced by both the cavity effect and the avalanche multiplication. We measure a responsivity of ~72.8 mA/W upon 8 V at cavity resonances in avalanche mode, corresponding to a gain of ~72 relative to the responsivity of ~1.0 mA/W upon 3 V at cavity resonances in normal mode. Our device exhibits a 3 dB bandwidth of ~7 GHz and an open eye diagram at 15 Gbit/s upon 8 V.

  13. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy.

    PubMed

    Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H

    2016-03-21

    We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found.

  14. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    PubMed

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment. PMID:25779107

  15. Measurement of nitrous acid (HONO) by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2016-04-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109

  16. Influence of the hydrophilicity of suppository bases on rectal absorption of carprofen, a lipophilic nonsteroidal anti-inflammatory drug.

    PubMed

    Schmitt, M; Guentert, T W

    1990-04-01

    The influence of the hydrophilicity of fatty suppository bases on the rectal absorption of the lipophilic drug carprofen (octanol-buffer, pH 7.4; partition coefficient, 40) was investigated in dogs. Five animals received each of six carprofen formulations in a random sequence: intravenous, oral, and rectal solutions, and three suppository formulations. The suppository vehicles tested were semisynthetic glycerides containing saturated fatty acids mainly in the range of C10 to C18 [Massa Estarinum A (MEA), Massa Estarinum B (MEB), and Massa Estarinum 299 (ME299)]; their hydroxyl values increased from 1 for ME299, through 24 for MEB, to 45 for MEA. Following every drug administration, blood samples were collected over a period of 104 h and carprofen plasma concentrations were measured by a specific HPLC method with UV detection. The rate and extent of carprofen absorption were characterized by evaluation of the maximum plasma concentrations (Cmax), the time of their occurrence (tmax), absolute bioavailabilities, statistical moments, and by deconvolution. Carprofen was rapidly and completely absorbed from the oral solution. The maximum concentrations obtained with oral solutions were significantly higher than those observed with rectal solutions and with the three suppository formulations. Results obtained with the rectal solution exhibited a high degree of intersubject variability. After rectal administration of suppositories, the rate and extent of carprofen absorption increased with the hydroxyl value of the suppository base; the mean absorption times (MAT) and tmax were shorter with MEA (2.15 and 1.7 h, respectively) than with the less hydrophilic vehicles (MEB: 4.09 and 2.1 h, respectively; ME299: 4.22 and 2.4 h, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. A Cepstrum-Based Technique for Determining a Harmonics-to-Noise Ratio in Speech Signals.

    ERIC Educational Resources Information Center

    de Krom, Guus

    1993-01-01

    A new method to calculate a spectral harmonics-to-noise (HNR) ratio is presented. The method discriminates between harmonic and noise energy in the magnitude spectrum by means of a comb-filtering operation in the cepstrum domain. HNR is seen to be a useful parameter in the analysis of voice quality. (Author/DB)

  18. Achieving Exact and Constant Turnaround Ratio in a DDS-Based Coherent Transponder

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.

    2011-01-01

    A report describes a non-standard direct digital synthesizer (DDS) implementation that can be used as part of a coherent transponder so as to allow any rational turnaround ratio to be exactly achieved and maintained while the received frequency varies. (A coherent transponder is a receiver-transmitter in which the transmitted carrier is locked to a pre-determined multiple of the received carrier's frequency and phase. That multiple is called the turnaround ratio.) The report also describes a general model for coherent transponders that are partly digital. A partially digital transponder is one in which analog signal processing is used to convert the signals between high frequencies at which they are radiated and relatively low frequencies at which they are converted to or from digital form, with most of the complex processing performed digitally. There is a variety of possible architectures for such a transponder, and different ones can be selected by choosing different parameter values in the general model. Such a transponder uses a DDS to create a low-frequency quasi-sinusoidal signal that tracks the received carrier s phase, and another DDS to generate an IF or near-baseband version of the transmitted carrier. With conventional DDS implementations, a given turnaround ratio can be achieved only approximately, and the error varies slightly as the received frequency changes. The non-conventional implementation employed here allows any rational turnaround ratio to be exactly maintained.

  19. Predictions of Crystal Structure Based on Radius Ratio: How Reliable Are They?

    ERIC Educational Resources Information Center

    Nathan, Lawrence C.

    1985-01-01

    Discussion of crystalline solids in undergraduate curricula often includes the use of radius ratio rules as a method for predicting which type of crystal structure is likely to be adopted by a given ionic compound. Examines this topic, establishing more definitive guidelines for the use and reliability of the rules. (JN)

  20. Acoustic Feature Optimization Based on F-Ratio for Robust Speech Recognition

    NASA Astrophysics Data System (ADS)

    Sun, Yanqing; Zhou, Yu; Zhao, Qingwei; Yan, Yonghong

    This paper focuses on the problem of performance degradation in mismatched speech recognition. The F-Ratio analysis method is utilized to analyze the significance of different frequency bands for speech unit classification, and we find that frequencies around 1kHz and 3kHz, which are the upper bounds of the first and the second formants for most of the vowels, should be emphasized in comparison to the Mel-frequency cepstral coefficients (MFCC). The analysis result is further observed to be stable in several typical mismatched situations. Similar to the Mel-Frequency scale, another frequency scale called the F-Ratio-scale is thus proposed to optimize the filter bank design for the MFCC features, and make each subband contains equal significance for speech unit classification. Under comparable conditions, with the modified features we get a relative 43.20% decrease compared with the MFCC in sentence error rate for the emotion affected speech recognition, 35.54%, 23.03% for the noisy speech recognition at 15dB and 0dB SNR (signal to noise ratio) respectively, and 64.50% for the three years' 863 test data. The application of the F-Ratio analysis on the clean training set of the Aurora2 database demonstrates its robustness over languages, texts and sampling rates.

  1. Female-to-Male Breeding Ratio in Modern Humans—an Analysis Based on Historical Recombinations

    PubMed Central

    Labuda, Damian; Lefebvre, Jean-François; Nadeau, Philippe; Roy-Gagnon, Marie-Hélène

    2010-01-01

    Was the past genetic contribution of women and men to the current human population equal? Was polygyny (excess of breeding women) present among hominid lineages? We addressed these questions by measuring the ratio of population recombination rates between the X chromosome and the autosomes, ρX/ρA. The X chromosome recombines only in female meiosis, whereas autosomes undergo crossovers in both sexes; thus, ρX/ρA reflects the female-to-male breeding ratio, β. We estimated β from ρX/ρA inferred from genomic diversity data and calibrated with recombination rates derived from pedigree data. For the HapMap populations, we obtained β of 1.4 in the Yoruba from West Africa, 1.3 in Europeans, and 1.1 in East Asian samples. These values are consistent with a high prevalence of monogamy and limited polygyny in human populations. More mutations occur during male meiosis as compared to female meiosis at the rate ratio referred to as α. We show that at α ≠ 1, the divergence rates and genetic diversities of the X chromosome relative to the autosomes are complex functions of both α and β, making their independent estimation difficult. Because our estimator of β does not require any knowledge of the mutation rates, our approach should allow us to dissociate the effects of α and β on the genetic diversity and divergence rate ratios of the sex chromosomes to the autosomes. PMID:20188344

  2. Bandgap widening in thermochromic Mg-doped VO{sub 2} thin films: Quantitative data based on optical absorption

    SciTech Connect

    Li, Shu-Yi; Niklasson, Gunnar A.; Granqvist, Claes G.; Mlyuka, Nuru R.; Primetzhofer, Daniel; Possnert, Göran; Hallén, Anders

    2013-10-14

    Thermochromic Mg-doped VO{sub 2} films were deposited by reactive direct current magnetron sputtering onto heated glass and carbon substrates. Elemental compositions were inferred from Rutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurements—from both the film side and the back side of the samples—and ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 ± 0.5 eV per unit of atom ratio Mg/(Mg + V) for 0 < Mg/(Mg + V) < 0.21. The presence of ∼0.45 at. % Si enhanced the bandgap even more.

  3. Exhaust gas monitoring based on absorption spectroscopy in the process industry

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Shu, Xiao-wen; Kan, Rui-feng; Cui, Yi-ben; He, Ying; Xu, Zhen-yu; Geng, Hui; Liu, Jian-guo

    2009-07-01

    This non-invasive gas monitor for exhaust gas monitoring must has high reliability and requires little maintenance. Monitor for in-situ measurements using tunable diode laser absorption spectroscopy (TDLAS) in the near infrared, can meet these requirements. TDLAS has evolved over the past decade from a laboratory especially to an accepted, robust and reliable technology for trace gas sensing. With the features of tunability and narrow linewidth of the distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to measure gas concentration with high sensitivity. Typical applications for monitoring of H2S, NH3, HC1 and HF are described here together by wavelength modulation spectroscopy with second-harmonic(WMS-2F) detection. This paper will illustrate the problems related to on-line applications, in particular, the overfall effects, automatic light intensity correction, temperature correction, which impacted on absorption coefficient and give details of how effect of automatic correction is necessary. The system mainly includes optics and electronics, optical system mainly composed of fiber, fiber coupler and beam expander, the electron part has been placed in safe analysis room not together with the optical part. Laser merely passes through one-meter-long pipes by the fiber coupling technology, so the system itself has anti-explosion. The results of the system are also presented in the end, the system's response time is only 0.5s, and can be achieved below 1×10-5 the detection limit at the volume fraction, it can entirely replace the traditional methods of detection exhaust gas in the process industry.

  4. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  5. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  6. Polymer film-based optical access to enclosed gas: demonstration of H2O absorption tomography

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Anderson, Mark H.; Sanders, Scott T.

    2016-09-01

    We demonstrate the use of a film to enable optical access to enclosed gases. We use absorption tomography to image H2O in a 101.6-mm-diameter duct with 2-mm spatial resolution. Considering the central 94 mm, the standard deviation of the image is 1.6 %, and the average mole fraction error is -0.008 %. A polybenzimidazole film is identified to be a candidate for extending the technique to enable NH3 imaging in a diesel aftertreatment system.

  7. Change in soft magnetic properties of Fe-based metallic glasses during hydrogen absorption and desorption

    SciTech Connect

    Novak, L.; Lovas, A.; Kiss, L.F.

    2005-08-15

    The stress level can be altered in soft magnetic amorphous alloys by hydrogen absorption. The resulting changes in the soft magnetic parameters are reversible or irreversible, depending on the chemical composition. Some of these effects are demonstrated in Fe-B, Fe-W-B, and Fe-V-B glassy ribbons, in which various magnetic parameters are measured mainly during hydrogen desorption. The rate of hydrogen desorption is also monitored by measuring the pressure change in a hermetically closed bomb. The observed phenomena are interpreted on the basis of induced stresses and chemical interactions between the solute metal and hydrogen.

  8. Microcrystalline silicon oxides for silicon-based solar cells: impact of the O/Si ratio on the electronic structure

    NASA Astrophysics Data System (ADS)

    Bär, M.; Starr, D. E.; Lambertz, A.; Holländer, B.; Alsmeier, J.-H.; Weinhardt, L.; Blum, M.; Gorgoi, M.; Yang, W.; Wilks, R. G.; Heske, C.

    2014-10-01

    Hydrogenated microcrystalline silicon oxide (μc-SiOx:H) layers are one alternative approach to ensure sufficient interlayer charge transport while maintaining high transparency and good passivation in Si-based solar cells. We have used a combination of complementary x-ray and electron spectroscopies to study the chemical and electronic structure of the (μc-SiOx:H) material system. With these techniques, we monitor the transition from a purely Si-based crystalline bonding network to a silicon oxide dominated environment, coinciding with a significant decrease of the material's conductivity. Most Si-based solar cell structures contain emitter/contact/passivation layers. Ideally, these layers fulfill their desired task (i.e., induce a sufficiently high internal electric field, ensure a good electric contact, and passivate the interfaces of the absorber) without absorbing light. Usually this leads to a trade-off in which a higher transparency can only be realized at the expense of the layer's ability to properly fulfill its task. One alternative approach is to use hydrogenated microcrystalline silicon oxide (μc-SiOx:H), a mixture of microcrystalline silicon and amorphous silicon (sub)oxide. The crystalline Si regions allow charge transport, while the oxide matrix maintains a high transparency. To date, it is still unclear how in detail the oxygen content influences the electronic structure of the μc-SiOx:H mixed phase material. To address this question, we have studied the chemical and electronic structure of the μc-SiOx:H (0 <= x = O/Si <=1) system with a combination of complementary x-ray and electron spectroscopies. The different surface sensitivities of the employed techniques help to reduce the impact of surface oxides on the spectral interpretation. For all samples, we find the valence band maximum to be located at a similar energy with respect to the Fermi energy. However, for x > 0.5, we observe a pronounced decrease of Si 3s - Si 3p hybridization in favor

  9. Application of a mixing-ratios based formulation to model mixing-driven dissolution experiments

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Sanchez-Vila, Xavier; Saaltink, Maarten W.; Bussini, Michele; Berkowitz, Brian

    2009-05-01

    We address the question of how one can combine theoretical and numerical modeling approaches with limited measurements from laboratory flow cell experiments to realistically quantify salient features of complex mixing-driven multicomponent reactive transport problems in porous media. Flow cells are commonly used to examine processes affecting reactive transport through porous media, under controlled conditions. An advantage of flow cells is their suitability for relatively fast and reliable experiments, although measuring spatial distributions of a state variable within the cell is often difficult. In general, fluid is sampled only at the flow cell outlet, and concentration measurements are usually interpreted in terms of integrated reaction rates. In reactive transport problems, however, the spatial distribution of the reaction rates within the cell might be more important than the bulk integrated value. Recent advances in theoretical and numerical modeling of complex reactive transport problems [De Simoni M, Carrera J, Sanchez-Vila X, Guadagnini A. A procedure for the solution of multicomponent reactive transport problems. Water Resour Res 2005;41:W11410. doi: 10.1029/2005WR004056, De Simoni M, Sanchez-Vila X, Carrera J, Saaltink MW. A mixing ratios-based formulation for multicomponent reactive transport. Water Resour Res 2007;43:W07419. doi: 10.1029/2006WR005256] result in a methodology conducive to a simple exact expression for the space-time distribution of reaction rates in the presence of homogeneous or heterogeneous reactions in chemical equilibrium. The key points of the methodology are that a general reactive transport problem, involving a relatively high number of chemical species, can be formulated in terms of a set of decoupled partial differential equations, and the amount of reactants evolving into products depends on the rate at which solutions mix. The main objective of the current study is to show how this methodology can be used in conjunction

  10. Joint Access Control Based on Access Ratio and Resource Utilization for High-Speed Railway Communications

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhe; Ai, Bo

    2015-05-01

    The fast development of high-speed rails makes people's life more and more convenient. However, provisioning of quality of service of multimedia applications for users on the high-speed train is a critical task for wireless communications. Therefore, new solutions are desirable to be found to address this kind of problem. Current researches mainly focus on providing seamless broadband wireless access for high-speed mobile terminals. In this paper, an algorithm to calculate the optimal resource reservation fraction of handovers is proposed. A joint access control scheme for high-speed railway communication handover scenario is proposed. Metrics of access ratio and resource utilization ratio are considered jointly in the analysis and the performance evaluation. Simulation results show that the proposed algorithm and the scheme improve quality of service compared with other conventional schemes.

  11. Physiologically Based In vitro Models to Predict the Oral Dissolution and Absorption of a Solid Drug Delivery System.

    PubMed

    Li, Ziqiang; He, Xin

    2015-01-01

    To understand the sophisticated dynamic behaviors of drug elution and permeation in the gastrointestinal tract (GIT), researchers have tried to reemerge it by employing various in vitro experimental models. However, official in vitro apparatuses routinely used for quality control purposes, employ simple, non-physiologic buffers, and hydrodynamics conditions, and can not accurately perform continuous, dynamic in vivo pharmacokinetics (PK) behaviors. Therefore, different angles of GI physiology information are incorporate into novel models to forecast the dissolution and permeation of drug solid dosage forms. This review, in general, discusses some related studies of physiologically-based mechanical models to predict human absorption following oral administration in four sections. First the GIT, taken out of a complex physiological environment, where the drug is absorbed, distributed, metabolized and excreted (ADME) in the human body, is considered as the physiological basis for active pharmaceutics ingredients (API) dissolved and permeated through the epithelial cell. The second part embodies the theoretical foundation of in vitro models to predict human absorption and the corresponding in vitro.in vivo correlations (IVIVC). The third section summarizes physiologically based dissolution models developed recently, ranging from dynamic compartmental dissolution models, to biorelevant dissolution models based on certain physiological factors, to biphasic dissolution models. The last part is devoted to combined dissolution and absorption models that can be employed to simulate the continuous, dynamic behavior of oral drug delivery being dissolved and subsequently permeated across the GIT. Along with physiologically-based mechanically models spring up, pharmaceutical researchers will harvest better level A IVIVC for oral drug delivery systems, especially for sustained and controlled release preparations. On the other way hand, it will successively promote more effective

  12. The Effect of Project Based Learning in "Ratio, Proportion and Percentage" Unit on Mathematics Success and Attitude

    ERIC Educational Resources Information Center

    Özdemir, Ahmet Sükrü; Yildiz, Filiz; Yildiz, Sevda Göktepe

    2015-01-01

    In this paper, our aim is to examine the effect of project based learning on 7th grade students' mathematical success in "Ratio, Proportion and Percentage" unit and attitudes towards mathematics. This study was implemented with 70 7th grade students of Atatürk Primary School in Eminönü District in Istanbul. Before starting the…

  13. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  14. Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.

    PubMed

    Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo

    2015-05-30

    SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3.

  15. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  16. A multiple model SNR/RCS likelihood ratio score for radar-based feature-aided tracking

    NASA Astrophysics Data System (ADS)

    Slocumb, Benjamin J.; Klusman, Michael E., III

    2005-09-01

    Most approaches to data association in target tracking use a likelihood-ratio based score for measurement-to-track and track-to-track matching. The classical approach uses a likelihood ratio based on kinematic data. Feature-aided tracking uses non-kinematic data to produce an "auxiliary score" that augments the kinematic score. This paper develops a nonkinematic likelihood ratio score based on statistical models for the signal-to-noise (SNR) and radar cross section (RCS) for use in narrowband radar tracking. The formulation requires an estimate of the target mean RCS, and a key challenge is the tracking of the mean RCS through significant "jumps" due to aspect dependencies. A novel multiple model approach is used track through the RCS jumps. Three solution are developed: one based on an α-filter, a second based on the median filter, and the third based on an IMM filter with a median pre-filter. Simulation results are presented that show the effectiveness of the multiple model approach for tracking through RCS transitions due to aspect-angle changes.

  17. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  18. A sequential nonparametric pattern classification algorithm based on the Wald SPRT. [Sequential Probability Ratio Test

    NASA Technical Reports Server (NTRS)

    Poage, J. L.

    1975-01-01

    A sequential nonparametric pattern classification procedure is presented. The method presented is an estimated version of the Wald sequential probability ratio test (SPRT). This method utilizes density function estimates, and the density estimate used is discussed, including a proof of convergence in probability of the estimate to the true density function. The classification procedure proposed makes use of the theory of order statistics, and estimates of the probabilities of misclassification are given. The procedure was tested on discriminating between two classes of Gaussian samples and on discriminating between two kinds of electroencephalogram (EEG) responses.

  19. Absorption and fluorescence emission spectroscopic characters of naphtho-homologated yy-DNA bases and effect of methanol solution and base pairing.

    PubMed

    Zhang, Laibin; Li, Huifang; Li, Jilai; Chen, Xiaohua; Bu, Yuxiang

    2010-03-01

    A comprehensive theoretical study of electronic transitions of naphtho-homologated base analogs, namely, yy-T, yy-C, yy-A, and yy-G, was performed. The nature of the low-lying excited states is discussed, and the results are compared with those from experiment and also with those of y-bases. Geometrical characteristics of the lowest excited singlet pipi* and npi* states were explored using the CIS method, and the effects of methanol solution and paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were examined. The calculated excitation and emission energies agree well with the measured data, where experimental results are available. In methanol solution, the fluorescence from yy-A and yy-G would be expected to occur around 539 and 562 nm, respectively, suggesting that yy-A is a green-colored fluorophore, whereas yy-G is a yellow-colored fluorophore. The methanol solution was found to red-shift both the absorption and emission maxima of yy-A, yy-T, and yy-C, but blue-shift those for yy-G. Generally, though base pairing has no significant effects on the absorption and fluorescence maxima of yy-A, yy-C, and yy-T, it blue-shifts those for yy-G.

  20. Determination of the concentration of mineral particles and suspended organic substance based on their spectral absorption

    NASA Astrophysics Data System (ADS)

    Konovalov, B. V.; Kravchishina, M. D.; Belyaev, N. A.; Novigatsky, A. N.

    2014-09-01

    A method to determine the concentrations of the particulate mineral matter ( C PMM) and the particulate organic matter ( C POM) is suggested. The values of C PMM and C POM are calculated from the measurements of the spectral coefficients of the light absorption a POM(440) and a PMM(750) using empirical equations. The latter have been obtained by comparing the concentrations of the suspended solids measured by means of the gravimetric method with the spectral values of the optical density of the suspended matter settled on membrane filters. The data used are typical of the coastal waters of inland and marginal seas and the open ocean and cover the range of three and two orders of magnitude for the concentrations of C PMM and C POM, respectively.

  1. Efficient and versatile graphene-based multilayers for EM field absorption

    NASA Astrophysics Data System (ADS)

    Mencarelli, D.; Pierantoni, L.; Stocchi, M.; Bellucci, S.

    2016-08-01

    We thoroughly investigate the possibility to absorb most (i.e., up to more than 90%) of the incident electro-magnetic radiations in thin multilayered PMMA/graphene structures, thus proposing the technical realization of a device with an operational frequency range in the millimeter-wave domain, i.e., 30 GHz-300 GHz. Our simulations demonstrate the concrete possibility to enhance the field absorption by means of a selective removal and proper micro-pattering within the graphene material, enabling a complete and efficient control of the graphene sheet conductance. This method is applied to design and engineer a class of devices, endowed with a wideband operation capability, showing almost no fluctuations throughout the whole range of mm-wave frequencies.

  2. [Genetic programming used for the measurement of CO concentration based on nondispersive infrared absorption spectroscopy].

    PubMed

    Chen, Jin; Duan, Fa-jie; Tong, Ying; Gao, Qiang

    2011-07-01

    Nondispersive infrared absorption spectroscopy(NDIR) is an important method to measure CO concentration in the air. In the present study, an open-path measurement system and continuous measuring device was developed, and genetic programming was used to establish the calibration model of subjects' light intensity sampling values. Continuous measurements were carried out in 10 different concentration of CO, and 40 sampled data were acquired and analyzed. For validation set, the correlation coefficient was 0.9997. The biggest relative error of validation was 4.00%, and the average relative error was 1.11%. Results show that genetic programming can be a good method for the modeling of gas concentration measurements equipped with NDIR systems.

  3. Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements.

    PubMed

    Pal, S R; Bissonnette, L R

    1998-09-20

    Single-scattering and multiple-scattering lidar signals are calculated for a spaceborne differential absorption lidar system for global ozone measurements at the on and off wavelength pair at 305 and 315 nm. The effect of multiple scattering is found to be negligible on stratospheric and tropospheric ozone retrieval under background stratospheric aerosol. Under low-visibility conditions in the planetary boundary layer the presence of multiple scattering causes an overestimation in maritime aerosol and an underestimation in urban as well as in rural aerosol. This effect is also examined in three cirrus models. The multiple scattering does not permit accurate ozone retrieval within cirrus; however, below it the solution recovers somewhat with generally an underestimation depending on the type and density of cirrus. The effect of aerosol and Rayleigh extinction on the ozone retrieval is also discussed.

  4. An assay for ribonuclease activity, based on ultraviolet absorption of RNA hydrolysate, using phosphotungstic acid.

    PubMed

    Isobe, K; Uchiyama, S

    1986-06-01

    In the method for the determination of ribonuclease activity that depends on the ultraviolet absorption of the RNA hydrolysate, the uranium reagent (25% perchloric acid solution containing 0.75% uranyl acetate) is commonly used for the efficient precipitation of the unhydrolyzed RNA. However, this reagent is always contaminated by the presence of radioactive isotopes. Radioactive uranium is one of the substances used for atomic nuclear fuel and therefore, at least in Japan, the use of uranium compounds requires permission from the government. We tried to find another efficient and non-radioactive precipitant of RNA to replace the uranium reagent, and have developed a phosphotungsten reagent (25% perchloric acid solution containing 0.75% phosphotungstic acid plus 0.6% bovine serum albumin solution) which functions as efficiently as the uranium reagent in the precipitation of RNA. A cell-free crude extract of Dictyostelium discoideum was used as the source of ribonuclease.

  5. Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/ 22Ne ratios

    NASA Astrophysics Data System (ADS)

    Peeters, Frank; Beyerle, Urs; Aeschbach-Hertig, Werner; Holocher, Johannes; Brennwald, Matthias S.; Kipfer, Rolf

    The interpretation of noble gas concentrations in groundwater with respect to recharge temperature and fractionated excess gas leads to different results on paleo-climatic conditions and on residence times depending on the choice of the gas partitioning model. Two fractionation models for the gas excess are in use, one assuming partial re-equilibration of groundwater supersaturated by excess air (PR-model, Stute et al., 1995), the other assuming closed-system equilibration of groundwater with entrapped air (CE-model, Aeschbach-Hertig et al., 2000). In the example of the Continental Terminal aquifers in Niger, PR- and CE- model are both consistent with the data on elemental noble gas concentrations (Ne, Ar, Kr, and Xe). Only by including the isotope ratio 20Ne/ 22Ne it can be demonstrated that the PR-model has to be rejected and the CE-model should be applied to the data. In dating applications 3He of atmospheric origin ( 3He atm) required to calculate 3H- 3He water ages is commonly estimated from the Ne excess presuming that gas excess is unfractionated air (UA-model). Including in addition to the Ne concentration the 20Ne/ 22Ne ratio and the concentration of Ar enables a rigorous distinction between PR-, CE- and UA-model and a reliable determination of 3He atm and of 3H- 3He water ages.

  6. ATP-Based Ratio Regulation of Glucose and Xylose Improved Succinate Production

    PubMed Central

    Zhang, Fengyu; Li, Jiaojiao; Liu, Huaiwei; Liang, Quanfeng; Qi, Qingsheng

    2016-01-01

    We previously engineered E. coli YL104H to efficiently produce succinate from glucose. Furthermore, the present study proved that YL104H could also co-utilize xylose and glucose for succinate production. However, anaerobic succinate accumulation using xylose as the sole carbon source failed, probably because of an insufficient supply of energy. By analyzing the ATP generation under anaerobic conditions in the presence of glucose or xylose, we indicated that succinate production was affected by the intracellular ATP level, which can be simply regulated by the substrate ratio of xylose to glucose. This finding was confirmed by succinate production using an artificial mixture containing different xylose to glucose ratios. Using xylose mother liquor, a waste containing both glucose and xylose derived from xylitol production, a final succinate titer of 61.66 g/L with an overall productivity of 0.95 g/L/h was achieved, indicating that the regulation of the intracellular ATP level may be a useful and efficient strategy for succinate production and can be extended to other anaerobic processes. PMID:27315279

  7. Mean ocean temperature change over the last glacial transition based on atmospheric changes in heavy noble mixing ratios

    NASA Astrophysics Data System (ADS)

    Bereiter, Bernhard; Severinghaus, Jeff; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji

    2016-04-01

    On paleo-climatic timescales heavy noble gases (Krypton and Xenon) are passively cycled through the atmosphere-ocean system without seeing any significant sink or source. Since the solubility in water of each gas species is characterized by a specific temperature dependency, mixing ratios in the atmosphere change with changing ocean temperatures. In this study, we use this fact to reconstruct mean global ocean temperatures (MOT) over the course of the last glacial transition based on measurements of trapped air in the WAIS Divide ice core. We analyzed 70 ice samples with a recently developed method which determines the isotopic ratios of N2, Ar, Kr (and in some cases also of Xe, though with less precision) and the elemental ratios of Kr/N2, Xe/N2 and Xe/Kr. We use the isotope ratios to correct the elemental ratios for gravitational enrichment in the firn column. The corrected elemental ratios are then used in a simple box model to reconstruct MOT. The three elemental ratio pairs are first interpreted as independent measures of MOT and then combined to a single "best-estimate" MOT record with an average uncertainty of 0.27°C. We find a clear link to Antarctic temperatures and a LGM-Holocene change in MOT of 2.4°C. This value is in good agreement with results from marine sediment cores (which, however, have an uncertainty of 1°C). Our record provides an unprecedented constrain on ocean heat uptake over the last glacial transition and therefore gives new insights in the mechanisms underlying long term ocean heat fluxes. To our knowledge, this is the first time that MOT has been reconstructed in such great detail.

  8. Reliable likelihood ratios for statistical model-based voice activity detector with low false-alarm rate

    NASA Astrophysics Data System (ADS)

    Kim, Younggwan; Suh, Youngjoo; Kim, Hoirin

    2011-12-01

    The role of the statistical model-based voice activity detector (SMVAD) is to detect speech regions from input signals using the statistical models of noise and noisy speech. The decision rule of SMVAD is based on the likelihood ratio test (LRT). The LRT-based decision rule may cause detection errors because of statistical properties of noise and speech signals. In this article, we first analyze the reasons why the detection errors occur and then propose two modified decision rules using reliable likelihood ratios (LRs). We also propose an effective weighting scheme considering spectral characteristics of noise and speech signals. In the experiments proposed in this study, with almost no additional computations, the proposed methods show significant performance improvement in various noise conditions. Experimental results also show that the proposed weighting scheme provides additional performance improvement over the two proposed SMVADs.

  9. Zinc absorption from composite meals. I. The significance of whest extraction rate, zinc, calcium, and protein content in meals based on bread.

    PubMed

    Sandström, B; Arvidsson, B; Cederblad, A; Björn-Rasmussen, E

    1980-04-01

    The absorption of zinc in man from composite meals based on bread was measured with a radionuclide technique using 65Zn and whole-body counting. Bread was made up from wheat flour of 100 and 72% extraction rate. A lower absolute amount of zinc was absorbed from the white bread compared to the absorption from the same amount of wholemeal bread. When the two types of bread were enriched with zinc chloride the absorption was higher from the white bread than from the wholemeal bread. Addition of calcium in the form of milk products improved the absorption of zinc from a meal with wholemeal bread. A significant positive correlation was found between zinc absorption and the protein content in meals containing milk, cheese, beef, and egg in various combinations with the wholemeal bread.

  10. Multiple Regression Model Based Sequential Probability Ratio Test for Structural Change Detection of Time Series

    NASA Astrophysics Data System (ADS)

    Takeda, Katsunori; Hattori, Tetsuo; Kawano, Hiromichi

    In real time analysis and forecasting of time series data, it is important to detect the structural change as immediately, correctly, and simply as possible. And it is necessary for rebuilding the next prediction model after the change point as soon as possible. For this kind of time series data analysis, in general, multiple linear regression models are used. In this paper, we present two methods, i.e., Sequential Probability Ratio Test (SPRT) and Chow Test that is well-known in economics, and describe those experimental evaluations of the effectiveness in the change detection using the multiple regression models. Moreover, we extend the definition of the detected change point in the SPRT method, and show the improvement of the change detection accuracy.

  11. Dissolution profile of novel composite pellet cores based on different ratios of microcrystalline cellulose and isomalt.

    PubMed

    Luhn, Oliver; Kállai, Nikolett; Nagy, Zsombor Kristóf; Kovács, Kristóf; Fritzsching, Bodo; Klebovich, Imre; Antal, István

    2012-08-01

    There is a growing interest towards the application of inert cores as starting materials for pharmaceutical pellet manufacturing. They serve as alternatives to develop and adapt a relatively simple manufacturing technology compared with an extrusion/spheronisation process. The major objective of this study was to investigate the effect of the compositions of core materials on the drug release profile. Pure microcrystalline cellulose (MCC), isomalt and different types of novel composite MCC-isomalt cores were layered with model drug (sodium diclofenac) and were coated with acrylic polymer. The effect of the osmolality in the gastrointestinal tract was simulated using glucose as osmotically active agent during in vitro dissolution tests. The results demonstrated the dependence of drug dissolution profile on the ratio of MCC and isomalt in the core and the influence of osmotic properties of the dissolution medium. Isomalt used in the composite core was able to decrease the vulnerability of the dissolution kinetics to the changes in the osmotic environment.

  12. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-01

    Heulser alloys Fe2Cr1-xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  13. Hyperspectral reflectance imaging for detecting citrus canker based on dual-band ratio image classification method

    NASA Astrophysics Data System (ADS)

    Li, Jiangbo; Rao, Xiuqin; Guo, Junxian; Ying, Yibin

    2010-10-01

    Citrus are one of the major fruit produced in China. Most of this production is exported to Europe for fresh consumption, where consumers increasingly demand best quality. Citrus canker is one of the most devastating diseases that threaten peel of most commercial citrus varieties. The aim of this research was to investigate the potential of using hyperspectral imaging technique for detecting canker lesions on citrus fruit. Navel oranges with cankerous, normal and various common diseased skin conditions including wind scar, thrips scarring, scale insect, dehiscent fruit, phytotoxicity, heterochromatic stripe, and insect damage were studied. The imaging system (400-1000 nm) was established to acquire reflectance images from samples. Region of interest (ROI) spectral feature of various diseased peel areas was analyzed and characteristic wavebands (630, 685, and 720 nm) were extracted. The dual-band reflectance ratio (such as Q720/685) algorithm was performed on the hyperspectral images of navel oranges for differentiating canker from normal fruit skin and other surface diseases. The overall classification success rate was 96.84% regardless of the presence of other confounding diseases. The presented processing approach overcame the presence of stem/navel on navel oranges that typically has been a problematic source for false positives in the detection of defects. Because of the limited sample size, delineation of an optimal detection scheme is beyond the scope of the current study. However, the results showed that two-band ratio (Q685/630) along with the use of a simple threshold value segmentation method for discriminating canker on navel oranges from other peel diseases may be feasible.

  14. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  15. An Application Of Optimization Based Expert System: Analysis Of Financial Ratios

    NASA Astrophysics Data System (ADS)

    Narasimhamurthi, N.; Dechen, R.

    1988-03-01

    This paper describes an application of rule-based expert system to the financial analysis of companies. The system was implemented on the Opine/Rubex system which uses ideas from optimization theory to drawing inferences. The paper provides a description of the expert system and the nature of the rule base. Typical analysis of two corporations is also presented.

  16. Solar-absorption measurements of ozone from two ground based FTIR sites

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  17. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  18. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  19. Enhancing and broadening absorption properties of frequency selective surfaces absorbers using FeCoB-based thin film

    NASA Astrophysics Data System (ADS)

    Ren, Wenyi; Nie, Yan; Xiong, Xuan; Zhang, Cui; Zhou, Yan; Gong, Rongzhou

    2012-04-01

    In this paper, the influence of FeCoB-based magnetic film on the absorption properties of traditional frequency selective surface (FSS) was investigated experimentally. A single-layer Minkowski fractal planar frequency selective surface was chosen, and the laser etching technique was proposed to fabricate aluminum-based FSS (AFSS) samples. Magnetic films were prepared by radio frequency magnetron sputtering, with the targets of Fe40Co40B20 and SiO2. It is found that after the magnetic film is incorporated, the bandwidth under -10 dB increases by 33.3% from 5.08 to 6.78 GHz and the peak value of reflectivity decreases from -12.46 to -38.41 dB. The 3.1-mm-thick radar absorber is relatively light and could obtain the reflectivity of -38.41 with -20 dB bandwidth of 1.85 GHz. As a consequence, under the circumstance that the total thickness of the sample maintains relatively constant, the magnetic thin film can effectively improve the absorption properties of the sample.

  20. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  1. A Bottom-Up Whole-Body Physiologically Based Pharmacokinetic Model to Mechanistically Predict Tissue Distribution and the Rate of Subcutaneous Absorption of Therapeutic Proteins.

    PubMed

    Gill, Katherine L; Gardner, Iain; Li, Linzhong; Jamei, Masoud

    2016-01-01

    The ability to predict subcutaneous (SC) absorption rate and tissue distribution of therapeutic proteins (TPs) using a bottom-up approach is highly desirable early in the drug development process prior to clinical data being available. A whole-body physiologically based pharmacokinetic (PBPK) model, requiring only a few drug parameters, to predict plasma and interstitial fluid concentrations of TPs in humans after intravenous and subcutaneous dosing has been developed. Movement of TPs between vascular and interstitial spaces was described by considering both convection and diffusion processes using a 2-pore framework. The model was optimised using a variety of literature sources, such as tissue lymph/plasma concentration ratios in humans and animals, information on the percentage of dose absorbed following SC dosing via lymph in animals and data showing loss of radiolabelled IgG from the SC dosing site in humans. The resultant model was used to predict t max and plasma concentration profiles for 12 TPs (molecular weight 8-150 kDa) following SC dosing. The predicted plasma concentration profiles were generally comparable to observed data. t max was predicted within 3-fold of reported values, with one third of the predictions within 0.8-1.25-fold. There was no systematic bias in simulated C max values, although a general trend for underprediction of t max was observed. No clear trend between prediction accuracy of t max and TP isoelectric point or molecular size was apparent. The mechanistic whole-body PBPK model described here can be applied to predict absorption rate of TPs into blood and movement into target tissues following SC dosing.

  2. The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Liang, Qing; Strahan, Susan E.

    2014-01-01

    The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed.

  3. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. PMID:26617032

  4. Colloidal quantum-dot-based silica gel glass: two-photon absorption, emission, and quenching mechanism.

    PubMed

    Li, Jingzhou; Dong, Hongxing; Zhang, Saifeng; Ma, Yunfei; Wang, Jun; Zhang, Long

    2016-09-28

    Two-photon (TP) three-dimensional solid matrices have potential applications in high density optical data reading and storage, infrared-pumped visible displays, lasers, etc. Such technologies will benefit greatly from the advantageous properties of TP materials including tunable emission wavelength, photostability, and simple chemical processing. Here, this ideal TP solid is made possible by using a facile sol-gel process to engineer colloid quantum dots into silica gel glass. Characterization using an open-aperture Z-scan technique shows that the solid matrices exhibited significant TP optical properties with a TP absorption coefficient of (9.41 ± 0.39) × 10(-2) cm GW(-1) and a third-order nonlinear figure of merit of (7.30 ± 0.30) × 10(-14) esu cm. In addition, the dependence of the TP properties on high-temperature thermal treatment is studied in detail to obtain a clear insight for practical applications. The results illustrate that the sample can maintain stable TP performance below the synthesis temperature of the CdTe/CdS colloidal quantum dots. Furthermore, the mechanisms for thermal quenching of photoluminescence under different temperature regimes are clarified as a function of the composition.

  5. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  6. Enhanced microwave absorption properties in cobalt-zinc ferrite based nanocomposites

    NASA Astrophysics Data System (ADS)

    Poorbafrani, A.; Kiani, E.

    2016-10-01

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were investigated. Cobalt-zinc ferrite powders, synthesized through PVA sol-gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt-zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than -10 dB in the whole C-band and 30% of the X-band frequencies.

  7. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors.

  8. Colloidal quantum-dot-based silica gel glass: two-photon absorption, emission, and quenching mechanism.

    PubMed

    Li, Jingzhou; Dong, Hongxing; Zhang, Saifeng; Ma, Yunfei; Wang, Jun; Zhang, Long

    2016-09-28

    Two-photon (TP) three-dimensional solid matrices have potential applications in high density optical data reading and storage, infrared-pumped visible displays, lasers, etc. Such technologies will benefit greatly from the advantageous properties of TP materials including tunable emission wavelength, photostability, and simple chemical processing. Here, this ideal TP solid is made possible by using a facile sol-gel process to engineer colloid quantum dots into silica gel glass. Characterization using an open-aperture Z-scan technique shows that the solid matrices exhibited significant TP optical properties with a TP absorption coefficient of (9.41 ± 0.39) × 10(-2) cm GW(-1) and a third-order nonlinear figure of merit of (7.30 ± 0.30) × 10(-14) esu cm. In addition, the dependence of the TP properties on high-temperature thermal treatment is studied in detail to obtain a clear insight for practical applications. The results illustrate that the sample can maintain stable TP performance below the synthesis temperature of the CdTe/CdS colloidal quantum dots. Furthermore, the mechanisms for thermal quenching of photoluminescence under different temperature regimes are clarified as a function of the composition. PMID:27602563

  9. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  10. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments. PMID:21343997

  11. Assessment of In Vivo Clinical Product Performance of a Weak Basic Drug by Integration of In Vitro Dissolution Tests and Physiologically Based Absorption Modeling.

    PubMed

    Ding, Xuan; Gueorguieva, Ivelina; Wesley, James A; Burns, Lee J; Coutant, Carrie A

    2015-11-01

    Effective integration of in vitro tests and absorption modeling can greatly improve our capability in understanding, comparing, and predicting in vivo performances of clinical drug products. In this case, we used a proprietary drug candidate galunisertib to describe the procedures of designing key in vitro tests, analyzing relevant experimental and trial data, and integrating them into physiologically based absorption models to evaluate the performances of its clinical products. By simulating the preclinical study result, we estimated high in vivo permeability for the drug. Given the high sensitivity of its solubility to pH, supersaturation may play an important role in the absorption of galunisertib. Using the dynamic dissolution test, i.e., artificial stomach-duodenum (ASD) model and simulation, we concluded galunisertib in solution or tablet products could maintain supersaturation during the transit in the gastrointestinal tract (GIT). A physiologically based absorption model was established by incorporating these key inputs in the simulation of Trial 1 results of galunisertib solution. To predict the performance of three tablet products, we developed z-factor dissolution models from the multi-pH USP dissolution results and integrate them into the absorption model. The resultant biopharmaceutical models provided good prediction of the extent of absorption of all three products, but underestimated the rate of absorption of one tablet product. Leveraging the ASD result and optimization with the dissolution model, we identified the limitation of the model due to complexity of estimating the dissolution parameter z and its in vitro-in vivo correlation.

  12. Structural damage identification based on change in geometric modal strain energy-eigenvalue ratio

    NASA Astrophysics Data System (ADS)

    Nguyen, Khac-Duy; Chan, Tommy HT; Thambiratnam, David P.

    2016-07-01

    This study presents a new damage identification method to locate and quantify damage using measured mode shapes and natural frequencies. A new vibration parameter, ratio of geometric modal strain energy to eigenvalue (GMSEE), has been developed and its change due to stiffness reduction has been formulated using a sensitivity matrix. This sensitivity matrix is estimated with measured modal parameters and basic information of the structure. For damage identification, firstly, the locations of damage and the correlative damage extents are identified by maximizing the correlation level between an analytical GMSEE change vector and a measured one. Herein, the genetic algorithm, which is a powerful evolutionary optimization algorithm, is utilized to solve this optimization problem. Secondly, the size of damage can be estimated using the proposed GMSEE technique and compared with a conventional technique using frequency change. A numerical 2D Truss bridge is used to demonstrate the performance of the proposed method in identifying single and multiple damage cases. Also, practicality of the method is tested with a laboratory eight degree-of-freedom system and a real bridge. Results illustrate the high capability of the method to identify structural damage with less modeling efforts.

  13. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    SciTech Connect

    Wang, Yu-Pu; Lim, Sze-Ter; Han, Gu-Chang; Teo, Kie-Leong

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  14. Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model

    NASA Astrophysics Data System (ADS)

    Naik, Udaykumar; Bapat, Vishram N.

    2016-09-01

    This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.

  15. pH-Induced Modulation of One- and Two-Photon Absorption Properties in a Naphthalene-Based Molecular Probe.

    PubMed

    Murugan, N Arul; Kongsted, Jacob; Ågren, Hans

    2013-08-13

    Presently, there is a great demand for small probe molecules that can be used for two-photon excitation microscopy (TPM)-based monitoring of intracellular and intraorganelle activity and pH. The candidate molecules should ideally possess a large two-photon absorption cross section with optical properties sensitive to pH changes. In the present work, we investigate the potential of a methoxy napthalene (MONAP) derivative for its suitability to serve as a pH sensor using TPM. Using an integrated approach rooted in hybrid quantum mechanics/molecular mechanics, the structures, dynamics, and the one- and two-photon properties of the probe in dimethylformamide solvent are studied. It is found that the protonated form is responsible for the optical property of MONAP at moderately low pH, for which the calculated pH-induced red shift is in good agreement with experiments. A 2-fold increase in the two-photon absorption cross section in the IR region of the spectrum is predicted for the moderately low pH form of the probe, suggesting that this can be a potential probe for pH monitoring of living cells. We also propose some design principles aimed at obtaining control of the absorption spectral range of the probe by structural tuning. Our work indicates that the integrated approach employed is capable of capturing the pH-induced changes in structure and optical properties of organic molecular probes and that such in silico tools can be used to draw structure-property relationships to design novel molecular probes suitable for a specific application.

  16. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-01

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  17. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  18. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper.

  19. Acid-base titration curves for acids with very small ratios of successive dissociation constants.

    PubMed

    Campbell, B H; Meites, L

    1974-02-01

    The shapes of the potentiometric acid-base titration curves obtained in the neutralizations of polyfunctional acids or bases for which each successive dissociation constant is smaller than the following one are examined. In the region 0 < < 1 (where is the fraction of the equivalent volume of reagent that has been added) the slope of the titration curve decreases as the number j of acidic or basic sites increases. The difference between the pH-values at = 0.75 and = 0.25 has (1 j)log 9 as the lower limit of its maximum value.

  20. Developing an Activity and Absorption-based Quality Control Platform for Chinese Traditional Medicine: Application to Zeng-Sheng-Ping

    PubMed Central

    Yin, Taijun; Yang, Guanyi; Ma, Yong; Xu, Beibei; Hu, Ming; You, Ming; Gao, Song

    2015-01-01

    Ethnopharmacological relevance Zeng-Sheng-Ping (ZSP) is a marketed Chinese traditional medicine used for cancer prevention. Aim of the study Currently, for the quality control of Chinese traditional medicines, marker compounds are not selected based on bioactivities and pharmaceutical behaviors in most of the cases. Therefore, even if the “quality” of the medicine is controlled, the pharmacological effect could still be inconsistent. The aim of this study is to establish an activity and absorption-based platform to select marker compound(s) for the quality control of Chinese traditional medicines. Materials and methods We used ZSP as a reference Chinese traditional medicine to establish the platform. Activity guided fractionation approach was used to purify the major components from ZSP. NMR and MS spectra were used to elucidate the structure of the isolated compounds. MTT assay against oral carcinoma cell line (SCC2095) was performed to evaluate the activities. UPLC-MS/MS was used to quantify the pure compounds in ZSP and the active fraction. The permeabilities of the identified compounds were evaluated in the Caco-2 cell culture model. The intracellular accumulation of the isolated compounds was evaluated in the SCC2095 cells. Results The major compounds were identified from ZSP. The contents, anti-proliferation activities, permeabilities, and intracellular accumulations of these compounds were also evaluated. The structure of these purified compounds were identified by comparing the NMR and MS data with those of references as rutaevine (1), limonin (2) , evodol (3), obacunone (4), fraxinellone (5), dictamnine (6), maackiain (7), trifolirhizin (8), and matrine (9). The IC50 of compounds 5, 6, and 7 against SCC2095 cells were significantly lower than that of ZSP. The uptake permeability of compounds 5, 6, and 7 were 2.58 ± 0. 3 × 10−5, 4.33 ± 0.5 × 10−5, and 4.27 ± 0.8 × 10−5 respectively in the Caco-2 cell culture model. The intracellular

  1. A Critique of Tax Based Cost/Benefit Ratios. The Rand Paper Series.

    ERIC Educational Resources Information Center

    Smith, James P.

    This paper examines the theoretical difficulties inherent in basing social investment decisions solely on considerations involving the additional tax payments and tax receipts the investment generates. Although the conceptual issues raised are quite general and could be applied to a wide variety of government financed investments, emphasis is on…

  2. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  3. Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xue, Lu; Min, Qin; Pin-Hua, Xie; Jun, Duan; Wu, Fang; Liu-Yi, Ling; Lan-Lan, Shen; Jian-Guo, Liu; Wen-Qing, Liu

    2016-02-01

    NO3 radicals accumulate during the night, thereby being the most critical night oxidant. Owing to the low concentration and dramatic variation, the detection of atmospheric NO3 radicals is still challenging. In this paper, an LED-based Long Path Differential Optical Absorption Spectroscopy (LPDOAS) instrument is developed for measuring the atmospheric NO3 radicals. This instrument is composed of a Schmidt-Cassegrain telescope, a combined emitting and receiving fiber, and a red LED equipped with a thermostat, and has a center wavelength of 660 nm, covering the NO3 strongest absorption peak (662 nm). The influence of LED temperature fluctuations is discussed. The temperature of the LED lamp with a home-made thermostat is tested, showing a stability of ±0.1 °C. The principle and fitting analyses of LED-LPDOAS are presented. A retrieval example and a time series of NO3 radical concentrations with good continuity for one night are shown. The detection limit of NO3 for 2.6-km optical path is about 10 ppt. Project supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB05040200 and XDB05010500).

  4. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  5. Long term NO2 measurements in Hong Kong using LED based Long Path Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2011-11-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 concentrations in the Kowloon Tong and Mong Kok district of Hong Kong and we compare the measurement results to concentrations reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time.

  6. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  7. [Comparison of Contrast to Noise Ratio and Signal Difference to Noise Ratio Based on QA and QC Guidelines in CR Mammography].

    PubMed

    Nagami, Akiko; Ishii, Mie; Ishii, Rie; Kodama, Sayaka; Sanada, Taizo; Yoshida, Akira

    2016-06-01

    The measurement methods of contrast to noise ratio (CNR) and signal difference to noise ratio (SDNR) in digital mammography are different among several quality assurance (QA) guidelines, that is, the type of pixel value (PV), phantom shape, location of aluminum plate, and the size of region of interest (ROI) principally differ in data acquisition. We compared CNR (SDNR) obtained from three QA guidelines. They are the European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services (EUREF), the International Electrotechnical Commission (IEC), and the International Atomic Energy Agency (IAEA). In EUREF and IEC, CNR was calculated using linearized pixel value (LPV). In IAEA, because the type of pixel value to use in SDNR was not specified, SDNR was calculated using PV and LPV, and CNR was calculated using LPV. Target/filter combinations are molybdenum/molybdenum (Mo/Mo) and molybdenum/rhodium (Mo/Rh). Applied various tube voltages are 25, 30, and 35 kV, and various phantom thicknesses are 20, 45, and 70 mm of polymethyl methacrylate (PMMA). The PV-SDNR of IAEA showed the largest value among the three methods, following LPV-CNR of IEC, LPV-CNR of EUREF at 20 mm PMMA thickness. In IAEA, SDNR changed by the kind of pixel value (PV or LPV). When CNR is calculated, every researcher should describe the type of guidelines, the kind of pixel value, and formula for calculation. PMID:27320154

  8. Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins

    NASA Astrophysics Data System (ADS)

    Chavan, Sagar Rohidas; Srinivas, V. V.

    2015-09-01

    Horton-Strahler (H-S) concept has been extensively used for quantification of characteristics of a stream network since several decades. The quantified values are often sensitive to threshold area specified for initiation of streams to demarcate the network, and to the position of outlet of a catchment. This implies that inferences drawn based on derived characteristics for a stream network are likely to be inconsistent, which is undesirable. To address this, a strategy based on self-similarity properties of channel network was proposed recently by Moussa (2009), which involves estimation of equivalent H-S ratios using catchment shape descriptors that are independent of threshold area. This study investigates effectiveness of the strategy on 42 catchments of various sizes in two Indian river basins (Cauvery and Mahanadi). Effect of digital elevation model (DEM) source on estimates of equivalent H-S ratios and characteristics of Geomorphologic Instantaneous Unit Hydrograph (GIUH) derived based on the same are examined by considering SRTM and ASTER DEMs. Results indicate that self-similarity assumptions are valid for the Indian catchments. Comparison of equivalent GIUH derived for each of the catchments based on real channel network with that derived using different DEM sources indicated differences that could be attributed to DEM-based uncertainty associated with estimates of: (i) equivalent H-S ratios that are functions of the self-similarity properties of channel network, and (ii) equivalent length of highest order stream that depends on self-similarity properties and configuration/characteristics of stream network. This uncertainty cannot be ignored in hydrological studies.

  9. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-01

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg-1 with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings were confirmed

  10. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.

    PubMed

    Young, Laura K; Love, Gordon D; Smithson, Hannah E

    2013-09-20

    Advances in ophthalmic instrumentation have allowed high order aberrations to be measured in vivo. These measurements describe the distortions to a plane wavefront entering the eye, but not the effect they have on visual performance. One metric for predicting visual performance from a wavefront measurement uses the visual Strehl ratio, calculated in the optical transfer function (OTF) domain (VSOTF) (Thibos et al., 2004). We considered how well such a metric captures empirical measurements of the effects of defocus, coma and secondary astigmatism on letter identification and on reading. We show that predictions using the visual Strehl ratio can be significantly improved by weighting the OTF by the spatial frequency band that mediates letter identification and further improved by considering the orientation of phase and contrast changes imposed by the aberration. We additionally showed that these altered metrics compare well to a cross-correlation-based metric. We suggest a version of the visual Strehl ratio, VScombined, that incorporates primarily those phase disruptions and contrast changes that have been shown independently to affect object recognition processes. This metric compared well to VSOTF for letter identification and was the best predictor of reading performance, having a higher correlation with the data than either the VSOTF or cross-correlation-based metric.

  11. Theory and Applications of a Faraday Filter-Based Spectrometer to Measure Sodium Nightglow D2/D1 Intensity Ratios

    NASA Astrophysics Data System (ADS)

    Harrell, S. D.; She, C.; Krueger, D. A.; Yuan, T.; Reising, S. C.

    2008-12-01

    The Chapman mechanism (1939) offers the accepted chemical pathway for the production of excited states of mesospheric sodium, leading to nightglow at two wavelengths: D2 (589.158 nm) and D1 (589.756 nm). While the Chapman mechanism leaves open the possibility that the intensity ratio of the two transitions may vary due to the chemical reaction involving atomic oxygen, early observations by Sipler and Biondi (1978) yielded the value of two within experimental error. Recent work by Slanger et al. (2005), however, showed that not only does the intensity ratio vary, but its value is related to the concentration ratio of atomic oxygen [O] to molecular oxygen [O2]. They proposed a modification of the Chapman mechanism involving two competing chemical pathways for sodium production to account for the observed variation. This paper will describe our compact, Faraday filter-based spectrometer to measure the D2/D1 intensity ratio of the sodium nightglow from the upper mesosphere. The novelty of this method also permits determination of the fractional contributions of the two chemical pathways to test the validity of the modified Chapman mechanism for Na chemistry, as well as to infer information about [O]/[O2]. Since the delineation between the two chemical pathways requires a spectral resolution of 0.0002 nm, this is not possible with any other existing instrument. With this spectrometer deployed at the Colorado State University sodium lidar facility (41°N, 105°W), we expect to be able to measure short-term variations of the sodium nightglow intensity ratio and the chemical pathway fraction, from which [O]/[O2] can be inferred. These observations may yield new insights into mesospheric chemistry, especially for atomic and molecular oxygen, which play a key role in upper atmospheric chemistry and dynamics.

  12. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  13. Comparative study between recent methods manipulating ratio spectra and classical methods based on two-wavelength selection for the determination of binary mixture of antazoline hydrochloride and tetryzoline hydrochloride

    NASA Astrophysics Data System (ADS)

    Abdel-Halim, Lamia M.; Abd-El Rahman, Mohamed K.; Ramadan, Nesrin K.; EL Sanabary, Hoda F. A.; Salem, Maissa Y.

    2016-04-01

    A comparative study was developed between two classical spectrophotometric methods (dual wavelength method and Vierordt's method) and two recent methods manipulating ratio spectra (ratio difference method and first derivative of ratio spectra method) for simultaneous determination of Antazoline hydrochloride (AN) and Tetryzoline hydrochloride (TZ) in their combined pharmaceutical formulation and in the presence of benzalkonium chloride as a preservative without preliminary separation. The dual wavelength method depends on choosing two wavelengths for each drug in a way so that the difference in absorbance at those two wavelengths is zero for the other drug. While Vierordt's method, is based upon measuring the absorbance and the absorptivity values of the two drugs at their λmax (248.0 and 219.0 nm for AN and TZ, respectively), followed by substitution in the corresponding Vierordt's equation. Recent methods manipulating ratio spectra depend on either measuring the difference in amplitudes of ratio spectra between 255.5 and 269.5 nm for AN and 220.0 and 273.0 nm for TZ in case of ratio difference method or computing first derivative of the ratio spectra for each drug then measuring the peak amplitude at 250.0 nm for AN and at 224.0 nm for TZ in case of first derivative of ratio spectrophotometry. The specificity of the developed methods was investigated by analyzing different laboratory prepared mixtures of the two drugs. All methods were applied successfully for the determination of the selected drugs in their combined dosage form proving that the classical spectrophotometric methods can still be used successfully in analysis of binary mixture using minimal data manipulation rather than recent methods which require relatively more steps. Furthermore, validation of the proposed methods was performed according to ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits. Statistical studies showed that the methods can be

  14. Effect of fibre aspect ratio onto the modulus of palm-based medium-density fibreboard

    NASA Astrophysics Data System (ADS)

    Azman, Azlin Mohmad; Badri, Khairiah Haji; Baharum, Azizah

    2015-09-01

    Polyurethane prepolymer (pPU) was used as a binder in the production of palm-based medium-density fibreboard (MDF). Untreated empty fruit bunch fibre (EFB) with three different fibre sizes was used and their effects on the mechanical and thermal properties of the MDF were studied. Palm kernel oil-based monoester polyol (PKO-p), 4,4-diphenylmethane diisocyanate (MDI) and polyethylene glycol 200 (PEG 200) were used to prepare the resin. Acetone was added into the resin as a solvent. Three different fibre sizes were used; 250 µm to 500 µm (MDF S1), 500 µm to 1000 µm (MDF S2) and 1000 µm to 2000 µm (MDF S3). Three points bending test showed that the flexural strength and modulus increased as the EFB fibres size decreased with optimum flexural strength at 46.7 MPa and optimum flexural modulus of 1923 MPa. The results were supported by the morphological study that showed better matrix encapsulation occurred in MDF S1, followed by MDF S2. The scenario was rather different in MDF S3 whereby uneven matrix distribution can be seen obviously with some matrix rich spots were found clearly. Bomb calorimetry analysis had also supported the results showing a decreasing trend in heat of combustion, led by MDF S1, followed by MDF S2 and finally MDF S3.

  15. A scaling transformation for classifier output based on likelihood ratio: Applications to a CAD workstation for diagnosis of breast cancer

    SciTech Connect

    Horsch, Karla; Pesce, Lorenzo L.; Giger, Maryellen L.; Metz, Charles E.; Jiang Yulei

    2012-05-15

    Purpose: The authors developed scaling methods that monotonically transform the output of one classifier to the ''scale'' of another. Such transformations affect the distribution of classifier output while leaving the ROC curve unchanged. In particular, they investigated transformations between radiologists and computer classifiers, with the goal of addressing the problem of comparing and interpreting case-specific values of output from two classifiers. Methods: Using both simulated and radiologists' rating data of breast imaging cases, the authors investigated a likelihood-ratio-scaling transformation, based on ''matching'' classifier likelihood ratios. For comparison, three other scaling transformations were investigated that were based on matching classifier true positive fraction, false positive fraction, or cumulative distribution function, respectively. The authors explored modifying the computer output to reflect the scale of the radiologist, as well as modifying the radiologist's ratings to reflect the scale of the computer. They also evaluated how dataset size affects the transformations. Results: When ROC curves of two classifiers differed substantially, the four transformations were found to be quite different. The likelihood-ratio scaling transformation was found to vary widely from radiologist to radiologist. Similar results were found for the other transformations. Our simulations explored the effect of database sizes on the accuracy of the estimation of our scaling transformations. Conclusions: The likelihood-ratio-scaling transformation that the authors have developed and evaluated was shown to be capable of transforming computer and radiologist outputs to a common scale reliably, thereby allowing the comparison of the computer and radiologist outputs on the basis of a clinically relevant statistic.

  16. Absorptivity of molded soil-improving agents based on brown coals and zeolites

    SciTech Connect

    Aleksandrov, I.V.; Kossov, I.I.

    1993-12-31

    The objective of this work was to create a new technique for producing molded soil-improving agents based on brown coal from the Adunchulun deposit, and to determine the soil-improving properties of the obtained compositions.

  17. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.

    PubMed

    Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko

    2013-09-01

    Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.

  18. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    PubMed Central

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  19. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films.

    PubMed

    Kim, Tae Young; Badsha, Md Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  20. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    NASA Astrophysics Data System (ADS)

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-03-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices.

  1. Pharmacokinetics, absorption, and excretion of radiolabeled revexepride: a Phase I clinical trial using a microtracer and accelerator mass spectrometry-based approach

    PubMed Central

    Flach, Stephen; Croft, Marie; Ding, Jie; Budhram, Ron; Pankratz, Todd; Pennick, Mike; Scarfe, Graeme; Troy, Steven; Getsy, Jay

    2016-01-01

    Purpose Gastroesophageal reflux disease involves the reflux of gastric and/or duodenal content into the esophagus. Prokinetic therapies, such as the selective 5-hydroxytryptamine receptor 4 agonist revexepride, may aid gastric emptying. This Phase I study evaluated the pharmacokinetics and excretion pathways of [14C]revexepride in healthy individuals using a microtracer approach with accelerator mass spectrometry. Participants and methods Six healthy men received a single oral dose of 2 mg [14C]revexepride containing ~200 nCi of radioactivity; blood, urine, and fecal samples were collected over a 10-day period. Results Almost 100% of 14C was recovered: 38.2%±10.3% (mean ± standard deviation) was recovered in urine, and 57.3%±0.4% was recovered in feces. Blood cell uptake was low, based on the blood plasma total radioactivity ratio of 0.8. The mean revexepride renal clearance was 8.6 L/h, which was slightly higher than the typical glomerular filtration rate in healthy individuals. Time to reach maximal concentration was 1.75±1.17 hours (mean ± standard deviation). No safety signals were identified. Conclusion This study demonstrated that revexepride had rapid and moderate-to-good oral absorption. Excretion of radioactivity was completed with significant amounts in feces and urine. Renal clearance slightly exceeded the typical glomerular filtration rate, suggesting the involvement of active transportation in the renal tubules. PMID:27729771

  2. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    SciTech Connect

    Dorchies, F. Fedorov, N.; Lecherbourg, L.

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  3. Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm

    NASA Astrophysics Data System (ADS)

    Strutynski, Clément; Picot-Clémente, Jérémy; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Kibler, Bertrand; Smektala, Frédéric

    2016-07-01

    We present the experimental development of two compact supercontinuum laser sources based on tellurite suspended core fibers with and without tapering post-processing. The pumping scheme makes use of commercially-available nJ-level femtosecond and picosecond fiber lasers at 1.56 and 2.06 μm respectively. The resulting spectral broadening that occurs in a few tens-of-centimeters of tellurite fiber allows coverage of the convenient molecular fingerprint region between 2 and 3 μm. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements in the mid-infrared by means of the supercontinuum absorption spectroscopy technique. Experimental results are in fairly good agreement with both numerical simulations of supercontinuum generation and spectroscopic predictions of the HITRAN database.

  4. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    PubMed

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  5. R2NA: Received Signal Strength (RSS) Ratio-Based Node Authentication for Body Area Network

    PubMed Central

    Wu, Yang; Wang, Kai; Sun, Yongmei; Ji, Yuefeng

    2013-01-01

    The body area network (BAN) is an emerging branch of wireless sensor networks for personalized applications. The services in BAN usually have a high requirement on security, especially for the medical diagnosis. One of the fundamental directions to ensure security in BAN is how to provide node authentication. Traditional research using cryptography relies on prior secrets shared among nodes, which leads to high resource cost. In addition, most existing non-cryptographic solutions exploit out-of-band (OOB) channels, but they need the help of additional hardware support or significant modifications to the system software. To avoid the above problems, this paper presents a proximity-based node authentication scheme, which only uses wireless modules equipped on sensors. With only one sensor and one control unit (CU) in BAN, we could detect a unique physical layer characteristic, namely, the difference between the received signal strength (RSS) measured on different devices in BAN. Through the above-mentioned particular difference, we can tell whether the sender is close enough to be legitimate. We validate our scheme through both theoretical analysis and experiments, which are conducted on the real Shimmer nodes. The results demonstrate that our proposed scheme has a good security performance.

  6. Comparison and applicability of landslide susceptibility models based on landslide ratio-based logistic regression, frequency ratio, weight of evidence, and instability index methods in an extreme rainfall event

    NASA Astrophysics Data System (ADS)

    Wu, Chunhung

    2016-04-01

    Few researches have discussed about the applicability of applying the statistical landslide susceptibility (LS) model for extreme rainfall-induced landslide events. The researches focuses on the comparison and applicability of LS models based on four methods, including landslide ratio-based logistic regression (LRBLR), frequency ratio (FR), weight of evidence (WOE), and instability index (II) methods, in an extreme rainfall-induced landslide cases. The landslide inventory in the Chishan river watershed, Southwestern Taiwan, after 2009 Typhoon Morakot is the main materials in this research. The Chishan river watershed is a tributary watershed of Kaoping river watershed, which is a landslide- and erosion-prone watershed with the annual average suspended load of 3.6×107 MT/yr (ranks 11th in the world). Typhoon Morakot struck Southern Taiwan from Aug. 6-10 in 2009 and dumped nearly 2,000 mm of rainfall in the Chishan river watershed. The 24-hour, 48-hour, and 72-hours accumulated rainfall in the Chishan river watershed exceeded the 200-year return period accumulated rainfall. 2,389 landslide polygons in the Chishan river watershed were extracted from SPOT 5 images after 2009 Typhoon Morakot. The total landslide area is around 33.5 km2, equals to the landslide ratio of 4.1%. The main landslide types based on Varnes' (1978) classification are rotational and translational slides. The two characteristics of extreme rainfall-induced landslide event are dense landslide distribution and large occupation of downslope landslide areas owing to headward erosion and bank erosion in the flooding processes. The area of downslope landslide in the Chishan river watershed after 2009 Typhoon Morakot is 3.2 times higher than that of upslope landslide areas. The prediction accuracy of LS models based on LRBLR, FR, WOE, and II methods have been proven over 70%. The model performance and applicability of four models in a landslide-prone watershed with dense distribution of rainfall

  7. Estimation of concentration ratio of indicator to pathogen-related gene in environmental water based on left-censored data.

    PubMed

    Kato, Tsuyoshi; Kobayashi, Ayano; Ito, Toshihiro; Miura, Takayuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-02-01

    A stochastic model for estimating the ratio between a fecal indicator and a pathogen based on left-censored data, which includes a substantially high number of non-detects, was constructed. River water samples were taken for 16 months at six points in a river watershed, and conventional fecal indicators (total coliforms and general Escherichia coli), genetic markers (Bacteroides spp.), and virulence genes (eaeA of enteropathogenic E. coli and ciaB of Campylobacter jejuni) were quantified. The quantification of general E. coli failed to predict the presence of the virulence gene from enteropathogenic E. coli, different from what happened with genetic markers (Total Bac and Human Bac). A Bayesian model that was adapted to left-censored data with a varying analytical quantification limit was applied to the quantitative data, and the posterior predictive distributions of the concentration ratio were predicted. When the sample size was 144, simulations conducted in this study suggested that 39 detects were enough to accurately estimate the distribution of the concentration ratio, when combined with a dataset with a positive rate higher than 99%. To evaluate the level of accuracy in the estimation, it is desirable to perform a simulation using an artificially generated left-censored dataset that has the identical number of non-detects as the actual data. PMID:26837826

  8. Relevancies of multiple-interaction events and signal-to-noise ratio for Anger-logic based PET detector designs

    NASA Astrophysics Data System (ADS)

    Peng, Hao

    2015-10-01

    A fundamental challenge for PET block detector designs is to deploy finer crystal elements while limiting the number of readout channels. The standard Anger-logic scheme including light sharing (an 8 by 8 crystal array coupled to a 2×2 photodetector array with an optical diffuser, multiplexing ratio: 16:1) has been widely used to address such a challenge. Our work proposes a generalized model to study the impacts of two critical parameters on spatial resolution performance of a PET block detector: multiple interaction events and signal-to-noise ratio (SNR). The study consists of the following three parts: (1) studying light output profile and multiple interactions of 511 keV photons within crystal arrays of different crystal widths (from 4 mm down to 1 mm, constant height: 20 mm); (2) applying the Anger-logic positioning algorithm to investigate positioning/decoding uncertainties (i.e., "block effect") in terms of peak-to-valley ratio (PVR), with light sharing, multiple interactions and photodetector SNR taken into account; and (3) studying the dependency of spatial resolution on SNR in the context of modulation transfer function (MTF). The proposed model can be used to guide the development and evaluation of a standard Anger-logic based PET block detector including: (1) selecting/optimizing the configuration of crystal elements for a given photodetector SNR; and (2) predicting to what extent additional electronic multiplexing may be implemented to further reduce the number of readout channels.

  9. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  10. InGaAlAs RW-based electro-absorption-modulated DFB-lasers for high-speed applications

    NASA Astrophysics Data System (ADS)

    Moehrle, Martin; Klein, Holger; Bornholdt, Carsten; Przyrembel, Georges; Sigmund, Ariane; Molzow, Wolf-Dietrich; Troppenz, Ute; Bach, Heinz-Gunter

    2014-05-01

    Electro-absorption modulated 10G and 25G DFB lasers (EML) are key components in transmission systems for long reach (up to 10 km) and extended reach (up to 80 km) applications. The next generation Ethernet will most likely be 400 Gb/s which will require components with even higher bandwidth. Commercially available EMLs are regarded as high-cost components due to their separate epitaxial butt-coupling growth process to separately optimize the DFB laser and the electro-absorption modulator (EAM). Alternatively the selective area growth (SAG) technique is used to achieve different MQW bandgaps in the DFB and EAM section of an EML. However for a lot of applications an emission wavelength within a narrow wavelength window is required enforcing a temperature controlled operation. All these applications can be covered with the developed EML devices that use a single InGaAlAs MQW waveguide for both the DFB and the EAM enabling a low-cost fabrication process similar to a conventional DFB laser diode. It will be shown that such devices can be used for 25Gb/s and 40Gb/s applications with excellent performance. By an additional monolithic integration of an impedance matching circuit the module fabrication costs can be reduced but also the modulation bandwidth of the devices can be further enhanced. Up to 70Gb/s modulation with excellent eye openings can be achieved. This novel approach opens the possibility for 100Gb/s NRZ EMLs and thus 4x100Gb/s NRZ EML-based transmitters in future. Also even higher bitrates seem feasible using more complex modulation formats such as e.g. DMT and PAM.

  11. Water Absorption of Jute/Polylactic Acid Composite Intended for an Interior Application and Comparison with Wood-Based Panels

    NASA Astrophysics Data System (ADS)

    Zandvliet, C.; Bandyopadhyay, N. R.; Ray, D.

    2014-04-01

    Jute/polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources with high mechanical properties. Thus, it could be a more eco-friendly alternative to the conventional wood-based panels made of formaldehyde resin which is asserted to be carcinogenic. Yet the water affinity of the natural fibres and susceptibility of polylactic acid towards hydrolysis raise a question about the water resistance of such composites in service condition. In this work, the water absorption behaviour of jute/PLA composites, jute/maleated polypropylene was investigated with regard to interior applications following the standard test method in accordance to ISO 16983:2003 `Wood-based panels—determination of swelling in thickness after immersion in water' and compared to standard of wood-based panels. Untreated and treated jute/PLA composites exhibited a superior water resistance property compared to particleboard, MDF and hardboard and they are by far, below the minimum requirement of the ISO standard 16983.

  12. CO{sub 2} absorption using dry potassium-based sorbents with different supports

    SciTech Connect

    Chuanwen Zhao; Xiaoping Chen; Changsui Zhao

    2009-09-15

    The CO{sub 2} capture characteristics of dry potassium-based sorbents were investigated with thermogravimetric analysis (TGA) and a bubbling fluidized-bed reactor. Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as coconut activated charcoal (AC1), coal active carbon (AC2), silica gel (SG), and activated alumina (Al{sub 2}O{sub 3}). Sorbents such as K{sub 2}CO{sub 3}/AC1, K{sub 2}CO{sub 3}/AC2, and K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} showed excellent carbonation capacity; The total conversion rates of those sorbents were 97.2, 95.9, and 95.2%, respectively in the TG test, and 89.2, 87.9, and 87.6%, respectively, in the fluidized-bed test. However, K{sub 2}CO{sub 3}/SG showed poor carbonation capacity, the total conversion rates were only 34.5 and 18.8%, respectively, in TG and fluidized-bed tests. The differences in carbonation capacity of those sorbents were analyzed by studying the microscopic structure and crystal structure of the supports and the sorbents with X-ray diffraction, scanning electron microscopy, and N{sub 2} adsorption tests. 23 refs., 10 figs.

  13. Long-term migration of iodine in sedimentary rocks based on iodine speciation and 129I/127I ratio

    NASA Astrophysics Data System (ADS)

    Togo, Y.; Takahashi, Y.; Amano, Y.; Matsuzaki, H.; Suzuki, Y.; Muramatsu, Y.; Iwatsuki, T.

    2012-12-01

    [Introduction] 129I is one of the available indexes of long-term migration of groundwater solutes, because of its long half-life (15.7 million years) and low sorption characteristics. The Horonobe underground research center (Japan Atomic Energy Agency), at which are conducted research and development of fundamental techniques on geological disposal of high-level radioactive waste, is an appropriate site for natural analogue studies, because iodine concentration in groundwater is high in this area. To predict iodine behavior in natural systems, speciation of iodine is essential because of different mobility among each species. In this study, we determined iodine speciation and129I/127I isotope ratios of rock and groundwater samples to investigate long term migration of iodine. [Methods] All rock and groundwater samples were collected at Horonobe underground research center. The region is underlain mainly by Neogene to Quaternary marine sedimentary rocks, the Wakkanai Formation (Wk Fm, siliceous mudstones), and the overlying Koetoi Formation (Kt Fm, diatomaceous mudstones). Iodine species in rock samples were determined by iodine K-edge X-ray absorption near edge structure (SPring-8 BL01B1). Thin sections of rock samples were prepared, and iodine mapping were obtained by micro-XRF analysis (SPring-8 BL37XU). Iodine species (IO3-, I-, and organic I) in groundwater were separately detected by high performance liquid chromatography connected to ICP-MS. The 129I/127I ratios in groundwater and rock samples were measured by accelerator mass spectrometry (MALT, Univ. of Tokyo). Iodine in rock samples were separated by pyrohydrolysis and water extraction. [Results and discussion] Concentration of iodine in groundwater varied widely and was much higher than that of seawater showing a high correlation with that of chlorine (R2 = 0.90). Species of iodine in groundwater was mainly I-. Iodine in rock samples decreased near the boundary between Wk and Kt Fms. Iodine K-edge XANES

  14. Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference-population-based thresholds and proof-of-concept.

    PubMed

    Piper, Thomas; Thomas, Andreas; Thevis, Mario; Saugy, Martial

    2012-09-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern

  15. Practical depolarization-ratio-based inversion procedure: lidar measurements of the Eyjafjallajökull ash cloud over the Netherlands.

    PubMed

    Donovan, David Patrick; Apituley, Arnoud

    2013-04-10

    In this paper we present a technique for estimating optical backscatter and extinction profiles using lidar, which exploits the difference between the observed linear volume depolarization ratio at 355 nm and the corresponding expected aerosol-only depolarization ratio. The technique is specific to situations where a single strongly depolarizing species is present and the associated linear particulate depolarization ratio may be presumed to be known to within a reasonable degree of accuracy (on the order of 10%). The basic principle of the technique is extended to deal with situations where a depolarizing fraction is mixed with nondepolarizing aerosol. In general, since the relative depolarization interchannel calibration is much more stable than the absolute system calibration, the depolarization-based technique is easier to implement than conventional techniques that require a profile-by-profile calibration or, equivalently, an identification of aerosol-free altitude intervals. This in particular allows for unattended data analysis and makes the technique well-suited to be part of a broader (volcanic ash) surveillance system. The technique is demonstrated by applying it to the analysis of aerosol layers resulting from the 2010 eruptions of the Eyjafjallajökull volcano in Iceland. The measurements were made at the Cabauw remote-sensing site in the central Netherlands. By comparing the results of the depolarization-based inversion with a more conventional manual inversion procedure as well as Raman lidar results, it is demonstrated that the technique can be successfully applied to the particular case of 355 nm depolarization lidar volcanic ash soundings, including cases in which the ash is mixed with nondepolarizing aerosol. PMID:23670771

  16. Investigations on hydrogen isotope ratios of endogenous urinary steroids: reference-population-based thresholds and proof-of-concept.

    PubMed

    Piper, Thomas; Thomas, Andreas; Thevis, Mario; Saugy, Martial

    2012-09-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully used in sports drug testing for many years to uncover the misuse of endogenous steroids. One limitation of the method is the availability of steroid preparations exhibiting CIRs equal to endogenous steroids. To overcome this problem, hydrogen isotope ratios (HIR) of endogenous urinary steroids were investigated as a potential complement; results obtained from a reference population of 67 individuals are presented herein. An established sample preparation method was modified and improved to enable separate measurements of each analyte of interest where possible. From the fraction of glucuronidated steroids; pregnanediol, 16-androstenol, 11-ketoetiocholanolone, androsterone (A), etiocholanolone (E), dehydroepiandrosterone (D), 5α- and 5β-androstanediol, testosterone and epitestosterone were included. In addition, sulfate conjugates of A, E, D, epiandrosterone and 17α- and 17β-androstenediol were considered and analyzed after acidic solvolysis. The obtained results enabled the calculation of the first reference-population-based thresholds for HIR of urinary steroids that can readily be applied to routine doping control samples. Proof-of-concept was accomplished by investigating urine specimens collected after a single oral application of testosterone-undecanoate. The HIR of most testosterone metabolites were found to be significantly influenced by the exogenous steroid beyond the established threshold values. Additionally, one regular doping control sample with an extraordinary testosterone/epitestosterone ratio of 100 without suspicious CIR was subjected to the complementary methodology of HIR analysis. The HIR data eventually provided evidence for the exogenous origin of urinary testosterone metabolites. Despite further investigations on HIR being advisable to corroborate the presented reference-population-based thresholds, the developed method proved to be a new tool supporting modern

  17. Rate-based modeling of reactive absorption of CO{sub 2} and H{sub 2}S into aqueous methyldiethanolamine

    SciTech Connect

    Pacheco, M.A.; Rochelle, G.T.

    1998-10-01

    A general framework was developed to model the transport processes that take place during reactive absorption when both rate- and equilibrium-controlled reactions occur in the liquid phase. This framework was applied to the selective absorption of H{sub 2}S from fuel gas containing CO{sub 2} using aqueous methyldiethanolamine. A rate-based distillation column module was used for the column integration. The Maxwell-Stefan and enhancement factor theories were utilized. In packed columns, CO{sub 2} absorption is controlled by diffusion with fast chemical reactions; in trayed columns it is controlled primarily by physical absorption. Gas-film resistance is never significant for CO{sub 2} absorption. For H{sub 2}S absorption, gas- and liquid-film resistances are important, and diffusion of bisulfide controls the liquid-film resistance. Heat effects produce temperatures bulges that can cause equilibrium pinches at the maximum temperature. This phenomenon gives an optimum packing height for the H{sub 2}S removal. Trayed columns are more selective than packed columns for H{sub 2}S removal, primarily because of the larger number of liquid-film mass transfer units.

  18. Ultrafast active cavitation imaging with enhanced cavitation to tissue ratio based on wavelet transform and pulse inversion.

    PubMed

    Liu, Runna; Hu, Hong; Xu, Shanshan; Huo, Rui; Wang, Supin; Wan, Mingxi

    2015-06-01

    The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.

  19. Joint Inversion of Receiver Function, Surface Wave Dispersion and ZH Ratio for Crustal Structure Based on Tikhonov Regularization

    NASA Astrophysics Data System (ADS)

    Yao, H.; Zhang, P.

    2015-12-01

    We proposed a joint iterative inversion method using receiver function, surface wave dispersion and ZH ratio data to better resolve 1-D crustal shear and compressional wave speed structure simultaneously. We implement a three-stage inversion strategy, which can take advantages of each dataset due to their complementary sensitivities to crust structures, to obtain structure information step by step using iterative linearized inversion approaches based on Tikhonov regularization of model parameters. We firstly invert surface wave dispersion and ZH ratio data to get 1-D shear velocity model, then incorporate P-wave receiver function data to obtain a much finer shear velocity model considering its high sensitivity to discontinuities. For the first two steps, the compressional velocity and density parameters are obtained from the shear velocity model using some empirical relationship. Finally, three datasets are further used to jointly invert for the compressional velocity structure based on the obtained shear velocity model. Synthetic tests show the superiority of joint inversion against separate inversion using only one or two datasets. They also demonstrate that the three-stage inversion strategy can make better use of different datasets to implement inversion physically and resolve finer crustal structure with more accuracy.

  20. Grading remodeling severity in asthma based on airway wall thickening index and bronchoarterial ratio measured with MSCT

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Brightling, Christopher; Grenier, Philippe A.

    2015-03-01

    Defining therapeutic protocols in asthma and monitoring patient response require a more in-depth knowledge on the disease severity and treatment outcome based on quantitative indicators. This paper aims at grading severity in asthma based on objective morphological measurements obtained in automated fashion from 3-D multi-slice computed tomography (MSCT) image datasets. These measures attempt to capture and quantify the airway remodeling process involved in asthma, both at the level of the airway wall thickness and airway lumen. Two morphological changes are thus targeted here, (1) the airway wall thickening measured as a global index characterizing the increase of wall thickness above a normal value of wall-to-lumen-radius ratio, and (2) the bronchoarterial ratio index assessed globally from numerous locations in the lungs. The combination of these indices provides a grading of the severity of the remodeling process in asthma which correlates with the known phenotype of the patients investigated. Preliminary application to assess the patient response in thermoplasty trials is also considered from the point of view of the defined indices.

  1. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Zhang, Rui

    2015-02-28

    A novel hierarchical heterostructure of Ni microspheres-CuO nano-rices was fabricated using a simple two-step process. The CuO rices were densely deposited on the surfaces of Ni microspheres. The phase purity, morphology, and structure of composite heterostructures are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Different structured Ni-CuO composite heterostructures are also investigated by adjusting the volume ratio of the reactants. The core-shell rice-like CuO-coated Ni exhibits better antioxidation capability than pure Ni due to the presence of the barrier effect of the CuO shell, which is revealed by the thermogravimetric analysis (TGA). In comparison with pristine Ni microspheres and CuO nanoflakes, the Ni-CuO composites exhibit excellent microwave absorption properties. Moreover, the amount of CuO plays a vital role in the microwave attenuation of Ni-CuO composites. The Ni-CuO heterostructures prepared at 0.017 M Cu(2+) exhibit the best electromagnetic wave absorption capabilities. A minimum reflection loss reaches -62.2 dB (>99.9999% microwave absorption) at 13.8 GHz with the thickness of only 1.7 mm. The effective absorption (below -10 dB) bandwidth can be tuned between 6.4 GHz and 18.0 GHz by tuning the absorber thickness of 1.3-3.0 mm. Thus, the Ni-CuO composite possesses a fascinating microwave absorption performance as a novel absorbing material with strong absorption, wide-band gap and thin thickness. PMID:25639203

  2. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Zhang, Rui

    2015-02-28

    A novel hierarchical heterostructure of Ni microspheres-CuO nano-rices was fabricated using a simple two-step process. The CuO rices were densely deposited on the surfaces of Ni microspheres. The phase purity, morphology, and structure of composite heterostructures are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Different structured Ni-CuO composite heterostructures are also investigated by adjusting the volume ratio of the reactants. The core-shell rice-like CuO-coated Ni exhibits better antioxidation capability than pure Ni due to the presence of the barrier effect of the CuO shell, which is revealed by the thermogravimetric analysis (TGA). In comparison with pristine Ni microspheres and CuO nanoflakes, the Ni-CuO composites exhibit excellent microwave absorption properties. Moreover, the amount of CuO plays a vital role in the microwave attenuation of Ni-CuO composites. The Ni-CuO heterostructures prepared at 0.017 M Cu(2+) exhibit the best electromagnetic wave absorption capabilities. A minimum reflection loss reaches -62.2 dB (>99.9999% microwave absorption) at 13.8 GHz with the thickness of only 1.7 mm. The effective absorption (below -10 dB) bandwidth can be tuned between 6.4 GHz and 18.0 GHz by tuning the absorber thickness of 1.3-3.0 mm. Thus, the Ni-CuO composite possesses a fascinating microwave absorption performance as a novel absorbing material with strong absorption, wide-band gap and thin thickness.

  3. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  4. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio.

    PubMed

    Tachibana, Yuya; Masuda, Takashi; Funabashi, Masahiro; Kunioka, Masao

    2010-10-11

    We have produced fully biomass-based poly(butylene succinate) (PBS) from furfural produced from inedible agricultural cellulosic waste. Furfural was oxidized to give fumaric acid. Fumaric acid was hydrogenated under high pressure with a palladium-rhenium/carbon catalyst to give 1,4-butanediol, and with a palladium/carbon catalyst to give succinic acid. Dimethyl succinate was synthesized from fumaric acid by esterification and hydrogenation under normal pressure. Fully biomass-based PBS was obtained by polycondensation of biomass-based 1,4-butanediol and biomass-based succinic acid or dimethyl succinate. The biomass carbon ratio calculated from (14)C concentrations measured by accelerator mass spectroscopy (AMS) verified that the PBS obtained in this study contained only biomass carbon. The polycondensation of biomass-based 1,4-butanediol and petroleum-based terephthalic acid or dimethyl terephthalate gave partially biomass-based poly(butylene terephthalate), which is an engineering plastic.

  5. Semi-mechanistic modelling of ammonia absorption in an acid spray wet scrubber based on mass balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model to describe reactive absorption of ammonia (NH3) in an acid spray scrubber was developed as a function of the combined overall mass transfer coefficient K. An experimental study of NH3 absorption using 1% dilute sulphuric acid was carried out under different operating conditions. An empiric...

  6. Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion.

    PubMed

    Pang, K Sandy; Durk, Matthew R

    2010-12-01

    The seminal paper on the liver physiologically-based pharmacokinetic (PBPK) model by Rowland et al. (J Pharmacokinet Biopharm 1:123-136, 1973) that described the influence of blood flow, intrinsic clearance, and binding on hepatic clearance had inspired further development of PBPK modeling of the liver, kidney and intestine as well as whole body. Shortly thereafter, a series of papers from Pang and Rowland compared the well-stirred and parallel-tube liver models and sparked further development on clearance concepts in the liver, including those described by the dispersion model. From 2005 onwards, several seminal papers by Rodgers and Rowland, in their recognition of the binding of molecules to tissue acidic and neutral phospholipids, improved the methodology in providing estimates of the tissue-to-plasma coefficient and rendering easy calculation of these hard-to-get constants. The improvement has strongly consolidated the basic premise on PBPK modeling and simulations and these basics have allowed scientists to focus on other important variables: membrane barriers, and transporter and enzyme and their heterogeneities that further impact drug disposition. In particular, the PBPK models have delved into sequential metabolism and futile cycling to illustrate how transporters and enzymes could affect the metabolism of drugs and metabolites. PBPK models that are especially pertinent to metabolite kinetics are being utilized in drug studies and risk assessment. These types of PBPK modeling reveal differences in kinetics between the formed vs. preformed metabolite, showing special considerations for membrane barriers, and the influence of competing pathways and competing organs.

  7. Design of mini-multi-gas monitoring system based on IR absorption

    NASA Astrophysics Data System (ADS)

    Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen

    2008-07-01

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  8. Performance evaluation of reflective electro-absorption modulator based optical source using a broadband light seed source for colorless WDM-PON applications.

    PubMed

    Kim, Chul Han

    2013-05-20

    The performance of reflective electro-absorption modulator (R-EAM) based optical source has been evaluated for the use in high-capacity wavelength-division multiplexed passive optical networks (WDM-PONs). In our measurements, a broadband light source (BLS) was used as a seeding source for the cost-effective implementation of R-EAM based optical source. At first, a bit-error rate (BER) floor at 10(-6) was observed even in a back-to-back configuration with the BLS seeded R-EAM source. This is mainly because of the excess intensity noise (EIN) within BLS and the signal-to-noise ratio (SNR) degradation induced by a high insertion loss of R-EAM. To mitigate both effects of EIN and SNR degradation, a reflective semiconductor optical amplifier (RSOA) was also used for the implementation of our BLS seeded R-EAM source. Then, we have evaluated the impact of various noises, such as EIN, chromatic dispersion of transmission fiber and in-band crosstalk, on the system's performance using our BLS seeded R-EAM optical source. From the results, we have found that a 3-dB bandwidth of the BLS seeded R-EAM optical source should be wider than ~0.8 nm to achieve an error-free transmission of 1.25 Gb/s signal. We have also confirmed that there was a trade-off between the dispersion- and the in-band crosstalk-induced penalties due to the wide source bandwidth of our BLS seeded R-EAM source, like the cases of BLS seeded RSOA and Fabry-Perot laser diode (FP-LD) sources. PMID:23736511

  9. Energy absorption ability of buckyball C720 at low impact speed: a numerical study based on molecular dynamics

    PubMed Central

    2013-01-01

    The dynamic impact response of giant buckyball C720 is investigated by using molecular dynamics simulations. The non-recoverable deformation of C720 makes it an ideal candidate for high-performance energy absorption. Firstly, mechanical behaviors under dynamic impact and low-speed crushing are simulated and modeled, which clarifies the buckling-related energy absorption mechanism. One-dimensional C720 arrays (both vertical and horizontal alignments) are studied at various impact speeds, which show that the energy absorption ability is dominated by the impact energy per buckyball and less sensitive to the number and arrangement direction of buckyballs. Three-dimensional stacking of buckyballs in simple cubic, body-centered cubic, hexagonal, and face-centered cubic forms are investigated. Stacking form with higher occupation density yields higher energy absorption. The present study may shed lights on employing C720 assembly as an advanced energy absorption system against low-speed impacts. PMID:23360618

  10. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-01

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.

  11. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    PubMed

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance. PMID:25554273

  12. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm-1 and 7185.6 cm-1 by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  13. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector.

    PubMed

    Li, Yu; Poon, Andrew W

    2015-01-12

    We propose and demonstrate active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption (DSA)-based photodetector (PD) for optical interconnects. We integrate an electro-optic (EO) tuner and a thermo-optic (TO) tuner on the microring, which are both feedback-controlled following a photocurrent threshold-detection method. Our BF(2)-ion-implanted DSA-based PIN PD exhibits a cavity-enhanced sub-bandgap responsivity at 1550 nm of 3.3 mA/W upon -2 V, which is 550-fold higher than that exhibited by an unimplanted PIN diode integrated on the same microring. Our experiment reveals active stabilization of the resonance wavelength within a tolerance of 0.07 nm upon a step increment of the stage temperature by 7 °C. Upon temperature modulations between 23 °C and 32 °C and between 18 °C and 23 °C, the actively stabilized resonance exhibits a transmission power fluctuation within 2 dB. We observe open eye diagrams at a data transmission rate of up to 30 Gb/s under the temperature modulations. PMID:25835682

  14. Past primary sex-ratio estimates of 4 populations of Loggerhead sea turtle based on TSP durations.

    NASA Astrophysics Data System (ADS)

    Monsinjon, Jonathan; Kaska, Yakup; Tucker, Tony; LeBlanc, Anne Marie; Williams, Kristina; Rostal, David; Girondot, Marc

    2016-04-01

    Ectothermic species are supposed to be strongly affected by climate change and particularly those that exhibit temperature-dependent sex-determination (TSD). Actually, predicting the embryonic response of such organism to incubation-temperature variations in natural conditions remains challenging. In order to assess the vulnerability of sea turtles, primary sex-ratio estimates should be produced at pertinent ecological time and spatial scales. Although information on this important demographic parameter is one of the priorities for conservation purpose, accurate methodology to produce such an estimate is still lacking. The most commonly used method invocates incubation duration as a proxy for sex-ratio. This method is inappropriate because temperature influences incubation duration during all development whereas sex is influenced by temperature during only part of development. The thermosensitive period of development for sex determination (TSP) lies in the middle third of development. A model of embryonic growth must be used to define precisely the position of the TSP at non-constant incubation temperatures. The thermal reaction norm for embryonic growth rate have been estimated for 4 distinct populations of the globally distributed and threatened marine turtle Caretta caretta. A thermal reaction norm describes the pattern of phenotypic expression of a single genotype across a range of temperatures. Moreover, incubation temperatures have been reconstructed for the last 35 years using a multi-correlative model with climate temperature. After development of embryos have been modelled, we estimated the primary sex-ratio based on the duration of the TSP. Our results suggests that Loggerhead sea turtles nesting phenology is linked with the period within which both sexes can be produced in variable proportions. Several hypotheses will be discussed to explain why Caretta caretta could be more resilient to climate change than generally thought for sex determination.

  15. High on/off ratio photosensitive field effect transistors based on few layer SnS2.

    PubMed

    Liu, Jianzhe; Xia, Congxin; Li, Honglai; Pan, Anlian

    2016-08-26

    2D layered SnS2 nanosheets have attracted increasing research interest due to their highly anisotropic structural, electrical, optical, and mechanical properties. Here, through mechanical exfoliation, few-layer SnS2 was obtained from as-synthesized many-layered bulk SnS2. Micro-characterization and Raman study demonstrate the hexagonal symmetry structure of the nanosheets so fabricated. The energy band structures of both SnS2 bulk and monolayer were investigated comparatively. A highly photosensitive field effect transistor based on the obtained few-layer SnS2 nanosheets was fabricated, which shows a high I photo/I dark ratio of 10(3), and keeps the responsivity and external quantum efficiency (EQE) at a realistic level of 8.5 A W(-1) and 1.2 × 10(3)% respectively. This 2D structured high on/off ratio photosensitive field effect device may find promising potential applications in functional electronic/optoelectronic devices or systems. PMID:27421108

  16. A sensitive label–free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio

    PubMed Central

    Zhou, Chunyang; Liu, Dali; Xu, Lin; Li, Qingling; Song, Jian; Xu, Sai; Xing, Ruiqing; Song, Hongwei

    2015-01-01

    A simple and accurate label–free amperometric immunosensor for α–fetoprotein (AFP) detection is developed based on gold nanorods (GNRs) with different aspect ratio and compared with gold particles (GNPs). The positively charged GNRs and GNPs due to the surface immobilized cetyltrimethyl ammonium bromide (CTAB) can adsorb the negatively charged AFP antibody (Ab) directly. The presence of the GNRs not only enhanced the immobilized amount of biomolecules, but also improved the electrochemical properties of the immunosensor. With the aid of GNRs, the electrochemical signal was greatly enhanced in comparison with GNPs. Under optimal conditions, the proposed immunosensor could detect AFP in a linear range from 0.1 to 200 ng/mL with a detection limit of 0.04 ng/mL (signal–to–noise ratio = 3), and it also possessed good reproducibility and storage stability. Moreover, the detection of AFP in five human serum samples also showed satisfactory accuracy. The proposed methodology was potentially attractive for clinical immunoassay. PMID:25909588

  17. A sensitive label-free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio.

    PubMed

    Zhou, Chunyang; Liu, Dali; Xu, Lin; Li, Qingling; Song, Jian; Xu, Sai; Xing, Ruiqing; Song, Hongwei

    2015-01-01

    A simple and accurate label-free amperometric immunosensor for α-fetoprotein (AFP) detection is developed based on gold nanorods (GNRs) with different aspect ratio and compared with gold particles (GNPs). The positively charged GNRs and GNPs due to the surface immobilized cetyltrimethyl ammonium bromide (CTAB) can adsorb the negatively charged AFP antibody (Ab) directly. The presence of the GNRs not only enhanced the immobilized amount of biomolecules, but also improved the electrochemical properties of the immunosensor. With the aid of GNRs, the electrochemical signal was greatly enhanced in comparison with GNPs. Under optimal conditions, the proposed immunosensor could detect AFP in a linear range from 0.1 to 200 ng/mL with a detection limit of 0.04 ng/mL (signal-to-noise ratio = 3), and it also possessed good reproducibility and storage stability. Moreover, the detection of AFP in five human serum samples also showed satisfactory accuracy. The proposed methodology was potentially attractive for clinical immunoassay. PMID:25909588

  18. High on/off ratio photosensitive field effect transistors based on few layer SnS2

    NASA Astrophysics Data System (ADS)

    Liu, Jianzhe; Xia, Congxin; Li, Honglai; Pan, Anlian

    2016-08-01

    2D layered SnS2 nanosheets have attracted increasing research interest due to their highly anisotropic structural, electrical, optical, and mechanical properties. Here, through mechanical exfoliation, few-layer SnS2 was obtained from as-synthesized many-layered bulk SnS2. Micro-characterization and Raman study demonstrate the hexagonal symmetry structure of the nanosheets so fabricated. The energy band structures of both SnS2 bulk and monolayer were investigated comparatively. A highly photosensitive field effect transistor based on the obtained few-layer SnS2 nanosheets was fabricated, which shows a high I photo/I dark ratio of 103, and keeps the responsivity and external quantum efficiency (EQE) at a realistic level of 8.5 A W‑1 and 1.2 × 103% respectively. This 2D structured high on/off ratio photosensitive field effect device may find promising potential applications in functional electronic/optoelectronic devices or systems.

  19. Base pair sensitivity and enhanced ON/OFF ratios of DNA-binding: donor-acceptor-donor fluorophores.

    PubMed

    Wilson, James N; Wigenius, Jens; Pitter, Demar R G; Qiu, Yanhua; Abrahamsson, Maria; Westerlund, Fredrik

    2013-10-10

    The photophysical properties of two recently reported live cell compatible, DNA-binding dyes, 4,6-bis(4-(4-methylpiperazin-1-yl)phenyl)pyrimidin-2-ol, 1, and [1,3-bis[4-(4-methylpiperazin-1-yl)phenyl]-1,3-propandioato-κO, κO']difluoroboron, 2, are characterized. Both dyes are quenched in aqueous solutions, while binding to sequences containing only AT pairs enhances the emission. Binding of the dyes to sequences containing only GC pairs does not produce a significant emission enhancement, and for sequences containing both AT and GC base pairs, emission is dependent on the length of the AT pair tracts. Through emission lifetime measurements and analysis of the dye redox potentials, photoinduced electron transfer with GC pairs is implicated as a quenching mechanism. Binding of the dyes to AT-rich regions is accompanied by bathochromic shifts of 26 and 30 nm, respectively. Excitation at longer wavelengths thus increases the ON/OFF ratio of the bound probes significantly and provides improved contrast ratios in solution as well as in fluorescence microscopy of living cells. PMID:24079271

  20. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application. PMID:27228784

  1. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application.

  2. n-p Type variation in thermoelectric AlMgB14-based materials by raw material mixture ratio

    NASA Astrophysics Data System (ADS)

    Fujima, Takuya; Arimatsu, Hideki; Miura, Shota; Yokoyama, Shun; Takagi, Ken-ichi

    2015-09-01

    We controlled the sign of Seebeck coefficient of AlMgB14-based thermoelectric materials by changing the raw material ratio for spark plasma sintering. The raw material powders of Al, Mg and B were mixed by V-shape mixer then sintered at 1773 K. Some sintered samples exhibited negative Seebeck coefficients and the others did positive as established for stoichiometric AlMgB14. The temperature dependence of electrical conductivity was different from each other type. Rietveld refinement for XRD results about the samples revealed that Mg site in the AlMgB14-lattice was occupied more for negative materials than the p-type ones and the negative samples had more valence electron than the other.

  3. Probabilistic evaluation of n traces with no putative source: A likelihood ratio based approach in an investigative framework.

    PubMed

    De March, I; Sironi, E; Taroni, F

    2016-09-01

    Analysis of marks recovered from different crime scenes can be useful to detect a linkage between criminal cases, even though a putative source for the recovered traces is not available. This particular circumstance is often encountered in the early stage of investigations and thus, the evaluation of evidence association may provide useful information for the investigators. This association is evaluated here from a probabilistic point of view: a likelihood ratio based approach is suggested in order to quantify the strength of the evidence of trace association in the light of two mutually exclusive propositions, namely that the n traces come from a common source or from an unspecified number of sources. To deal with this kind of problem, probabilistic graphical models are used, in form of Bayesian networks and object-oriented Bayesian networks, allowing users to intuitively handle with uncertainty related to the inferential problem. PMID:27490842

  4. The Affect of Realistic Geologic Heterogeneity on Local and Regional P/S Amplitude Ratios Based on Numerical Simulations

    SciTech Connect

    Myers, S C; Wagoner, J L; Preston, L; Smith, K; Larsen, S C

    2005-07-11

    Regional seismic discriminants based on high-frequency P/S ratios reliably distinguish between earthquakes and explosions. However, P/S discriminants in the 0.5 to 3 Hz band (where SNR can be highest) rarely perform well, with similar ratios for earthquake and explosion populations. Variability in discriminant performance has spawned numerous investigations into the generation of S-waves from explosions. Several viable mechanisms for the generation of S-waves from explosions have been forwarded, but most of these mechanisms do not explain observations of frequency-dependant S-wave generation. Recent studies have focused on the affect of near-source scattering to explain the frequency-dependence of both S-wave generation and P/S discriminant performance. In this study we investigate near-source scatter through numerical simulation with a realistic geological model We have constructed a realistic, 3-dimensional earth model of the southern Basin and Range. This regional model includes detailed constraints at the Nevada Test Site (NTS) based on extensive geologic and geophysical studies. Gross structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. Upper-crustal constraints are derived from geologic maps and detailed studies of sedimentary basin geometry throughout the study area. The free surface is based on a 10-meter digital elevation model (DEM) at NTS, and a 60-meter DEM elsewhere. The model extends to a depth of 150km, making it suitable for simulations at local and regional distances. Our simulation source is based on the 1993 Non-Proliferation Experiment explosion at the NTS. This shot was well recorded, offering ample validation data. Our validation tests include measures of long-period waveform fit and relative amplitude measurements for P and S phases. Our primary conclusion is that near-source topography

  5. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.

    PubMed

    Kim, Hyungki; Ng, Cheryl Y W; Algar, W Russ

    2014-05-20

    A plethora of semiconductor quantum dot (QD)-based probes that rely on Förster resonance energy transfer (FRET) have been developed for the optical detection of a wide array of biological targets. To date, the vast majority of these probes have utilized one-step energy transfer between individual donor-acceptor pairs. Here, we report a new multidonor concentric FRET configuration that comprised two fluorescent dyes assembled around a central CdSeS/ZnS QD through peptide linkers. One of these dyes, either Alexa Fluor 555 (A555) or Alexa Fluor 647 (A647), served as an acceptor for both the central QD and the other coassembled dye, Alexa Fluor 488 (A488). The unresolved emission between the A488 and the QD precluded a standard analysis of FRET efficiency from quenching of donor emission intensity or decay time, instead necessitating an analysis of the two energy transfer pathways from deconvolved excitation spectra. When A647 was the terminal acceptor, both the QD-to-A647 and A488-to-A647 energy transfer pathways could be interrogated with blue light, but only the former could be interrogated with violet light. The different degrees of A647 sensitization between these two excitation wavelengths was a predictable function of the above energy transfer efficiencies and dye stoichiometry, and was exploited for quantitative bioanalysis through an excitation ratio, which is in contrast to the conventional use of an emission ratio with FRET-based probes. Detection of the activity of nanomolar concentrations of trypsin, a model protease that hydrolyzed the A488-labeled peptide linker, was demonstrated using both a fluorescence plate reader and a low-cost, compact device that used two low-power light-emitting diodes (LEDs) as excitation sources and a silicon photodiode to detect A647 emission. This multidonor concentric FRET configuration represents a new modality for ratiometric biosensing with QDs and is potentially useful for portable in vitro diagnostics.

  6. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%.

    PubMed

    Gao, Liang; Zhang, Zhi-Guo; Xue, Lingwei; Min, Jie; Zhang, Jianqi; Wei, Zhixiang; Li, Yongfang

    2016-03-01

    High-efficiency all-polymer solar cells with less thickness-dependent behavior are demonstrated by using a low bandgap n-type conjugated polymer N2200 as acceptor and an absorption-complementary difluorobenzotriazole-based medium-bandgap polymer J51 as donor.

  7. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies.

    PubMed

    Kesisoglou, Filippos; Chung, John; van Asperen, Judith; Heimbach, Tycho

    2016-09-01

    In recent years, there has been a significant increase in use of physiologically based pharmacokinetic models in drug development and regulatory applications. Although most of the published examples have focused on aspects such as first-in-human (FIH) dose predictions or drug-drug interactions, several publications have highlighted the application of these models in the biopharmaceutics field and their use to inform formulation development. In this report, we present 5 case studies of use of such models in this biopharmaceutics/formulation space across different pharmaceutical companies. The case studies cover different aspects of biopharmaceutics or formulation questions including (1) prediction of absorption prior to FIH studies; (2) optimization of formulation and dissolution method post-FIH data; (3) early exploration of a modified-release formulation; (4) addressing bridging questions for late-stage formulation changes; and (5) prediction of pharmacokinetics in the fed state for a Biopharmaceutics Classification System class I drug with fasted state data. The discussion of the case studies focuses on how such models can facilitate decisions and biopharmaceutic understanding of drug candidates and the opportunities for increased use and acceptance of such models in drug development and regulatory interactions. PMID:26886317

  8. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults

    PubMed Central

    Yang, Xiaoxia; Duan, John; Fisher, Jeffrey

    2016-01-01

    A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791

  9. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications.

    PubMed

    Wulfmeyer, V; Bösenberg, J

    1998-06-20

    The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m(3) in the near range using 75 m and-depending on the meteorological conditions-approximately 0.25 g/m(3) at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites. PMID:18273352

  10. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications.

    PubMed

    Wulfmeyer, V; Bösenberg, J

    1998-06-20

    The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m(3) in the near range using 75 m and-depending on the meteorological conditions-approximately 0.25 g/m(3) at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites.

  11. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future. PMID:16212162

  12. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.

  13. Intelligent information extraction from reflectance spectra Absorption band positions. [application to laboratory and earth-based telescope spectra

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Jones, J. L.

    1986-01-01

    A multiple high-order derivative analysis algorithm has been developed which can automatically extract absorption band positions from low-quality reflectance spectra with little degredation of accuracy. Overlapping bands with comparable widths and intensities can be resolved whose centers are as close as 0.3-0.5 W, with safer resolution limits of 0.6-1.0 W band center separations suggested for overlapping bands that are dissimilar. The segment length for smoothing is continually adjusted to about 0.5 W to minimize signal distortion, and a spectral pattern recognition algorithm predicts the signal spectrum and calculates approximate W across the spectrum using its second derivative. A single-pass cubic spline is applied to the smoothed data, and a sliding segment sixth-order polynomial is fit to the spectrum, with the length of the segment being continuously locally adjusted to 1.0 W across the spectrum. Good reliability and consistency of the algorithm is demonstrated with application to laboratory and earth-based telescope spectra.

  14. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  15. Deactivation Mechanisms of Ni-Based Tar Reforming Catalysts As Monitored by X-ray Absorption Spectroscopy

    SciTech Connect

    Yung, Matthew M.; Kuhn, John N.

    2010-12-06

    Deactivation mechanisms of alumina-supported, Ni-based catalysts for tar reforming in biomass-derived syngas were evaluated using extended X-ray absorption fine structure (EXAFS) spectroscopy. Catalysts were characterized before and after catalytic reaction cycles and regeneration procedures, which included oxidation by a mixture of steam and air, and reduction in hydrogen. Qualitative analysis of the EXAFS spectra revealed that oxidation of a portion of the Ni in the catalysts to form an oxide phase and/or a sulfide phase were likely scenarios that led to catalyst deactivation with time-on-stream and with increased reaction cycles. Deactivation through carbon deposition, phosphorus poisoning, or changes in particle size were deemed as unlikely causes. Quantitative analysis of the EXAFS spectra indicated sulfur poisoning occurred with time-on-stream, and the contaminating species could not be completely removed during the regeneration protocols. The results also verified that Ni-containing oxide phases (most likely a spinel also containing Mg and Al) formed and contributed to the deactivation. This study validates the need for developing catalyst systems that will protect Ni from sulfur poisoning and oxide formation at elevated reaction and regeneration temperatures.

  16. A carbon monoxide detection device based on mid-infrared absorption spectroscopy at 4.6 μm

    NASA Astrophysics Data System (ADS)

    Li, Guo-Lin; Sui, Yue; Dong, Ming; Ye, Wei-Lin; Zheng, Chuan-Tao; Wang, Yi-Ding

    2015-05-01

    We present a differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g., light collector) and a multi-pass gas chamber. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path, and environmental changes. The detection principle of the device is described, and both the optical part and the electrical part are designed and developed. Experiments are carried out to evaluate the sensing performances on CO concentration. The results indicate that the limit of detection is about 10 ppm with an absorption length of 40 cm. As the gas concentration gets larger than 100 ppm, the relative detection error falls into the range of -1.7 to +1.9 %. Based on 12-h long-term measurements on the 100 and 1000 ppm CO samples, the maximum detection errors are about 0.9 and 5.5 %, respectively. Benefit from low cost and competitive characteristics, the proposed device shows potential applications in CO detection under the circumstances of coal-mine production and environmental protection.

  17. Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-Tao; Huang, Jian-Qiang; Ye, Wei-Lin; Lv, Mo; Dang, Jing-Min; Cao, Tian-Shu; Chen, Chen; Wang, Yi-Ding

    2013-11-01

    A portable near-infrared (NIR) CH4 detection sensor based on a distributed feedback (DFB) laser modulated at 1.654 μm is experimentally demonstrated. Intelligent temperature controller with an accuracy of -0.07 to +0.09 °C as well as a scan and modulation module generating saw-wave and cosine-wave signals are developed to drive the DFB laser, and a cost effective lock-in amplifier used to extract the second harmonic signal is integrated. Thorough experiments are carried out to obtain detection performances, including detection range, accuracy, stability and the minimum detection limit (MDL). Measurement results show that the absolute detection error relative to the standard value is less than 7% within the range of 0-100%, and the MDL is estimated to be about 11 ppm under an absorption length of 0.2 m and a noise level of 2 mVpp. Twenty-four hours monitoring on two gas samples (0.1% and 20%) indicates that the absolute errors are less than 7% and 2.5%, respectively, suggesting good long term stability. The sensor reveals competitive characteristics compared with other reported portable or handheld sensors. The developed sensor can also be used for the detection of other gases by adopting other DFB lasers with different center-wavelength using the same hardware and slightly modified software.

  18. Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves.

    PubMed Central

    Donoso, J; Muñoz, F; Garcia Blanco, F

    1993-01-01

    The absorption spectra of the coenzyme [pyridoxal 5'-phosphate (PLP)] in glycogen phosphorylase a (GPha), glycogen phosphorylase b (GPhb) and of the latter bound to various effectors and substrates were analysed on the basis of log-normal distribution curves. The results obtained showed that the ionization state of the PLP and GPha environment differs from that of GPhb. This divergence was interpreted in terms of tautomeric equilibria between some forms of the Schiff base of PLP and enzymic Lys-679. The ionic forms are slightly more predominant in GPha than they are in GPhb, so ionic and/or hydrogen-bonding interactions between the aromatic ring of PLP and GPha must be stronger than with GPhb. This confirms the purely structural role of the aromatic ring of the coenzyme. Binding of GPhb to AMP and Mg2+ results in the coenzyme adopting a similar state as in GPha. On the other hand, binding to IMP gives rise to no detectable changes in the tautomeric equilibrium of the coenzyme. PMID:8503849

  19. Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy.

    PubMed

    Yung, Matthew M; Kuhn, John N

    2010-11-01

    Deactivation mechanisms of alumina-supported, Ni-based catalysts for tar reforming in biomass-derived syngas were evaluated using extended X-ray absorption fine structure (EXAFS) spectroscopy. Catalysts were characterized before and after catalytic reaction cycles and regeneration procedures, which included oxidation by a mixture of steam and air, and reduction in hydrogen. Qualitative analysis of the EXAFS spectra revealed that oxidation of a portion of the Ni in the catalysts to form an oxide phase and/or a sulfide phase were likely scenarios that led to catalyst deactivation with time-on-stream and with increased reaction cycles. Deactivation through carbon deposition, phosphorus poisoning, or changes in particle size were deemed as unlikely causes. Quantitative analysis of the EXAFS spectra indicated sulfur poisoning occurred with time-on-stream, and the contaminating species could not be completely removed during the regeneration protocols. The results also verified that Ni-containing oxide phases (most likely a spinel also containing Mg and Al) formed and contributed to the deactivation. This study validates the need for developing catalyst systems that will protect Ni from sulfur poisoning and oxide formation at elevated reaction and regeneration temperatures. PMID:20586431

  20. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-01

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  1. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues.

    PubMed

    Baciocchi, Renato; Carnevale, Ennio; Costa, Giulia; Gavasci, Renato; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela

    2013-12-01

    This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction.

  2. Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment.

    PubMed

    Wang, Jianing; Zheng, Lingjiao; Niu, Xintao; Zheng, Chuantao; Wang, Yiding; Tittel, Frank K

    2016-09-01

    A mid-infrared carbon dioxide (CO2) sensor was experimentally demonstrated for application in a greenhouse farm environment. An optical module was developed using a lamp source, a dual-channel pyre-electrical detector, and a spherical mirror. A multi-pass gas chamber and a dual-channel detection method were adopted to effectively enhance light collection efficiency and suppress environmental influences. The moisture-proof function realized by a breathable waterproof chamber was specially designed for the application of such a sensor in a greenhouse with high humidity. Sensor structure of the optical part and electrical part were described, respectively, and related experiments were carried out to evaluate the sensor performance on CO2 concentration. The limit of detection of the sensor is 30 ppm with an absorption length of 30 cm. The relative detection error is less than 5% within the measurement range of 30-5000 ppm. The fluctuations for the long-term (10 h) stability measurements on a 500 ppm CO2 sample and a 2000 ppm CO2 sample are 1.08% and 3.6%, respectively, indicating a good stability of the sensor. A wireless sensor network-based automatic monitoring system was implemented for greenhouse application using multiple mid-infrared CO2 sensor nodes. A monitor software based on LabVIEW was realized via a laptop for real-time environmental data display, storage, and website sharing capabilities. A field experiment of the sensor network was carried out in the town of Shelin in Jilin Province, China, which proved that the whole monitoring system possesses stable sensing performance for practical application under the circumstances of a greenhouse. PMID:27607279

  3. Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment.

    PubMed

    Wang, Jianing; Zheng, Lingjiao; Niu, Xintao; Zheng, Chuantao; Wang, Yiding; Tittel, Frank K

    2016-09-01

    A mid-infrared carbon dioxide (CO2) sensor was experimentally demonstrated for application in a greenhouse farm environment. An optical module was developed using a lamp source, a dual-channel pyre-electrical detector, and a spherical mirror. A multi-pass gas chamber and a dual-channel detection method were adopted to effectively enhance light collection efficiency and suppress environmental influences. The moisture-proof function realized by a breathable waterproof chamber was specially designed for the application of such a sensor in a greenhouse with high humidity. Sensor structure of the optical part and electrical part were described, respectively, and related experiments were carried out to evaluate the sensor performance on CO2 concentration. The limit of detection of the sensor is 30 ppm with an absorption length of 30 cm. The relative detection error is less than 5% within the measurement range of 30-5000 ppm. The fluctuations for the long-term (10 h) stability measurements on a 500 ppm CO2 sample and a 2000 ppm CO2 sample are 1.08% and 3.6%, respectively, indicating a good stability of the sensor. A wireless sensor network-based automatic monitoring system was implemented for greenhouse application using multiple mid-infrared CO2 sensor nodes. A monitor software based on LabVIEW was realized via a laptop for real-time environmental data display, storage, and website sharing capabilities. A field experiment of the sensor network was carried out in the town of Shelin in Jilin Province, China, which proved that the whole monitoring system possesses stable sensing performance for practical application under the circumstances of a greenhouse.

  4. All-optical switching in a symmetric three-waveguide coupler with phase-mismatched absorptive central waveguide.

    PubMed

    Chen, Yijing; Ho, Seng-Tiong; Krishnamurthy, Vivek

    2013-12-20

    All-optical switching operation based on manipulation of absorption in a three-waveguide directional coupler is theoretically investigated. The proposed structure consists of one absorptive central waveguide and two identical passive side waveguides. Optically induced absorption change in the central waveguide effectively controls the coupling of light between the two side waveguides, leading to optical switching action. The proposed architecture alleviates the fabrication challenges and waveguide index matching conditions that limit previous demonstrations of similar switching schemes based on a two-waveguide directional coupler. The proposed device accommodates large modal index difference between absorptive and passive waveguides without compromising the switching extinction ratio.

  5. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  6. Searching for first-degree familial relationships in California's offender DNA database: validation of a likelihood ratio-based approach.

    PubMed

    Myers, Steven P; Timken, Mark D; Piucci, Matthew L; Sims, Gary A; Greenwald, Michael A; Weigand, James J; Konzak, Kenneth C; Buoncristiani, Martin R

    2011-11-01

    A validation study was performed to measure the effectiveness of using a likelihood ratio-based approach to search for possible first-degree familial relationships (full-sibling and parent-child) by comparing an evidence autosomal short tandem repeat (STR) profile to California's ∼1,000,000-profile State DNA Index System (SDIS) database. Test searches used autosomal STR and Y-STR profiles generated for 100 artificial test families. When the test sample and the first-degree relative in the database were characterized at the 15 Identifiler(®) (Applied Biosystems(®), Foster City, CA) STR loci, the search procedure included 96% of the fathers and 72% of the full-siblings. When the relative profile was limited to the 13 Combined DNA Index System (CODIS) core loci, the search procedure included 93% of the fathers and 61% of the full-siblings. These results, combined with those of functional tests using three real families, support the effectiveness of this tool. Based upon these results, the validated approach was implemented as a key, pragmatic and demonstrably practical component of the California Department of Justice's Familial Search Program. An investigative lead created through this process recently led to an arrest in the Los Angeles Grim Sleeper serial murders.

  7. A Clustered Multiclass Likelihood-Ratio Ensemble Method for Family-Based Association Analysis Accounting for Phenotypic Heterogeneity.

    PubMed

    Wen, Yalu; Lu, Qing

    2016-09-01

    Although compelling evidence suggests that the genetic etiology of complex diseases could be heterogeneous in subphenotype groups, little attention has been paid to phenotypic heterogeneity in genetic association analysis of complex diseases. Simply ignoring phenotypic heterogeneity in association analysis could result in attenuated estimates of genetic effects and low power of association tests if subphenotypes with similar clinical manifestations have heterogeneous underlying genetic etiologies. To facilitate the family-based association analysis allowing for phenotypic heterogeneity, we propose a clustered multiclass likelihood-ratio ensemble (CMLRE) method. The proposed method provides an alternative way to model the complex relationship between disease outcomes and genetic variants. It allows for heterogeneous genetic causes of disease subphenotypes and can be applied to various pedigree structures. Through simulations, we found CMLRE outperformed the commonly adopted strategies in a variety of underlying disease scenarios. We further applied CMLRE to a family-based dataset from the International Consortium to Identify Genes and Interactions Controlling Oral Clefts (ICOC) to investigate the genetic variants and interactions predisposing to subphenotypes of oral clefts. The analysis suggested that two subphenotypes, nonsyndromic cleft lip without palate (CL) and cleft lip with palate (CLP), shared similar genetic etiologies, while cleft palate only (CP) had its own genetic mechanism. The analysis further revealed that rs10863790 (IRF6), rs7017252 (8q24), and rs7078160 (VAX1) were jointly associated with CL/CLP, while rs7969932 (TBK1), rs227731 (17q22), and rs2141765 (TBK1) jointly contributed to CP. PMID:27321816

  8. Giant peak to valley ratio in a GaN based resonant tunnel diode with barrier width modulation

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Sandeep; Saha, Dipankar

    2016-10-01

    A barrier width modulated GaN based resonant tunnel diode is theoretically proposed which exhibits a giant peak to valley current ratio as high as 60 and a high negative differential conductance (NDC) of 1.77 × 106 S/cm2 with very low valley current density of 3 mA/cm2. This is achieved by the unique characteristic of the device current which monotonically decreases for applied voltages greater than the valley voltage in our simulation window. This is in contrast to all the other negative differential conductance based devices which experience an immediate exponential increase in current after the NDC region. The proposed device is also the first bidirectional tunneling diode which shows negative differential conductance for both polarity of the applied bias which is normally not observed with the conventional GaN/AlGaN double barrier structures due to the strong asymmetry arising from the internal electric fields due to polarization. The unique characteristics of the device can be attributed to the use of a modulated barrier width which is made possible by a polarization modulating InGaN layer and efficient utilization of internal electric fields in III-nitrides.

  9. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.

    PubMed

    Ding, Xiao-Rong; Zhang, Yuan-Ting

    2015-01-01

    The most commonly used method for cuffless blood pressure (BP) measurement is using pulse transit time (PTT), which is based on Moens-Korteweg (M-K) equation underlying the assumption that arterial geometries such as the arterial diameter keep unchanged. However, the arterial diameter is dynamic which varies over the cardiac cycle, and it is regulated through the contraction or relaxation of the vascular smooth muscle innervated primarily by the sympathetic nervous system. This may be one of the main reasons that impair the BP estimation accuracy. In this paper, we propose a novel indicator, the photoplethysmogram (PPG) intensity ratio (PIR), to evaluate the arterial diameter change. The deep breathing (DB) maneuver and Valsalva maneuver (VM) were performed on five healthy subjects for assessing parasympathetic and sympathetic nervous activities, respectively. Heart rate (HR), PTT, PIR and BP were measured from the simultaneously recorded electrocardiogram (ECG), PPG, and continuous BP. It was found that PIR increased significantly from inspiration to expiration during DB, whilst BP dipped correspondingly. Nevertheless, PIR changed positively with BP during VM. In addition, the spectral analysis revealed that the dominant frequency component of PIR, HR and SBP, shifted significantly from high frequency (HF) to low frequency (LF), but not obvious in that of PTT. These results demonstrated that PIR can be potentially used to evaluate the smooth muscle tone which modulates arterial BP in the LF range. The PTT-based BP measurement that take into account the PIR could therefore improve its estimation accuracy. PMID:26736283

  10. A Clustered Multiclass Likelihood-Ratio Ensemble Method for Family-Based Association Analysis Accounting for Phenotypic Heterogeneity.

    PubMed

    Wen, Yalu; Lu, Qing

    2016-09-01

    Although compelling evidence suggests that the genetic etiology of complex diseases could be heterogeneous in subphenotype groups, little attention has been paid to phenotypic heterogeneity in genetic association analysis of complex diseases. Simply ignoring phenotypic heterogeneity in association analysis could result in attenuated estimates of genetic effects and low power of association tests if subphenotypes with similar clinical manifestations have heterogeneous underlying genetic etiologies. To facilitate the family-based association analysis allowing for phenotypic heterogeneity, we propose a clustered multiclass likelihood-ratio ensemble (CMLRE) method. The proposed method provides an alternative way to model the complex relationship between disease outcomes and genetic variants. It allows for heterogeneous genetic causes of disease subphenotypes and can be applied to various pedigree structures. Through simulations, we found CMLRE outperformed the commonly adopted strategies in a variety of underlying disease scenarios. We further applied CMLRE to a family-based dataset from the International Consortium to Identify Genes and Interactions Controlling Oral Clefts (ICOC) to investigate the genetic variants and interactions predisposing to subphenotypes of oral clefts. The analysis suggested that two subphenotypes, nonsyndromic cleft lip without palate (CL) and cleft lip with palate (CLP), shared similar genetic etiologies, while cleft palate only (CP) had its own genetic mechanism. The analysis further revealed that rs10863790 (IRF6), rs7017252 (8q24), and rs7078160 (VAX1) were jointly associated with CL/CLP, while rs7969932 (TBK1), rs227731 (17q22), and rs2141765 (TBK1) jointly contributed to CP.

  11. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    PubMed

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  12. Application of physiologically based absorption modeling to formulation development of a low solubility, low permeability weak base: mechanistic investigation of food effect.

    PubMed

    Zhang, Hefei; Xia, Binfeng; Sheng, Jennifer; Heimbach, Tycho; Lin, Tsu-Han; He, Handan; Wang, Yanfeng; Novick, Steven; Comfort, Ann

    2014-04-01

    Physiologically based pharmacokinetic (PBPK) modeling has been broadly used to facilitate drug development, hereby we developed a PBPK model to systematically investigate the underlying mechanisms of the observed positive food effect of compound X (cpd X) and to strategically explore the feasible approaches to mitigate the food effect. Cpd X is a weak base with pH-dependent solubility; the compound displays significant and dose-dependent food effect in humans, leading to a nonadherence of drug administration. A GastroPlus Opt logD Model was selected for pharmacokinetic simulation under both fasted and fed conditions, where the biopharmaceutic parameters (e.g., solubility and permeability) for cpd X were determined in vitro, and human pharmacokinetic disposition properties were predicted from preclinical data and then optimized with clinical pharmacokinetic data. A parameter sensitivity analysis was performed to evaluate the effect of particle size on the cpd X absorption. A PBPK model was successfully developed for cpd X; its pharmacokinetic parameters (e.g., C max, AUCinf, and t max) predicted at different oral doses were within ±25% of the observed mean values. The in vivo solubility (in duodenum) and mean precipitation time under fed conditions were estimated to be 7.4- and 3.4-fold higher than those under fasted conditions, respectively. The PBPK modeling analysis provided a reasonable explanation for the underlying mechanism for the observed positive food effect of the cpd X in humans. Oral absorption of the cpd X can be increased by reducing the particle size (<100 nm) of an active pharmaceutical ingredient under fasted conditions and therefore, reduce the cpd X food effect correspondingly.

  13. Model-based calculations of off-axis ratio of conic beams for a dedicated 6 MV radiosurgery unit

    SciTech Connect

    Yang, J. N.; Ding, X.; Du, W.; Pino, R.

    2010-10-15

    Purpose: Because the small-radius photon beams shaped by cones in stereotactic radiosurgery (SRS) lack lateral electronic equilibrium and a detector's finite cross section, direct experimental measurement of dosimetric data for these beams can be subject to large uncertainties. As the dose calculation accuracy of a treatment planning system largely depends on how well the dosimetric data are measured during the machine's commissioning, there is a critical need for an independent method to validate measured results. Therefore, the authors studied the model-based calculation as an approach to validate measured off-axis ratios (OARs). Methods: The authors previously used a two-component analytical model to calculate central axis dose and associated dosimetric data (e.g., scatter factors and tissue-maximum ratio) in a water phantom and found excellent agreement between the calculated and the measured central axis doses for small 6 MV SRS conic beams. The model was based on that of Nizin and Mooij [''An approximation of central-axis absorbed dose in narrow photon beams,'' Med. Phys. 24, 1775-1780 (1997)] but was extended to account for apparent attenuation, spectral differences between broad and narrow beams, and the need for stricter scatter dose calculations for clinical beams. In this study, the authors applied Clarkson integration to this model to calculate OARs for conic beams. OARs were calculated for selected cones with radii from 0.2 to 1.0 cm. To allow comparisons, the authors also directly measured OARs using stereotactic diode (SFD), microchamber, and film dosimetry techniques. The calculated results were machine-specific and independent of direct measurement data for these beams. Results: For these conic beams, the calculated OARs were in excellent agreement with the data measured using an SFD. The discrepancies in radii and in 80%-20% penumbra were within 0.01 cm, respectively. Using SFD-measured OARs as the reference data, the authors found that the

  14. Elevated aerosol layers modify the O2-O2 absorption measured by ground-based MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA's multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD~0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD<0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53based MAX-DOAS. Opportunities to identify and better characterize these elevated layers are also discussed.

  15. Development and evaluation of a regression-based model to predict cesium concentration ratios for freshwater fish.

    PubMed

    Pinder, John E; Rowan, David J; Rasmussen, Joseph B; Smith, Jim T; Hinton, Thomas G; Whicker, F W

    2014-08-01

    Data from published studies and World Wide Web sources were combined to produce and test a regression model to predict Cs concentration ratios for freshwater fish species. The accuracies of predicted concentration ratios, which were computed using 1) species trophic levels obtained from random resampling of known food items and 2) K concentrations in the water for 207 fish from 44 species and 43 locations, were tested against independent observations of ratios for 57 fish from 17 species from 25 locations. Accuracy was assessed as the percent of observed to predicted ratios within factors of 2 or 3. Conservatism, expressed as the lack of under prediction, was assessed as the percent of observed to predicted ratios that were less than 2 or less than 3. The model's median observed to predicted ratio was 1.26, which was not significantly different from 1, and 50% of the ratios were between 0.73 and 1.85. The percentages of ratios within factors of 2 or 3 were 67 and 82%, respectively. The percentages of ratios that were <2 or <3 were 79 and 88%, respectively. An example for Perca fluviatilis demonstrated that increased prediction accuracy could be obtained when more detailed knowledge of diet was available to estimate trophic level. PMID:24699402

  16. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Zhang, Weigang; Zhang, Qi; Liu, Yaping; Liu, Bo

    2010-01-01

    An improved ring-dow