Sample records for absorption ratio based

  1. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration.

  2. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  3. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  4. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  5. Improvement of the tetrachloromercurate absorption technique for measuring low atmospheric SO2 mixing ratios

    NASA Astrophysics Data System (ADS)

    Jaeschke, W.; Beltz, N.; Haunold, W.; Krischke, U.

    1997-07-01

    During the Gas-Phase Sulfur Intercomparison Experiment (GASIE) in 1994 an analytical system for measuring sulfur dioxide mixing ratios at low parts per trillion (pptv) levels was employed. It is based on the absorption of SO2 on a tetrachloromercurate(II)-impregnated filter. The subsequent analysis uses a chemiluminescence reaction by treating the resulting disulfitomercurate(II) complex with an acidic cerium sulfate solution. An improved sampling device has been introduced that increases the maximum sampling volume from 200 L to 500 L. It is also possible to determine the blank value accurately for each sample. The absorption efficiency of the sampling system is 98.7±6.4% at a nominal flow rate of 10 L/min. The calculated (3σ) detection limit is 3±1 pptv SO2. The sample solution is stable for up to 30 days, which allows the samples to be safely stored or shipped before analysis. This permits the use of a sensitive, compact, and reliable sampling system in the field with subsequent analysis under optimal conditions in the laboratory. A continuous flow chemiluminescence (CFCL) analyzer for on-line measurements is also presented. The system is based on the same chemical principles as the described filter technique.

  6. Determination of K-shell absorption jump factors and jump ratios for La2O3, Ce and Gd using two different methods

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma

    2015-02-01

    The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.

  7. Enhancement of the static extinction ratio by using a dual-section distributed feedback laser integrated with an electro-absorption modulator

    NASA Astrophysics Data System (ADS)

    Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-09-01

    We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.

  8. Architecture for Absorption Based Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  9. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry

    PubMed Central

    Attimarad, Mahesh

    2010-01-01

    The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003

  10. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    NASA Astrophysics Data System (ADS)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  11. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    PubMed

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model

  13. Tunable electromagnetically induced absorption based on graphene

    NASA Astrophysics Data System (ADS)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  14. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-05

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Methods for Retrievals of CO2 Mixing Ratios from JPL Laser Absorption Spectrometer Flights During a Summer 2011 Campaign

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2013-01-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.

  16. Absorption of zinc from lupin (Lupinus angustifolius)-based foods.

    PubMed

    Petterson, D S; Sandström, B; Cederblad, A

    1994-12-01

    The absorption of Zn from a lupin (Lupinus angustifolius) milk fortified with Ca, a bread containing lupin flour (230 g/kg), a sauce containing lupin flour and a sauce containing a lupin-protein isolate was determined in humans by measuring the whole-body retention of radioisotope from meals labelled with 0.02 MBq 65Zn, allowing for endogenous excretion of Zn, after 14 d. The absorption of Zn from the Ca-enriched milk (16.2%) and the bread made with lupin flour (27.0%) was similar to literature figures for comparable soya-bean products. The absorption from composite meals made with lupin flour (28.2%) and protein isolate (32.7%) was significantly higher than that reported for comparable soya-bean products. In a second experiment the absorption of Zn from a lupin-milk base and a soya-bean-milk base was compared with that from Ca-supplemented bases. The absorption of Zn from the lupin-milk base (26.3%) was significantly higher than from the soya-bean-milk base (17.6%), and neither was significantly altered by the addition of Ca. Overall the absorption of Zn from lupin-protein foods was found to be higher than from comparable soya-bean products. Lupin milk could be an attractive alternative to soya-bean milk for infant formulas.

  17. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  18. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Burns, David T.; Salvat, Francesc

    2012-04-01

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for 192Ir and 60Co gamma-ray spectra. The aim of this work was to establish ‘an envelope of uncertainty’ based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µen/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, uc, for the µen/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For 60Co and 192Ir, uc is approximately 0.1%. The Type B uncertainty analysis for the ratios of µen/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µen/ρ)graphite,air and (µen/ρ)graphite,water are 1.5%, and 0.5% for (µen/ρ)water,air, decreasing gradually down to uc = 0.1% for the three µen/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well with those of Hubbell (1977 Rad. Res

  19. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  20. Laser diode absorption spectroscopy for accurate CO(2) line parameters at 2 microm: consequences for space-based DIAL measurements and potential biases.

    PubMed

    Joly, Lilian; Marnas, Fabien; Gibert, Fabien; Bruneau, Didier; Grouiez, Bruno; Flamant, Pierre H; Durry, Georges; Dumelie, Nicolas; Parvitte, Bertrand; Zéninari, Virginie

    2009-10-10

    Space-based active sensing of CO(2) concentration is a very promising technique for the derivation of CO(2) surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO(2) absorption line ((20(0)1)(III)<--(000) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO(2) absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO(2) mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.

  1. Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul

    2017-10-01

    This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.

  2. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  3. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    PubMed

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  4. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  5. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials

    PubMed Central

    Rubrice, Kevin; Castel, Xavier; Himdi, Mohamed; Parneix, Patrick

    2016-01-01

    Nowadays, many types of materials are elaborated for microwave absorption applications. Carbon-based nanoparticles belong to these types of materials. Among these, graphene presents some distinctive features for electromagnetic radiation absorption and thus microwave isolation applications. In this paper, the dielectric characteristics and microwave absorption properties of epoxy resin loaded with graphene particles are presented from 2 GHz to 18 GHz. The influence of various parameters such as particle size (3 µm, 6–8 µm, and 15 µm) and weight ratio (from 5% to 25%) are presented, studied, and discussed. The sample loaded with the smallest graphene size (3 µm) and the highest weight ratio (25%) exhibits high loss tangent (tanδ = 0.36) and a middle dielectric constant ε′ = 12–14 in the 8–10 GHz frequency range. As expected, this sample also provides the highest absorption level: from 5 dB/cm at 4 GHz to 16 dB/cm at 18 GHz. PMID:28773948

  6. Site-selective nitrogen isotopic ratio measurement of nitrous oxide using a TE-cooled CW-RT-QCL based spectrometer.

    PubMed

    Li, Jingsong; Zhang, Lizhu; Yu, Benli

    2014-12-10

    The feasibility of laser spectroscopic isotopic composition measurements of atmospheric N2O was demonstrated, although making them useful will require further improvements. The system relies on a thermoelectrically (TE) cooled continuous-wave (CW) room temperature (RT) quantum cascade laser source emitting wavelength of around 4.6μm, where strong fundamental absorption bands occur for the considered specie and its isotopomers. The analysis technique is based on wavelength modulation spectroscopy with second-harmonic detection and the combination of long-path absorption cell. Primary laboratory tests have been performed to estimate the achievable detection limits and the signal reproducibility levels in view of possible measurements of (15)N/(14)N and (18)O/(16)O isotope ratios. The experiment results showed that the site-selective (15)N/(14)N ratio can be measured with a precision of 3‰ with 90s averaging time using natural-abundance N2O sample of 12.7ppm. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  8. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  9. A complete diet-based algorithm for predicting nonheme iron absorption in adults.

    PubMed

    Armah, Seth M; Carriquiry, Alicia; Sullivan, Debra; Cook, James D; Reddy, Manju B

    2013-07-01

    Many algorithms have been developed in the past few decades to estimate nonheme iron absorption from the diet based on single meal absorption studies. Yet single meal studies exaggerate the effect of diet and other factors on absorption. Here, we propose a new algorithm based on complete diets for estimating nonheme iron absorption. We used data from 4 complete diet studies each with 12-14 participants for a total of 53 individuals (19 men and 34 women) aged 19-38 y. In each study, each participant was observed during three 1-wk periods during which they consumed different diets. The diets were typical, high, or low in meat, tea, calcium, or vitamin C. The total sample size was 159 (53 × 3) observations. We used multiple linear regression to quantify the effect of different factors on iron absorption. Serum ferritin was the most important factor in explaining differences in nonheme iron absorption, whereas the effect of dietary factors was small. When our algorithm was validated with single meal and complete diet data, the respective R(2) values were 0.57 (P < 0.001) and 0.84 (P < 0.0001). The results also suggest that between-person variations explain a large proportion of the differences in nonheme iron absorption. The algorithm based on complete diets we propose is useful for predicting nonheme iron absorption from the diets of different populations.

  10. Measuring the molecular second hyperpolarizability in absorptive solutions by the third harmonic generation ratio technique.

    PubMed

    Tokarz, Danielle; Cisek, Richard; Prent, Nicole; Fekl, Ulrich; Barzda, Virginijus

    2012-11-28

    Measurement of the second hyperpolarizability (γ) values of compounds can provide insight into the molecular structural requirements for enhancement of third harmonic generation (THG) signal. A convenient method for measuring the γ of compounds in solutions was developed by implementing the THG ratio method which is based on measuring the THG intensity from two interfaces using a nonlinear optical microscope while accounting for the refractive index of solutions at the fundamental and third harmonic wavelengths. We demonstrated that the difference in refractive index at both wavelengths strongly influenced the calculation of γ values when compounds have absorption near the third harmonic or fundamental wavelength. To this end, a refractometer with the wavelength tuning range from UV to near IR was constructed, and the measured refractive indices were used to extract the γ values. The γ values of carotenoids and chlorophylls found in photosynthetic pigment-protein complexes were explored. Large differences in the refractive index at third harmonic and fundamental wavelengths for chlorophylls result in γ values that are more than two orders of magnitude larger than γ values for carotenoids as well as the sign of chlorophylls'γ values is negative while carotenoids have positive γ values. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Relative optical absorption of metallic and semiconducting single-walled carbon nanotubes.

    PubMed

    Huang, Houjin; Kajiura, Hisashi; Maruyama, Ryuichiro; Kadono, Koji; Noda, Kazuhiro

    2006-03-16

    While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.

  12. Dual-wavelength light-emitting diode-based ultraviolet absorption detector for nano-flow capillary liquid chromatography.

    PubMed

    Xie, Xiaofeng; Tolley, Luke T; Truong, Thy X; Tolley, H Dennis; Farnsworth, Paul B; Lee, Milton L

    2017-11-10

    The design of a miniaturized LED-based UV-absorption detector was significantly improved for on-column nanoflow LC. The detector measures approximately 27mm×24mm×10mm and weighs only 30g. Detection limits down to the nanomolar range and linearity across 3 orders of magnitude were obtained using sodium anthraquinone-2-sulfonate as a test analyte. Using two miniaturized detectors, a dual-detector system was assembled containing 255nm and 275nm LEDs with only 216nL volume between the detectors A 100μm slit was used for on-column detection with a 150μm i.d. packed capillary column. Chromatographic separation of a phenol mixture was demonstrated using the dual-detector system, with each detector producing a unique chromatogram. Less than 6% variation in the ratios of absorbances measured at the two wavelengths for specific analytes was obtained across 3 orders of magnitude concentration, which demonstrates the potential of using absorption ratio measurements for target analyte detection. The dual-detector system was used for simple, but accurate, mobile phase flow rate measurement at the exit of the column. With a flow rate range from 200 to 2000nL/min, less than 3% variation was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  14. Infrared Measurements of Atmospheric Ethane (C2H6) From Aircraft and Ground-Based Solar Absorption Spectra in the 3000/ cm Region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. Malathy; Stokes, G. M.

    1985-01-01

    A number or prominent Q-branches or the upsilon(sub 7) band or C2H6 have been identified near 3000/ cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The, ground-based spectra yield a column of 9.0 x 10(exp 15) molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  15. Infrared measurements of atmospheric ethane (C2H6) from aircraft and ground-based solar absorption spectra in the 3000/cm region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. M.; Stokes, G. M.

    1985-01-01

    A number of prominent Q-branches of the nu-7 band of C2H6 have been identified near 3000/cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The ground-based spectra yield a column of 9.0 x 10 to the 15th molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  16. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0.7Ga0.3(Se1-xTex)2 (0 ≤ x ≤ 1) amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan

    2017-11-01

    The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.

  17. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  18. Multiband coherent perfect absorption in a water-based metasurface.

    PubMed

    Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Premaratne, Malin; Jin, Ronghong

    2017-07-10

    We design an ultrathin water-based metasurface capable of coherent perfect absorption (CPA) at radio frequencies. It is demonstrated that such a metasurface can almost completely absorb two symmetrically incident waves within four frequency bands, each having its own modulation depth of metasurface absorptivity. Specifically, the absorptivity at 557.2 MHz can be changed between 0.59% and 99.99% via the adjustment of the phase difference between the waves. The high angular tolerance of our metasurface is shown to enable strong CPA at oblique incidence, with the CPA frequency almost independent of the incident angle for TE waves and varying from 557.2 up to 584.2 MHz for TM waves. One can also reduce this frequency from 712.0 to 493.3 MHz while retaining strong coherent absorption by varying the water layer thickness. It is also show that the coherent absorption performance can be flexibly controlled by adjusting the temperature of water. The proposed metasurface is low-cost, biocompatible, and useful for electromagnetic modulation and switching.

  19. Analysis of molecular hydrogen absorption toward QSO B0642–5038 for a varying proton-to-electron mass ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagdonaite, J.; Ubachs, W.; Murphy, M. T.

    2014-02-10

    Rovibronic molecular hydrogen (H{sub 2}) transitions at redshift z {sub abs} ≅ 2.659 toward the background quasar B0642–5038 are examined for a possible cosmological variation in the proton-to-electron mass ratio μ. We utilize an archival spectrum from the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (UVES) with a signal-to-noise ratio of ∼35 per 2.5 km s{sup –1} pixel at the observed H{sub 2} wavelengths (335-410 nm). Some 111 H{sub 2} transitions in the Lyman and Werner bands have been identified in the damped Lyα system for which a kinetic gas temperature of ∼84 K and a molecular fraction log fmore » = –2.18 ± 0.08 are determined. The H{sub 2} absorption lines are included in a comprehensive fitting method, which allows us to extract a constraint on a variation of the proton-electron mass ratio Δμ/μ from all transitions at once. We obtain Δμ/μ = (17.1 ± 4.5{sub stat} ± 3.7{sub sys}) × 10{sup –6}. However, we find evidence that this measurement has been affected by wavelength miscalibration errors recently identified in UVES. A correction based on observations of objects with solar-like spectra gives a smaller Δμ/μ value and contributes to a larger systematic uncertainty: Δμ/μ = (12.7 ± 4.5{sub stat} ± 4.2{sub sys}) × 10{sup –6}.« less

  20. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  1. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cikota, Aleksandar; Deustua, Susana; Marleau, Francine, E-mail: acikota@eso.org

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxymore » center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.« less

  2. Constraint on a varying proton-to-electron mass ratio from molecular hydrogen absorption towards quasar SDSS J123714.60+064759.5

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Bagdonaite, J.; Murphy, M. T.; Ubachs, W.

    2015-11-01

    Molecular hydrogen transitions in the sub-damped Lyman α absorber at redshift zabs ≃ 2.69, towards the background quasar SDSS J123714.60+064759.5, were analysed in order to search for a possible variation of the proton-to-electron mass ratio μ over a cosmological time-scale. The system is composed of three absorbing clouds where 137 H2 and HD absorption features were detected. The observations were taken with the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph with a signal-to-noise ratio of 32 per 2.5 km s-1 pixel, covering the wavelengths from 356.6 to 409.5 nm. A comprehensive fitting method was used to fit all the absorption features at once. Systematic effects of distortions to the wavelength calibrations were analysed in detail from measurements of asteroid and `solar twin' spectra, and were corrected for. The final constraint on the relative variation in μ between the absorber and the current laboratory value is Δμ/μ = (-5.4 ± 6.3stat ± 4.0syst) × 10-6, consistent with no variation over a look-back time of 11.4 Gyr.

  3. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  4. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  5. Separating light absorption layer from channel in ZnO vertical nanorod arrays based photodetectors for high-performance image sensors

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Congjun; Xu, Zhihao; Wang, Fei; Wang, Min

    2018-05-01

    Photoconductor arrays with both high responsivity and large ON/OFF ratios are of great importance for the application of image sensors. Herein, a ZnO vertical nanorod array based photoconductor with a light absorption layer separated from the device channel has been designed, in which the photo-generated carriers along the axial ZnO nanorods drive to the external electrodes through nanorod-nanorod junctions in the dense layer at the bottom. This design allows us to enhance the photocurrent with unchanged dark current by increasing the ratio between the ZnO nanorod length and the thickness of the dense layer to achieve both high responsivity and large ON/OFF ratios. As a result, the as-fabricated devices possess a high responsivity of 1.3 × 105 A/W, a high ON/OFF ratio of 790, a high detectivity of 1.3 × 1013 Jones, and a low detectable light intensity of 1 μW/cm2. More importantly, the developed approach enables the integration of ZnO vertical nanorod array based photodetectors as image sensors with uniform device-to-device performance.

  6. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption

    NASA Astrophysics Data System (ADS)

    Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-01

    Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.

  7. The elastic ratio: introducing curvature into ratio-based image segmentation.

    PubMed

    Schoenemann, Thomas; Masnou, Simon; Cremers, Daniel

    2011-09-01

    We present the first ratio-based image segmentation method that allows imposing curvature regularity of the region boundary. Our approach is a generalization of the ratio framework pioneered by Jermyn and Ishikawa so as to allow penalty functions that take into account the local curvature of the curve. The key idea is to cast the segmentation problem as one of finding cyclic paths of minimal ratio in a graph where each graph node represents a line segment. Among ratios whose discrete counterparts can be globally minimized with our approach, we focus in particular on the elastic ratio [Formula: see text] that depends, given an image I, on the oriented boundary C of the segmented region candidate. Minimizing this ratio amounts to finding a curve, neither small nor too curvy, through which the brightness flux is maximal. We prove the existence of minimizers for this criterion among continuous curves with mild regularity assumptions. We also prove that the discrete minimizers provided by our graph-based algorithm converge, as the resolution increases, to continuous minimizers. In contrast to most existing segmentation methods with computable and meaningful, i.e., nondegenerate, global optima, the proposed approach is fully unsupervised in the sense that it does not require any kind of user input such as seed nodes. Numerical experiments demonstrate that curvature regularity allows substantial improvement of the quality of segmentations. Furthermore, our results allow drawing conclusions about global optima of a parameterization-independent version of the snakes functional: the proposed algorithm allows determining parameter values where the functional has a meaningful solution and simultaneously provides the corresponding global solution.

  8. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  9. Retrieval of water vapor mixing ratios from a laser-based sensor

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  10. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2017-04-01

    A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.

  11. Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.

    PubMed

    Jain, Ram B

    2016-08-01

    Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.

  12. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE PAGES

    Wu, M.; Xin, Houlin L.; Wang, J. O.; ...

    2018-04-24

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  13. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Xin, Houlin L.; Wang, J. O.

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  14. Near unity ultraviolet absorption in graphene without patterning

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo

    2018-04-01

    Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.

  15. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  16. Nonlinear absorption enhancement of AuNPs based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.

    2018-07-01

    Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.

  17. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    PubMed

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  18. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  19. Absorption Of Crushing Energy In Square Composite Tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.

  20. Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol-gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.

    2017-03-01

    In the present study, the nonlinear optical properties of sol-gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.

  1. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  2. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  3. A quantitative evaluation of spurious results in the infrared spectroscopic measurement of CO2 isotope ratios

    NASA Astrophysics Data System (ADS)

    Mansfield, C. D.; Rutt, H. N.

    2002-02-01

    The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.

  4. Laser engines operating by resonance absorption.

    PubMed

    Garbuny, M; Pechersky, M J

    1976-05-01

    The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.

  5. Influences of the Ratio of Polyol and MDI on the Acoustic Parameters of Polyurethane

    NASA Astrophysics Data System (ADS)

    Wang, Yonghua; Liu, Zheming; Wu, Haiquan; Zhang, Chengchun; Yu, Huadong; Ren, Luquan; Ichchou, Mohamed

    2018-05-01

    In this paper, the influence of different ratio of polyol and MDI on the absorption coefficient and acoustic parameters of polyurethane was studied. Ratio of 100:40 and 100:45 show the best sound absorption performance, and the change trend of transmission loss and sound absorption coefficient are opposite. The flow resistance increased with the increasing of the ratio of polyol and MDI, the greater the flow resistance, the worse the high frequency sound absorption property of the polyurethane. When the ratio of polyol and MDI keep 100:45, the minimum porosity of sample, the polyurethane porosity increase with the ratio of polyol and MDI increase.

  6. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  7. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; ...

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  8. Absorption spectra of deuterated water at DF laser wavelengths.

    PubMed

    Bruce, C W; Jelinek, A V

    1982-11-15

    Absorption coefficients for deuterated water have been measured at twenty-two deuterium fluoride (DF) laser wavelengths and presented for atmospheric conditions classified as midlatitude-summer (14.3 T water vapor, standard temperature, and pressure). The HDO vapor was produced from a liquid mixture of H(2)O and D(2)O. The proportions of the resulting equilibrium mixture involving these constituents and HDO were calculated using previously measured constants and produced strong HDO absorption at the 3.5-4.1-microm DF laser wavelengths relative to those of the H(2)O and D(2)O vapors. Predicted and measured pressure dependencies at constant mixing ratios are compared for several laser wavelengths having strong HDO absorption. Absorption coefficients are in fairly close agreement with those of the current Air Force Geophysical Laboratory line-by-line model for standard temperature and pressure conditions. At lower total pressures, the comparison is less satisfactory and suggests inaccurate line parameters in the predictive data base.

  9. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  10. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  11. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  12. The line-locking hypothesis, absorption by intervening galaxies, and the z = 1.95 peak in redshifts

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1978-01-01

    The controversy over whether the absorption spectrum in QSOs is intrinsic or extrinsic is approached with attention to the peak of redshifts at z = 1.95. Also considered are the line-locking and the intervening galaxy hypotheses. The line locking hypothesis is based on observations that certain ratios found in absorption line QSOs are preferred, and leads inevitably to the conclusion that the absorption line systems are intrinsic. The intervening galaxy hypothesis is based on absorption redshifts resulting from given absorption cross-sections of galactic clusters and the intergalactic medium, and would lead to the theoretical conclusion that most QSOs show strong absorption, a conclusion which is not supported by empirical data. The 1.95 peak, on the other hand, is most probably an intrinsic property of QSOs. The peak is enhanced by redshift, and it is noted that both an emission and an absorption redshift peak are seen at 1.95.

  13. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Drew; Scime, Earl; Short, Zachary, E-mail: zdshort@mix.wvu.edu

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sectionsmore » of xenon and hydrogen is 0.024 ± 0.001.« less

  14. Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity

    NASA Astrophysics Data System (ADS)

    Rashidi, Arezou; Namdar, Abdolrahman

    2018-04-01

    Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.

  15. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  16. Utilizing Near-IR Tunable Laser Absorption Spectroscopy to Study Detonation and Combustion Systems

    DTIC Science & Technology

    2014-03-27

    debris, such as soot . Velocity curves for the other equivalence ratios studied in this experiment are shown in Appendix A. Some of these curves show a...James R. Gord. “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor ”. Applied Optics, 44...Davidson, and R.K. Hanson. “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7µm”. Applied

  17. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  18. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    PubMed

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  19. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  20. Absorption enhancement in non-coplanar silver nanowire networks

    NASA Astrophysics Data System (ADS)

    He, Zhihui; Zhou, Zhiping; Ren, Xincheng; Bai, Shaomin; Li, Hongjian; Cao, Dongmei; Li, Gang; Cao, Guangtao

    2018-07-01

    We propose non-coplanar silver nanowire (AgNW) networks placed on a SiO2 layer. A notable absorption peak is observed in our proposed structure, and compared with the absorption of coplanar periodic AgNW networks and periodic AgNW gratings, the absorption performance of the non-coplanar AgNW networks demonstrates obvious advantages. It could be determined that the absorption ratio in this non-coplanar AgNW networks can reach 95%. In addition, several parameters that have important effects on the absorption of the non-coplanar AgNW networks are discussed in detail. Our research may provide guidance for the fundamental exploration of plasmonic absorption device applications.

  1. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (<50%) and about 6 times the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  2. Routines for change: how managers can use absorptive capacity to adopt and implement evidence-based practice.

    PubMed

    Innis, Jennifer; Berta, Whitney

    2016-09-01

    This paper uses the construct of absorptive capacity to understand how nurse managers can facilitate the adoption and use of evidence-based practice within health-care organisations. How health-care organisations adopt and implement innovations such as new evidence-based practices will depend on their absorptive, or learning, capacity. Absorptive capacity manifests as routines, which are the practices, procedures and customs that organisational members use to carry out work and to make work-related decisions. Using the construct of absorptive capacity as well as a recent literature review of how health-care organisations take on best practices, we illustrate how the uptake and use of new knowledge, such as evidence-based practices, can be facilitated through the use of routines. This paper highlights routines that nurse managers can use to foster environments where evidence-based practices can be readily identified, and strategies for facilitating their adoption and implementation. The construct of absorptive capacity and the use of routines can be used to examine the ways in which nurse managers can adopt, implement and evaluate the use of evidence-based practices. © 2016 John Wiley & Sons Ltd.

  3. HIGH-LYING OH ABSORPTION, [C II] DEFICITS, AND EXTREME L {sub FIR}/M {sub H2} RATIOS IN GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Alfonso, E.; Blasco, A.; Fischer, J.

    Herschel/PACS observations of 29 local (ultra)luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 μm Π{sub 3/2} J = 9/2-7/2 line (W {sub eq}(OH65)) with lower level energy E {sub low} ≈ 300 K, is anticorrelated with the [C II]158 μm line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 μm far-infrared color. While all sources are in the active L {sub IR}/M {sub H2} > 50L {sub ☉}/M {sub ☉}more » mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at L {sub FIR}/M {sub H2} ≈ 100 L {sub ☉}/M {sub ☉}. In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 μm absorption. Combined with observations of the OH 71 μm Π{sub 1/2} J = 7/2-5/2 doublet (E {sub low} ≈ 415 K), radiative transfer models characterized by the equivalent dust temperature, T {sub dust}, and the continuum optical depth at 100 μm, τ{sub 100}, indicate that strong [C II]158 μm deficits are associated with far-IR thick (τ{sub 100} ≳ 0.7, N {sub H} ≳ 10{sup 24} cm{sup –2}), warm (T {sub dust} ≳ 60 K) structures where the OH 65 μm absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high L {sub FIR}/M {sub H2} ratios and columns, the presence of these structures is expected to give rise to strong [C II] deficits. W {sub eq}(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is ≳ 30%-50% in sources with high W {sub eq}(OH65). Sources with high W {sub eq}(OH65) have surface densities of both L {sub IR} and M {sub H2} higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum

  4. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  5. Tensile strength and water absorption of alumina filled poly (methyl methacrylate) denture base material.

    PubMed

    Nizam, A; Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the tensile properties and water absorption of denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3) as particulate filler. Specimens for mechanical testing were prepared by adding composite powder to the monomer followed by hand mixing as in dental laboratory procedure. The tensile strength of the prepared denture base material was slightly higher than commercial denture base material, while the water absorption was almost the same for all formulation of denture base materials.

  6. Study of Cr(VI) adsorption onto magnetite nanoparticles using synchrotron-based X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Hua; Liu, Dian-Yu; Lee, Jyh-Fu

    2018-04-01

    In this study, the efficiency of Cr(VI) adsorption onto nano-magnetite was examined by batch experiments, and the Cr(VI) adsorption mechanism was investigated using synchrotron-based X-ray absorption spectroscopy. Magnetite nanoparticles with a mean diameter of 10 nm were synthesized using an inexpensive and simple co-precipitation method. It shows a saturation magnetization of 54.3 emu/g, which can be recovered with an external magnetic field. The adsorption data fitted the Langmuir adsorption isotherm well, implying a monolayer adsorption behavior of Cr(VI) onto nano-magnetite. X-ray absorption spectroscopy results indicate that the adsorption mechanism involves electron transfer between Fe(II) in nano-magnetite (Fe2+OFe3+ 2O3) and Cr(VI) to transform into Cr(III), which may exist as an Fe(III)-Cr(III) mixed solid phase. Moreover, the Cr(III)/Cr(VI) ratio in the final products can be determined by the characteristic pre-edge peak area of Cr(VI) in the Cr K-edge spectrum. These findings suggest that nano-magnetite is effective for Cr(VI) removal from wastewater because it can transform highly poisonous Cr(VI) species into nontoxic Cr(III) compounds, which are highly insoluble and immobile under environmental conditions.

  7. An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

    NASA Astrophysics Data System (ADS)

    Silsbe, G.; Westberry, T. K.; Behrenfeld, M. J.; Halsey, K.; Milligan, A.

    2016-02-01

    As a vital living link in the global carbon cycle, understanding how net primary production (NPP) varies through space, time, and across climatic oscillations (e.g. ENSO) is a key objective in oceanographic research. The continual improvement of ocean observing satellites and data analytics now present greater opportunities for advanced understanding and characterization of the factors regulating NPP. In particular, the emergence of spectral inversion algorithms now permits accurate retrievals of the phytoplankton absorption coefficient (aΦ) from space. As NPP is the efficiency in which absorbed energy is converted into carbon biomass, aΦ measurements circumvents chlorophyll-based empirical approaches by permitting direct and accurate measurements of phytoplankton energy absorption. It has long been recognized, and perhaps underappreciated, that NPP and phytoplankton growth rates display muted variability when normalized to aΦ rather than chlorophyll. Here we present a novel absorption-based NPP model that parameterizes the underlying physiological mechanisms behind this muted variability, and apply this physiological model to the global ocean. Through a comparison against field data from the Hawaii and Bermuda Ocean Time Series, we demonstrate how this approach yields more accurate NPP measurements than other published NPP models. By normalizing NPP to satellite estimates of phytoplankton carbon biomass, this presentation also explores the seasonality of phytoplankton growth rates across several oceanic regions. Finally, we discuss how future advances in remote-sensing (e.g. hyperspectral satellites, LIDAR, autonomous profilers) can be exploited to further improve absorption-based NPP models.

  8. Optimal extraction of quasar Lyman limit absorption systems from the IUE archive

    NASA Technical Reports Server (NTRS)

    Tytler, David

    1992-01-01

    The IUE archive contains a wealth of information on Lyman limit absorption systems (LLS) in quasar spectra. QSO spectra from the IUE data base were optimally extracted, coadded, and analyzed to yield a homogeneous samples of LLS at low red shifts. This sample comprise 36 LLS, twice the number previously analyzed low z samples. These systems are ideal for the determination of the origin, redshift evolution, ionization, velocity dispersions and the metal abundances of absorption systems. Two of them are also excellent targets for the primordial Deuterium to Hydrogen ratio.

  9. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  10. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements

    NASA Astrophysics Data System (ADS)

    Cano, M. E.; Barrera, A.; Estrada, J. C.; Hernandez, A.; Cordova, T.

    2011-11-01

    The development of a device for generating ac magnetic fields based on a resonant inverter is presented, which has been specially designed to carry out experiments of magnetic hyperthermia. By determining the electric current in the LC resonant circuit, a maximum intensity of magnetic field around of 15 mT is calculated, with a frequency around of 206 kHz. This ac magnetic field is able to heat powdered magnetic materials embedded in biological systems to be used in biomedical applications. Indeed, in order to evaluate the sensitivity of the device we also present the measurements of the specific absorption rate in phantoms performed with commercially prepared Fe3O4 and distilled water at different concentrations.

  11. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  12. Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent

    NASA Astrophysics Data System (ADS)

    Xie, Shuai; Wang, Jing; Wang, Wufeng; Hou, Guoyan; Li, Bin; Shui, Zhonghe; Ji, Zhijiang

    2018-02-01

    In order to develop a cement based composites with high electromagnetic (EM) wave absorbing performance, helical carbon fibers (HCFs) were added into the cement matrix as an absorbent. The reflection loss (RL) of the prepared HCFs/cement based composites was studied by arched testing method in the frequency ranges of 1-8 GHz and 8-18 GHz. The results show that the EM wave absorption properties of the cement based composites can be evidently enhanced by the addition of HCFs. The composites with 1.5% HCFs exhibits optimum EM wave absorption performance in the frequency range of 1-8 GHz. However, in 8-18 GHz frequency range, the EM wave absorption performance of the cement composites with 1% HCFs is much better than others. The RL values of the prepared HCFs/cement based composites are less than -5 dB in the whole testing frequency regions, which can be attributed to the strong dielectric loss ability and unique chiral structure of HCFs.

  13. Moisture absorption of starch based biocomposites reinforced with water hyacinth fibers

    NASA Astrophysics Data System (ADS)

    Abral, H.; Hartono, J.

    2017-06-01

    Bioplastic based on tapioca starch (TSB) is very sensitive on moisture; meanwhile this substance may be used to replace synthetic plastic. This paper reports effect of Water Hyacinth Fibers (WHF) content on performance moisture absorption of starch based biocomposites. WHF content in the TSB matrix was varied in 1, 3, 5, and 10% respectively. The samples were placed in closed room with high relative humidity (RH) of 99% at 250C with different duration for 30 and 960 min respectively. The result showed that moisture absorption in the beginning was increased rapidly, and then achieved a level steady state. After that, significant swelling of the sample occurred for further duration in 960 min. Gradient of the swelling was decreased as increasing the fibers content in the TSB matrix.

  14. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry

    NASA Astrophysics Data System (ADS)

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-01

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μen/ρ)w, air, for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μen/ρ)w, air were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μen/ρ)w, air for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  15. Hybrid plasmonic electro-optical absorption modulator based on epsilon-near-zero characteristics of ITO

    NASA Astrophysics Data System (ADS)

    Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.

    2018-03-01

    Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.

  16. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  17. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; ...

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m 2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE 388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to

  18. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  19. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  20. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    PubMed

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  1. Effects of the morphology of CIPs on microwave absorption behaviors

    NASA Astrophysics Data System (ADS)

    Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo

    2017-11-01

    Electromagnetic (EM) wave absorption properties are affected by the thickness and surface area of absorbing materials. In this study, a facile ball-milling process was introduced to effectively reduce the diameter and increase the aspect ratio of carbonyl iron powder (CIP), which is one of the most commercially available EM-absorbing materials. The size, aspect ratio, and consequent surface area of CIP were manipulated by controlling the milling parameters to investigate their effects on EM absorption properties. The results indicated that ball-milled CIPs exhibited better EM wave absorption ability when compared with that of pristine CIPs. However, significant differences in minimum reflection loss values were not observed between CIPs with different morphologies and similar specific surface areas. Hence, both fine and flaky CIPs were considered as beneficial for EM wave absorption.[Figure not available: see fulltext.

  2. Filter-based measurement of light absorption by brown carbon in PM2.5 in a megacity in South China.

    PubMed

    Li, Sheng; Zhu, Ming; Yang, Weiqiang; Tang, Mingjin; Huang, Xueliang; Yu, Yuegang; Fang, Hua; Yu, Xu; Yu, Qingqing; Fu, Xiaoxin; Song, Wei; Zhang, Yanli; Bi, Xinhui; Wang, Xinming

    2018-08-15

    Carbonaceous aerosols represent an important nexus between air pollution and climate change. Here we collected filter-based PM 2.5 samples during summer and autumn in 2015 at one urban and two rural sites in Guangzhou, a megacity in southern China, and got the light absorption by black carbon (BC) and brown carbon (BrC) resolved with a DRI Model 2015 multi-wavelength thermal/optical carbon analyzer apart from determining the organic carbon (OC) and elemental carbon (EC) contents. On average BrC contributed 12-15% of the measured absorption at 405nm (LA 405 ) during summer and 15-19% during autumn with significant increase in the LA 405 by BrC at the rural sites. Carbonaceous aerosols, identified as total carbon (TC), yielded average mass absorption efficiency at 405nm (MAE 405 ) that were approximately 45% higher in autumn than in summer, an 83% increase was noted in the average MAE 405 for OC, compared with an increase of only 14% in the average MAE 405 for EC. The LA 405 by BrC showed a good correlation (p<0.001) with the ratios of secondary OC to PM 2.5 in summer. However, this correlation was poor (p>0.1) in autumn, implying greater secondary formation of BrC in summer. The correlations between levoglucosan (a marker of biomass burning) and the LA 405 by BrC were significant during autumn but insignificant during summer, suggesting that the observed increase in the LA 405 by BrC during autumn in rural areas was largely related to biomass burning. The measurements of light absorption at 550nm presented in this study indicated that the use of the IMPROVE algorithm with an MAE value of 10m 2 /g for EC to approximate light absorption may be appropriate in areas not strongly affected by fossil fuel combustion; however, this practice would underestimate the absorption of light by PM 2.5 in areas heavily affected by vehicle exhausts and coal burning. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  4. Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates

    DTIC Science & Technology

    2013-01-01

    1(a). By taking the ratio of the spectral absorption efficiency of the microwire to the corresponding volumetri - cally equivalent thin film, an...of D¼ 983 nm. For further comparison, the theoretical spectral absorption efficiency for a volumetri - cally equivalent (t¼ 983p/4 nm) thin film, Qabs

  5. A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis.

    PubMed

    Ford, Jennifer Lynn; Green, Joanne Balmer; Lietz, Georg; Oxley, Anthony; Green, Michael H

    2017-09-01

    Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy. Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy. Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data. Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion. Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides

  6. Improving iron absorption from a Peruvian school breakfast meal by adding ascorbic acid or Na2EDTA.

    PubMed

    Davidsson, L; Walczyk, T; Zavaleta, N; Hurrell, R

    2001-02-01

    Iron-fortified school breakfasts have been introduced in Peru to combat childhood iron deficiency. We evaluated whether iron absorption from a school breakfast meal was improved by increasing the ascorbic acid content or by adding an alternative enhancer of iron absorption, Na2EDTA. In a crossover design, iron absorption from test meals was evaluated by erythrocyte incorporation of 58Fe and 57Fe. The test meals (wheat bread and a drink containing cereal, milk, and soy) contained 14 mg added Fe (as ferrous sulfate) including 2.0-2.6 mg 58Fe or 4.0-7.0 mg 57Fe. Geometric mean iron absorption increased significantly from 5.1% to 8.2% after the molar ratio of ascorbic acid to fortification iron was increased from 0.6:1 to 1.6:1 (P < 0.01; n = 9). Geometric mean iron absorption increased significantly from 2.9% to 3.8%, from 2.2% to 3.5%, and from 2.4% to 3.7% after addition of Na2EDTA at molar ratios relative to fortification iron of 0.3:1, 0.7:1, and 1:1, respectively, compared with test meals containing no added enhancers (P < 0.01; n = 10 for all). Iron absorption after addition of ascorbic acid (molar ratio 0.6:1) was not significantly different from that after addition of Na2EDTA (molar ratio 0.7:1). Ascorbic acid and Na2EDTA did not differ significantly in their enhancing effects on iron absorption at molar ratios of 0.6:1 to 0.7:1 relative to fortification iron. Additional ascorbic acid (molar ratio 1.6:1) increased iron absorption significantly. Increasing the molar ratio of Na2EDTA to fortification iron from 0.3:1 to 1:1 had no effect on iron absorption.

  7. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    PubMed

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  8. Correlation between hardness and water absorption properties of Saudi kaolin and white clay geopolymer coating

    NASA Astrophysics Data System (ADS)

    Ramasamy, Shamala; Abdullah, Mohd Mustafa Al Bakri; Huang, Yue; Hussin, Kamarudin; Wang, Jin; Shahedan, Noor Fifinatasha

    2017-09-01

    Geopolymer is an uprising technology that is being studied worldwide. Geopolymer raw materials are basically aluminosilicate source materials. However, this technology is yet to infiltrate into pipelines and coating industries which initiated our research idea. The idea of creating universal geopolymer based coating material is mainly to help oil and gas industry reduce its maintenance cost. Kaolin based geopolymer paste was coated on glass reinforced epoxy (GRE) substrates which are majorly used as pipeline material in the oil and gas industry at Saudi Arabia. Kaolin and white clay was chosen as raw material to study the possibilities of utilizing underused aluminosilicate raw materials for geopolymer coating. To obtain suitable formulation, Na2SiO3/NaOH ratio was varied from 0.40 untill 0.60 while other parameters such as solid/liquid ratio and NaOH molarity were kept constant at values as per previous works. Geopolymer coated GRE substrates were then subjected to water absorption, flexural strength and hardness test to validate our findings. Water absorption is a crucial test as for coating materials which justifies the pratical usability of the coating product. Upon testing, kaolin and white clay based geopolymer coating each shows promising properties at Na2SiO3/NaOH ratio of 0.45 and 0.50 each.

  9. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses.

    PubMed

    Wu, Kaimin; Huang, Yongjun; Wanghuang, Tenglong; Chen, Weijian; Wen, Guangjun

    2015-01-10

    In this paper, we numerically and theoretically discuss the novel absorption properties of a conventional metasurface-based terahertz (THz) electromagnetic (EM) absorber with different dielectric thicknesses. Two absorption modes are presented in the considered frequency band due to the increased dielectric thickness, and both modes can achieve near-unity absorptions when the dielectric layers reach additional nλ(d)/2 (n=1, 2) thicknesses, where λ(d) is the operating wavelength at the peak absorption in the dielectric slabs. The surface currents between the metasurface resonators and ground plane are not associated any longer, different from the conventional thin absorbers. Moreover, the EM wave energies are completely absorbed by the metasurface resonators and dielectric layer, and the main function of ground plane is to reflect the incident EM waves back to the resonators. The discussed novel absorption properties are analyzed and explained by classical EM theory and interference theory after numerical demonstrations. These findings can broaden the potential applications of the metasurface-based absorbers in the THz frequency range for different requirements.

  10. Physiologically Based Absorption Modeling to Design Extended-Release Clinical Products for an Ester Prodrug.

    PubMed

    Ding, Xuan; Day, Jeffrey S; Sperry, David C

    2016-11-01

    Absorption modeling has demonstrated its great value in modern drug product development due to its utility in understanding and predicting in vivo performance. In this case, we integrated physiologically based modeling in the development processes to effectively design extended-release (ER) clinical products for an ester prodrug LY545694. By simulating the trial results of immediate-release products, we delineated complex pharmacokinetics due to prodrug conversion and established an absorption model to describe the clinical observations. This model suggested the prodrug has optimal biopharmaceutical properties to warrant developing an ER product. Subsequently, we incorporated release profiles of prototype ER tablets into the absorption model to simulate the in vivo performance of these products observed in an exploratory trial. The models suggested that the absorption of these ER tablets was lower than the IR products because the extended release from the formulations prevented the drug from taking advantage of the optimal absorption window. Using these models, we formed a strategy to optimize the ER product to minimize the impact of the absorption window limitation. Accurate prediction of the performance of these optimized products by modeling was confirmed in a third clinical trial.

  11. Optical absorption in planar graphene superlattice: The role of structural parameters

    NASA Astrophysics Data System (ADS)

    Azadi, L.; Shojaei, S.

    2018-04-01

    We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.

  12. Optical absorption of suspended graphene based metal plasmonic grating in the visible range

    NASA Astrophysics Data System (ADS)

    Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.

    2018-05-01

    We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.

  13. Colloquium: Search for a drifting proton-electron mass ratio from H2

    NASA Astrophysics Data System (ADS)

    Ubachs, W.; Bagdonaite, J.; Salumbides, E. J.; Murphy, M. T.; Kaper, L.

    2016-04-01

    An overview is presented of the H2 quasar absorption method to search for a possible variation of the proton-electron mass ratio μ =mp/me on a cosmological time scale. The method is based on a comparison between wavelengths of absorption lines in the H2 Lyman and Werner bands as observed at high redshift with wavelengths of the same lines measured at zero redshift in the laboratory. For such comparison sensitivity coefficients to a relative variation of μ are calculated for all individual lines and included in the fitting routine deriving a value for Δ μ /μ . Details of the analysis of astronomical spectra, obtained with large 8-10 m class optical telescopes, equipped with high-resolution echelle grating based spectrographs, are explained. The methods and results of the laboratory molecular spectroscopy of H2, in particular, the laser-based metrology studies for the determination of rest wavelengths of the Lyman and Werner band absorption lines, are reviewed. Theoretical physics scenarios delivering a rationale for a varying μ are discussed briefly, as well as alternative spectroscopic approaches to probe variation of μ , other than the H2 method. Also a recent approach to detect a dependence of the proton-to-electron mass ratio on environmental conditions, such as the presence of strong gravitational fields, are highlighted. Currently some 56 H2 absorption systems are known and listed. Their usefulness to detect μ variation is discussed, in terms of column densities and brightness of background quasar sources, along with future observational strategies. The astronomical observations of ten quasar systems analyzed so far set a constraint on a varying proton-electron mass ratio of |Δ μ /μ |<5 ×1 0-6 (3 σ ), which is a null result, holding for redshifts in the range z =2.0 - 4.2 . This corresponds to look-back times of (10 - 12.4 )×109 years into cosmic history. Attempts to interpret the results from these ten H2 absorbers in terms of a spatial

  14. Laser Absorption Measurements of Equivalence Ratios Studied Along With Their Coupling to Pressure Fluctuations in Lean Premixed Prevaporized (LPP) Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2001-01-01

    Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.

  15. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  16. A quantum cascade laser-based Mach-Zehnder interferometer for chemical sensing employing molecular absorption and dispersion

    NASA Astrophysics Data System (ADS)

    Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard

    2018-02-01

    We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.

  17. Direct absorption spectroscopy sensor for temperature and H2O concentration of flat flame burner

    NASA Astrophysics Data System (ADS)

    Duan, Jin-hu; Jin, Xing; Wang, Guang-yu; Qu, Dong-sheng

    2016-01-01

    A tunable diode laser absorption sensor, based on direct absorption spectroscopy and time division multiplexing scheme, was developed to measure H2O concentration and temperature of flat flame burner. At the height of 15mm from the furnace surface, temperature and concentration were measured at different equivalence ratios. Then the distance between the laser and the furnace surface was changed while the equivalence ratio was fixed at 1 and experiments were performed to measure temperature and H2O concentration at every height. At last flame temperatures and H2O concentrations were obtained by simulation and computational analysis and these combustion parameters were compared with the reference. The results showed that the experimental results were in accordance with the reference values. Temperature errors were less than 4% and H2O component concentration errors were less than 5%and both of them reached their maximum when the equivalent ratio was set at 1. The temperature and H2O concentration increased with the height from furnace surface to laser when it varied from 3mm to 9mm and it decreased when it varied from 9mm to 30mm and they reached their maximum at the height of 9mm. Keywords: tunable diode laser, direct absorption spectroscopy

  18. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  19. Prediction of sound absorption in rigid porous media with the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    da Silva, Andrey Ricardo; Mareze, Paulo; Brandão, Eric

    2016-02-01

    In this work, sound absorption phenomena associated with the viscous shear stress within rigid porous media is investigated with a simple isothermal lattice Boltzmann BGK model. Simulations are conducted for different macroscopic material properties such as sample thickness and porosity and the results are compared with the exact analytical solution for materials with slit-like structure in terms of acoustic impedance and sound absorption coefficient. The numerical results agree very well with the exact solution, particularly for the sound absorption coefficient. The small deviations found in the low frequency limit for the real part of the acoustic impedance are attributed to the ratio between the thicknesses of the slit and the viscous boundary layer. The results suggest that the lattice Boltzmann method can be a very compelling numerical tool for simulating viscous sound absorption phenomena in the time domain, particularly due to its computational simplicity when compared to traditional continuum based techniques.

  20. Zinc Absorption from Representative Diet in a Chinese Elderly Population Using Stable Isotope Technique.

    PubMed

    Li, Ya Jie; Li, Min; Liu, Xiao Bing; Ren, Tong Xiang; Li, Wei Dong; Yang, Chun; Wu, Meng; Yang, Lin Li; Ma, Yu Xia; Wang, Jun; Piao, Jian Hua; Yang, Li Chen; Yang, Xiao Guang

    2017-06-01

    To determine the dietary zinc absorption in a Chinese elderly population and provide the basic data for the setting of zinc (Zn) recommended nutrient intakes (RNI) for Chinese elderly people. A total of 24 elderly people were recruited for this study and were administered oral doses of 3 mg 67Zn and 1.2 mg dysprosium on the fourth day. The primary macronutrients, energy, and phytic acid in the representative diet were examined based on the Chinese National Standard Methods. Fecal samples were collected during the experimental period and analyzed for zinc content, 67Zn isotope ratio, and dysprosium content. The mean (± SD) zinc intake from the representative Chinese diet was 10.6 ± 1.5 mg/d. The phytic acid-to-zinc molar ratio in the diet was 6.4. The absorption rate of 67Zn was 27.9% ± 9.2%. The RNI of zinc, which were calculated by the absorption rate in elderly men and women, were 10.4 and 9.2 mg/d, respectively. This study got the dietary Zn absorption in a Chinese elderly population. We found that Zn absorption was higher in elderly men than in elderly women. The current RNI in elderly female is lower than our finding, which indicates that more attention is needed regarding elderly females' zinc status and health. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. The energy loss and nuclear absorption effects in semi-inclusive deep inelastic scattering on nucleus

    NASA Astrophysics Data System (ADS)

    Song, Li-Hua; Xin, Shang-Fei; Liu, Na

    2018-02-01

    Semi-inclusive deep inelastic lepton-nucleus scattering provides a good opportunity to investigate the cold nuclear effects on quark propagation and hadronization. Considering the nuclear modification of the quark energy loss and nuclear absorption effects in final state, the leading-order computations on hadron multiplicity ratios for both hadronization occurring outside and inside the medium are performed with the nuclear geometry effect of the path length L of the struck quark in the medium. By fitting the HERMES two-dimensional data on the multiplicity ratios for positively and negatively charged pions and kaons produced on neon, the hadron-nucleon inelastic cross section {σ }h for different identified hadrons is determined, respectively. It is found that our predictions obtained with the analytic parameterizations of quenching weights based on BDMPS formalism and the nuclear absorption factor {N}A(z,ν ) are in good agreement with the experimental measurements. This indicates that the energy loss and nuclear absorption are the main nuclear effects inducing a reduction of the hadron yield for quark hadronization occurring outside and inside the nucleus, respectively.

  2. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  3. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  4. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less

  5. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  6. Absorption and fluorescence emission spectroscopic characters of naphtho-homologated yy-DNA bases and effect of methanol solution and base pairing.

    PubMed

    Zhang, Laibin; Li, Huifang; Li, Jilai; Chen, Xiaohua; Bu, Yuxiang

    2010-03-01

    A comprehensive theoretical study of electronic transitions of naphtho-homologated base analogs, namely, yy-T, yy-C, yy-A, and yy-G, was performed. The nature of the low-lying excited states is discussed, and the results are compared with those from experiment and also with those of y-bases. Geometrical characteristics of the lowest excited singlet pipi* and npi* states were explored using the CIS method, and the effects of methanol solution and paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were examined. The calculated excitation and emission energies agree well with the measured data, where experimental results are available. In methanol solution, the fluorescence from yy-A and yy-G would be expected to occur around 539 and 562 nm, respectively, suggesting that yy-A is a green-colored fluorophore, whereas yy-G is a yellow-colored fluorophore. The methanol solution was found to red-shift both the absorption and emission maxima of yy-A, yy-T, and yy-C, but blue-shift those for yy-G. Generally, though base pairing has no significant effects on the absorption and fluorescence maxima of yy-A, yy-C, and yy-T, it blue-shifts those for yy-G. (c) 2009 Wiley Periodicals, Inc.

  7. Effect of aminoalkyl methacrylate copolymer E/HCl on in vivo absorption of poorly water-soluble drug.

    PubMed

    Yoshida, Takatsune; Kurimoto, Ippei; Yoshihara, Keiichi; Umejima, Hiroyuki; Ito, Naoki; Watanabe, Shunsuke; Sako, Kazuhiro; Kikuchi, Akihiko

    2013-11-01

    This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.

  8. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents.

    PubMed

    Zhang, Kai; Ren, Shuhang; Hou, Yucui; Wu, Weize

    2017-02-15

    Sulfur dioxide (SO 2 ) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO 2 from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and l-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO 2 with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO 2 efficiently. SO 2 absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332mol SO 2 /mol HBA for Bet+EG DES and 0.820mol SO 2 /mol HBA for L-car+EG DES at 40°C with a SO 2 partial pressure of 0.02atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO 2 by DESs was studied by FT-IR, 1 H NMR and 13 C NMR spectra. It was found that there are strong acid-base interactions between SO 2 and -COO - on HBA. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Waveguide-based electro-absorption modulator performance: comparative analysis

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Khurgin, Jacob B.; Sorger, Volker J.

    2018-06-01

    Electro-optic modulation is a key function for data communication. Given the vast amount of data handled, understanding the intricate physics and trade-offs of modulators on-chip allows revealing performance regimes not explored yet. Here we show a holistic performance analysis for waveguide-based electro-absorption modulators. Our approach centers around material properties revealing obtainable optical absorption leading to effective modal cross-section, and material broadening effects. Taken together both describe the modulator physical behavior entirely. We consider a plurality of material modulation classes to include two-level absorbers such as quantum dots, free carrier accumulation or depletion such as ITO or Silicon, two-dimensional electron gas in semiconductors such as quantum wells, Pauli blocking in Graphene, and excitons in two-dimensional atomic layered materials such as found in transition metal dichalcogendies. Our results show that reducing the modal area generally improves modulator performance defined by the amount of induced electrical charge, and hence the energy-per-bit function, required switching the signal. We find that broadening increases the amount of switching charge needed. While some material classes allow for reduced broadening such as quantum dots and 2-dimensional materials due to their reduced Coulomb screening leading to increased oscillator strengths, the sharpness of broadening is overshadowed by thermal effects independent of the material class. Further we find that plasmonics allows the switching charge and energy-per-bit function to be reduced by about one order of magnitude compared to bulk photonics. This analysis is aimed as a guide for the community to predict anticipated modulator performance based on both existing and emerging materials.

  10. Two-Photon Absorption Based Nanoscopic Velocimeter

    NASA Astrophysics Data System (ADS)

    Wang, Audrey; Abdalrahman, Akrm; Deng, Jianyu; Wang, Guiren

    2017-11-01

    Most velocimeters in micro/nanofluidics rely on particles as flow tracers, such as micro Particle Image Velocimetry (μPIV). However, for many microflows, such as electrokinetic and near wall flow, magnetophoresis, acoustophoresis, photophoresis and thermophoresis, particles have different velocity from their surrounding fluids. Although most molecular tracer based velocimeters can use neutral dye to measure average velocity, their temporal and spatial resolution are limited. Stimulated emission depletion (STED) based laser-induced fluorescence photobleaching anemometer (LIFPA), i.e. STED-LIFPA has achieved 70 nm spatial resolution. However, STED nanoscopy is very complicated for most users. Here we developed a two-photon absorption LIFPA (TP-LIFPA), which is relatively easier to operate. TP-LIFPA can take advantage of the two-photon microscopy to increase spatial resolution. We use a femtolaser to excite a dye. A microcapillary tube is used to test the feasibility of TP-LIFPA. TP-LIFPA can successfully measure the velocity profile in the capillary. The resolution of TP-LIFPA is estimated to be about 90 nm. The work indicates TP-LIFPA is a new promising nanoscopic velocimeter for interfacial flows, especially within 100 nm at the interfacial area between two phases in the future. The work was supported by NSF under Grant No. MRI CBET-1040227.

  11. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  12. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  13. Evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.

  14. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  15. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands.

  16. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs.

    PubMed

    Iwanaga, Kazunori; Kushibiki, Toshihiro; Miyazaki, Makoto; Kakemi, Masawo

    2006-03-01

    Solvent Green 3 (SG), a model poorly water-soluble compound, was orally administered to rats with soybean oil emulsion or the Self-microemulsifying drug delivery system (SMEDDS) composed of Gelucire44/14. The bioavailability of SG after oral administration with SMEDDS was 1.7-fold higher than that with soybean oil emulsion. The intestinal absorption of lipid-based formulations themselves was evaluated by the in situ closed loop method. The effect of lipase and bile salt on their absorption was also evaluated. SMEDDS itself was rapidly absorbed in the intestine even in the absence of lipase and bile salt, and the absorption was increased by the addition of lipase and bile salt. On the other hand, no soybean oil emulsion was absorbed in the absence of lipase and bile salt. However, mixed micelle prepared from emulsion by incubating soybean oil emulsion with lipase and bile salt was rapidly absorbed through the intestine. Without lipase and bile salt, SG was not absorbed after administration with soybean oil emulsion. Therefore, we concluded that the degradation of soybean oil emulsion was needed for SG to be absorbed through the intestine. Furthermore, we investigated the intestinal absorption of SG after oral administration to rats whose chylomicron synthesis were inhibited by pretreatment with colchicine. Colchicine completely inhibited the intestinal absorption of SG after administration with each lipid-based formulation, suggesting that SG was absorbed from the intestine via a lymphatic route. Absorption of the dosage formulation should be paid attention when poorly water-soluble drugs are orally administered with lipid-based formulation.

  17. Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstroem, B.A.; Almgren, A.; Kivistoe, B.C.

    The absorption of zinc from meals based on 60 g of rye, barley, oatmeal, triticale or whole wheat was studied by use of extrinsic labelling with /sup 65/Zn and measurement of the whole-body retention of the radionuclide. The cereals were prepared in the form of bread or porridge and were served with 200 mL of milk. The oatmeal flakes were also served without further preparation. The absorption of zinc was negatively correlated to the phytic acid content of the meal with the highest absorption, 26.8 +/- 7.4%, from the rye bread meal containing 100 mumol of phytic acid and themore » lowest, 8.4 +/- 1.0%, from oatmeal porridge with a phytic acid content of 600 mumol. It is concluded that food preparation that decreases the phytic acid content improves zinc absorption.« less

  18. Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials.

    PubMed

    Tahersima, Mohammad H; Sorger, Volker J

    2015-08-28

    Recent investigations of semiconducting two-dimensional (2D) transition metal dichalcogenides have provided evidence for strong light absorption relative to its thickness attributed to high density of states. Stacking a combination of metallic, insulating, and semiconducting 2D materials enables functional devices with atomic thicknesses. While photovoltaic cells based on 2D materials have been demonstrated, the reported absorption is still just a few percent of the incident light due to their sub-wavelength thickness leading to low cell efficiencies. Here we show that taking advantage of the mechanical flexibility of 2D materials by rolling a molybdenum disulfide (MoS(2))/graphene (Gr)/hexagonal boron nitride stack to a spiral solar cell allows for optical absorption up to 90%. The optical absorption of a 1 μm long hetero-material spiral cell consisting of the aforementioned hetero stack is about 50% stronger compared to a planar MoS(2) cell of the same thickness; although the volumetric absorbing material ratio is only 6%. A core-shell structure exhibits enhanced absorption and pronounced absorption peaks with respect to a spiral structure without metallic contacts. We anticipate these results to provide guidance for photonic structures that take advantage of the unique properties of 2D materials in solar energy conversion applications.

  19. Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Wei, Jingsong; Gan, Fuxi

    2012-03-01

    The current study proposes a model based on the weakening of the resonant bond to explore the giant optical nonlinear saturable absorption of Sb-based phase change materials. In order to analyze the weakening of resonant bond effectively, we take the Sb2Te3 as an example. First-principle calculations show that both the Born effective charge and optical dielectric constant of crystalline Sb2Te3 in the 300 K to 500 K temperature range monotonically decrease with the temperature, indicating a weakening of the resonant bond. This weakening induces a decline in the absorption coefficient at a rate of 103 m-1 K-1, which results in a nonlinear saturable absorption coefficient in the order of 10-2 m/W. The nonlinear absorption characteristics of the crystalline Sb, Sb7Te3, and Sb2Te3 thin films at 405 nm laser wavelength are measured via z-scan technique using nanosecond laser pulses to validate the above-proposed model. The experimental results are in good agreement with theoretical prediction.

  20. Laser-induced plasma characterization through self-absorption quantification

    NASA Astrophysics Data System (ADS)

    Hou, JiaJia; Zhang, Lei; Zhao, Yang; Yan, Xingyu; Ma, Weiguang; Dong, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2018-07-01

    A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and absolute species number density can be deduced directly. Since there is no spectral intensity involved in the calculation, the analysis results are independent of the self-absorption effects and the additional spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for application and the precision of this method are also discussed. Experimental results of aluminum-lithium alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast plasma characteristics diagnostics.

  1. Ratio-based lengths of intervals to improve fuzzy time series forecasting.

    PubMed

    Huarng, Kunhuang; Yu, Tiffany Hui-Kuang

    2006-04-01

    The objective of this study is to explore ways of determining the useful lengths of intervals in fuzzy time series. It is suggested that ratios, instead of equal lengths of intervals, can more properly represent the intervals among observations. Ratio-based lengths of intervals are, therefore, proposed to improve fuzzy time series forecasting. Algebraic growth data, such as enrollments and the stock index, and exponential growth data, such as inventory demand, are chosen as the forecasting targets, before forecasting based on the various lengths of intervals is performed. Furthermore, sensitivity analyses are also carried out for various percentiles. The ratio-based lengths of intervals are found to outperform the effective lengths of intervals, as well as the arbitrary ones in regard to the different statistical measures. The empirical analysis suggests that the ratio-based lengths of intervals can also be used to improve fuzzy time series forecasting.

  2. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity

    PubMed Central

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Background: Forsythoside A (FTA), one of the main active ingredients in Shuang–Huang–Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. Materials and Methods: In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. Results: The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Conclusion: Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL. PMID:24695554

  3. Effect of various absorption enhancers based on tight junctions on the intestinal absorption of forsythoside A in Shuang-Huang-Lian, application to its antivirus activity.

    PubMed

    Zhou, Wei; Zhu, Xuan Xuan; Yin, Ai Ling; Cai, Bao Chang; Wang, Hai Dan; Di, Liuqing; Shan, Jin Jun

    2014-01-01

    Forsythoside A (FTA), one of the main active ingredients in Shuang-Huang-Lian (SHL), possesses strong antibacterial, antioxidant and antiviral effects, and its pharmacological effects was higher than that of other ingredients, but the absolute bioavailability orally was approximately 0.72%, which was significantly low, influencing clinical efficacies of its oral preparations seriously. In vitro Caco-2 cell and in vivo pharmacokinetics study were simultaneously performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test and morphology observation, respectively. The pharmacological effects such as antivirus activity improvement by absorption enhancers were verified by MDCK damage inhibition rate after influenza virus propagation. The observations from in vitro Caco-2 cell showed that the absorption of FTA in SHL could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/mL was safe, but water-soluble chitosan at different concentrations was all safe for these cells. In pharmacokinetics study, water-soluble chitosan at dosage of 50 mg/kg improved the bioavailability of FTA in SHL to the greatest extent, and was safe for gastrointestine from morphological observation. Besides, treatment with SHL with water-soluble chitosan at dosage of 50 mg/kg prevented MDCK damage after influenza virus propagation better significantly than that of control. Water-soluble chitosan at dosage of 50 mg/kg might be safe and effective absorption enhancer for improving the bioavailability of FTA and the antivirus activity in vitro in SHL.

  4. Changing the zinc:iron ratio in a cereal-based nutritional supplement has no effect on percent absorption of iron and zinc in Sri Lankan children

    USDA-ARS?s Scientific Manuscript database

    The Thriposha program is a community-level nutrition intervention in Sri Lanka that provides a combination of energy, protein, and micronutrients as a 'ready-to-eat' cereal-based food. We measured the bioavailability of Fe and Zn from Thriposha formula at two different molar ratios of Zn: Fe in orde...

  5. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mmmore » ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.« less

  6. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  7. Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty

    2018-03-01

    An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.

  8. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  9. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  10. Re-evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.

  11. Inclusion of Guava Enhances Non-Heme Iron Bioavailability but Not Fractional Zinc Absorption from a Rice-Based Meal in Adolescents12

    PubMed Central

    Nair, Krishnapillai Madhavan; Brahmam, Ginnela N.V.; Radhika, Madhari S.; Dripta, Roy Choudhury; Ravinder, Punjal; Balakrishna, Nagalla; Chen, Zhensheng; Hawthorne, Keli M.; Abrams, Steven A.

    2013-01-01

    Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run residential schools. Participants were given a standardized rice meal (regular) and the same meal with 100 g of guava fruit (modified) with 57Fe on 2 consecutive days. A single oral dose of 58Fe in orange juice was given at a separate time as a reference dose. Zinc absorption was assessed by using 70Zn, administered intravenously, and 67Zn given orally with meals. The mean hemoglobin concentration was similar in girls (129 ± 7.8 g/L) and boys (126 ± 7.1 g/L). There were no sex differences in the indicators of iron and zinc status except for a higher hepcidin concentration in boys (P < 0.05). The regular and modified meals were similar in total iron (10–13 mg/meal) and zinc (2.7 mg/meal) content. The molar ratio of iron to phytic acid was >1:1, but the modified diet had 20 times greater ascorbic acid content. The absorption of 57Fe from the modified meal, compared with regular meal, was significantly (P < 0.05) greater in both girls (23.9 ± 11.2 vs. 9.7 ± 6.5%) and boys (19.2 ± 8.4 vs. 8.6 ± 4.1%). Fractional zinc absorption was similar between the regular and modified meals in both sexes. Hepcidin was found to be a significant predictor of iron absorption (standardized β = −0.63, P = 0.001, R2 = 0.40) from the reference dose. There was no significant effect of sex on iron and zinc bioavailability from meals. We conclude that simultaneous ingestion of guava fruit with a habitual rice-based meal enhances iron bioavailability in adolescents. PMID:23596161

  12. Tree-shaped fractal meta-surface with left-handed characteristics for absorption application

    NASA Astrophysics Data System (ADS)

    Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.

    2018-02-01

    A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.

  13. Unified analysis of optical absorption spectra of carotenoids based on a stochastic model.

    PubMed

    Uragami, Chiasa; Saito, Keisuke; Yoshizawa, Masayuki; Molnár, Péter; Hashimoto, Hideki

    2018-05-03

    The chemical structures of the carotenoid molecules are very simple and one might think that the electronic feature of it is easily predicted. However, it still has so much unknown information except the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulating it from the resonance Raman spectra is also the effective way. From this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different kinds of cyclic carotenoid molecules, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated based on a stochastic model using Brownian oscillators. The parameters obtained from the simulation made it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively. Copyright © 2018. Published by Elsevier Inc.

  14. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    PubMed

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    PubMed Central

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660

  16. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  17. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  18. Probabilistic modeling of percutaneous absorption for risk-based exposure assessments and transdermal drug delivery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford Kuofei

    Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skinmore » that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.« less

  19. A theoretically based determination of bowen-ratio fetch requirements

    USGS Publications Warehouse

    Stannard, D.I.

    1997-01-01

    Determination of fetch requirements for accurate Bowen-ratio measurements of latent- and sensible-heat fluxes is more involved than for eddy-correlation measurements because Bowen-ratio sensors are located at two heights, rather than just one. A simple solution to the diffusion equation is used to derive an expression for Bowen-ratio fetch requirements, downwind of a step change in surface fluxes. These requirements are then compared to eddy-correlation fetch requirements based on the same diffusion equation solution. When the eddy-correlation and upper Bowen-ratio sensor heights are equal, and the available energy upwind and downwind of the step change is constant, the Bowen-ratio method requires less fetch than does eddy correlation. Differences in fetch requirements between the two methods are greatest over relatively smooth surfaces. Bowen-ratio fetch can be reduced significantly by lowering the lower sensor, as well as the upper sensor. The Bowen-ratio fetch model was tested using data from a field experiment where multiple Bowen-ratio systems were deployed simultaneously at various fetches and heights above a field of bermudagrass. Initial comparisons were poor, but improved greatly when the model was modified (and operated numerically) to account for the large roughness of the upwind cotton field.

  20. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  1. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  2. THE CONTENT AND RELATIVE BASE RATIOS OF RIBONUCLEIC ACID IN AMOEBA

    PubMed Central

    Iverson, Ray M.

    1964-01-01

    The amount and relative base ratios of ribonucleic acid (RNA) in the nucleus and cytoplasm of Amoeba proteus and A. dubia, and of homospecies cells obtained by nuclear transfer with A. proteus, have been determined by microelectrophoresis. In A. proteus the average amounts of RNA in the nucleus and the cytoplasm were 134. micromicrograms and 2520. micromicrograms; in A. dubia the averages for the nucleus and cytoplasm were 67. micromicrograms and 1427. micromicrograms. The relative base ratio of RNA of the nucleus is similar to that of the RNA of the cytoplasm within a species, but the two species differed in this respect. Homospecies nuclear transfer did not affect the relative base ratio or amount of RNA. PMID:14105213

  3. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    NASA Astrophysics Data System (ADS)

    Liu, Jonathan T. C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-11-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34 1.47 μm spectral region (2v1 and v1+v3 overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

  4. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  5. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  6. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  7. Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions.

    PubMed

    Uddin, Md Nasir; Figley, Teresa D; Marrie, Ruth Ann; Figley, Chase R

    2018-03-01

    Given the growing popularity of T 1 -weighted/T 2 -weighted (T 1 w/T 2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T 1 w/T 2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T 2 w image acquisition, and to compare the resulting T 1 w/T 2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T 1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T 2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T 1 w/T 2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T 1 w/T 2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r 2 = 0.62 for all ROIs, r 2 = 0.62 for WM structures and r 2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T 1 w/T 2 w ratios and MWFs were extremely low in WM structures (FSE-based, r 2 = 0.000020; GRASE-based, r 2 = 0.0014), low across all ROIs (FSE-based, r 2 = 0.053; GRASE-based, r 2 = 0.029) and moderate in SGM structures (FSE-based, r 2 = 0.20; GRASE-based, r 2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T 1 w/T 2 w ratios, and low correlations between T 1 w/T 2 w ratios and MWFs. This

  8. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  9. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  10. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    PubMed

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  11. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-01-01

    Several trace gases such as H2O, CO, CO2, NO, N2O, NO2 and CH4 strongly absorb in the mid-IR spectral region due to their fundamental rotational and vibrational transitions. In this work, we propose an evanescent field absorption gas sensor based on silicon/silicon dioxide slot waveguide at 3.39 μm for sensing of methane gas. These waveguides can provide the highest evanescent field ratio (EFR) > 47% with adequate dimensions. Higher EFR values often come at an expense of higher propagation losses. These waveguides have relatively higher losses as compared to conventional waveguides, such as rib and slab waveguides, as these fundamental losses are static and the proposed sensing mechanism is established on the incremental loss due to the absorption of the gas. Therefore, incident power can always be incremented to compensate the waveguide losses.

  12. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    NASA Astrophysics Data System (ADS)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  13. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  14. New acoustical technology of sound absorption based on reverse horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting

    2016-12-01

    In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.

  15. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  16. Light absorption properties and radiative effects of primary organic aerosol emissions

    DOE PAGES

    Lu, Zifeng; Streets, David G.; Winijkul, Ekbordin; ...

    2015-03-26

    Organic aerosols (OAs) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (k OA, the fundamental optical parameter determining the particle’s absorptivity) andmore » their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the k OA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based k OA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated k OA values of sectoral and total POA emissions are presented. The results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ~27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.« less

  17. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  18. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.

    PubMed

    Arifler, Dogu; Arifler, Dizem

    2017-04-01

    For biomedical applications of nanonetworks, employing molecular communication for information transport is advantageous over nano-electromagnetic communication: molecular communication is potentially biocompatible and inherently energy-efficient. Recently, several studies have modeled receivers in diffusion-based molecular communication systems as "perfectly monitoring" or "perfectly absorbing" spheres based on idealized descriptions of chemoreception. In this paper, we focus on perfectly absorbing receivers and present methods to improve the accuracy of simulation procedures that are used to analyze these receivers. We employ schemes available from the chemical physics and biophysics literature and outline a Monte Carlo simulation algorithm that accounts for the possibility of molecule absorption during discrete time steps, leading to a more accurate analysis of absorption probabilities. Unlike most existing studies that consider a single receiver, this paper analyzes absorption probabilities for multiple receivers deterministically or randomly deployed in a region. For random deployments, the ultimate absorption probabilities as a function of transmitter-receiver distance are shown to fit well to power laws; the exponents derived become more negative as the number of receivers increases up to a limit beyond which no additional receivers can be "packed" in the deployment region. This paper is expected to impact the design of molecular nanonetworks with multiple absorbing receivers.

  19. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  20. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    NASA Astrophysics Data System (ADS)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  1. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less

  2. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  3. Systems Biology and Ratio-Based, Real-Time Disease Surveillance.

    PubMed

    Fair, J M; Rivas, A L

    2015-08-01

    Most infectious disease surveillance methods are not well fit for early detection. To address such limitation, here we evaluated a ratio- and Systems Biology-based method that does not require prior knowledge on the identity of an infective agent. Using a reference group of birds experimentally infected with West Nile virus (WNV) and a problem group of unknown health status (except that they were WNV-negative and displayed inflammation), both groups were followed over 22 days and tested with a system that analyses blood leucocyte ratios. To test the ability of the method to discriminate small data sets, both the reference group (n = 5) and the problem group (n = 4) were small. The questions of interest were as follows: (i) whether individuals presenting inflammation (disease-positive or D+) can be distinguished from non-inflamed (disease-negative or D-) birds, (ii) whether two or more D+ stages can be detected and (iii) whether sample size influences detection. Within the problem group, the ratio-based method distinguished the following: (i) three (one D- and two D+) data classes; (ii) two (early and late) inflammatory stages; (iii) fast versus regular or slow responders; and (iv) individuals that recovered from those that remained inflamed. Because ratios differed in larger magnitudes (up to 48 times larger) than percentages, it is suggested that data patterns are likely to be recognized when disease surveillance methods are designed to measure inflammation and utilize ratios. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers.

    PubMed

    Amat, S; McKinnon, J J; Penner, G B; Hendrick, S

    2014-02-01

    This study evaluated the effects of dietary S concentration and forage-to-concentrate ratio (F:C) on ruminal fermentation, S metabolism, and short-chain fatty acid (SCFA) absorption in beef heifers. Sixteen ruminally cannulated heifers (initial BW 628 ± 48 kg) were used in a randomized complete block design with a 2 × 2 factorial treatment arrangement. The main factors included F:C (4% forage vs. 51% forage, DM basis) and the S concentration, which was modified using differing sources of wheat dried distillers grains with solubles (DDGS) to achieve low- and high-S diets (LS = 0.30% vs. HS = 0.67% S on a DM basis). Elemental S was also added to increase the S content for the HS diets. Serum sulfate concentration from blood, sulfide (S(2-)), and SCFA concentrations from ruminal fluid, hydrogen sulfide (H2S) concentration from the ruminal gas cap, and urinary sulfate concentration were determined. Continuous rumen pH and SCFA (acetate, butyrate, and propionate) absorption were measured. There were no interactions between S concentration and F:C. The F:C did not affect DMI (P = 0.26) or ruminal S metabolite concentrations (P ≥ 0.19), but ruminal pH was lower (P < 0.01) and SCFA absorption was greater (P < 0.01) for low F:C diets. Heifers fed HS diets had less DMI (P < 0.01) but greater ruminal pH (P < 0.01), greater concentrations of ruminal H2S (P < 0.01) and serum sulfate (P < 0.01), and greater urinary sulfate concentration (P < 0.01) and output (P < 0.01) relative to heifers fed LS diets. Ruminal H2S was positively correlated with serum sulfate (r = 0.89; P < 0.01). Ruminal acetate concentration was not affected (P = 0.26) by dietary S concentration. Heifers fed the HS diet had lower (P = 0.01) ruminal propionate concentration and tended to have lower (P = 0.06) butyrate concentration than heifers fed the LS diet. Ruminal acetate was greater (P = 0.01) and butyrate was less (P < 0.01) with the high F:C diet than the low F:C diet. Both HS (P = 0.06) and low F

  5. Fuzzy classifier based support vector regression framework for Poisson ratio determination

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2013-09-01

    Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.

  6. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  7. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  8. Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.

    PubMed

    Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram

    2017-02-01

    In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.

  9. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats.

    PubMed

    Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P

    2001-10-01

    We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.

  10. SO2 absorption in EmimCl-TEG deep eutectic solvents.

    PubMed

    Yang, Dezhong; Zhang, Shaoze; Jiang, De-En; Dai, Sheng

    2018-06-06

    Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.

  11. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    NASA Astrophysics Data System (ADS)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  12. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    PubMed

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  13. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  14. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    PubMed

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  15. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  16. Constraints on the OH-to-H Abundance Ratio in Infrared-bright Galaxies Derived from the Strength of the OH 35 μm Absorption Feature

    NASA Astrophysics Data System (ADS)

    Stone, Myra; Veilleux, Sylvain; González-Alfonso, Eduardo; Spoon, Henrik; Sturm, Eckhard

    2018-02-01

    We analyze Spitzer/InfraRed Spectrograph (IRS) observations of the OH 35 μm feature in 15 nearby (z ≲ 0.06) (ultra-)luminous infrared galaxies (U/LIRGs). All objects exhibit OH 35 μm purely in absorption, as expected. The small optical depth of this transition makes the strength of this feature a good indicator of the true OH column density. The measured OH 35 μm equivalent widths imply an average OH column density and a 1-σ standard deviation to the mean of {N}{OH}=1.31+/- 0.22× {10}17 cm‑2. This number is then compared with the hydrogen column density for a typical optical depth at 35 μm of ∼0.5 and gas-to-dust ratio of 125 to derive an OH-to-H abundance ratio of {X}{OH}=1.01+/- 0.15× {10}-6. This abundance ratio is formally a lower limit. It is consistent with the values generally assumed in the literature. The OH 35 μm line profiles predicted from published radiative transfer models constrained by observations of OH 65, 79, 84, and 119 μm in 5 objects (Mrk 231, Mrk 273, IRAS F05189-2524, IRAS F08572+3915, and IRAS F20551-4250) are also found to be consistent with the IRS OH 35 μm spectra.

  17. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using themore » leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.« less

  18. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    NASA Astrophysics Data System (ADS)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  19. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  20. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  1. Portable Cavity Ringdown Spectrometer for Methane Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Bostrom, G.; Rice, A.; Atkinson, D.

    2008-12-01

    Close to 45% (244 Tg/yr) of the methange (CH4) in the atmosphere is produced in anaerobic soil conditions (wetlands and rice paddies). Under aerobic soil conditions, bacteria oxidize CH4 to produce CO2 and H2O. Both production and oxidation rates depend on soil composition, nutrient loadings, water content, and plant conditions, but these dependencies are not well characterized. Measurements of CH4 isotope ratios can provide a better understanding of CH4 processes in natural and man- made ecosystems. Here we present progress on the development of a field deployable instrument capable of making precision 13CH4/12CH4 and CH3D/ CH4 isotope ratio measurements of CH4. Moving the instrument out of the lab and into the field will significantly improve the spatial and temporal resolution of data and enhance the study of plant-soil-atmosphere CH4 source and sink processes. Our instrument is a Near-IR (1280-1340 nm) tunable diode laser Cavity Ringdown Spectroscopy (CRDS) system. CRDS is a technique in which the laser injects energy into a high finesse cavity by tuning to one of the cavity resonant modes, resulting in a buildup of energy. At some threshold intra-cavity intensity the injection is stopped, and the intensity decays exponentially due to losses such as absorption by molecules. If the laser is tuned to an absorption line of a sample gas, the concentration of the molecule is proportional to the decay constant (according to the Beer-Lambert law)--scanning over a frequency range produces an absorption spectrum. Currently our system has a resolution of 150 MHz scanning over a 30 GHz (0.2 nm) region, allowing us to resolve peaks at pressures of 100 torr. Using combinations of CH4 standard (natural isotopic abundance) and a 99% pure 13CH4 standard, we identified several lines in the CH4 HITRAN Database that we attribute to 13CH4. We use these and 12CH4 lines within the same region to measure 13CH4 concentration, 12CH4 concentration, and the isotope ratio (13C/12C and D

  2. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  3. Multiphase gas in quasar absorption-line systems

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Sutherland, Ralph S.; Shull, J. Michael

    1994-01-01

    In the standard model for H I Lyman-limit (LL) quasar absorption-line systems, the absorbing matter is galactic disk and halo gas, heated and photoionized by the metagalactic radiation field produced by active galaxies. In recent Hubble Space Telescope (HST) observations (Reimers et al. 1992; Vogel & Reimers 1993; Reimers & Vogel 1993) of LL systems along the line of sight to the quasar HS 1700+6416, surprisingly high He I/H I ratios and a wide distribution of column densities of C, N, and O ions are deduced from extreme ultraviolet absorption lines. We show that these observations are incompatible with photoionization equilibrium by a single metagalactic ionizing background. We argue that these quasar absorption systems possess a multiphase interstellar medium similar to that of our Galaxy, in which extended hot, collisionally ionized gas is responsible for some or all of the high ionization stages of heavy elements. From the He/H ratios we obtain -4.0 less than or = log U less than or = -3.0, while the CNO ions are consistent with hot gas in collisional ionization equilibrium at log T = 5.3 and (O/H) = -1.6. The supernova rate necessary to produce these heavy elements and maintain the hot-gas energy budget of approximately 10(exp 41.5) ergs/s is approximately 10(exp -2)/yr, similar to that which maintains the 'three-phase' interstellar medium in our own Galaxy. As a consequence of the change in interpretation from photoionized gas to a multiphase medium, the derived heavy-element abundances (e.g., O/C) of these systems are open to question owing to substantial ionization corrections for unseen C V in the hot phase. The metal-line ratios may also lead to erroneous diagnostics of the shape of the metagalactic ionizaing spectrum and the ionizing parameter of the absorbers.

  4. Water-absorption rate equation of rice for brewing sake.

    PubMed

    Mizuma, Tomochika; Tomita, Akiko; Kitaoka, Atsushi; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2007-01-01

    This study was undertaken to analyze the kinetics of water absorption and to derive an equation for the rate at which water is absorbed by rice for brewing sake. We used two rice varieties: Gin-oumi, commonly used as a staple food, and Gohyakumangoku, a variety used particularly for brewing sake. The water-absorption rate equations of Gin-oumi and Gohyakumangoku were postulated based on the following equations. For Gin-oumi (water content, 11.5%), dx/dtheta=k(1-x)(n), n=1, k=(2 x 10(-9))exp(0.0604 x (t+273.15)). For Gohyakumangoku (11.5%), dx/dtheta=k(1-x)(n)(x+a), n=1, a=0.29, k=(2 x 10(-8))exp(0.0534 x (t+273.15)). Here, x, theta (min), and t ( degrees C) are the water absorbing ratio, time, and temperature, respectively. The result shows that the values of the temperature-dependence parameter k (min(-1)), as well as its curves, are different; a typical rice grain has a monotonically smooth curve, whereas that suitable for sake brewing has an S-shaped curve.

  5. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  6. Bicarbonate secretion and solute absorption in forestomach of the llama.

    PubMed

    Rübsamen, K; Engelhardt, W V

    1978-07-01

    Bicarbonate appearance in the lumen and its relationship to solute absorption were studied in a Pavlov pouch in the cardiac region of the first compartment of the llama forestomach. HCO3- appearance showed no diurnal variation. HCO3- accumulation was highly dependent on the pH of the solution used. The HCO3- ion probably is formed from CO2 diffusing into the lumen from the serosal side, as a result of cell metabolism and of OH- ions. HCO3- accumulation was closely related to volatile fatty acid (VFA) absorption. The ratio of HCO3- appearance to VFA absorption depended on the pH of the solution. At a pH of 6.6, about 0.1 mol HCO3- and, at a pH of 7.8, 0.9 mol HCO3- appeared per mole absorbed VFA, indicating that at slightly alkaline pH nearly all H+ ions required for the nonionic absorption of VFA appeared to be delivered from the dissociation of H2CO3. Bicarbonate gain and VFA absorption were increased when animals were not fed for 48 h. Sodium absorption was related to VFA as well as water absorption.

  7. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  8. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  9. The effect of a periodic absorptive strip arrangement on an interior sound field in a room.

    PubMed

    Park, Joo-Bae; Grosh, Karl; Kim, Yang-Hann

    2005-02-01

    In this paper we study the effect of periodically arranged sound absorptive strips on the mean acoustic potential energy density distribution of a room. The strips are assumed to be attached on the room's surface of interest. In order to determine their effect, the mean acoustic potential energy density variation is evaluated as the function of a ratio of the strip's arrangement period to wavelength. The evaluation demonstrates that the mean acoustic potential energy density tends to converge. In addition, a comparison with a case in which absorptive materials completely cover the selected absorptive plane shows that a periodic arrangement that uses only half of the absorptive material can be more efficient than a total covering, unless the frequency of interest does not coincide with the room's resonant frequencies. Consequently, the results prove that the ratio of the arrangement period to the wavelength plays an important role in the effectiveness of a periodic absorptive strip arrangement to minimize a room's mean acoustic potential energy density.

  10. An analysis of OH excited state absorption lines in DR 21 and K3-50

    NASA Astrophysics Data System (ADS)

    Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.

    1992-10-01

    We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.

  11. Copper-65-absorption by men fed intrinsically and extrinsically labeled whole wheat bread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, P.E.; Lykken, G.I.

    Six men were fed a diet composed of conventional foods with all bread as whole wheat bread. Intrinsically labeled /sup 65/Cu bread (containing 6.5 ppm Cu and 48 atom % /sup 65/Cu) was substituted for unlabeled bread for 3 days, and stools were collected for 24 days. Extrinsically labeled bread was then substituted for 3 days and another 24-day stool collection made. /sup 65/Cu excretion was measured by mass spectrometry. Mean Cu intake was 1.10 mg of Cu/day. Average Cu balance was /minus/0.06 /+-/ 0.08 mg/day. Average absorption of the intrinsic copper was 72.2 /+-/ 9.3% and of extrinsic Cumore » 64.2 /+-/ 5.8%. The ratio of extrinsic to intrinsic absorption was 0.906 /+-/ 0.164. Absorption of intrinsic and extrinsic tracers did not differ significantly (p > 0.05) by a paired t-test, and the ratio (E/I) was not significantly different from 1. Use of extrinsic Cu tracers to assess Cu absorption is supported by these results.« less

  12. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  13. Investigating the variability in brown carbon light-absorption properties

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Cheng, Z.; Atwi, K.

    2017-12-01

    Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated

  14. All-optical reservoir computer based on saturation of absorption.

    PubMed

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  15. Molecfit: A general tool for telluric absorption correction. II. Quantitative evaluation on ESO-VLT/X-Shooterspectra

    NASA Astrophysics Data System (ADS)

    Kausch, W.; Noll, S.; Smette, A.; Kimeswenger, S.; Barden, M.; Szyszka, C.; Jones, A. M.; Sana, H.; Horst, H.; Kerber, F.

    2015-04-01

    Context. Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT/X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, Ioff and Ires, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with molecfit to the classical method based on a telluric standard star. Results: The evaluation of the telluric correction with molecfit shows a convincing removal of atmospheric absorption features. The comparison with the classical method reveals that molecfit performs better because it is not prone to the bad continuum reconstruction, noise, and

  16. Simultaneous CO concentration and temperature measurements using tunable diode laser absorption spectroscopy near 2.3 μm

    NASA Astrophysics Data System (ADS)

    Sane, Anup; Satija, Aman; Lucht, Robert P.; Gore, Jay P.

    2014-10-01

    Simultaneous measurements of carbon monoxide (CO) mole fraction and temperature using tunable diode laser absorption spectroscopy (TDLAS) near 2.3 μm are reported. The measurement method uses ro-vibrational transitions [R(27): v″ = 1 → v' = 3] and [R(6): v″ = 0 → v' = 2] in the first overtone band of CO near 2.3 μm (~4,278 cm-1). The measurements were performed in the post flame environment of fuel rich premixed ethylene-air flames with a N2 co-flow, stabilized over a water cooled McKenna burner. Non-uniformity in the temperature and CO mole fraction, along the absorption line of sight, in the mixing layer of the co-flow, was considered during data analysis. The TDLAS based temperature measurements (±80 K) were in good agreement with those obtained using N2 vibrational coherent anti-Stokes Raman scattering (±20 K), and the CO mole fraction measurements were in good agreement with the equilibrium values, for equivalence ratios lower than 1.8. A signal to noise ratio of 45 was achieved at an equivalence ratio of 1 for a CO concentration of 0.8 % at 1,854 K.

  17. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  18. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  19. Tunable Absorption System based on magnetorheological elastomers and Halbach array: design and testing

    NASA Astrophysics Data System (ADS)

    Bocian, Mirosław; Kaleta, Jerzy; Lewandowski, Daniel; Przybylski, Michał

    2017-08-01

    In this paper, the systematic design, construction and testing of a Tunable Absorption System (TAS) incorporating magnetorheological elastomer (MRE) has been investigated. The TAS has been designed for energy absorption and mitigation of vibratory motions from an impact excitation. The main advantage of the designed TAS is that it has the ability to change and adapt to working conditions. Tunability can be realised through a change in the magnetic field caused by the change of an internal arrangement of permanent magnets within a double dipolar circular Halbach array. To show the capabilities of the tested system, experiments based on an impulse excitation have been performed. Significant changes of the TASs natural frequency and damping characteristics have been obtained. By incorporating magnetic tunability within the TAS a significant qualitative and quantitative change in the devices mechanical properties and performance were obtained.

  20. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  1. Studies of absorption coefficient cum electro-optic performance of polymer dispersed liquid crystal doped with CNT and dichroic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj

    2017-11-01

    Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.

  2. Direct Absorption Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

  3. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Harutyunyan, Boris

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the twomore » SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.« less

  4. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  5. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  6. Can the tricyanomethanide anion improve CO2 absorption by acetate-based ionic liquids?

    PubMed

    Lepre, L F; Szala-Bilnik, J; Pison, L; Traïkia, M; Pádua, A A H; Ando, R A; Costa Gomes, M F

    2017-05-17

    Carbon dioxide absorption by mixtures of two ionic liquids with a common cation-1-butyl-3-methylimidazolium acetate, [C 4 C 1 Im][OAc], and 1-butyl-3-methylimidazolium tricyanomethanide, [C 4 C 1 Im][C(CN) 3 ]-was determined experimentally at pressures below atmospheric pressure as a function of temperature between 303 K and 343 K, and at 303 K as a function of pressure up to 10 bar. It is observed that the absorption of carbon dioxide decreases with increasing tricyanomethanide anion concentration and with increasing temperature, showing a maximum of 0.4 mole fraction of carbon dioxide in pure [C 4 C 1 Im][OAc] at 303 K. At this temperature, the CO 2 absorption in the mixtures [C 4 C 1 Im][OAc] (1-x) [C(CN) 3 ] x is approximately the mole-fraction average of that in the pure ionic liquids. By applying an appropriate thermodynamic treatment, after identification of the species in solution, it was possible to calculate both the equilibrium constant, K eq , and Henry's law constant, K H , in the different mixtures studied thus obtaining an insight into the relative contribution of chemical and physical absorption of the gas. It is shown that chemical sorption proceeds through a 1 : 2 stoichiometry between CO 2 and acetate-based ionic liquid. The presence of the C(CN) 3 - anion does not significantly affect the chemical reaction of the gas with the solvent (K eq = 75 ± 2 at 303 K) but leads to lower Henry's law constants (from K H = 77.8 ± 0.6 bar to K H = 49.5 ± 0.5 bar at 303 K), thus pointing towards larger physical absorption of the gas. The tricyanomethanide anion considerably improves the mass transfer by increasing the fluidity of the absorbent as proven by the larger diffusivities of all the ions when the concentration of the C(CN) 3 - anion increases in the mixtures.

  7. Spatial decoupling of light absorption and catalytic activity of Ni-Mo-loaded high-aspect-ratio silicon microwire photocathodes

    NASA Astrophysics Data System (ADS)

    Vijselaar, Wouter; Westerik, Pieter; Veerbeek, Janneke; Tiggelaar, Roald M.; Berenschot, Erwin; Tas, Niels R.; Gardeniers, Han; Huskens, Jurriaan

    2018-03-01

    A solar-driven photoelectrochemical cell provides a promising approach to enable the large-scale conversion and storage of solar energy, but requires the use of Earth-abundant materials. Earth-abundant catalysts for the hydrogen evolution reaction, for example nickel-molybdenum (Ni-Mo), are generally opaque and require high mass loading to obtain high catalytic activity, which in turn leads to parasitic light absorption for the underlying photoabsorber (for example silicon), thus limiting production of hydrogen. Here, we show the fabrication of a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. Varying the fraction of catalyst coverage over the microwires, and the pitch between the microwires, makes it possible to deconvolute the contributions of catalytic activity and light absorption to the overall device performance. This approach provided a silicon microwire photocathode that exhibited a near-ideal short-circuit photocurrent density of 35.5 mA cm-2, a photovoltage of 495 mV and a fill factor of 62% under AM 1.5G illumination, resulting in an ideal regenerative cell efficiency of 10.8%.

  8. Structural study of aggregated β-carotene by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  9. Estimating the signal-to-noise ratio of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.

    1988-01-01

    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.

  10. Enhanced rectal absorption of amphotericin B lyophilized with glycyrrhizinate in rabbits.

    PubMed

    Tanaka, M; Kuwahara, E; Takahashi, M; Koyama, O; Takahashi, N; Yotsuyanagi, T

    1998-08-01

    The influence of bases and additives in the formulation for rectal absorption of amphotericin B (AMB) lyophilized with dipotassium glycyrrhizinate (GLYK) was investigated using rabbits in relation to an in vitro release test. The release of AMB from the fatty base of Witepsol or a medium chain triglyceride (MCT) was markedly faster than that from the hydrophilic base of macrogol. The addition of polyoxyethylene (2) lauryl ether (POE(2)LE) into the fatty bases led to a marked increase in the release rate, whereas POE(9)LE or sodium lauryl sulfate resulted in a significantly lower release rate. Animals received rectally each of seven AMB formulations of Witepsol H-15, macrogol, MCT with surfactants and aqueous solution. The absorption of the AMB lyophilized mixture with GLYK at a 1:9 molar ratio from a MCT base was significantly superior to that from macrogol. The addition of POE(2)LE into the MCT base resulted in a marked increase in bioavailability, showing the highest bioavailability of 4.9%. High serum levels of over 100 ng/ml of serum were maintained for 24 h following administration. The lowest bioavailability was 0.32% for the macrogol suppository. There was a good correlation between the release rate of AMB from the formulations and bioavailability. These results suggest that an AMB rectal formulation may provide a promising therapeutic alternative to infusion, taking into account the serum level of AMB exceeding the minimal inhibitory concentration of the infecting organism.

  11. Electromagnetic and Microwave Absorption Properties of Carbonyl Tetrapod-Shaped Zno Nanostructures Composite Coatings

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Qin, Hui; Huang, Yunhua

    2012-08-01

    CIP/T-ZnO/EP composite coatings with carbonyl iron powders (CIP) and tetrapodshaped ZnO (T-ZnO) nanostructures as absorbers, and epoxy resin (EP) as matrix were prepared. The complex permittivity, permeability and microwave absorption properties of the coatings were investigated in the frequency range of 2-18 GHz. The effects of the weight ratio (CIP/T-ZnO/EP), the thickness and the solidification temperature on microwave absorption properties were discussed. When the weight ratio (CIP/TZnO/ EP), the thickness and the solidification temperature is 28:2:22, 1.8 mm, and 10°C, respectively, the optimal wave absorption with the minimum reflection loss (RL) value of -22.38 dB at 15.67 GHz and the bandwidth (RL<-10 dB) of 5.74 GHz was obtained, indicating that the composite coatings may have a promising application in Ku-band (12-18 GHz).

  12. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  13. Continuous flow analysis combined with a light-absorption ratio variation approach for determination of copper at ng/ml level in natural water.

    PubMed

    Gao, Hong-Wen; Wang, Chun-Lei; Jia, Jiang-Yan; Zhang, Ya-Lei

    2007-06-01

    The complexation between Cu(II) and naphthochrome green (NG) is very sensitive at pH 4.09 with the formation of complex ion [Cu(NG)2(H2O)2](2-). It can thus used for the determination of Cu(II) by the light-absorption ratio variation approach (LARVA) with a good selectivity. Both the ordinary detection procedure and continuous flow analysis (CFA) were carried out, where the latter is fit for continuous and rapid analysis of samples. The limit of detection (LOD) of Cu(II) is only 1 ng/ml, which is favorable for direct monitoring of natural water. About 30 samples could be analyzed per hour by CFA. Cu(II) contents in Yangtze River, West Lake, Taihu Lake of China and seawater near Shanghai were determined with satisfactory results. The CFA-LARVA spectrophotometry was the first to be coupled and it will play an important role in the in-situ analysis of natural water quality.

  14. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  15. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  16. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  17. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  18. Assessing causal mechanistic interactions: a peril ratio index of synergy based on multiplicativity.

    PubMed

    Lee, Wen-Chung

    2013-01-01

    The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often will misinterpret a statistically significant interaction as a genuine mechanistic interaction. The author adopts an alternative metric system for risk, the 'peril'. A peril is an exponentiated cumulative rate, or simply, the inverse of a survival (risk complement) or one plus an odds. The author proposes a new index based on multiplicativity of peril ratios, the 'peril ratio index of synergy based on multiplicativity' (PRISM). Under the assumption of no redundancy, PRISM can be used to assess synergisms in sufficient cause sense, i.e., causal co-actions or causal mechanistic interactions. It has a less stringent threshold to detect a synergy as compared to a previous index of 'relative excess risk due to interaction'. Using the new PRISM criterion, many situations in which there is not evidence of interaction judged by the traditional indices are in fact corresponding to bona fide positive or negative synergisms.

  19. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  20. Ultraviolet gas absorption and dust extinction toward M8

    NASA Technical Reports Server (NTRS)

    Boggs, Don; Bohm-Vitense, Erika

    1990-01-01

    Interstellar absorption lines are analyzed using high-resolution IUE spectra of 11 stars in the young cluster NGC 6530 located in the M8 region. High-velocity clouds at -35 km/s and -60 km/s are seen toward all cluster stars. The components arise in gases that are part of large interstellar bubbles centered on the cluster and driven by stellar winds of the most luminous members. Absorption lines of species of different ionization states are separated in velocity. The velocity stratification is best explained as a 'champagne' flow of ionized gas away from the cluster. The C IV/Si IV ratios toward the hotter cluster members are consistent with simple photoionization models if the gas-phase C/Si ratio is increased by preferential accretion onto dust grains. High ion column densities in the central cluster decline with distance from W93, suggesting that radiation from a hot source near W93 has photoionized gas in the central cluster.

  1. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1998-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  2. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1999-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  3. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  4. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, David; Gibb, Erika; Rettig, Terrence W.

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less

  5. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  6. Long Elastic Open Neck Acoustic Resonator for low frequency absorption

    NASA Astrophysics Data System (ADS)

    Simon, Frank

    2018-05-01

    Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.

  7. Theoretical analysis of the sound absorption characteristics of periodically stiffened micro-perforated plates

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-An; Wang, Xiao-Ming; Mei, Yu-Lin

    2014-10-01

    The vibro-acoustic responses and sound absorption characteristics of two kinds of periodically stiffened micro-perforated plates are analyzed theoretically. The connected periodical structures of the stiffened plates can be ribs or block-like structures. Based on fundamental acoustic formulas of the micro-perforated plate of Maa and Takahashi, semi-analytical models of the vibrating stiffened plates are developed in this paper. Approaches like the space harmonicmethod, Fourier transforms and finite elementmethod (FEM) are adopted to investigate both kinds of the stiffened plates. In the present work, the vibro-acoustic responses of micro-perforated stiffened plates in the wavenumber space are expressed as functions of plate displacement amplitudes. After approximate numerical solutions of the amplitudes, the vibration equations and sound absorption coefficients of the two kinds of stiffened plates in the physical space are then derived by employing the Fourier inverse transform. In numerical examples, the effects of some physical parameters, such as the perforation ratio, incident angles and periodical distances etc., on the sound absorption performance are examined. The proposed approaches are also validated by comparing the present results with solutions of Takahashi and previous studies of stiffened plates. Numerical results indicate that the flexural vibration of the plate has a significant effect on the sound absorption coefficient in the water but has little influence in the air.

  8. Cost/Performance Ratio Achieved by Using a Commodity-Based Cluster

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac

    2001-01-01

    Researchers at the NASA Glenn Research Center acquired a commodity cluster based on Intel Corporation processors to compare its performance with a traditional UNIX cluster in the execution of aeropropulsion applications. Since the cost differential of the clusters was significant, a cost/performance ratio was calculated. After executing a propulsion application on both clusters, the researchers demonstrated a 9.4 cost/performance ratio in favor of the Intel-based cluster. These researchers utilize the Aeroshark cluster as one of the primary testbeds for developing NPSS parallel application codes and system software. The Aero-shark cluster provides 64 Intel Pentium II 400-MHz processors, housed in 32 nodes. Recently, APNASA - a code developed by a Government/industry team for the design and analysis of turbomachinery systems was used for a simulation on Glenn's Aeroshark cluster.

  9. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  10. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  11. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  12. Assessing Causal Mechanistic Interactions: A Peril Ratio Index of Synergy Based on Multiplicativity

    PubMed Central

    Lee, Wen-Chung

    2013-01-01

    The assessments of interactions in epidemiology have traditionally been based on risk-ratio, odds-ratio or rate-ratio multiplicativity. However, many epidemiologists fail to recognize that this is mainly for statistical conveniences and often will misinterpret a statistically significant interaction as a genuine mechanistic interaction. The author adopts an alternative metric system for risk, the ‘peril’. A peril is an exponentiated cumulative rate, or simply, the inverse of a survival (risk complement) or one plus an odds. The author proposes a new index based on multiplicativity of peril ratios, the ‘peril ratio index of synergy based on multiplicativity’ (PRISM). Under the assumption of no redundancy, PRISM can be used to assess synergisms in sufficient cause sense, i.e., causal co-actions or causal mechanistic interactions. It has a less stringent threshold to detect a synergy as compared to a previous index of ‘relative excess risk due to interaction’. Using the new PRISM criterion, many situations in which there is not evidence of interaction judged by the traditional indices are in fact corresponding to bona fide positive or negative synergisms. PMID:23826299

  13. Enhanced absorption in a reverse saturable absorbing dye blended with carbon nanotubes.

    PubMed

    Webster, Scott; Reyes-Reyes, Marisol; Williams, Richard; Carroll, David L

    2008-12-01

    Using nonlinear absorption at 532 nm in the nanosecond temporal regime, we have measured the low fluence nonlinear transmittance properties of the reverse saturable absorbing carbocyanine dye, 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HITCI), blended with well dispersed carbon nanotubes. The nonlinear optical properties of the blends are strongly dependent on the ratio of dye to nanotubes in solution. In the case where the nanotubes per dye molecule ratio is large, we see a distinctive enhancement in optical fluence limiting properties of the system, suggesting enhanced absorption of the excited states. However, when the nanotube to dye ratio decreases, the system's response is dominated by the behavior of the dye. We suggest that this can be understood as a two component system in which sensitized dye molecules associated with the nanotubes have an effectively different optical cross-section from the dye molecules far from the nanotubes. From classical antennae considerations, this is expected.

  14. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion.

    PubMed

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-20

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  15. Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Watanabe, Keita; Saito, Kazuhiro

    2005-02-01

    Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

  16. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  17. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  18. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  19. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  20. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  1. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    PubMed

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  3. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    PubMed

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  5. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  6. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.

    PubMed

    Paramsothy, Pathmaja; Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-11-01

    The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons.

  7. Geometrical dependence of spin current absorption into a ferromagnetic nanodot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp

    We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot.more » This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.« less

  8. Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Bürkle, Sebastian; Walter, Nicole; Wagner, Steven

    2018-06-01

    A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7-1.5% for broadening coefficients and 0.6-1.6% for pressure shift coefficients.

  9. Acetaminophen (paracetamol) oral absorption and clinical influences.

    PubMed

    Raffa, Robert B; Pergolizzi, Joseph V; Taylor, Robert; Decker, John F; Patrick, Jeffrey T

    2014-09-01

    Acetaminophen (paracetamol) is a widely used nonopioid, non-NSAID analgesic that is effective against a variety of pain types, but the consequences of overdose can be severe. Because acetaminophen is so widely available as a single agent and is increasingly being formulated in fixed-ratio combination analgesic products for the potential additive or synergistic analgesic effect and/or reduced adverse effects, accidental cumulative overdose is an emergent concern. This has rekindled interest in the sites, processes, and pharmacokinetics of acetaminophen oral absorption and the clinical factors that can influence these. The absorption of oral acetaminophen occurs primarily along the small intestine by passive diffusion. Therefore, the rate-limiting step is the rate of gastric emptying into the intestines. Several clinical factors can affect absorption per se or the rate of gastric emptying, such as diet, concomitant medication, surgery, pregnancy, and others. Although acetaminophen does not have the abuse potential of opioids or the gastrointestinal bleeding or organ adverse effects of NSAIDs, excess amounts can produce serious hepatic injury. Thus, an understanding of the sites and features of acetaminophen absorption--and how they might be influenced by factors encountered in clinical practice--is important for pain management using this agent. It can also provide insight for design of formulations that would be less susceptible to clinical variables. © 2013 World Institute of Pain.

  10. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  11. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  12. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  13. Significance of Ca-soap formation for calcium absorption in the rat.

    PubMed Central

    Gacs, G; Barltrop, D

    1977-01-01

    The significance of calcium soap formation in the inhibition of calcium absorption has been studied in rats. 47Ca labelled soaps of fatty acids were introduced into the duodenum and the absorption of calcium measured after four hours in a whole body counter. The absorption of calcium was inversely correlated with the chain length of the fatty acid varying from 1% for Ca-stearate to 60% for Ca-hexanoate. Increasing the degree of unsaturation of the fatty acid was accompanied by increased calcium absorption. The availability of calcium for absorption from the soaps was correlated with their solubility in 1% aqueous Na-tauroglycocholate. The percentages of calcium as soap in the small intestine and the faeces after intragastric administration of calcium and fats were similar, which suggests that the faecal content of calcium soaps is an index of intestinal soap formation. Soap formation was negligible when CaCl2 was given with tristearate, triolaeate, or tridecanoate and no depression of calcium absorption was observed. Calcium absorption was markedly impaired by the addition of phosphates at a Ca/P ratio of 1:1 irrespective of the presence of neutral fats. Stearic acid resulted in significant soap formation and reduced calcium absorption. The degree of Ca-soap formation and the inhibition of calcium absorption were well correlated. The results suggest that, although calcium soap formation may markedly depress calcium absorption in the rat, no significant soap formation takes place when fats are given in the form of triglycerides. PMID:838405

  14. Sound absorption by a Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Komkin, A. I.; Mironov, M. A.; Bykov, A. I.

    2017-07-01

    Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.

  15. Variable absorption of clavulanic acid after an oral dose of 25 mg/kg of Clavubactin and Synulox in healthy cats.

    PubMed

    Vree, Tom B; Dammers, Erik; van Duuren, Eri

    2002-05-21

    The aims of this investigation were to calculate the pharmacokinetic parameters and to identify parameters, based on individual plasma concentration-time curves of amoxicillin and clavulanic acid in cats, that may govern the observed differences in absorption of both drugs. The evaluation was based on the data from plasma concentration-time curves obtained following a single-dose, open, randomised, two-way crossover phase-I study, each involving 24 female cats treated with two Amoxi-Clav formulations (formulation A was Clavubactin and formulation was B Synulox; 80/20 mg, 24 animals, 48 drug administrations). Plasma amoxicillin and clavulanic acid concentrations were determined using validated bioassay methods. The half-life of elimination of amoxicillin is 1.2 h (t1/2 = 1.24 +/- 0.28 h, Cmax = 12.8 +/- 2.12 microg/ml), and that of clavulanic acid 0.6 h (t1/2 = 0.63 +/- 0.16 h, Cmax = 4.60 +/- 1.68 microg/ml). There is a ninefold variation in the AUCt of clavulanic acid for both formulations, while the AUCt of amoxicillin varies by a factor of two. The highest clavulanic acid AUCt values indicate the best absorption; all other data indicate less absorption. Taking into account that the amoxicillin-to-clavulanic acid dose ratio in the two products tested was 4:1, the blood concentration ratios may actually vary much more, apparently without compromising the products" high efficacy against susceptible microorganisms.

  16. Food, gastrointestinal pH, and models of oral drug absorption.

    PubMed

    Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R

    2017-03-01

    This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  18. CALCIUM ABSORPTION IN MAN: BASED ON LARGE VOLUME LIQUID SCINTILLATION COUNTER STUDIES.

    PubMed

    LUTWAK, L; SHAPIRO, J R

    1964-05-29

    A technique has been developed for the in vivo measurement of absorption of calcium in man after oral administration of 1 to 5 microcuries of calcium-47 and continuous counting of the radiation in the subject's arm with a large volume liquid scintillation counter. The maximum value for the arm counting technique is proportional to the absorption of tracer as measured by direct stool analysis. The rate of uptake by the arm is lower in subjects with either the malabsorption syndrome or hypoparathyroidism. The administration of vitamin D increases both the absorption rate and the maximum amount of calcium absorbed.

  19. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  20. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Garnett Marques Brum, C.

    2013-12-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred Jan/2005, during the descendent phase of the last solar activity cycle XXIII. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65N) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  1. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012<-00001) absorption band. Their fiber coupled outputs are sinusoidal amplitude modulated by each EO devices with kHz rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging

  2. Effect of water vapor on sound absorption in nitrogen at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1981-01-01

    Sound absorption measurements were made in N2-H2O binary mixtures at 297 K over the frequency/pressure range f/P of 0.1-2500 Hz/atm to investigate the vibrational relaxation peak of N2 and its location on f/P axis as a function of humidity. At low humidities the best fit to a linear relationship between the f/P(max) and humidity yields an intercept of 0.013 Hz/atm and a slope of 20,000 Hz/atm-mole fraction. The reaction rate constants derived from this model are lower than those obtained from the extrapolation of previous high-temperature data.

  3. Highly efficient SO₂ absorption and its subsequent utilization by weak base/polyethylene glycol binary system.

    PubMed

    Yang, Zhen-Zhen; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing

    2013-02-05

    A binary system consisting of polyethylene glycol (PEG, proton donor)/PEG-functionalized base with suitable basicity was developed for efficient gas desulfurization (GDS) and can be regarded as an alternative approach to circumvent the energy penalty problem in the GDS process. High capacity for SO(2) capture up to 4.88 mol of SO(2)/mol of base was achieved even under low partial pressure of SO(2). Furthermore, SO(2) desorption runs smoothly under mild conditions (N(2), 25 °C) and no significant drop in SO(2) absorption was observed after five-successive absorption-desorption cycles. On the other hand, the absorbed SO(2) by PEG(150)MeIm/PEG(150), being considered as the activated form of SO(2), can be directly transformed into value-added chemicals under mild conditions, thus eliminating the energy penalty for SO(2) desorption and simultaneously realizing recycle of the absorbents. Thus, this SO(2) capture and utilization (SCU) process offers an alternative way for GDS and potentially enables the SO(2) conversion from flue gas to useful chemicals as a value-added process.

  4. Numerical Investigation on Absorption Enhancement of Black Carbon Aerosols Partially Coated With Nonabsorbing Organics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin

    2018-01-01

    This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (Eab) of polydisperse BC aggregates partially coated by organics, which is calculated by the exact multiple-sphere T-matrix method. The coated volume fraction of BC plays a substantial role in determining the absorption enhancement of partially coated BC aggregates, which typically have an Eab in the range of 1.0-2.0 with a larger value for larger coated volume fraction of BC as the shell/core ratio, BC geometry, and size distribution are fixed. The shell/core ratio, BC geometry, and size distribution have little impact on the Eab of coated BC with small coated volume fraction of BC, while they become significant for large coated volume fraction of BC. The Eab of partially coated BC particles can be slightly less than 1.0 for the large BC in the accumulation mode exhibiting large shell/core ratio and small coated volume fraction of BC, indicating that the absorption shows even slight decrease relative to uncoated BC particles. For partially coated BC aggregates in the accumulation and coarse modes, the refractive index uncertainties of BC result in the Eab differences of less than 9% and 2%, respectively, while those of organics can induce larger variations with the maximum differences up to 22% and 18%, respectively. Our study indicates that accounting for particle coating microphysics, particularly the coated volume fraction of BC, can potentially help to understand the differences in observations of largely variable absorption enhancements over various regions.

  5. Thermo-luminescence and neutron absorption cross section evaluations of compounds of Lithium based oxide ceramic breeders in Li-Zr-O system

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sumanta; Naik, Yeshwant

    2018-04-01

    Lithium-zirconium based oxides were prepared by combustion route. Thermal analysis (TG and DTA) was used to study the combustion process. The nucleation and growth stages were identified and their activation energies were predicted. The suitability of these oxide breeders was evaluated based on their radiation stability, variation in thermal behavior upon γ irradiation, neutron absorption and tritium breeding characteristics. Nuclear properties of these oxide ceramics were evaluated with a view to use them as efficient neutron absorbers and simultaneously breed tritium. Total neutron absorption cross sections were evaluated as a function of neutron energy in the range of 0 to 20 MeV. Resonant absorption is predicted for the neutron of energy 2.3 keV manly due to contribution from neutron induced nuclear reactions of 7Li in this energy range.

  6. Food Iron Absorption Measured by an Extrinsic Tag

    PubMed Central

    Cook, J. D.; Layrisse, M.; Martinez-Torres, C.; Walker, R.; Monsen, E.; Finch, C. A.

    1972-01-01

    The paper describes the use of an extrinsic tag of inorganic radioiron to determine the total absorption of nonheme iron from a complete meal. The method was developed by measuring the iron absorbed from vegetable foods containing biosynthetically incorporated 55Fe (intrinsic tag) and from 59Fe added as a small dose of inorganic iron to the same meal (extrinsic tag). In studies with maize, black bean, and wheat, a consistent extrinsic: intrinsic radioiron absorption ratio averaging 1.10 was observed. Similar results were obtained with either ferrous or ferric iron as the extrinsic tag, and with doses of the latter ranging from 0.001 to 0.5 mg iron added to a test meal containing 2-4 mg of food iron. Adding the radioiron at different stages in preparation of the test meal also had little effect. Separate administration of the extrinsic tag was less satisfactory when small portions of a single food were employed, but with a complete meal, the separate dose was preferable. The extrinsic tag provided a valid measure of absorption despite marked differences in the iron status of the subject, and with wide changes in absorption imposed by adding desferrioxamine or ascorbic acid to the test meal. These findings indicate that there is a common pool of nonheme iron, the absorption of which is influenced by various blocking or enhancing substances present in the meal. PMID:5062612

  7. Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS.

    PubMed

    Ramezanian, Zahra; Darbani, Seyyed Mohammad Reza; Majd, Abdollah Eslami

    2017-08-20

    The effect of self-absorption was investigated on the estimation of surface hardness of Fe-Cr-Ni metallic alloys by the laser-induced breakdown spectroscopy (LIBS) technique. For this purpose, the linear relationship between the ratio of chromium ionic to atomic line intensities (CrII/CrI) and surface hardness was studied, both before and after correcting the self-absorption effect. The correlation coefficient significantly increased from 47% to 90% after self-absorption correction. The results showed the measurements of surface hardness using LIBS can be more accurate and valid by correcting the self-absorption effect.

  8. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  9. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-07-08

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  10. Numerical approximations of the mean absorption cross-section of a variety of randomly oriented microalgal shapes.

    PubMed

    Baird, Mark E

    2003-10-01

    The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.

  11. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of reentrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, reentrant foams had higher yield strength and lower stiffness than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for reentrant foam than conventional foam.

  12. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  13. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  14. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  15. Zinc absorption from composite meals. I. The significance of whest extraction rate, zinc, calcium, and protein content in meals based on bread.

    PubMed

    Sandström, B; Arvidsson, B; Cederblad, A; Björn-Rasmussen, E

    1980-04-01

    The absorption of zinc in man from composite meals based on bread was measured with a radionuclide technique using 65Zn and whole-body counting. Bread was made up from wheat flour of 100 and 72% extraction rate. A lower absolute amount of zinc was absorbed from the white bread compared to the absorption from the same amount of wholemeal bread. When the two types of bread were enriched with zinc chloride the absorption was higher from the white bread than from the wholemeal bread. Addition of calcium in the form of milk products improved the absorption of zinc from a meal with wholemeal bread. A significant positive correlation was found between zinc absorption and the protein content in meals containing milk, cheese, beef, and egg in various combinations with the wholemeal bread.

  16. Wavelength and energy dependent absorption of unconventional fuel mixtures

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.

  17. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    NASA Astrophysics Data System (ADS)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-10-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  18. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity1234

    PubMed Central

    Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-01-01

    Background: The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. Objective: We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Design: Plasma sterols were measured by gas chromatography–mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (SI) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. Results: The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol–cholesterol ratios were as follows: LIS > OIR (P < 0.001), LIS > LIR (P < 0.001), and LIR > OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS < OIR (P < 0.001), LIS < LIR (P = 0.03), and LIR < OIR (P = 0.002). Total sterol concentrations were positively associated with SI and negatively associated with obesity, whereas lathosterol correlations were the opposite. Conclusions: Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve SI and to decrease cholesterol overproduction in LIR and OIR

  19. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.

  20. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-03

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.

  1. Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine.

    PubMed

    Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S

    2006-10-01

    Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).

  2. Aerosol characteristics inversion based on the improved lidar ratio profile with the ground-based rotational Raman-Mie lidar

    NASA Astrophysics Data System (ADS)

    Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan

    2018-06-01

    An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.

  3. Core-based intrinsic fiber-optic absorption sensor for the detection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Klunder, Gregory L.; Russo, Richard E.

    1995-03-01

    A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t(sub 90) values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.

  4. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 < T < 350 K) magneto transport measurements were done on the Fe(Si1-xGex)2 thin films via Van Der Paw (VDP) Hall configuration using a 0.5-1T magnetic field and a current of 10-200 μA through indium ohmic contacts, the Hall coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  5. Measures of model performance based on the log accuracy ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.

    Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less

  6. Measures of model performance based on the log accuracy ratio

    DOE PAGES

    Morley, Steven Karl; Brito, Thiago Vasconcelos; Welling, Daniel T.

    2018-01-03

    Quantitative assessment of modeling and forecasting of continuous quantities uses a variety of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute percentage error (MAPE) is one of the most common across many fields and has been widely applied in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed alternatives. We then introduce the log accuracy ratio, and derive from it two metrics: the median symmetric accuracy; and the symmetric signed percentage bias. Robustmore » methods for estimating the spread of a multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely-used counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt electron flux modeling examples.« less

  7. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    NASA Astrophysics Data System (ADS)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  8. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures

    NASA Astrophysics Data System (ADS)

    Youssef, Rasha M.; Maher, Hadir M.

    2008-10-01

    A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.

  9. White Matter Fiber-based Analysis of T1w/T2w Ratio Map.

    PubMed

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  10. White matter fiber-based analysis of T1w/T2w ratio map

    NASA Astrophysics Data System (ADS)

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D.; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    Purpose: To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. Background: The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. Methods: We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. Results: We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  11. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Brum, C. G.

    2013-05-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred in Jan/2005, during the descendent phase of the XXIII solar activity cycle. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65oN) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  12. Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Xianguo; Or, Siu Wing; Ho, S. L.

    2017-05-01

    Core/shell-structured, hard/soft spinel-ferrite-based CoFe2O4/NiFe2O4 (CFO/NFO) nanocapsules with an average diameter of 17 nm are synthesized by a facile two-step hydrothermal process using CFO cores of ˜15 nm diameter as the hard magnetic phase and NFO shells of ˜1 nm thickness as the soft magnetic phase. The single-phase-like hysteresis loop with a high remnant-to-saturation magnetization ratio of 0.7, together with a small grain size of ˜16 nm, confirms the existence of exchange-coupling interaction between the CFO cores and the NFO shells. The effect of hard/soft exchange coupling on the microwave absorption properties is studied. Comparing to CFO and NFO nanoparticles, the finite-size NFO shells and the core/shell structure enable a significant reduction in electric resistivity and an enhancement in dipole and interfacial polarizations in the CFO/NFO nanocapsules, resulting in an obvious increase in dielectric permittivity and loss in the whole S-Ku bands of microwaves of 2-18 GHz, respectively. The exchange-coupling interaction empowers a more favorable response of magnetic moment to microwaves, leading to enhanced exchange resonances in magnetic permeability and loss above 10 GHz. As a result, strong absorption, as characterized by a large reflection loss (RL) of -20.1 dB at 9.7 GHz for an absorber thickness of 4.5 mm as well as a broad effective absorption bandwidth (for RL<-10 dB) of 8.4 GHz (7.8-16.2 GHz) at an absorber thickness range of 3.0-4.5 mm, is obtained.

  13. On the Fast Evaluation Method of Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Planetary Atmospheres in Thermal IR and Microwave

    NASA Technical Reports Server (NTRS)

    Ustinov, E. A.

    1999-01-01

    Evaluation of weighting functions in the atmospheric remote sensing is usually the most computer-intensive part of the inversion algorithms. We present an analytic approach to computations of temperature and mixing ratio weighting functions that is based on our previous results but the resulting expressions use the intermediate variables that are generated in computations of observable radiances themselves. Upwelling radiances at the given level in the atmosphere and atmospheric transmittances from space to the given level are combined with local values of the total absorption coefficient and its components due to absorption of atmospheric constituents under study. This makes it possible to evaluate the temperature and mixing ratio weighting functions in parallel with evaluation of radiances. This substantially decreases the computer time required for evaluation of weighting functions. Implications for the nadir and limb viewing geometries are discussed.

  14. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  15. Equations for predicting uncompacted crown ratio based on compacted crown ratio and tree attributes.

    Treesearch

    Vicente J. Monleon; David Azuma; Donald Gedney

    2004-01-01

    Equations to predict uncompacted crown ratio as a function of compacted crown ratio, tree diameter, and tree height are developed for the main tree species in Oregon, Washington, and California using data from the Forest Health Monitoring Program, USDA Forest Service. The uncompacted crown ratio was modeled with a logistic function and fitted using weighted, nonlinear...

  16. Dependence of the absorption and optical surface plasmon scattering of MoS₂ nanoparticles on aspect ratio, size, and media.

    PubMed

    Yadgarov, Lena; Choi, Charina L; Sedova, Anastasiya; Cohen, Ayala; Rosentsveig, Rita; Bar-Elli, Omri; Oron, Dan; Dai, Hongjie; Tenne, Reshef

    2014-04-22

    The optical and electronic properties of suspensions of inorganic fullerene-like nanoparticles of MoS2 are studied through light absorption and zeta-potential measurements and compared to those of the corresponding microscopic platelets. The total extinction measurements show that, in addition to excitonic peaks and the indirect band gap transition, a new peak is observed at 700-800 nm. This spectral peak has not been reported previously for MoS2. Comparison of the total extinction and decoupled absorption spectrum indicates that this peak largely originates from scattering. Furthermore, the dependence of this peak on nanoparticle size, shape, and surface charge, as well as solvent refractive index, suggests that this transition arises from a plasmon resonance.

  17. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.

    PubMed

    Liaparinos, P F

    2015-11-21

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study

  18. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Jianwei; Hao, Lei; Li, Aigen, E-mail: haol@shao.ac.cn

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, themore » optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.« less

  19. [Effects of different NO3--N/NH4+-N ratios on cucumber seedlings growth, nitrogen absorption and metabolism under suboptimal temperature and light intensity].

    PubMed

    Zhang, Xiao Cui; Liu, Yu Mei; Bai, Long Qiang; He, Chao Xing; Yu, Xian Chang; Li, Yan Su

    2016-08-01

    Cucumber (cv. Zhongnong 26) was used as material, the effects of NO 3 - -N/NH 4 + -N ratios on growth and physiological characteristics of cucumber seedlings under suboptimal temperature and light intensity (18 ℃/10 ℃,180 ± 20 μmol·m -2 ·s -1 ) were studied. Total nitrogen in the nutrient solution was equal and three NO 3 - -N/NH 4 + -N ratios, 26:2, 21:7 and 14:14, were applied as treatments. The results showed that cucumber treated by NO 3 - -N/NH 4 + -N=21:7 had the longest total root length, the biggest root volume and root surface area, and the maximum number of root tips. H + -ATPase activity and relative expression of genes encoding nitrate transporter (NRT) and ammonium transporter (AMT) in cucumber roots were increased significantly by the treatment of NO 3 - -N/NH 4 + -N=21:7. In addition, nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) in cucumber leaves under the treatment of NO 3 - -N/NH 4 + -N=21:7 were higher. As a result, the nitrogen content and biomass of cucumber were significantly increased. Compared with the plants under the treatment of NO 3 - -N/NH 4 + -N=26:2 or 14:14, cucumber seedlings under the treatment of NO 3 - -N/NH 4 + -N=21:7 had the highest biomass and total dry mass (DM) which were increased by 14.0% and 19.3% respectively under suboptimal temperature and light intensity. In conclusion, under suboptimal environmental conditions, NO 3 - -N/NH 4 + -N ratio could be adjusted to increase nitrogen absorption and metabolism of cucumber and alleviate the de-trimental effects caused by suboptimal conditions and promoted the cucumber growth.

  20. Bandwidth enhancement in microwave absorption of binary nanocomposite ferrites hollow microfibers.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Yang, Xinchun; Meng, Xianfeng; Xiang, Jun; Liu, Ruijiang; Dong, Mingdong

    2013-04-01

    The binary Ba0.5Sr0.5Fe12O19 (BSFO)/Ni0.5Zn0.5Fe2O4 (NZFO) nanocomposite ferrites hollow microfibers with high aspect ratios have been prepared by the gel precursor transformation process. These microfibers possess a high specific surface area about 45.2 m2 g(-1), and a ratio of the hollow diameter to the fiber diameter estimated about 5/7. The binary nanocomposite ferrites are formed after the precursor calcined at 750 degrees C for 3 h. Their minimum reflection loss (RL) is -38.1 dB at 10.4 GHz. The microwave absorption bandwidth with RL value exceeding -20 dB covers the whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). This enhancement in microwave absorption can be attributed to the exchange-coupling interaction, interfacial polarization and small size effect in nanocomposite hollow microfibers.

  1. Glucose absorption in acute peritoneal dialysis.

    PubMed

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  2. Dephytinisation with Intrinsic Wheat Phytase and Iron Fortification Significantly Increase Iron Absorption from Fonio (Digitaria exilis) Meals in West African Women

    PubMed Central

    Moretti, Diego; Schuth, Stephan; Egli, Ines; Zimmermann, Michael B.; Brouwer, Inge D.

    2013-01-01

    Low iron and high phytic acid content make fonio based meals a poor source of bioavailable iron. Phytic acid degradation in fonio porridge using whole grain cereals as phytase source and effect on iron bioavailability when added to iron fortified fonio meals were investigated. Grains, nuts and seeds collected in Mali markets were screened for phytic acid and phytase activity. We performed an iron absorption study in Beninese women (n = 16), using non-dephytinised fonio porridge (FFP) and dephytinised fonio porridge (FWFP; 75% fonio-25% wheat), each fortified with 57Fe or 58Fe labeled FeSO4. Iron absorption was quantified by measuring the erythrocyte incorporation of stable iron isotopes. Phytic acid varied from 0.39 (bambara nut) to 4.26 g/100 g DM (pumpkin seed), with oilseeds values higher than grains and nuts. Phytase activity ranged from 0.17±1.61 (fonio) to 2.9±1.3 phytase unit (PU) per g (whole wheat). Phytic acid was almost completely degraded in FWFP after 60 min of incubation (pH≈5.0, 50°C). Phytate∶iron molar ratios decreased from 23.7∶1 in FFP to 2.7∶1 in FWFP. Iron fortification further reduced phytate∶iron molar ratio to 1.9∶1 in FFP and 0.3∶1 in FWFP, respectively. Geometric mean (95% CI) iron absorption significantly increased from 2.6% (0.8–7.8) in FFP to 8.3% (3.8–17.9) in FWFP (P<0.0001). Dephytinisation of fonio porridge with intrinsic wheat phytase increased fractional iron absorption 3.2 times, suggesting it could be a possible strategy to decrease PA in cereal-based porridges. PMID:24124445

  3. Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent

    NASA Astrophysics Data System (ADS)

    Ariffin, N.; Abdullah, M. M. A. B.; Arif Zainol, M. R. R. Mohd; Baltatu, M. S.; Jamaludin, L.

    2018-06-01

    Microstructure of three-dimensional aluminosilicate which similar to zeolite cause geopolymer based adsorbent accepted in the treatment of wastewater. This paper presents an investigation on the copper removal from the wastewater by varying the solid to liquid ratio in the fly ash, kaolin and sludge-based geopolymer adsorbent. The adsorption test was conducted to study the efficiency of the adsorbent and the copper concentration was examined by using Atomic Adsorption Spectrometry (AAS). The optimum solid to liquid ratio with the highest percentage removal were 1.0, 0.5 and 0.8 for fly ash-based geopolymer, kaolin-based geopolymer and sludge-based geopolymer adsorbent.

  4. Absorption Properties of Supercooled Liquid Water between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-Based Observations

    DOE PAGES

    Kneifel, Stefan; Redl, Stephanie; Orlandi, Emiliano; ...

    2014-04-10

    Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to –33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios aremore » independent of liquid water path and equal to the ratio of αL at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for αL at 90 GHz; together with the observed opacity ratios, the temperature dependence of αL at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. Furthermore, these findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.« less

  5. Investigation on the Acoustic Absorption of Flexible Micro-Perforated Panel with Ultra-Micro Perforations

    NASA Astrophysics Data System (ADS)

    Li, Guoxin; Tang, Xiaoning; Zhang, Xiaoxiao; Qian, Y. J.; Kong, Deyi

    2017-11-01

    Flexible micro-perforated panel has unique advantages in noise reduction due to its good flexibility compared with traditional rigid micro-perforated panel. In this paper, flexible micro-perforated panel was prepared by computer numerical control (CNC) milling machine. Three kinds of plastics including polyvinylchloride (PVC), polyethylene terephthalate (PET), and polyimide (PI) were taken as the matrix materials to prepare flexible micro-perforated panel. It has been found that flexible micro-perforated panel made of PET possessing good porosity and proper density, elastic modulus and poisson ratio exhibited the best acoustic absorption properties. The effects of various structural parameters including perforation diameter, perforation ratio, thickness and air gap have also been investigated, which would be helpful to the optimization of acoustic absorption properties.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  8. A Lithium Bromide Absorption Chiller with Cold Storage

    DTIC Science & Technology

    2011-01-15

    Research ABSTRACT A LiBr -based absorption chiller can use waste heat or solar energy to produce useful space cooling for small buildings...high wa- ter consumption for heat rejection to the ambient. To alleviate these issues, a novel LiBr - based absorption chiller with cold storage is...proposed in this study. The cold storage includes tanks for storing liquid water and LiBr solution, associated piping, and control devices. The cold

  9. Aerosol Absorption Measurements from LANDSAT and CIMEL

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.

    1999-01-01

    Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  10. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  11. Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan.

    PubMed

    Zambito, Ylenia; Uccello-Barretta, Gloria; Zaino, Chiara; Balzano, Federica; Di Colo, Giacomo

    2006-12-01

    Literature data suggest that quaternized chitosans have a transmucosal drug absorption enhancing property depending on their MW, quaternization degree and other structural features. With the purpose of preparing novel effective promoters, a chitosan (Ch) from crab shell (ChC; viscometric MW, 800 kDa; deacetylation: 90%, IR; 84%, NMR) and one from shrimp shell (ChS; viscometric MW, 590 kDa; deacetylation: 90%, IR; 82%, NMR) were reacted with 2-diethylaminoethyl chloride (DEAE-Cl) and novel derivatives containing different percentages of pendant quaternary ammonium groups were obtained. NMR analysis, based on HSQC, COSY, TOCSY and ROESY maps, indicated that three partially substituted N,O-[N,N-diethylaminomethyl(diethyldimethylene ammonium)(n)]methyl chitosans, coded N(+)-ChS-2 (degree of substitution, DS=40%; n=1.6), N(+)-ChS-4 (DS=132%; n=2.5), and N(+)-ChC-4 (DS=85%; n=1.7) resulted from the reaction, depending on whether the DEAE-Cl/Ch repeating unit molar ratio, was 2:1 or 4:1. The effects of the derivatives on the permeability of rhodamine 123 (Rh-123), hydrophobic, marker of the transcellular absorption route, and of fluorescein sodium (NaFlu), polar, marker of the paracellular route, across excised porcine cheek epithelium were assessed, using Franz type diffusion cells. Rh-123 permeability was enhanced by N(+)-ChS-4 (enhancement ratio, ER=8.4) and by N(+)-ChC-4 (ER=3.9), whereas N(+)-ChS-2 was ineffective. NaFlu permeability was enhanced by N(+)-ChS-2 (ER=7.2), N(+)-ChS-4 (ER=7.4) and N(+)-ChC-4 (ER=6.6). In conclusion, the three derivatives, whichever their DS, promote paracellular transport, while transcellular transport is substantially accelerated only by the most substituted one.

  12. Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio

    NASA Astrophysics Data System (ADS)

    Nababan, A. A.; Sitompul, O. S.; Tulus

    2018-04-01

    K- Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to miss-classification of the class assignment for new data. In this research, we proposed Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.

  13. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  14. The Carbon Isotope Ratio in Local Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Goto, Miwa; Usuda, Tomonori; Takato, Naruhisa; Masahiko, Hayashi; Sakamoto, Seiichi; Mitchell, George

    We report the carbon isotope ratio in nearby molecular clouds LkHα 101, AFGL 490, and Mon R2 IRS 3. The vibrational transition bands of 12CO ν = 2 ← 0 and 13CO ν = 1 ← 0 were observed with high resolution near-infrared spectroscopy (R = 23,000) to measure the relative abundance of 13CO to 12CO. The isotopic ratios are 12CO/13CO = 1379 (LkHα 101), 8649 (AFGL 490), and 158 (Mon R2 IRS 3), which is twice higher than in the solar neighborhood. The molecular clouds are with high visible extinction (AV = 10 70 mag), well shielded from destructive FUV field. It is questionable that the selective photo-destruction of 13CO plays a major role in biasing isotope ratio. Uncertainty in the Doppler parameters of the unresolved absorption lines, and possible emission filling of fundamental transitions are suspected to account for the high 12CO/13CO ratio. Higher resolution spectroscopy (R ~ 100,000) is the key to go for the accurate measurement of isotope ratio.

  15. Measurement of nitrous acid (HONO) by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2016-04-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109

  16. Enrichment process of biogas using simultaneous Absorption - Adsorption methods

    NASA Astrophysics Data System (ADS)

    Kusrini, Eny; Lukita, Maya; Gozan, Misri; Susanto, Bambang Heru; Nasution, Dedy Alharis; Rahman, Arif; Gunawan, Cindy

    2017-03-01

    Removal of CO2 in biogas is an essential methods to the purification and upgrading of biogas. Natural Clinoptilolite zeolites were evaluated as sorbents for purification of biogas that produced from palm oil mill effluent (POME) by anerobic-digestion method. The absorption and adsorption experiments were conducted in a fixed-bed two column adsorption unit by simultaneous absorption-adsorption method. The Ca(OH)2 solution with concentration of 0.062 M was used as absorption method. Sorbent for removal of CO2 in biogas have been prepared by modifying of Clinoptilolite zeolites with an acid (HCl, 2M) and alkaline (NaOH, 2M), calcined at 450°C and then coated using chitosan (0.5 w/v%) in order to increase their adsorption capacity. The removal of CO2 in biogas was achieved about ˜83% using 2.5 g of sorbent zeolite (2M)/chitosan dosage for each column, breakthrough time of 30 min, and flow rate of 100 mL/min. Clinoptilolite zeolites with modifications of an acid-alkaline and chitosan (zeolite (2M)/chitosan) are promising sorbents due to the amine groups from chitosan and high surface-volume ratio are one of important factors in a simultaneous absorption-adsorption method.

  17. Nitric oxide concentration near the mesopause as deduced from ionospheric absorption measurements

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.

    The upper-D-region NO concentration is calculated on the basis of published 2775-kHz-absorption, Lyman-alpha (OSO-5), and X-ray (Solrad-9) data obtained over Central Europe in June-August 1969, 1970, and 1972. Ionization-rate and radio-wave-absorption profiles for solar zenith angles of 60, 70 and 40 deg are computed, presented graphically, and compared with model calculations to derive the NO-concentration correction coefficients necessary to make the Lyman-alpha/X-ray flux ratios of the models of Meira (1971), Baker et al. (1977), Tohmatsu and Iwagami (1976), and Tisone (1973) agree with the observed ratios. Values of the corrected NO concentration include 6.5 and 8.5 x 10 to the 13th/cu m at 78 and 90 km, respectively. The values are shown to be higher than those of standard models but within the range of observed concentrations.

  18. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  19. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  20. Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Reufer, Mathias; Gaudino, Danila; Scheffold, Frank

    2017-11-01

    Diffusing wave spectroscopy (DWS) can be employed as an optical rheology tool with numerous applications for studying the structure, dynamics and linear viscoelastic properties of complex fluids, foams, glasses and gels. To carry out DWS measurements, one first needs to quantify the static optical properties of the sample under investigation, i.e. the transport mean free path l * and the absorption length l a. In the absence of absorption this can be done by comparing the diffuse optical transmission to a calibration sample whose l * is known. Performing this comparison however is cumbersome, time consuming, and prone to mistakes by the operator. Moreover, already weak absorption can lead to significant errors. In this paper, we demonstrate the implementation of an automatized approach, based on which the DWS measurement procedure can be simplified significantly. By comparison with a comprehensive set of calibration measurements we cover the entire parameter space relating measured count rates ( CR t , CR b ) to ( l *, l a). Based on this approach we can determine l * and la of an unknown sample accurately thus making the additional measurement of a calibration sample obsolete. We illustrate the use of this approach by monitoring the coarsening of a commercially available shaving foam with DWS.

  1. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  2. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of re-entrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, re-entrant foams had higher yield strengths sigma(sub y) and lower stiffness E than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for re-entrant foam than conventional foam.

  3. Physiologically Based Absorption Modeling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Alectinib.

    PubMed

    Parrott, Neil J; Yu, Li J; Takano, Ryusuke; Nakamura, Mikiko; Morcos, Peter N

    2016-11-01

    Alectinib, a lipophilic, basic, anaplastic lymphoma kinase (ALK) inhibitor with very low aqueous solubility, has received Food and Drug Administration-accelerated approval for the treatment of patients with ALK+ non-small-cell lung cancer. This paper describes the application of physiologically based absorption modeling during clinical development to predict and understand the impact of food and gastric pH changes on alectinib absorption. The GastroPlus ™ software was used to develop an absorption model integrating in vitro and in silico data on drug substance properties. Oral pharmacokinetics was simulated by linking the absorption model to a disposition model fit to pharmacokinetic data obtained after an intravenous infusion. Simulations were compared to clinical data from a food effect study and a drug-drug interaction study with esomeprazole, a gastric acid-reducing agent. Prospective predictions of a positive food effect and negligible impact of gastric pH elevation were confirmed with clinical data, although the exact magnitude of the food effect could not be predicted with confidence. After optimization of the absorption model with clinical food effect data, a refined model was further applied to derive recommendations on the timing of dose administration with respect to a meal. The application of biopharmaceutical absorption modeling is an area with great potential to further streamline late stage drug development and with impact on regulatory questions.

  4. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.

    PubMed

    Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei

    2016-11-23

    A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.

  5. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.

    PubMed

    Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer

    2013-07-16

    Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC

  6. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  7. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect.

    PubMed

    Vincenti, M A; de Ceglia, D; Grande, M; D'Orazio, A; Scalora, M

    2013-09-15

    Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third-order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.

  8. A theoretical study of microwave beam absorption by a rectenna

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.; Thorn, D. C.

    1980-01-01

    The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed.

  9. Improvable method for Halon 1301 concentration measurement based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Lu, Song; Guan, Yu

    2015-09-01

    Halon 1301 has attached much interest because of its pervasive use as an effective fire suppressant agent in aircraft related fires, and the study of fire suppressant agent concentration measurement is especially of interest. In this work, a Halon 1301 concentration measurement method based on the Beer-Lambert law is developed. IR light is transmitted through mixed gas, and the light intensity with and without the agent present is measured. The intensity ratio is a function of the volume percentage of Halon 1301, and the voltage output of the detector is proportional to light intensity. As such, the relationship between the volume percentage and voltage ratio can be established. The concentration measurement system shows a relative error of the system less than ±2.50%, and a full scale error within 1.20%. This work also discusses the effect of temperature and relative humidity (RH) on the calibration. The experimental results of voltage ratio versus Halon 1301 volume percentage relationship show that the voltage ratio drops significantly as temperature rises from 25 to 100 °C, and it decreases as RH rises from 0% to 100%.

  10. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  11. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  12. Laponite crosslinked starch/polyvinyl alcohol hydrogels by freezing/thawing process and studying their cadmium ion absorption.

    PubMed

    Yu, Chen; Tang, Xiaozhi; Liu, Shaowei; Yang, Yuling; Shen, Xinchun; Gao, Chengcheng

    2018-05-22

    In this study, Laponite RD (LRD) cross-linked hydrogels consisting of starch, polyvinyl alcohol (PVA) were prepared by freezing/thawing process and the influence of LRD content on structure and properties of hydrogels was investigated. FTIR showed a new structure of hydrogen bonding might result from cross-linking reactions between LRD and polymers. X-ray diffraction (XRD) analysis showed that high degree of exfoliation of LRD clay layers had occurred during the preparation of hydrogels. The synergistic effect of physical cross-linking by freeze/thaw cycles and by LRD led to more porous, uniform and stable network, which was shown in SEM images. The melting temperature decreased and thermal stability got improved with the increase of LRD content. Reswelling ratios of hydrogels had the highest value when LRD content was 10%. Additionally, cadmium ion absorption capacity of the hydrogel was studied and the results showed that increasing the concentration of LRD increased absorption ratio and amount of Cd 2+ ion in the solution. In a word, LRD could be used as a physical crosslinker and reinforced agent for starch-PVA based hydrogels and the formed hydrogels could be used as novel type and high capacity absorbent materials in heavy metal removing processes. Copyright © 2018. Published by Elsevier B.V.

  13. K-shell absorption jump factors and jump ratios in elements between Tm ( Z = 69) and Os ( Z = 76) derived from new mass attenuation coefficient measurements

    NASA Astrophysics Data System (ADS)

    Kaya, Necati; Tıraşoğlu, Engin; Apaydın, Gökhan; Aylıkcı, Volkan; Cengiz, Erhan

    2007-08-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2O 3, Yb 2O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time.

  14. The influence of the reflective environment on the absorption of a human male exposed to representative base station antennas from 300 MHz to 5 GHz.

    PubMed

    Vermeeren, G; Gosselin, M C; Kühn, S; Kellerman, V; Hadjem, A; Gati, A; Joseph, W; Wiart, J; Meyer, F; Kuster, N; Martens, L

    2010-09-21

    The environment is an important parameter when evaluating the exposure to radio-frequency electromagnetic fields. This study investigates numerically the variation on the whole-body and peak spatially averaged-specific absorption rate (SAR) in the heterogeneous virtual family male placed in front of a base station antenna in a reflective environment. The SAR values in a reflective environment are also compared to the values obtained when no environment is present (free space). The virtual family male has been placed at four distances (30 cm, 1 m, 3 m and 10 m) in front of six base station antennas (operating at 300 MHz, 450 MHz, 900 MHz, 2.1 GHz, 3.5 GHz and 5.0 GHz, respectively) and in three reflective environments (a perfectly conducting wall, a perfectly conducting ground and a perfectly conducting ground + wall). A total of 72 configurations are examined. The absorption in the heterogeneous body model is determined using the 3D electromagnetic (EM) finite-difference time-domain (FDTD) solver Semcad-X. For the larger simulations, requirements in terms of computer resources are reduced by using a generalized Huygens' box approach. It has been observed that the ratio of the SAR in the virtual family male in a reflective environment and the SAR in the virtual family male in the free-space environment ranged from -8.7 dB up to 8.0 dB. A worst-case reflective environment could not be determined. ICNIRP reference levels not always showed to be compliant with the basic restrictions.

  15. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  16. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. To Investigate the Absorption, Dynamic Contact Angle and Printability Effects of Synthetic Zeolite Pigments in an Inkjet Receptive Coating

    NASA Astrophysics Data System (ADS)

    Jalindre, Swaraj Sunil

    Ink absorption performance in inkjet receptive coatings containing synthetic zeolite pigments was studied. Coating pigment pore and particle size distribution are the key parameters that influence in modifying media surface properties, thus affecting the rate of ink penetration and drying time (Scholkopf, et al. 2004). The primary objective of this study was: (1) to investigate the synthetic zeolite pigment effects on inkjet ink absorption, dynamic contact angle and printability, and (2) to evaluate these novel synthetic zeolite pigments in replacing the fumed silica pigments in conventional inkjet receptive coatings. In this research study, single pigment coating formulations (in equal P:B ratio) were prepared using microporous synthetic zeolite pigments (5A, Organophilic and 13X) and polyvinyl alcohol (PVOH) binder. The laboratory-coated samples were characterized for absorption, air permeance, roughness, drying time, wettability and print fidelity. Based on the rheological data, it was found that the synthetic zeolite formulated coatings depicted a Newtonian flow behavior at low shear; while the industry accepted fumed silica based coatings displayed a characteristically high pseudoplastic flow behavior. Our coated samples generated using microporous synthetic zeolite pigments produced low absorption, reduced wettability and accelerated ink drying characteristics. These characteristics were caused due to the synthetic zeolite pigments, which resulted in relatively closed surface structure coated samples. The research suggested that no single selected synthetic zeolite coating performed better than the conventional fumed silica based coatings. Experimental data also showed that there was no apparent relationship between synthetic zeolite pigment pore sizes and inkjet ink absorption. For future research, above coated samples should be evaluated for pore size distribution using Mercury Porosimeter, which quantifies surface porosity of coated samples. This presented

  18. Claudin gene expression patterns do not associate with interspecific differences in paracellular nutrient absorption.

    PubMed

    Price, Edwin R; Rott, Katherine H; Caviedes-Vidal, Enrique; Karasov, William H

    2016-01-01

    Bats exhibit higher paracellular absorption of glucose-sized molecules than non-flying mammals, a phenomenon that may be driven by higher permeability of the intestinal tight junctions. The various claudins, occludin, and other proteins making up the tight junctions are thought to determine their permeability properties. Here we show that absorption of the paracellular probe l-arabinose is higher in a bat (Eptesicus fuscus) than in a vole (Microtus pennsylvanicus) or a hedgehog (Atelerix albiventris). Furthermore, histological measurements demonstrated that hedgehogs have many more enterocytes in their intestines, suggesting that bats cannot have higher absorption of arabinose simply by having more tight junctions. We therefore investigated the mRNA levels of several claudins and occludin, because these proteins may affect permeability of tight junctions to macronutrients. To assess the expression levels of claudins per tight junction, we normalized the mRNA levels of the claudins to the constitutively expressed tight junction protein ZO-1, and combined these with measurements previously made in a bat and a rodent to determine if there were among-species differences. Although expression ratios of several genes varied among species, there was not a consistent difference between bats and non-flyers in the expression ratio of any particular gene. Protein expression patterns may differ from mRNA expression patterns, and might better explain differences among species in arabinose absorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, N; Gaffney, J; Tackett, M J

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbingmore » secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.« less

  20. MIR hollow waveguide (HWG) isotope ratio analyzer for environmental applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyou; Zhuang, Yan; Deev, Andrei; Wu, Sheng

    2017-05-01

    An advanced commercial Mid-InfraRed Isotope Ratio (IR2) analyzer was developed in Arrow Grand Technologies based on hollow waveguide (HWG) as the sample tube. The stable carbon isotope ratio, i.e. δ13C, was obtained by measuring the selected CO2 absorption peaks in the MIR. Combined with a GC and a combustor, it has been successfully employed to measure compound specific δ13C isotope ratios in the field. By using both the 1- pass HWG and 5-path HWG, we are able to measure δ13C isotope ratio at a broad CO2 concentration of 300 ppm-37,500 ppm. Here, we demonstrate its applications in environmental studies. The δ13C isotope ratio and concentration of CO2 exhaled by soil samples was measured in real time with the isotope analyzer. The concentration was found to change with the time. We also convert the Dissolved Inorganic Carbon (DIC) into CO2, and then measure the δ13C isotope ratio with an accuracy of better than 0.3 ‰ (1 σ) with a 6 min test time and 1 ml sample usage. Tap water, NaHCO3 solvent, coca, and even beer were tested. Lastly, the 13C isotope ratio of CO2 exhaled by human beings was obtained <10 seconds after simply blowing the exhaled CO2 into a tube with an accuracy of 0.5‰ (1 σ) without sample preconditioning. In summary, a commercial HWG isotope analyzer was demonstrated to be able to perform environmental and health studies with a high accuracy ( 0.3 ‰/Hz1/2 1 σ), fast sampling rate (up to 10 Hz), low sample consumption ( 1 ml), and broad CO2 concentration range (300 ppm-37,500 ppm).

  1. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy.

    PubMed

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; Sam Ma, Zhanshan

    2016-12-23

    There are three sex ratio strategies (SRS) in nature-male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton's local mate competition (LMC) and Clark's local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC &LRC) in the field of SRS research.

  2. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy

    NASA Astrophysics Data System (ADS)

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; (Sam) Ma, Zhanshan

    2016-12-01

    There are three sex ratio strategies (SRS) in nature—male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton’s local mate competition (LMC) and Clark’s local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC & LRC) in the field of SRS research.

  3. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    NASA Astrophysics Data System (ADS)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  4. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Astrophysics Data System (ADS)

    Guo, T. H.; Musgrave, J.

    1992-11-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using

  5. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Musgrave, J.

    1992-01-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using

  6. Identify super quality markers from prototype-based pharmacokinetic markers of Tangzhiqing tablet (TZQ) based on in vitro dissolution/ permeation and in vivo absorption correlations.

    PubMed

    Li, Ziqiang; Liu, Jia; Li, Yazhuo; Du, Xi; Li, Yanfen; Wang, Ruihua; Lv, Chunxiao; He, Xin; Wang, Baohe; Huang, Yuhong; Zhang, Deqin

    2018-06-01

    A quality marker (Q-marker) is defined as an inherent chemical compound that is used for the quality control of a drug. Its biological activities are closely related to safety and therapeutic effects. Generally, a multiple-component herbal medicine may have many Q-markers. We therefore proposed a concept of "super Q-marker" satisfying both the criterion of Q-markers and PK-markers to be used in more effective quality control of herbal medicine. The first aim was to find suitable prototype-based PK-markers from Tangzhiqing tablets (TZQ), a Chinese patent medicine. Then super Q-markers were expected to be identified from the prototype-based PK-markers based on an in vitro-in vivo correlation study. Potentially eligible prototype-based PK-markers were identified in a single- and multiple-dose pharmacokinetic study on TZQ in 30 healthy volunteers. The in vitro dissolution and permeation profiles of the prototype-based PK-markers of TZQ were evaluated by the physiologically-based drug dissolution/absorption simulating system (DDASS). An in vitro-in vivo correlation analysis was conducted between the dissolution/permeation behaviors in DDASS and the actual absorption profiles in human to test the transferability and traceability of the promising super Q-markers for TZQ. In human, plasma paeoniflorin and nuciferine as prototype-based PK-markers exhibited the appropriate pharmacokinetic properties, including dose-dependent systemic exposure (AUC, C max ) and a proper elimination half-life (1∼3h). In DDASS, it was predicted that paeoniflorin and nuciferine are highly permeable but the absorption rates are primarily limited by the dissolution rates. Moreover, the established in vitro-in vivo correlations of paeoniflorin and nuciferine were in support of the super Q-markers features. Paeoniflorin and nuciferine are identified as the super Q-markers from the prototype-based PK-markers of TZQ based on findings from a combination of in vitro, in vivo, and in vitro-in vivo

  7. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  8. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  9. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    PubMed

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density

  10. Assessment of transpulmonary absorption of ethanol from alcohol-based hand rub.

    PubMed

    Hautemanière, Alexis; Ahmed-Lecheheb, Djihane; Cunat, Lisiane; Hartemann, Philippe

    2013-03-01

    Alcohol-based hand rubs (ABHRs) have been associated with a reduction of nosocomial infections. Despite the worldwide introduction of these products in health care settings, the aim of this study was to assess the transpulmonary absorption of ethanol contains in ABHRs used by health care workers (HCWs) in real conditions of work shift. Twenty-six HCWs of Nancy University Hospital were included. Research consisted in monitoring participants during 4 hours of work shift to assess their exposure to ethanol. The measurement of ethanol vapors in exhaled breath was performed using a class B ethylometer (Alco-Sensor FST). Ethanol concentration in inhaled breath was measured using Gilian pump LFS-113. Concentration of ethanol, acetaldehyde, and acetate in blood and urine samples were determined using gas chromatography with flame ionization detector. Participants were 12% male and 88% female. The mean age was 40 ± 8 years. None of the employees included in the study presented any traces of ethanol or its metabolites in the blood or urine. Ethanol (0.08 ± 0.07 mg/L) was detected in the breath of 10 HCWs at 1 to 2 minutes postexposure. The mean concentration of ethanol in the inhaled air was 46.2 mg/m. Absorption of ethanol vapor from ABHRs among HCWs during their care activities was not detected. Quantification of ethanol fumes inhaled during 4 hours of work shift was below the regulatory limitations of exposure to ethanol. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  12. MEDIAN-BASED INCREMENTAL COST-EFFECTIVENESS RATIOS WITH CENSORED DATA

    PubMed Central

    Bang, Heejung; Zhao, Hongwei

    2016-01-01

    Cost-effectiveness is an essential part of treatment evaluation, in addition to effectiveness. In the cost-effectiveness analysis, a measure called the incremental cost-effectiveness ratio (ICER) is widely utilized, and the mean cost and the mean (quality-adjusted) life years have served as norms to summarize cost and effectiveness for a study population. Recently, the median-based ICER was proposed for complementary or sensitivity analysis purposes. In this paper, we extend this method when some data are censored. PMID:26010599

  13. Combining Absorption and Dispersion Signals to Improve Signal-to-noise for Rapid Scan EPR Imaging

    PubMed Central

    Tseitlin, Mark; Quine, Richard W.; Rinard, George A.; Eaton, Sandra S.; Eaton, Gareth R.

    2010-01-01

    Direct detection of the rapid scan EPR signal with quadrature detection and without automatic frequency control provides both the absorption and dispersion components of the signal. The use of a cross-loop resonator results in similar signal-to-noise in the two channels. The dispersion signal can be converted to an equivalent absorption signal by means of Kramers-Kronig relations. The converted signal is added to the directly-measured absorption signal. Since the noise in the two channels is not correlated, this procedure increases the signal-to-noise ratio of the resultant absorption signal by up to a factor of √2. The utility of this method was demonstrated for 2D spectral-spatial imaging of a phantom containing 3 tubes of LiPc with different oxygen concentrations and therefore different linewidths. PMID:20181505

  14. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    PubMed

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  15. Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Guina, M.; Sibilia, C.

    2018-03-01

    Semiconductor nanowires made of high refractive index materials can couple the incoming light to specific waveguide modes that offer resonant absorption enhancement under the bandgap wavelength, essential for light harvesting, lasing and detection applications. Moreover, the non-trivial ellipticity of such modes can offer near field interactions with chiral molecules, governed by near chiral field. These modes are therefore very important to detect. Here, we present the photo-acoustic spectroscopy as a low-cost, reliable, sensitive and scattering-free tool to measure the spectral position and absorption efficiency of these modes. The investigated samples are hexagonal nanowires with GaAs core; the fabrication by means of lithography-free molecular beam epitaxy provides controllable and uniform dimensions that allow for the excitation of the fundamental resonant mode around 800 nm. We show that the modulation frequency increase leads to the discrimination of the resonant mode absorption from the overall absorption of the substrate. As the experimental data are in great agreement with numerical simulations, the design can be optimized and followed by photo-acoustic characterization for a specific application.

  16. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are

  17. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  18. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass.

    PubMed

    Zolotovskaya, S A; Tyrk, M A; Stalmashonak, A; Gillespie, W A; Abdolvand, A

    2016-10-28

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

  19. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  20. Training and business performance: the mediating role of absorptive capacities.

    PubMed

    Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito

    2016-01-01

    Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.

  1. Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim

    1994-05-01

    Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).

  2. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  3. Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R. P.

    2018-05-01

    Power absorption by electrons from the space- and time-dependent electric field represents the basic sustaining mechanism of all radio-frequency driven plasmas. This complex phenomenon has attracted significant attention. However, most theories and models are, so far, only able to account for part of the relevant mechanisms. The aim of this work is to present an in-depth analysis of the power absorption by electrons, via the use of a moment analysis of the Boltzmann equation without any ad-hoc assumptions. This analysis, for which the input quantities are taken from kinetic, particle based simulations, allows the identification of all physical mechanisms involved and an accurate quantification of their contributions. The perfect agreement between the sum of these contributions and the simulation results verifies the completeness of the model. We study the relative importance of these mechanisms as a function of pressure, with high spatial and temporal resolution, in an electropositive argon discharge. In contrast to some widely accepted previous models we find that high space- and time-dependent ambipolar electric fields outside the sheaths play a key role for electron power absorption. This ambipolar field is time-dependent within the RF period and temporally asymmetric, i.e., the sheath expansion is not a ‘mirror image’ of the sheath collapse. We demonstrate that this time-dependence is mainly caused by a time modulation of the electron temperature resulting from the energy transfer to electrons by the ambipolar field itself during sheath expansion. We provide a theoretical proof that this ambipolar electron power absorption would vanish completely, if the electron temperature was constant in time. This mechanism of electron power absorption is based on a time modulated electron temperature, markedly different from the Hard Wall Model, of key importance for energy transfer to electrons on time average and, thus, essential for the generation of capacitively

  4. The effect of Beta-cyclodextrin on percutaneous absorption of commonly used Eusolex® sunscreens.

    PubMed

    Shokri, J; Hasanzadeh, D; Ghanbarzadeh, S; Dizadji-Ilkhchi, M; Adibkia, K

    2013-11-01

    There is a serious concern about the topical and systemic absorption of organic ultraviolet filters in sunscreen formulations and subsequent phototoxic and photo allergic reactions. Ideally, a sunscreen should localize in the surface of stratum corneum and create a barrier against UV radiation, but not penetrate into the underlying viable tissues and systemic circulation. The objective of the present study was to determine the effects of β-cyclodextrin (β-CDX) complexation on the transdermal penetration of 3 commonly used sun blocking agents, Eusolex ® 4360 (avobenzone), Eusolex ® 9020 (Oxybenzone) and Eusolex ® 232 (Ensulizole). The complexation of the sunscreen agents with β-CDX was performed by 3 methods and confirmed by differential scanning calorimetry (DSC). Sunscreens, and their physical mixtures and complexes with β-CDX were introduced into a model cream base (o/w emulsion). To find out the influence of β-CDX, sunscreen creams were applied to the rat skin in vitro in standard Franz diffusion cells and the amount of sunscreen permeated after 6 h was assessed by HPLC. The skin penetration flux of the UV filters was significantly reduced (4–15 fold) by complexation with β-CDX. Complexation also could prolong absorption lag time of sun blocking agents to more than 150 min. Considering the ability of β-CDX complexation in the reduction of flux and enhancement ratio as well as prolongation of absorption lag time, this technique could be very helpful for reducing systemic absorption of the UV filters and subsequent toxicity and allergic reaction.

  5. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  6. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios.

    PubMed

    Miao, Jinshui; Hu, Weida; Guo, Nan; Lu, Zhenyu; Liu, Xingqiang; Liao, Lei; Chen, Pingping; Jiang, Tao; Wu, Shiwei; Ho, Johnny C; Wang, Lin; Chen, Xiaoshuang; Lu, Wei

    2015-02-25

    Graphene is a promising candidate material for high-speed and ultra-broadband photodetectors. However, graphene-based photodetectors suffer from low photoreponsivity and I(light)/I(dark) ratios due to their negligible-gap nature and small optical absorption. Here, a new type of graphene/InAs nanowire (NW) vertically stacked heterojunction infrared photodetector is reported, with a large photoresponsivity of 0.5 AW(-1) and I(light)/I(dark) ratio of 5 × 10(2), while the photoresponsivity and I(light)/I(dark) ratio of graphene infrared photodetectors are 0.1 mAW(-1) and 1, respectively. The Fermi level (E(F)) of graphene can be widely tuned by the gate voltage owing to its 2D nature. As a result, the back-gated bias can modulate the Schottky barrier (SB) height at the interface between graphene and InAs NWs. Simulations further demonstrate the rectification behavior of graphene/InAs NW heterojunctions and the tunable SB controls charge transport across the vertically stacked heterostructure. The results address key challenges for graphene-based infrared detectors, and are promising for the development of graphene electronic and optoelectronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of iron status on iron absorption in different habitual meals in young south Indian women.

    PubMed

    Kalasuramath, Suneeta; Kurpad, Anura V; Thankachan, Prashanth

    2013-02-01

    Iron deficiency (ID) affects a large number of women in India. An inverse relationship exists between iron (Fe) status and Fe absorption. Dietary inhibitory and enhancing factors exert a profound influence on bioavailability of Fe. Although the current recommended dietary allowance (RDA) for Fe is based on 8 per cent bioavailability, it is not clear if this holds good for the usual highly inhibitory Indian diet matrix. This study was aimed to determine Fe absorption from several habitually consumed south Indian food and to evaluate the interaction of Fe status with absorption. Four Fe absorption studies were performed on 60 apparently healthy young women, aged 18-35 years. Based on blood biochemistry, 45 of them were ID and 15 were iron replete (IR). The habitual meals assessed were rice, millet and wheat based meals in the ID subjects and rice based meal alone in the IR subjects. Each subject received the test meal labelled with 3 mg of ⁵⁷Fe and Fe absorption was measured based on erythrocyte incorporation of isotope label 14 days following administration. Mean fractional Fe absorption from the rice, wheat and millet based meals in the ID subjects were 8.3, 11.2 and 4.6 per cent, respectively. Fe absorption from the rice-based meals was 2.5 per cent in IR subjects. Fe absorption is dictated by Fe status from low bioavailability meals. Millet based meals have the lowest bioavailability, while the rice and wheat based meals had moderate to good bioavailability. In millet based meals, it is prudent to consider ways to improve Fe absorption.

  8. [Everted intestinal sac method for quick finding absorption ingredients of Wuzhuyu decoction].

    PubMed

    Gong, Muxin; Wang, Yaxun; Song, Yafang; Wang, Zhimin; Zhang, Qiwei; Wang, Weihao; Zhu, Jingjing

    2010-06-01

    To establish a method for quick finding the absorption ingredients of Wuzhuyu decoction in order to select the index to control its quality. The absorption of three concentration of Wuzhuyu decotion was investigated with the in vitro-everted intestinal sac model. The intestinal bag fluid of jejunum and ileum were collected in different time and the eight ingredients, which were evodiamine (Ev), rutaecarpine (Ru), limonin (Li), ginsenoside-Rb1, -Rg1, -Re (Rb1, Rg1, Re), isorhamnetin-3-O-beta-D-glucosyl(6''-->1'")-alpha-L-rhamnoside (Irs)and 6-gingerol (6-Gi), were detected by HPLC as the represent constituents in samples. Eight ingredients except Ru in samples could be detected, but Ev could not be detected in high concentration samples. The ratios between absorption ingredients were different from in Wuzhuyu decotion. The in vitro-everted intestinal sac canc absorb the ingredients of Wuzhuyu decotion selectivity. Compare with the ileum, the jejunum can provide the more absorption information and faster, the best test time is 60-90 min.

  9. Learner : preceptor ratios for practice-based learning across health disciplines: a systematic review.

    PubMed

    Loewen, Peter; Legal, Michael; Gamble, Allison; Shah, Kieran; Tkachuk, Stacey; Zed, Peter

    2017-02-01

    Practice-based learning is a cornerstone of developing clinical and professional competence in health disciplines. Practice-based learning systems have many interacting components, but a key facet is the number of learners per preceptor. Different learner : preceptor ratios may have unique benefits and pose unique challenges for participants. This is the first comprehensive systematic review of the topic. Our research questions were: What are the benefits and challenges of each learner : preceptor ratio in practice-based learning from the perspectives of the learners, preceptors, patients and stakeholder organisations (i.e. the placing and health care delivery organisations)? Are any ratios superior to others with respect to these characteristics and perspectives? Qualitative systematic review of published English-language literature since literature database inception, including multiple health disciplines. Seventy-three articles were included in this review. Eight learner : preceptor ratio arrangements were identified involving nursing, physiotherapy, occupational therapy, pharmacy, dietetics, speech and language therapy, and medicine. Each arrangement offers unique benefits and challenges from the perspectives of learners, preceptors, programmes and health care delivery organisations. Patient perspectives were absent. Despite important advantages of each ratio for learners, preceptors and organisations, some of which may be profession specific, the 2 : 1 and 2+ : 2+ learner : preceptor ratios appear to be most likely to successfully balance the needs of all stakeholders. Regardless of the learner : preceptor ratio chosen for its expected benefits, our results illuminate challenges that can be anticipated and managed. Patient perspectives should be incorporated into future studies of learner : preceptor ratios. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  10. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  11. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  12. Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Fox, Andrew J.; Jenkins, Edward B.; Bordoloi, Rongmon; Wakker, Bart P.; Savage, Blair D.; Lockman, Felix J.; Crawford, Steven M.; Jorgenson, Regina A.; Bland-Hawthorn, Joss

    2018-06-01

    The Fermi Bubbles are two giant gamma-ray emitting lobes extending 55° above and below the Galactic center. While the Northern Bubble has been extensively studied in ultraviolet (UV) absorption, little is known about the gas kinematics of the southern Bubble. We use UV absorption-line spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to probe the southern Fermi Bubble using a sample of 17 background AGNs projected behind or near the Bubble. We measure the incidence of high-velocity clouds (HVC), finding that 4 out of 6 sightlines passing through the Bubble show HVC absorption, versus 6 out of 11 passing outside. We find strong evidence that the maximum absolute LSR velocity of the HVC components decreases as a function of galactic latitude within the Bubble, for both blueshifted and redshifted components, as expected for a decelerating outflow. We explore whether the column density ratios Si IV/Si III, Si IV/Si II, and Si III/Si II correlate with the absolute galactic latitude within the Bubble. These results demonstrate the use of UV absorption-line spectroscopy to characterize the kinematics and ionization conditions of embedded clouds in the Galactic center outflow.

  13. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  14. Potential improvements aimed at high precision δ13C isotopic ratio determinations in CO2 mixtures using optical absorption spectrometry.

    PubMed

    Koulikov, Serguei; Assonov, Sergey; Fajgelj, Ales; Tans, Pieter

    2018-07-01

    The manuscript explores some advantages and limitations of laser based optical spectroscopy, aimed at achieving robust, high-reproducibility 13 C 16 O 2 and 12 C 16 O 2 ratio determinations on the VPDB-CO 2 δ 13 C scale by measuring the absorbance of line pairs of 13 C 16 O 2 and 12 C 16 O 2 . In particular, the sensitivities of spectroscopic lines to both pressure (P) and temperature (T) are discussed. Based on the considerations and estimations presented, a level of reproducibility of the 13 C 16 O 2 / 12 C 16 O 2 ratio determinations may be achieved of about 10 -6 . Thus one may establish an optical spectroscopic measurement technique for robust, high-precision 13 C 16 O 2 and 12 C 16 O 2 ratio measurements aimed at very low uncertainty. (Notably, creating such an optical instrument and developing technical solutions is beyond the scope of this paper.) The total combined uncertainty will also include the uncertainty component(s) related to the accuracy of calibration on the VPDB-CO 2 δ 13 C scale. Addressing high-accuracy calibrations is presently not straightforward - absolute numerical values of 13 C/ 12 C for the VPDB-CO 2 scale are not well known. Traditional stable isotope mass-spectrometry uses calibrations vs CO 2 evolved from the primary carbonate reference materials; which can hardly be used for calibrating commercial optical stable isotope analysers. In contrast to mass-spectrometry, the major advantage of the laser-based spectrometric technique detailed in this paper is its high robustness. Therefore one can introduce a new spectrometric δ 13 C characterisation method which, being once well-calibrated on the VPDB-CO 2 scale, may not require any further (re-)calibrations. This can be used for characterisation of δ 13 C in CO 2 -in-air mixtures with high precision and also with high accuracy. If this technique can be realised with the estimated long-term reproducibility (order of 10 -6 ), it could potentially serve as a more convenient Optical

  15. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    PubMed

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-04

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered

  16. Time delay and excitation mode induced tunable red/near-infrared to green emission ratio of Er doped BiOCl

    NASA Astrophysics Data System (ADS)

    Avram, Daniel; Florea, Mihaela; Tiseanu, Ion; Tiseanu, Carmen

    2015-09-01

    Herein, we report on the emission color tunability of Er doped BiOCl measured under up—conversion as well as x-ray excitation modes. The dependence of red (670 nm) to green emission (543 nm) ratio on Er concentration (1 and 5%), excitation wavelength into different (656.4, 802 and 976 nm) or across single Er absorption levels (965 ÷ 990 nm) and delay after the laser pulse (0.001 ÷ 1 ms) is discussed in terms of ground state absorption/excited state absorption and energy transfer up-conversion mechanisms. A first example of extended Er x-ray emission measured in the range of 500 to 1700 nm shows comparable emission intensities corresponding to 543 nm and 1500 nm based transitions. The present results together with our earlier report on the upconversion emission of Er doped BiOCl excited at 1500 nm, suggest that Er doped BiOCl may be considered an attractive system for optical and x-ray imaging applications.

  17. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  18. Aerosol properties computed from aircraft-based observations during the ACE- Asia campaign. 2; A case study of lidar ratio closure and aerosol radiative effects

    NASA Technical Reports Server (NTRS)

    Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.

    2005-01-01

    For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface

  19. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  20. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  1. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.

    2018-03-01

    Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.

  2. Enhanced Reverse Saturable Absorption and Optical Limiting in Heavy-Atom Substituted Phthalocyanines

    NASA Technical Reports Server (NTRS)

    Perry, J. W.; Mansour, K.; Marder, S. R.; Alvarez, D., Jr.; Perry, K. J.; Choong, I.

    1994-01-01

    The reverse saturable absorption and optical limiting response of metal phthalocyaninies can be enhanced by using the heavy-atom effect. Phthalocyanines containing heavy metal atoms, such as In, Sn, and Pb show nearly a factor of two enhancement in the ratio of effective excited-state to ground-state absorption cross sections compared to those containing lighter atoms, such as Al and Si. In an f/8 optical geometry, homogeneous solutions of heavy metal phthalocyanines, at 30% linear transmission, limit 8-ns, 532-nm laser pulses to less than or equal to 3 (micro)J (the energy for 50% probability of eye damage) for incident pulses up to 800 (micro)J.

  3. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method.

    PubMed

    Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun

    2016-02-01

    Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.

  4. Design and implementation of a laser-based absorption spectroscopy sensor for in situ monitoring of biomass gasification

    NASA Astrophysics Data System (ADS)

    Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.

    2017-12-01

    Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.

  5. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  6. Effect of plasma absorption on dust lattice waves in hexagonal dust crystals

    NASA Astrophysics Data System (ADS)

    Kerong, HE; Hui, CHEN; Sanqiu, LIU

    2018-04-01

    In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.

  7. Zinc Absorption from Fortified Milk Powder in Adolescent Girls.

    PubMed

    Méndez, Rosa O; Hambidge, Michael; Baker, Mark; Salgado, Sergio A; Ruiz, Joaquín; García, Hugo S; Calderón de la Barca, Ana M

    2015-11-01

    Zinc (Zn) is essential for development, growth, and reproduction. The Mexican government subsidizes micronutrient-fortified milk for risk groups, with positive effect on the targeted groups' plasma Zn level, inferring a good absorption is achieved although it has not being measured. The aim of this study was to determine the impact of micronutrient-fortified milk intake during 27 days on Zn absorption in adolescent girls from northwest Mexico. Therefore, Zn absorption was evaluated in 14 healthy adolescent girls (14.1 years old) with adequate plasma Zn levels, before and after 27 days of fortified Zn milk intake. Fractional Zn absorption (FZA) was calculated from urinary ratios of stable isotopic Zn tracers administered orally and intravenously on days 0 and 27, and total absorbed Zn (TZA) was calculated. At the beginning, Zn intake was 6.8 ± 0.85 mg/d (mean ± SE), and 50 % of the adolescent girls did not achieve their requirement (7.3 mg/d). Additionally, FZA was negatively correlated with Zn intake (r =-0.61, p = 0.02), while TZA (1.06 mg/d) was insufficient to cover the physiologic requirements of adolescent girls (3.02 mg/d). At the end of the intervention, all the girls reached the Zn intake recommendation and TZA, 3.09 mg/d, which was enough to meet the physiological requirement for 57 % of the adolescent girls. Therefore, the low Zn intake and the Zn status of adolescent girls were positively impacted by Zn-fortified milk intake and its good absorption rate.

  8. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  9. Response of some Thematic Mapper band ratios to variation in soil water content

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad; Pelletier, Ramona E.

    1986-01-01

    Bidirectional reflectance to nadir in the reflective TM bands and the 1.15-1.3-micron band was measured in the laboratory as moisture content was varied in ten soils. Stronger absorption by water in TM5 and TM7 was expected to cause ratios of other bands to TM5 and TM7 to increase with water content, but in most cases these ratios were constant or decreased at low to intermediate water content and increased only at high moisture levels. Because these ratios were found to decrease as illumination elevation angle decreased, it was suggested that increased roughness resulting from the methods of moistening and mixing the soil may have tended to counteract the expected ratio increases.

  10. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  11. Cascading failures mechanism based on betweenness-degree ratio distribution with different connecting preferences

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo

    We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that we use the connection between the node ability coefficient and distribution of betweenness-degree ratio to explain the cascading failure mechanism. In simulations, we verify the correctness of our derivations. By changing connecting preferences, we find scale free networks with a slight assortativity, which performs better both in robust area and vulnerable area.

  12. A more powerful test based on ratio distribution for retention noninferiority hypothesis.

    PubMed

    Deng, Ling; Chen, Gang

    2013-03-11

    Rothmann et al. ( 2003 ) proposed a method for the statistical inference of fraction retention noninferiority (NI) hypothesis. A fraction retention hypothesis is defined as a ratio of the new treatment effect verse the control effect in the context of a time to event endpoint. One of the major concerns using this method in the design of an NI trial is that with a limited sample size, the power of the study is usually very low. This makes an NI trial not applicable particularly when using time to event endpoint. To improve power, Wang et al. ( 2006 ) proposed a ratio test based on asymptotic normality theory. Under a strong assumption (equal variance of the NI test statistic under null and alternative hypotheses), the sample size using Wang's test was much smaller than that using Rothmann's test. However, in practice, the assumption of equal variance is generally questionable for an NI trial design. This assumption is removed in the ratio test proposed in this article, which is derived directly from a Cauchy-like ratio distribution. In addition, using this method, the fundamental assumption used in Rothmann's test, that the observed control effect is always positive, that is, the observed hazard ratio for placebo over the control is greater than 1, is no longer necessary. Without assuming equal variance under null and alternative hypotheses, the sample size required for an NI trial can be significantly reduced if using the proposed ratio test for a fraction retention NI hypothesis.

  13. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  14. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  15. Energy absorption in composite materials for crashworthy structures

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Crash energy-absorption processes in composite materials have been studied as part of a research program aimed at the development of energy absorbing subfloor beams for crashworthy military helicopters. Based on extensive tests on glass/epoxy, graphite/epoxy, and Kevlar/epoxy composites, it is shown that the energy-absorption characteristics and crushing modes of composite beams are similar to those exhibited by tubular specimens of similar material and architecture. The crushing mechanisms have been determined and related to the mechanical properties of the constituent materials and specimen architecture. A simple and accurate method for predicting the energy-absorption capability of composite beams has been developed.

  16. Two-Photon Absorption of Soft X-Ray Free Electron Laser Radiation by Graphite Near the Carbon K-Absorption Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less

  17. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Raj, Sumana L.; Pascal, Tod A.; Pemmaraju, C. D.; Foglia, Laura; Simoncig, Alberto; Fabris, Nicola; Miotti, Paolo; Hull, Christopher J.; Rizzuto, Anthony M.; Smith, Jacob W.; Mincigrucci, Riccardo; Masciovecchio, Claudio; Gessini, Alessandro; De Ninno, Giovanni; Diviacco, Bruno; Roussel, Eleonore; Spampinati, Simone; Penco, Giuseppe; Di Mitri, Simone; Trovò, Mauro; Danailov, Miltcho B.; Christensen, Steven T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Coreno, Marcello; Poletto, Luca; Drisdell, Walter S.; Prendergast, David; Giannessi, Luca; Principi, Emiliano; Nordlund, Dennis; Saykally, Richard J.; Schwartz, Craig P.

    2018-07-01

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ∼308 and ∼260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ∼284.2 eV. The measured two-photon absorption cross section at 284.18 eV (∼6 × 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atoms - a result of resonance effects.

  18. Response surface method for modeling the removal of carbon dioxide from a simulated gas using water absorption enhanced with a liquid-film-forming device.

    PubMed

    Nguyen, Diem-Mai Kim; Imai, Tsuyoshi; Dang, Thanh-Loc Thi; Kanno, Ariyo; Higuchi, Takaya; Yamamoto, Koichi; Sekine, Masahiko

    2018-03-01

    This paper presents the results from using a physical absorption process to absorb gaseous CO 2 mixed with N 2 using water by producing tiny bubbles via a liquid-film-forming device (LFFD) that improves the solubility of CO 2 in water. The influence of various parameters-pressure, initial CO 2 concentration, gas-to-liquid ratios, and temperature-on the CO 2 removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method (RSM) with a central composite design (CCD). Based on the analysis, a high efficiency of CO 2 capture can be reached in conditions such as low pressure, high CO 2 concentration at the inlet, low gas/liquid ratio, and low temperature. For instance, the highest removal efficiency in the RSM-CCD experimental matrix of nearly 80% occurred for run number 20, which was conducted at 0.30MPa, CO 2 concentration of 35%, gas/liquid ratio of 0.71, and temperature of 15°C. Furthermore, the coefficients of determination, R 2 , were 0.996 for the removal rate and 0.982 for the absorption rate, implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values. The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO 2 capture in air pollution treatment. Copyright © 2017. Published by Elsevier B.V.

  19. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  20. [Construction of research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier].

    PubMed

    Sun, E; Xu, Feng-Juan; Zhang, Zhen-Hai; Wei, Ying-Jie; Tan, Xiao-Bin; Cheng, Xu-Dong; Jia, Xiao-Bin

    2014-02-01

    Based on practice of Epimedium processing mechanism for many years and integrated multidisciplinary theory and technology, this paper initially constructs the research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier, which to form an innovative research mode of the " chemical composition changes-biological transformation-metabolism in vitro and in vivo-intestinal absorption-pharmacokinetic combined pharmacodynamic-pharmacodynamic mechanism". Combined with specific examples of Epimedium and other Chinese herbal medicine processing mechanism, this paper also discusses the academic thoughts, research methods and key technologies of this research system, which will be conducive to systematically reveal the modem scientific connotation of traditional Chinese medicine processing, and enrich the theory of Chinese herbal medicine processing.

  1. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  2. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  3. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    NASA Astrophysics Data System (ADS)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  4. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  5. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.

    PubMed

    Zhao, Siqi; He, Dawei; He, Jiaqi; Zhang, Xinwu; Yi, Lixin; Wang, Yongsheng; Zhao, Hui

    2018-05-24

    Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS2 monolayer and bulk samples as examples, we show that the new method can probe exciton-exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS2 monolayer is on the order of 10-18 cm2.

  6. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    PubMed

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  7. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    PubMed Central

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  8. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  9. Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Yang; Yuan, Zong-Heng; Li, Xiao-Nan; Wu, Jun; Zhang, Wen-Tao; Ye, Song

    2015-07-01

    Noble metal nanoantenna could effectively enhance light absorption and increase detection sensitivity. In this paper, we propose a periodic Ag diamond nanoantenna array to increase the absorption of thin-film solar cells and to improve the detection sensitivity via localized surface plasmon resonance. The effect of nanoantenna arrays on the absorption enhancement is theoretically investigated using the finite difference time domain (FDTD) method with manipulating the spectral response by geometrical parameters of nanoantennas. A maximum absorption enhancement factor of 1.51 has been achieved in this study. In addition, the relation between resonant wavelength (intensity reflectivity) and refractive index is discussed in detail. When detecting the environmental index using resonant wavelengths, a maximum detection sensitivity of about 837 nm/RIU (refractive index unit) and a resolution of about 10-3 RIU can be achieved. Moreover, when using the reflectivity, the sensitivity can be as high as 0.93 AU/RIU. Furthermore, we also have theoretically studied the effectiveness of nanoantennas in distinguishing chemical reagents, solution concentrations, and solution allocation ratios by detecting refractive index. From the results presented in this paper, we conclude that this work might be useful for biosensor detection and other types of detections. Project supported by the International Scientific and Technological Cooperation Projects of Guizhou Province, China (Grant No. 20117035) and the Program for Innovative Research Team of Guilin University of Electronic Technology, China (Grant No. IRTGUET).

  10. A Windows application for computing standardized mortality ratios and standardized incidence ratios in cohort studies based on calculation of exact person-years at risk.

    PubMed

    Geiss, Karla; Meyer, Martin

    2013-09-01

    Standardized mortality ratios and standardized incidence ratios are widely used in cohort studies to compare mortality or incidence in a study population to that in the general population on a age-time-specific basis, but their computation is not included in standard statistical software packages. Here we present a user-friendly Microsoft Windows program for computing standardized mortality ratios and standardized incidence ratios based on calculation of exact person-years at risk stratified by sex, age and calendar time. The program offers flexible import of different file formats for input data and easy handling of general population reference rate tables, such as mortality or incidence tables exported from cancer registry databases. The application of the program is illustrated with two examples using empirical data from the Bavarian Cancer Registry. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  12. Numerical simulation on the seismic absorption effect of the cushion in rigid-pile composite foundation

    NASA Astrophysics Data System (ADS)

    Han, Xiaolei; Li, Yaokun; Ji, Jing; Ying, Junhao; Li, Weichen; Dai, Baicheng

    2016-06-01

    In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.

  13. Operating range of a differential-absorption lidar based on a CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivashchenko, M V; Sherstov, I V

    2000-08-31

    The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)

  14. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    NASA Astrophysics Data System (ADS)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  15. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  16. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    PubMed

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  17. AERONET derived (BC) aerosol absorption

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    AERONET is a ground-based sun-/sky-photometer network with good annual statistics at more than 400 sites worldwide. Inversion methods applied to these data define all relevant column aerosol optical properties and reveal even microphysical detail. The extracted data include estimates for aerosol size-distributions and for aerosol refractive indices at four different solar wavelengths. Hereby, the imaginary parts of the refractive indices define the aerosol column absorption. For regional and global averages and radiative impact assessment with off-line radiative transfer, these local data have been extended with distribution patterns offered by AeroCom modeling experiments. Annual and seasonal absorption distributions for total aerosol and estimates for component contributions (such as BC) are presented and associated direct forcing impacts are quantified.

  18. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  19. A method of predicting the energy-absorption capability of composite subfloor beams

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    A simple method of predicting the energy-absorption capability of composite subfloor beam structure was developed. The method is based upon the weighted sum of the energy-absorption capability of constituent elements of a subfloor beam. An empirical data base of energy absorption results from circular and square cross section tube specimens were used in the prediction capability. The procedure is applicable to a wide range of subfloor beam structure. The procedure was demonstrated on three subfloor beam concepts. Agreement between test and prediction was within seven percent for all three cases.

  20. Direct Observations of Excess Solar Absorption by Clouds

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Valero, Francisco P. J.

    1995-01-01

    Aircraft measurements of solar flux in the cloudy tropical atmosphere reveal that solar absorption by clouds is anomalously large when compared to theoretical estimates. The ratio of cloud forcing at an altitude of 20 kilometers to that at the surface is 1.58 rather than 1.0 as predicted by models. These results were derived from a cloud radiation experiment in which identical instrumentation was deployed on coordinated stacked aircraft. These findings indicate a significant difference between measurements and theory and imply that the interaction between clouds and solar radiation is poorly understood.

  1. Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Chen, Fu; Wang, Fang; Wang, Xian; Dai, Weiyong; Hu, Sheng; Gong, Rongzhou

    2018-05-01

    Honeycomb structure coated with paraffin filled with composite of graphene and flaky carbonyl iron powder (FCIP) as lossy filler have been studied. The composite of graphene/FCIP with different weight ratio were synthesized via mechanical milling, the electromagnetic properties of the samples were measured by transmission/reflection method in the frequency range of 8-12 GHz. The microwave absorbing properties of the microwave absorbing honeycomb structure (MAHS) and microwave absorbing honeycomb sandwich structure (MAHSS) were studied based on the Finite Element Method with periodical boundary conditions. The matching layer on the top of the honeycomb sandwich structure can enhanced the microwave absorption properties. It was shown that a light weight and broadband MAHSS could be implemented with the use of the magnetic material and dielectric material.

  2. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  3. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system.

    PubMed

    Zhang, Jinjie; Li, Jianbo; Ju, Yuan; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2015-02-02

    Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.

  4. Polymeric Precipitation Inhibitors Promote Fenofibrate Supersaturation and Enhance Drug Absorption from a Type IV Lipid-Based Formulation.

    PubMed

    Suys, Estelle J A; Chalmers, David K; Pouton, Colin W; Porter, Christopher J H

    2018-06-04

    The ability of lipid-based formulations (LBFs) to increase the solubilization, and prolong the supersaturation, of poorly water-soluble drugs (PWSDs) in the gastrointestinal (GI) fluids has generated significant interest in the past decade. One mechanism to enhance the utility of LBFs is to prolong supersaturation via the addition of polymers that inhibit drug precipitation (polymeric precipitation inhibitors or PPIs) to the formulation. In this work, we have evaluated the performance of a range of PPIs and have identified PPIs that are sufficiently soluble in LBF to allow the construction of single phase formulations. An in vitro model was first employed to assess drug (fenofibrate) solubilization and supersaturation on LBF dispersion and digestion. An in vitro-in situ model was subsequently employed to simultaneously evaluate the impact of PPI enhanced drug supersaturation on drug absorption in rats. The stabilizing effect of the polymers was polymer specific and most pronounced at higher drug loads. Polymers that were soluble in LBF allowed simple processing as single phase formulations, while formulations containing more hydrophilic polymers required polymer suspension in the formulation. The lipid-soluble polymers Eudragit (EU) RL100 and poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) and the water-soluble polymer hydroxypropylmethyl cellulose (HPMC) E4M were identified as the most effective PPIs in delaying fenofibrate precipitation in vitro. An in vitro model of lipid digestion was subsequently coupled directly to an in situ single pass intestinal perfusion assay to evaluate the influence of PPIs on fenofibrate absorption from LBFs in vivo. This coupled model allowed for real-time evaluation of the impact of supersaturation stabilization on absorptive drug flux and provided better discrimination between the different PPIs and formulations. In the presence of the in situ absorption sink, increased fenofibrate supersaturation resulted in increased drug

  5. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    PubMed Central

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  6. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator.

    PubMed

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-12-04

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid's temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  7. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE PAGES

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac; ...

    2017-05-18

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  8. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  9. Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizine-Based Core Skeleton.

    PubMed

    Lee, Youngjun; Jo, Ala; Park, Seung Bum

    2015-12-21

    The rational improvement of photophysical properties can be highly valuable for the discovery of novel organic fluorophores. Using our new design strategy guided by the oscillator strength, we developed a series of full-color-tunable furoindolizine analogs with improved molar absorptivity through the fusion of a furan ring into the indolizine-based Seoul fluorophore. The excellent correlation between the computable values (oscillator strength and theoretical S0 -S1 energy gap) and photophysical properties (molar absorptivity and emission wavelength) confirmed the effectualness of our design strategy. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  10. Pitfalls in gastrointestinal permeability measurement in ICU patients with multiple organ failure using differential sugar absorption.

    PubMed

    Oudemans-van Straaten, Heleen M; van der Voort, Peter J; Hoek, Frans J; Bosman, Rob J; van der Spoel, Johan I; Zandstra, Durk F

    2002-02-01

    To assess whether gastrointestinal permeability (GIP) at intensive care unit (ICU) admission, measured by differential sugar absorption, is related to severity of disease and multiple organ failure (MOF). Post hoc, to analyse the relation between the urinary sugar recovery and renal function. Prospective observational cohort study. Eighteen-bed general ICU of a teaching hospital. Sixty-four ventilated patients admitted with MOF. GIP was assessed within 24 h using cellobiose (C), sucrose (S) and mannitol (M) absorption. Severity of disease: APACHE II and III, SAPS II and MPM II systems. Organ failure: SOFA, MODS and Goris score. The median urinary recovery of C was 0.147% (range 0.004-2.145%), of S 0.249% (0.001-3.656%) and of M 10.7% (0.6-270%). In 16 patients, M recovery was over 100% of the oral dose. They received red blood cell transfusion (RBC). In the non-transfused, the median cellobiose/mannitol (CM) ratio was 0.015 (0.0004-0.550). CM ratio was not related to severity of disease and inversely related to the SOFA score ( r=-0.30, p=0.04). Post hoc regression analysis showed that recoveries of C, S and M were positively related to urinary volume. Recoveries of C and S, but not of M, were positively related to creatinine clearance. The CM ratio corrected for diuresis, but was inversely related to creatinine clearance. Differential C, S and M absorption testing is unreliable after RBC transfusion, since bank blood contains mannitol. The excretion of C and S, but not of M, is limited by renal dysfunction. Differential sugar absorption is not reliable to test GIP in MOF patients, since non-permeability related factors act as confounders.

  11. Electromagnetic Wave Absorption Property of Graphene with FeO4 Nanoparticles.

    PubMed

    Yang, Cheng; Dai, Shenglong; Zhang, Xiaoyan; Zhao, Tianyu; Yan, Shaojiu; Zhao, Xiuying

    2016-02-01

    Nanomaterials consisting of various ratios of Fe3O4 and graphene (defined C-Fe3O4/GR) were pre- pared by an in situ coordination complex hydro-thermal synthesis method. The structure and morphology of the nanomaterials C-Fe3O4/GR obtained were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). It was found that the Fe3O4 nanoparticles distributed on the surfaces of graphene, and had a spinel structure and a uniform chemical phase when the weight ratios of Fe3O4 to graphene oxide (GO) were 9:1 or 9:2. It was suggested that GO had been successfully reduced to graphene and the Fe3O4 nanoparticles were chemically bonded to graphene. The SQUID vibrating sample magnetometer (SQUID-VSM) indicated that the maximum of the saturation magnetization was 83.6 emmicro g(-1) when the mass ratio of Fe3O4 to GO was 9:2. Electromagnetic wave absorption showed that the chemical compound of Fe3O4 and graphene had a better electromagnetic property than the mechanical blend of Fe3O4 and graphene (M-Fe3O4/GR). The C-Fe3O4/GR had a reflection loss larger than -10 dB in the frequency range 12.9-17.0 GHz for an absorber thickness of 3 mm, and a maximum reflection loss of -12.3 dB at 14.8 GHz and a maximum reflection loss of -31.2 dB at 10.5 GHz for an absorber thickness of 10 mm. Theoretical analysis showed that the electromagnetic wave absorption behavior obeyed the quarter-wave principles. These results showed that the C-Fe3O4/GR nanomaterials can meet the requirements for some engineering applications, showing great application potential in electromagnetic wave absorption.

  12. Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging.

    PubMed

    Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc

    2015-10-01

    Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.

  13. Light absorption enhancement of black carbon from urban haze in Northern China winter.

    PubMed

    Chen, Bing; Bai, Zhe; Cui, Xinjuan; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2017-02-01

    Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (E MAC ) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with E MAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  15. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    PubMed Central

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae

    2018-01-01

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure

  16. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    PubMed

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  17. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan

    2015-11-01

    Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.

  18. Optical absorption in disordered monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  19. Ammonia detection using hollow waveguide enhanced laser absorption spectroscopy based on a 9.56 μm quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Yang, Sen; Wang, Ruixue; Du, Zhenhui; Wei, Yingying

    2017-10-01

    Ammonia (NH3) is the most abundant alkalescency trace gas in the atmosphere having a foul odor, which is produced by both natural and anthropogenic sources. Chinese Emission Standard for Odor Pollutants has listed NH3 as one of the eight malodorous pollutants since 1993, specifying the emission concentration less than 1 mg/m3 (1.44ppmv). NH3 detection continuously from ppb to ppm levels is significant for protection of environmental atmosphere and safety of industrial and agricultural production. Tunable laser absorption spectroscopy (TLAS) is an increasingly important optical method for trace gas detection. TLAS do not require pretreatment and accumulation of the concentration of the analyzed sample, unlike, for example, more conventional methods such as mass spectrometry or gas chromatography. In addition, TLAS can provide high precision remote sensing capabilities, high sensitivities and fast response. Hollow waveguide (HWG) has recently emerged as a novel concept serving as an efficient optical waveguide and as a highly miniaturized gas cell. Among the main advantages of HWG gas cell compared with conventional multi-pass gas cells is the considerably decreased sample which facilitates gas exchanging. An ammonia sensor based on TLAS using a 5m HWG as the gas cell is report here. A 9.56μm, continuous-wave, distributed feed-back (DFB), room temperature quantum cascade laser (QCL), is employed as the optical source. The interference-free NH3 absorption line located at 1046.4cm-1 (λ 9556.6nm) is selected for detection by analyzing absorption spectrum from 1045-1047 cm-1 within the ν2 fundamental absorption band of ammonia. Direct absorption spectroscopy (DAS) technique is utilized and the measured spectral line is fitted by a simulation model by HITRAN database to obtain the NH3 concentration. The sensor performance is tested with standard gas and the result shows a 1σ minimum detectable concentration of ammonia is about 200 ppb with 1 sec time resolution

  20. A simulation study on terahertz absorption of liquid crystal mixture E7

    NASA Astrophysics Data System (ADS)

    Dong, Jian-qi; Cheng, Wen-qi; Li, Meng-ge; Wang, Kai-li; Chen, Ze-zhang; Ma, Heng

    2017-09-01

    A simulation work on a broad THz absorption of liquid crystal mixture E7 consisting of 5CB, 7CB, 8OCB and 5CT is reported. Based on the density functional theory, the molecular structures of the monomers were optimized and calculated using the Gaussian package with base set B3LYP and 6-311g. The results indicate that the simulation of the characteristic absorption spectra is accurate compared to the experimental and literature report in the infrared band. By analyzing contribution of the benzene ring, C-O and alkyl bonds on THz absorption, it is found that there are no significant effects from the cyano group and the alkyl radical. The addition of a benzene ring leads to an increase in absorption intensity and redshift. By discussing the atomic mass distribution and the structural symmetry of the monomers, a reason for the strong THz absorption of 8OCB is proposed.

  1. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  2. Comparison and applicability of landslide susceptibility models based on landslide ratio-based logistic regression, frequency ratio, weight of evidence, and instability index methods in an extreme rainfall event

    NASA Astrophysics Data System (ADS)

    Wu, Chunhung

    2016-04-01

    Few researches have discussed about the applicability of applying the statistical landslide susceptibility (LS) model for extreme rainfall-induced landslide events. The researches focuses on the comparison and applicability of LS models based on four methods, including landslide ratio-based logistic regression (LRBLR), frequency ratio (FR), weight of evidence (WOE), and instability index (II) methods, in an extreme rainfall-induced landslide cases. The landslide inventory in the Chishan river watershed, Southwestern Taiwan, after 2009 Typhoon Morakot is the main materials in this research. The Chishan river watershed is a tributary watershed of Kaoping river watershed, which is a landslide- and erosion-prone watershed with the annual average suspended load of 3.6×107 MT/yr (ranks 11th in the world). Typhoon Morakot struck Southern Taiwan from Aug. 6-10 in 2009 and dumped nearly 2,000 mm of rainfall in the Chishan river watershed. The 24-hour, 48-hour, and 72-hours accumulated rainfall in the Chishan river watershed exceeded the 200-year return period accumulated rainfall. 2,389 landslide polygons in the Chishan river watershed were extracted from SPOT 5 images after 2009 Typhoon Morakot. The total landslide area is around 33.5 km2, equals to the landslide ratio of 4.1%. The main landslide types based on Varnes' (1978) classification are rotational and translational slides. The two characteristics of extreme rainfall-induced landslide event are dense landslide distribution and large occupation of downslope landslide areas owing to headward erosion and bank erosion in the flooding processes. The area of downslope landslide in the Chishan river watershed after 2009 Typhoon Morakot is 3.2 times higher than that of upslope landslide areas. The prediction accuracy of LS models based on LRBLR, FR, WOE, and II methods have been proven over 70%. The model performance and applicability of four models in a landslide-prone watershed with dense distribution of rainfall

  3. Comparative study between recent methods manipulating ratio spectra and classical methods based on two-wavelength selection for the determination of binary mixture of antazoline hydrochloride and tetryzoline hydrochloride.

    PubMed

    Abdel-Halim, Lamia M; Abd-El Rahman, Mohamed K; Ramadan, Nesrin K; El Sanabary, Hoda F A; Salem, Maissa Y

    2016-04-15

    A comparative study was developed between two classical spectrophotometric methods (dual wavelength method and Vierordt's method) and two recent methods manipulating ratio spectra (ratio difference method and first derivative of ratio spectra method) for simultaneous determination of Antazoline hydrochloride (AN) and Tetryzoline hydrochloride (TZ) in their combined pharmaceutical formulation and in the presence of benzalkonium chloride as a preservative without preliminary separation. The dual wavelength method depends on choosing two wavelengths for each drug in a way so that the difference in absorbance at those two wavelengths is zero for the other drug. While Vierordt's method, is based upon measuring the absorbance and the absorptivity values of the two drugs at their λ(max) (248.0 and 219.0 nm for AN and TZ, respectively), followed by substitution in the corresponding Vierordt's equation. Recent methods manipulating ratio spectra depend on either measuring the difference in amplitudes of ratio spectra between 255.5 and 269.5 nm for AN and 220.0 and 273.0 nm for TZ in case of ratio difference method or computing first derivative of the ratio spectra for each drug then measuring the peak amplitude at 250.0 nm for AN and at 224.0 nm for TZ in case of first derivative of ratio spectrophotometry. The specificity of the developed methods was investigated by analyzing different laboratory prepared mixtures of the two drugs. All methods were applied successfully for the determination of the selected drugs in their combined dosage form proving that the classical spectrophotometric methods can still be used successfully in analysis of binary mixture using minimal data manipulation rather than recent methods which require relatively more steps. Furthermore, validation of the proposed methods was performed according to ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits. Statistical studies showed that the methods can be

  4. Comparative study between recent methods manipulating ratio spectra and classical methods based on two-wavelength selection for the determination of binary mixture of antazoline hydrochloride and tetryzoline hydrochloride

    NASA Astrophysics Data System (ADS)

    Abdel-Halim, Lamia M.; Abd-El Rahman, Mohamed K.; Ramadan, Nesrin K.; EL Sanabary, Hoda F. A.; Salem, Maissa Y.

    2016-04-01

    A comparative study was developed between two classical spectrophotometric methods (dual wavelength method and Vierordt's method) and two recent methods manipulating ratio spectra (ratio difference method and first derivative of ratio spectra method) for simultaneous determination of Antazoline hydrochloride (AN) and Tetryzoline hydrochloride (TZ) in their combined pharmaceutical formulation and in the presence of benzalkonium chloride as a preservative without preliminary separation. The dual wavelength method depends on choosing two wavelengths for each drug in a way so that the difference in absorbance at those two wavelengths is zero for the other drug. While Vierordt's method, is based upon measuring the absorbance and the absorptivity values of the two drugs at their λmax (248.0 and 219.0 nm for AN and TZ, respectively), followed by substitution in the corresponding Vierordt's equation. Recent methods manipulating ratio spectra depend on either measuring the difference in amplitudes of ratio spectra between 255.5 and 269.5 nm for AN and 220.0 and 273.0 nm for TZ in case of ratio difference method or computing first derivative of the ratio spectra for each drug then measuring the peak amplitude at 250.0 nm for AN and at 224.0 nm for TZ in case of first derivative of ratio spectrophotometry. The specificity of the developed methods was investigated by analyzing different laboratory prepared mixtures of the two drugs. All methods were applied successfully for the determination of the selected drugs in their combined dosage form proving that the classical spectrophotometric methods can still be used successfully in analysis of binary mixture using minimal data manipulation rather than recent methods which require relatively more steps. Furthermore, validation of the proposed methods was performed according to ICH guidelines; accuracy, precision and repeatability are found to be within the acceptable limits. Statistical studies showed that the methods can be

  5. Absorption from iron tablets given with different types of meals.

    PubMed

    Hallberg, L; Björn-Rasmussen, E; Ekenved, G; Garby, L; Rossander, L; Pleehachinda, R; Suwanik, R; Arvidsson, B

    1978-09-01

    The absorption of iron from tablets given with 5 types of meals was studied in 153 subjects. The meals were: a hamburger meal with beans and potatoes, a simple breakfast meal, a Latin American meal composed of black beans, rice and maize and two Southeast Asian meals composed of rice, vegetables and spices served with and without fish. The groups were directly compared by relating the absorption from the iron tablets to the absorption from a standardized reference dose of iron given on an empty stomach. The composition of meals with respect to content of meat or fish or the presence of large amounts of phytates seemed to have no influence on the absorption of iron from tablets. The absorption from iron tablets was about 40% higher when they were given with rice meals than when they were given with the other meals studied. The average decrease in absorption by meals was about 50-60% based on a comparison when tablets were given on an empty stomach. When tablets from which the iron was released more slowly were used, the absorption increased by about 30% except when they were given with rice meals, where the absorption was unchanged. The differences among the meals in their effect on the absorption of iron from tablets thus disappeared when the slow-release tablets were given.

  6. Calcium absorption is not increased by caseinophosphopeptides.

    PubMed

    Teucher, Birgit; Majsak-Newman, Gosia; Dainty, Jack R; McDonagh, David; FitzGerald, Richard J; Fairweather-Tait, Susan J

    2006-07-01

    One of the suggested health benefits of caseinophosphopeptides (CPPs) is their ability to enhance calcium absorption. This possibility is based on the assumption that they resist proteolysis in the upper gastrointestinal tract and maintain calcium in a soluble form at alkaline pH in the distal ileum. The effects of CPP-enriched preparations (containing candidate functional food ingredients) on calcium absorption from a calcium lactate drink were tested. A randomized crossover trial was undertaken in 15 adults in whom we measured the absorption of calcium from a calcium lactate drink (drink A: 400 mg Ca as lactate) and 2 preparations enriched with forms of CPP (1.7 g each; drinks B and C). Both drinks B and C contained 400 mg Ca as calcium lactate plus approximately 100 mg CPP-derived calcium). Each volunteer received the 3 drinks in random order. Absorption was measured by the dual-label calcium stable-isotope technique. The quantity of calcium absorbed was significantly lower from drink A (103 mg) than from drink B (117 mg; P = 0.012) or drink C (121 mg; P = 0.002), which indicated a positive effect of the CPPs. However, because the CPP preparations contributed additional calcium besides that found in the calcium lactate (drink A), fractional absorption of calcium from drink B (23%) was slightly but significantly (P = 0.015) lower than that from drink A (26%). The differences in calcium absorption are unlikely to have any biological significance. CPPs are unsuitable as candidate ingredients for functional foods that are designed to deliver improved calcium nutrition.

  7. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  8. Optical measurements of absorption changes in two-layered diffusive media

    NASA Astrophysics Data System (ADS)

    Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E.; Fantini, Sergio

    2004-04-01

    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ~0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ~4% for the superficial layer and ~10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  9. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  10. Absorption in Sport: A Cross-Validation Study

    PubMed Central

    Koehn, Stefan; Stavrou, Nektarios A. M.; Cogley, Jeremy; Morris, Tony; Mosek, Erez; Watt, Anthony P.

    2017-01-01

    Absorption has been identified as readiness for experiences of deep involvement in the task. Conceptually, absorption is a key psychological construct, incorporating experiential, cognitive, and motivational components. Although, no operationalization of the construct has been provided to facilitate research in this area, the purpose of this research was the development and examination of the psychometric properties of a sport-specific measure of absorption that evolved from the use of the modified Tellegen Absorption Scale (MODTAS; Jamieson, 2005) in mainstream psychology. The study aimed to provide evidence of the psychometric properties, reliability, and validity of the Measure of Absorption in Sport Contexts (MASCs). The psychometric examination included a calibration sample from Scotland and a cross-validation sample from Australia using a cross-sectional design. The item pool was developed based on existing items from the modified Tellegen Absorption Scale (Jamieson, 2005). The MODTAS items were reworded and translated into a sport context. The Scottish sample consisted of 292 participants and the Australian sample of 314 participants. Congeneric model testing and confirmatory factor analysis for both samples and multi-group invariance testing across samples was used. In the cross-validation sample the MASC subscales showed acceptable internal consistency and construct reliability (≥0.70). Excellent fit indices were found for the final 18-item, six-factor measure in the cross-validation sample, χ(120)2 = 197.486, p < 0.001; CFI = 0.957; TLI = 0.945; RMSEA = 0.045; SRMR = 0.044. Multi-group invariance testing revealed no differences in item meaning, except for two items. The MASC and the Dispositional Flow Scale-2 showed moderate-to-strong positive correlations in both samples, r = 0.38, p < 0.001 and r = 0.42, p < 0.001, supporting the external validity of the MASC. This article provides initial evidence in support of the psychometric properties

  11. EPIC/DSCOVR's Oxygen Absorption Channels: A Cloud Profiling Information Content Analysis

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Merlin, G.; Labonnote, L. C.; Cornet, C.; Dubuisson, P.; Ferlay, N.; Parol, F.; Riedi, J.; Yang, Y.

    2016-12-01

    EPIC/DSCOVR has several spectral channels dedicated to cloud characterization, most notably O2 A- and B-band. Differential optical absorption spectroscopy (DOAS) ratios of in-band and reference channels are less prone to calibration error than the 4 individual signals. Using these ratios, we have replicated for mono-directional (quasi-backscattering) EPIC observations the recent cloud information content analysis by Merlin et al. (AMT-D,8:12709-12758,2015) that was focused on A-band-only but multi-angle observations by POLDER in the past, by AirMSPI in the present, and by 3MI and MAIA in the future. The methodology is based on extensive forward 1D radiative transfer (RT) computations using the ARTDECO model that implements a k-distribution technique for the absorbing (in-band) channels. These synthetic signals are combined into a Bayesian Rodgers-type framework for estimating posterior uncertainty on retrieved quantities. Recall that this formalism calls explicitly for: (1) estimates of instrument error, and (2) prior uncertainty on the retrieved quantities, to which we add (3) reasonable estimates of uncertainty in the non- or otherwise-retrieved properties. Wide ranges of cloud top heights (CTHs) and cloud geometrical thicknesses (CGTs) are examined for a representative selection of cloud optical thicknesses (COTs), solar angles, and surface reflectances. We found that CTH should be reliably retrieved from EPIC data under most circumstances as long as COT can be inferred from non-absorbing channels, and the bias from in-cloud absorption is removed. However, CGT will be hard to determine unless CTH is constrained by independent means. EPIC has several UV channels that could be brought to bear. These findings conflict those of Yang et al. (JQSRT,122:141-149,2013), so we also revisit that more preliminary study that did not account for a realistic level of residual instrument noise in the DOAS ratios. In conclusion, we believe that the present information content

  12. Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1

    NASA Astrophysics Data System (ADS)

    Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.

    2017-03-01

    Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.

  13. The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Chih; Su, Yan-Kuin; Lin, Chuing-Liang; Chen, Jian-Jhong

    2010-07-01

    The nanopatterned sapphire substrates (NPSSs) with aspect ratio that varied from 2.00 to 2.50 were fabricated by nanoimprint lithography. We could improve the epitaxial film quality and enhance the light extraction efficiency by NPSS technique. In this work, the aspect ratio effects on the performances of GaN-based light-emitting diodes (LEDs) with NPSS were investigated. The light output enhancement of GaN-based LEDs with NPSS was increased from 11% to 27% as the aspect ratio of the NPSS increases from 2.00 to 2.50. Owing to the same improvement of crystalline quality by using various aspect ratios of NPSS, these results indicated that the aspect ratio of the NPSS is strongly related to the light extraction efficiency.

  14. Absorption Peaks: α, β, γ and Their Covariance with Age and Hemoglobin in Human Blood Samples Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    González-Domínguez, J. L.; Hernández-Aguilar, C.; Domínguez-Pacheco, F. A.; Martínez-Ortiz, E.; Cruz-Orea, A.; Sánchez-Sinencio, F.

    2012-11-01

    This study reports the absorption peaks α, β, γ in the Soret band of photoacoustic (PA) signals and their covariance with age and hemoglobin in human blood samples through PA spectroscopy. Samples were taken randomly from a masculine population grouped in three categories according to age: infants, young adults, and senior adults. Samples were prepared with two drops of blood from a 0.5 mL insulin syringe with a needle gauge 31G over 5 mm circles of filter paper. It was observed that the PA signal, the amplitude as a function of the wavelength, has a behavior as that reported for human blood for the three absorption peaks α, β, γ. In particular, the ratio γ/ β is due to electronic transitions associated with charge-transfer interactions of iron orbitals with the ligand states. Through an evaluation of optical absorption peaks in blood samples and their covariance with age and hemoglobin concentration, a relationship was found for the ratio peaks γ/ β and γ/ α with such parameters. Specifically, a negative covariance in the Soret band of the ratio peaks γ/ β and γ/ α with respect to both age and hemoglobin was found. This showed a tendency in their behavior. Further experiments of different populations may corroborate these conclusions.

  15. The effect of a nanofilled resin-based coating on water absorption by teeth restored with glass ionomer.

    PubMed

    Hankins, Amanda D; Hatch, Robert H; Benson, Jarred H; Blen, Bernard J; Tantbirojn, Daranee; Versluis, Antheunis

    2014-04-01

    A nanofilled, resin-based light-cured coating (G-Coat Plus, GC America, Alsip, Ill.) may reduce water absorption by glass ionomers. The authors investigated this possibility by measuring cuspal flexure caused by swelling of glass ionomer-restored teeth. The authors cut large mesio-occlusodistal slots (4-millimeter wide, 4-mm deep) in 12 extracted premolars and restored them with a glass ionomer cement (Fuji IX GP Extra, GC America). Six teeth were coated, and the other six were uncoated controls. The authors digitized the teeth in three dimensions by using an optical scanner after preparation and restoration and during an eight-week storage in water. They calculated cuspal flexure and analyzed the results by using an analysis of variance and Student-Newman-Keuls post hoc tests (significance level .05). They used dye penetration along the interface to verify bonding. Inward cuspal flexure indicated restoration shrinkage. Coated restorations had significantly higher flexure (mean [standard deviation], -11.9 [3.5] micrometers) than did restorations without coating (-7.3 [1.5] μm). Flexure in both groups decreased significantly (P < .05) during water storage and, after eight weeks, it changed to expansion for uncoated control restorations. Dye penetration along the interfaces was not significant, which ruled out debonding as the cause of cuspal relaxation. Teeth restored with glass ionomer cement exhibited shrinkage, as seen by inward cuspal flexure. The effect of the protective coating on water absorption was evident in the slower shrinkage compensation. The study results show that teeth restored with glass ionomers exhibited setting shrinkage that deformed tooth cusps. Water absorption compensated for the shrinkage. Although the coating may be beneficial for reducing water absorption, it also slows the shrinkage compensation rate (that is, the rate that hygroscopic expansion compensates for cuspal flexure from shrinkage).

  16. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  17. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR

    PubMed Central

    Lucero, Catherine L.; Spragg, Robert P.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, (w/c), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl2 reacts with the cement paste to produce products (Friedel’s salt, Kuzel’s salt, or calcium oxychloride) that block pores and reduce absorption. PMID:28626299

  18. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR.

    PubMed

    Lucero, Catherine L; Spragg, Robert P; Bentz, Dale P; Hussey, Daniel S; Jacobson, David L; Weiss, W Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl 2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, ( w/c ), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl 2 reacts with the cement paste to produce products (Friedel's salt, Kuzel's salt, or calcium oxychloride) that block pores and reduce absorption.

  19. Quantification of Absorption Due to Black and Brown Carbon from Biomass Burning and Parameterizations for Comparison to Climate Models Result

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra Prasad

    This dissertation examines the optical properties of fresh and aged biomass burning aerosols, parameterization of these properties, and development of new instrumentation and calibration techniques to measure aerosol optical properties. Data sets were collected from the fourth Fire Lab at Missoula Experiment (FLAME-4) that took place from October 15 to November 16, 2012. Biomass collected from the various parts of the world were burned under controlled laboratory conditions and fresh emissions from different stages of burning were measured and analyzed. Optical properties of aged aerosol under different conditions was also explored. A photoacoustic absorption spectrometer (PAS) was built and integrated with a newly designed thermal denuder to improve upon observations made during Flame-4. A novel calibration technique for the PAS was developed. Single scattering albedo (SSA) and absorption Angstrom exponent (AAE) from 12 different fuels with 41 individual burns were estimated and parameterized with modified combustion efficiency (MCE) and the ratio of elemental carbon (EC) to organic carbon (OC) mass. The EC / OC ratio has better capability to parameterize SSA and AAE than MCE. The simple linear regression model proposed in this study accurately predicts SSA during the first few hours of plume aging with the ambient data from a biomass burning event. In addition, absorption due to brown carbon (BrC) can significantly lower the SSA at 405 nm resulting in a wavelength dependence of SSA. Furthermore, smoldering dominated burns have larger AAE values while flaming dominated burns have smaller AAE values indicating a large fraction of BrC is emitted during the smoldering stage of the burn. Enhancement in BC absorption (EAbs) due to coating by absorbing and non-absorbing substances is estimated at 405 nm and 660 nm. Relatively smaller values of EAbs at 660 nm compared to 405 nm suggests lensing is a less important contributor to biomass burning aerosol absorption at

  20. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    PubMed Central

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  1. Bin Ratio-Based Histogram Distances and Their Application to Image Classification.

    PubMed

    Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen

    2014-12-01

    Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.

  2. A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine.

    PubMed

    Greer, T; Bedelbayev, A; Igreja, J M; Gomes, J F; Lie, B

    2010-01-01

    Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N2 and O2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.

  3. Precision saturated absorption spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-Chan; Chang, Yung-Hsiang; Liao, Yi-Chieh; Peng, Jin-Long; Wang, Li-Bang; Shy, Jow-Tsong

    2018-03-01

    In our previous work on the Lamb-dips of the ν2 fundamental band transitions of H3+, the saturated absorption spectrum was obtained by third-derivative spectroscopy using frequency modulation with an optical parametric oscillator (OPO). However, frequency modulation also caused errors in the absolute frequency determination. To solve this problem, we built a tunable offset locking system to lock the pump frequency of the OPO to an iodine-stabilized Nd:YAG laser. With this improvement, we were able to scan the OPO idler frequency precisely and obtain the saturated absorption profile using intensity modulation. Furthermore, ion concentration modulation was employed to subtract the background noise and increase the signal-to-noise ratio. To determine the absolute frequency of the idler wave, the OPO signal frequency was locked to an optical frequency comb. The absolute frequency accuracy of our spectrometer was better than 7 kHz, demonstrated by measuring the wavelength standard transition of methane at 3.39 μm. Finally, we measured 16 transitions of H3+ and our results agree very well with other precision measurements. This work successfully resolved the discrepancies between our previous measurements and other precision measurements.

  4. Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine: Effect of Nozzle Pressure Ratio

    NASA Technical Reports Server (NTRS)

    Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.

    2010-01-01

    The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.

  5. Two-Photon-Absorption Scheme for Optical Beam Tracking

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  6. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  7. Quantitative analysis of the effect of supersaturation on in vivo drug absorption.

    PubMed

    Takano, Ryusuke; Takata, Noriyuki; Saito, Ryoichi; Furumoto, Kentaro; Higo, Shoichi; Hayashi, Yoshiki; Machida, Minoru; Aso, Yoshinori; Yamashita, Shinji

    2010-10-04

    The purpose of this study is to clarify the effects of intestinal drug supersaturation on solubility-limited nonlinear absorption. Oral absorption of a novel farnesyltransferase inhibitor (FTI-2600) from its crystalline free base and its HCl salt was determined in dogs. To clarify the contribution of supersaturation on improving drug absorption, in vivo intraluminal concentration of FTI-2600 after oral administration was estimated from the pharmacokinetics data using a physiologically based model. Dissolution and precipitation characteristics of FTI-2600 in a biorelevant media were investigated in vitro using a miniscale dissolution test and powder X-ray diffraction analysis. In the in vitro study, the HCl salt immediately dissolved but precipitated rapidly. The metastable amorphous free base precipitant, which did not convert into the stable crystalline free base in the simulated intestinal fluids for several hours, generated a 5-fold increase in dissolved concentration compared to the equilibrium solubility of the crystalline free base. By computer simulation, the intraluminal drug concentration after administration of the free base was estimated to reach the saturated solubility, indicating solubility-limited absorption. On the other hand, administration of the HCl salt resulted in an increased intraluminal concentration and the plasma concentration was 400% greater than that after administration of the free base. This in vivo/in vitro correlation of the increased drug concentrations in the small intestine provide clear evidence that not only the increase in the dissolution rate, but also the supersaturation phenomenon, improved the solubility-limited absorption of FTI-2600. These results indicate that formulation technologies that can induce supersaturation may be of great assistance to the successful development of poorly water-soluble drugs.

  8. Microwave absorption properties of gold nanoparticle doped polymers

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  9. A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification

    NASA Astrophysics Data System (ADS)

    Wang, Suge; Li, Deyu; Wei, Yingjie; Li, Hongxia

    With the rapid growth of e-commerce, product reviews on the Web have become an important information source for customers' decision making when they intend to buy some product. As the reviews are often too many for customers to go through, how to automatically classify them into different sentiment orientation categories (i.e. positive/negative) has become a research problem. In this paper, based on Fisher's discriminant ratio, an effective feature selection method is proposed for product review text sentiment classification. In order to validate the validity of the proposed method, we compared it with other methods respectively based on information gain and mutual information while support vector machine is adopted as the classifier. In this paper, 6 subexperiments are conducted by combining different feature selection methods with 2 kinds of candidate feature sets. Under 1006 review documents of cars, the experimental results indicate that the Fisher's discriminant ratio based on word frequency estimation has the best performance with F value 83.3% while the candidate features are the words which appear in both positive and negative texts.

  10. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    PubMed

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known

  11. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    USGS Publications Warehouse

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that

  12. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Burkart, Johannes; Kassi, Samir

    2015-04-01

    Optical feedback frequency-stabilized cavity ring-down spectroscopy (OFFS-CRDS) is a near-shot-noise-limited technique combining a sensitivity of with a highly linear frequency axis and sub-kHz resolution. Here, we give an in-depth review of the key elements of the experimental setup encompassing a highly stable V-shaped reference cavity, an integrated Mach-Zehnder modulator and a tightly locked ring-down cavity with a finesse of 450,000. Carrying out a detailed analysis of the spectrometer performance and its limitations, we revisit the photo-electron shot-noise limit in CRDS and discuss the impact of optical fringes. We demonstrate different active schemes for fringe cancelation by varying the phase of parasitic reflections. The proof-of-principle experiments reported here include a broadband high-resolution spectrum of carbon dioxide at 1.6 µm and an isolated line-shape measurement with a signal-to-noise ratio of 80,000. Beyond laboratory-based absorption line metrology for fundamental research, OFFS-CRDS holds a considerable potential for field laser measurements of trace gas concentrations and isotopic ratios by virtue of its small sample volume and footprint, the robust cavity-locking scheme and supreme precision.

  13. CO AND H{sub 2} ABSORPTION IN THE AA TAURI CIRCUMSTELLAR DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Burgh, Eric B.; Schindhelm, Eric

    2012-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the Hubble Space Telescope Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H{sub 2} observed on the line of sight through the AA Tauri circumstellar disk. CO A - X absorption bands are observed against the far-UV continuum. The CO absorption ismore » characterized by log{sub 10}(N({sup 12}CO)) = 17.5 {+-} 0.5 cm{sup -2} and T{sub rot}(CO) = 500{sup +500}{sub -200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect {sup 13}CO in absorption with an isotopic ratio of {approx}20. We do not observe H{sub 2} absorption against the continuum; however, hot H{sub 2} (v > 0) is detected in absorption against the Ly{alpha} emission line. We measure the column densities in eight individual rovibrational states, determining a total log{sub 10}(N(H{sub 2})) = 17.9{sup +0.6}{sub -0.3} cm{sup -2} with a thermal temperature of T(H{sub 2}) = 2500{sup +800}{sub -700} K. The high temperature of the molecules, the relatively small H{sub 2} column density, and the high inclination of the AA Tauri disk suggest that the absorbing gas resides in an inner disk atmosphere. If the H{sub 2} and CO are cospatial within a molecular layer {approx}0.6 AU thick, this region is characterized by {approx} 10{sup 5} cm{sup -3} with an observed (CO/H{sub 2}) ratio of {approx}0.4. We also find evidence for a departure from a purely thermal H{sub 2} distribution, suggesting that excitation by continuum photons and H{sub 2} formation may be altering the level populations in the molecular gas.« less

  14. Response Acquisition and Fixed-Ratio Escalation Based on Interresponse Times in Rats

    ERIC Educational Resources Information Center

    Taylor, Tracy G.; Galuska, Chad M.; Banna, Kelly; Yahyavi-Firouz-Abadi, Noushin; See, Ronald E.

    2010-01-01

    The effectiveness of a fixed-ratio (FR) escalation procedure, developed by Pinkston and Branch (2004) and based on interresponse times (IRTs), was assessed during lever-press acquisition. Forty-nine experimentally naive adult male Long Evans rats were deprived of food for 24 hr prior to an extended acquisition session. Before the start of the…

  15. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects.

    PubMed

    Hurrell, Richard F; Reddy, Manju B; Juillerat, Marcel-A; Cook, James D

    2003-05-01

    Phytic acid in cereal-based and legume-based complementary foods inhibits iron absorption. Low iron absorption from cereal porridges contributes to the high prevalence of iron deficiency in infants from developing countries. The objective was to measure the influence of phytic acid degradation on iron absorption from cereal porridges. An exogenous phytase was used to fully degrade phytic acid during the manufacture of 9 roller-dried complementary foods based on rice, wheat, maize, oat, sorghum, and a wheat-soy blend. Iron absorption from the phytate-free and native phytate porridges prepared with water or milk (wheat only) was measured in adult humans with an extrinsic-label radioiron technique. Ascorbic acid was added to some porridges. When the foods were reconstituted with water, dephytinization increased iron absorption from rice porridge from 1.73% to 5.34% (P < 0.001), from oat from 0.33% to 2.79% (P < 0.0001), from maize from 1.80% to 8.92% (P < 0.0001), from wheat from 0.99% to 11.54% (P < 0.0001), from the wheat-soy blend without ascorbic acid from 1.15% to 3.75% (P < 0.005), and from the wheat-soy blend with ascorbic acid from 2.40% to 8.46% (P < 0.005). Reconstituting wheat porridge with milk instead of water markedly decreased or completely removed the enhancing effect of dephytinization on iron absorption in the presence and absence of ascorbic acid. Dephytinization did not increase iron absorption from high-tannin sorghum porridge reconstituted with water but increased iron absorption from low-tannin sorghum porridge by approximately 2-fold (P < 0.01). Phytate degradation improves iron absorption from cereal porridges prepared with water but not with milk, except from high-tannin sorghum.

  16. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  17. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  18. A physiologically based mathematical model of dermal absorption in man.

    PubMed

    Auton, T R; Westhead, D R; Woollen, B H; Scott, R C; Wilks, M F

    1994-01-01

    A sound understanding of the mechanisms determining percutaneous absorption is necessary for toxicological risk assessment of chemicals contacting the skin. As part of a programme investigating these mechanisms we have developed a physiologically based mathematical model. The structure of the model parallels the multi-layer structure of the skin, with separate surface, stratum corneum and viable tissue layers. It simulates the effects of partitioning and diffusive transport between the sub-layers, and metabolism in the viable epidermis. In addition the model describes removal processes on the surface of the skin, including the effects of washing and desquamation, and rubbing off onto clothing. This model is applied to data on the penetration of the herbicide fluazifop-butyl through human skin in vivo and in vitro. Part of this dataset is used to estimate unknown model parameter values and the remainder is used to provide a partial validation of the model. Only a small fraction of the applied dose was absorbed through the skin; most of it was removed by washing or onto clothing. The model provides a quantitative description of these loss processes on the skin surface.

  19. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  20. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).