Sample records for absorption root

  1. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  2. Phosphate absorption by air-stressed root systems.

    PubMed

    Dove, L D

    1969-03-01

    Root systems from plants grown in nutrient solution were exposed to air and either transferred to fresh nutrient solution containing (32)P-labeled phosphate or placed in a psychrometer to determine their water potential. The amount of (32)P absorbed by maize and soybean roots in the hour following their exposure to air was proportional to their water potential at the time they were transferred. Some cells, probably located in the stele, were more resistant to moisture stress than others. Absorption of (32)P by all cells was severely inhibited by water potentials below-12 to-15 bars. Nearly normal amounts of the radioisotope and total phosphate were absorbed within 72 hr following root exposure of 4 of 5 species of detopped plants; some phosphorus was lost to the nutrient solution. Uptake of (32)P by passive processes was increased slightly by exposure of roots of intact maize plants to air, but the increase did not compensate for the substantial reduction in actively-absorbed (32)P.

  3. Evidence for direct water absorption by shallow-rooted desert plants in desert-oasis ecotone, Northwest China

    NASA Astrophysics Data System (ADS)

    Fang, Jing

    2014-05-01

    Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.

  4. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  5. Absorption of mulberry root urease to the hemolymph of the silkworm, Bombyx mori.

    PubMed

    Kurahashi, Hitoshi; Atiwetin, Panida; Nagaoka, Sumiharu; Miyata, Seiji; Kitajima, Sakihito; Sugimura, Yukio

    2005-09-01

    Mulberry leaves are the sole diet of the silkworm, Bombyx mori. The host urease is incorporated into the larval hemolymph and involved in nitrogen metabolism in the insect. To investigate the selective absorption of the host urease to the larvae, crude urease was prepared from mulberry leaves and roots. Root urease was identical to leaf urease on the basis of electrophoretic analyses: (1) the urease activity appeared in the same migration position in a native gel; (2) There was no difference in molecular mass of the subunit. The root urease was orally injected to the fifth instar larvae of the silkworm. Just before spinning, the larvae absorbed intact urease from the midgut lumen to the hemolymph without the loss of activity. The capacity to absorb urease occurred only at the specific stage. Localization of host urease in midgut tissue was observed using confocal laser scanning microscopy and transmission electron microscopy. Based on spatial distribution of immunofluorescent signals and immunogold particles, host urease specifically attached to the surfaces of microvilli existing in the apical side of columnar cells and appeared in the cytoplasm of the cells for transport to the hemolymph. The incorporation efficiency of root urease into the hemolymph was significantly higher than for ureases from jack bean seeds and Bacillus pasteurii. The urease that was transported to the hemolymph was electrophoretically altered, compared with the host urease extracted.

  6. The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration.

    PubMed

    Trocha, Lidia K; Bulaj, Bartosz; Kutczynska, Paulina; Mucha, Joanna; Rutkowski, Pawel; Zadworny, Marcin

    2017-08-01

    In general, respiration (RS) is highly correlated with nitrogen concentration (N) in plant organs, including roots, which exhibit a positive N-RS relationship. Less is known, however, about the relationship between N and RS in roots of different branch orders within an individual tree along a vertical soil profile; this is especially true in trees with contrasting life strategies, such as pioneer Scots pine (Pinus sylvestris L.) vs mid-successional sessile oak (Quercus petraea Liebl.). In the present research, the impact of root branch order, as represented by those with absorptive vs transporting ability, and soil genetic horizon on root N, RS and the N-RS relationship was examined. Mean RS and total N concentration differed significantly among root branch orders and was significantly higher in absorptive roots than in transporting roots. The soil genetic horizon differentially affected root RS in Scots pine vs sessile oak. The genetic horizon mostly affected RS in absorptive roots of Scots pine and transporting roots in sessile oak. Root N was the highest in absorptive roots and most affected by soil genetic horizon in both tree species. Root N was not correlated with soil N, although N levels were higher in roots growing in fertile soil genetic horizons. Overall, RS in different root branch orders was positively correlated with N in both species. The N-RS relationship in roots, pooled by soil genetic horizon, was significant in both species, but was only significant in sessile oak when roots were pooled by root branch order. In both tree species, a significant interaction was found between the soil genetic horizon and root branch order with root function; however, species-specific responses were found. Both root N, which was unaffected by soil N, and the positive N-RS relationship consistently observed in different genetic horizons suggest that root function prevails over environmental factors, such as soil genetic horizon. © The Author 2017. Published by

  7. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    PubMed

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns.

    PubMed

    Keinan, David; Mass, Eliyahu; Zilberman, Uri

    2010-01-01

    Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ), was analyzed. An energy dispersive X-ray spectrometer (EDS) was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times) were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (P < .001). Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  9. Adaptive fine root foraging patterns in climate experiments and natural gradients

    NASA Astrophysics Data System (ADS)

    Ostonen, Ivika; Truu, Marika; Parts, Kaarin; Truu, Jaak

    2017-04-01

    Site based manipulative experiments and studies along climatic gradients have long been keystones of ecological research. We aimed to compare the response of ectomycorrhizal (EcM) and fine roots in manipulative studies and along climate gradient to describe the universal trends in root traits and to raise hypotheses about general mechanisms in fine root system adaptation of forest trees in global change. The root traits from two climate manipulation experiments - Bangor FACE and FAHM in Estonia, manipulated by CO2 concentration and relative air humidity in silver birch forest ecosystems, respectively and the data for three most ubiquitous tree species - Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver birch (Betula pendula) stands along natural gradient encompassing different climate and forest zones in Northern Europe were analysed. There are two main strategies in response of fine root system of trees: A) an extensive increase in absorptive root biomass, surface area and length, or B) a greater reliance on root-associated EcM fungi and bacterial communities with a smaller investment to absorptive root biomass. Trees in all studies tended to increase the EcM root biomass and the proportion of EcM root biomass of total fine root biomass towards harsh (northern boreal forests) or changed conditions (stress created by the increase in CO2 concentration or relative air humidity). We envisage a role of trilateral relation between the morphological traits of absorptive fine roots, exploration types of colonising EcM fungi and rhizosphere and bulk soil bacterial community structure. A significant change in EcM absorptive fine root biomass in all experiments and for all studied tree species coincided with changes in absorptive root morphology, being longer and thinner root tips with higher root tissue density in poor/treated sites. These changes were associated with significant shifts in community structure of dominating EcM fungi as well as soil and

  10. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    PubMed

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Spatial imaging and speciation of Cu in rice (Oryza sativa L.) roots using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy.

    PubMed

    Lu, Lingli; Xie, Ruohan; Liu, Ting; Wang, Haixing; Hou, Dandi; Du, Yonghua; He, Zhenli; Yang, Xiaoe; Sun, Hui; Tian, Shengke

    2017-05-01

    Knowledge of elemental localization and speciation in rice (Oryza sativa L.) roots is crucial for elucidating the mechanisms of Cu accumulation so as to facilitate the development of strategies to inhibit Cu accumulation in rice grain grown in contaminated soils. Using synchrotron-based X-ray microfluorescence and X-ray absorption spectroscopy, we investigated the distribution patterns and speciation of Cu in rice roots treated with 50 μM Cu for 7 days. A clear preferential localization of Cu in the meristematic zone was observed in root tips as compared with the elongation zone. Investigation of Cu in the root cross sections revealed that the intensity of Cu in the vascular bundles was more than 10-fold higher than that in the other scanned sites (epidermis and cortex) in rice roots. The dominant chemical form of Cu (79.1%) in rice roots was similar to that in the Cu-cell wall compounds. These results suggest that although Cu can be easily transported into the vascular tissues in rice roots, most of the metal absorbed by plants is retained in the roots owing to its high binding to the cell wall compounds, thus preventing metal translocation to the aerial parts of the plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  13. Root Uptake of Lipophilic Zinc−Rhamnolipid Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Samuel P.; McLaughlin, Michael J.; Cakmak, Ismail

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Brassica napus var. Pinnacle roots in {sup 65}Zn-spiked ice-cold solutions, compared with ZnSO{sub 4} alone. Therefore, rhamnolipid appeared to facilitate Zn absorption via a nonmetabolically mediated pathway. Synchrotron XRF and XAS showed that Zn was present in roots as Zn-phytate-like compounds when roots were treated with Zn-free solutions, ZnSO{sub 4}, or Zn-EDTA. With rhamnolipid application, Zn was predominantly found in roots as the Zn-rhamnolipid complex. When appliedmore » to a calcareous soil, rhamnolipids increased dry matter production and Zn concentrations in durum (Triticum durum L. cv. Balcali-2000) and bread wheat (Triticum aestivum L. cv. BDME-10) shoots. Rhamnolipids either increased total plant uptake of Zn from the soil or increased Zn translocation by reducing the prevalence of insoluble Zn-phytate-like compounds in roots.« less

  14. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.

    2016-01-01

    Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from

  15. Short-Term Experiments on Ion Transport by Seedlings and Excised Roots 1

    PubMed Central

    Huang, Zhang-Zhi; Yan, Xiaolong; Jalil, Abdul; Norlyn, Jack D.; Epstein, Emanuel

    1992-01-01

    The absorption of K+ by excised roots of barley (Hordeum vulgare L. cv California Mariout) has been systematically compared with that of entire, undisturbed seedlings. Some experiments have also been done with wheat (Triticum aestivum L.) and an amphiploid obtained from a cross between it and salt-tolerant tall wheatgrass (Lophopyrum elongatum Host Löve [syn. Agropyron elongatum Host]). For all three genotypes, the rate of K+ absorption measured in a 20-min period was identical for entire 8-d-old seedlings and their excised roots within the experimental error. Manipulation gentler than root excision, viz. careful transfer of seedlings from one experimental solution to another, was also without effect on the rate of K+ absorption. Absorption of K+ measured by assay of its 86Rb label in the tissue was identical with that measured by K+ depletion of the experimental solutions assayed chemically. For the plant materials and conditions of these experiments, the excised root technique for studying ion transport into roots is validated. The advantages of the technique, and findings differing from the present ones, are discussed. Images Figure 2 PMID:16653217

  16. Nitrogen Ion Form and Spatio-temporal Variation in Root Distribution Mediate Nitrogen Effects on Lifespan of Ectomycorrhizal Roots

    NASA Astrophysics Data System (ADS)

    Kou, L.; McCormack, M. L.; Chen, W.; Guo, D.; Wang, H.; Li, S.; Gao, W.; Yang, H.

    2017-12-01

    Background and Aims Absorptive roots active in soil resource uptake are often intimately associated with mycorrhizal fungi, yet it remains unclear how nitrogen (N) loading affects lifespan of absorptive roots associating with ectomycorrhizal (ECM) fungi. Methods Through a three-year minirhizotron experiment, we investigated the responses of ECM lifespan to different rates of N addition and examined the roles of N ion form, rooting depth, seasonal root cohort, and ECM morphotype in mediating the N effects on ECM lifespan in a slash pine (Pinus elliottii) forest in subtropical China. Results High rates of NH4Cl significantly decreased foliar P concentrations and increased foliar N: P ratios, and mean ECM lifespan was negatively correlated to foliar P concentration. N additions generally increased the lifespan of most ectomycorrhizas, but the specific differences were context dependent. N rates and forms exerted significant positive effects on ECM lifespan with stronger effects occurring at high N rates and under ammonium N addition. N additions extended lifespan of ectomycorrhizas in shallower soil and born in spring and autumn, but shortened lifespan of ectomycorrhizas in deeper soil and born in summer and winter. N additions reduced lifespan of dichotomous ectomycorrhizas, but increased lifespan of coralloid ectomycorrhizas. Conclusions The increased ECM lifespan in response to N additions may primarily be driven by the persistent and aggravated P limitation to plants. Our findings highlight the importance of environmental contexts in controlling ECM lifespan and the need to consider potential differences among mycorrhizal morphotypes when studying N—lifespan relationships of absorptive roots in the context of N deposition.

  17. Ingestion of insoluble dietary fibre increased zinc and iron absorption and restored growth rate and zinc absorption suppressed by dietary phytate in rats.

    PubMed

    Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P

    2001-10-01

    We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.

  18. Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability.

    PubMed

    Glynn, Kelly M; Anderson, Penny; Fast, David J; Koedam, James; Rebhun, John F; Velliquette, Rodney A

    2018-06-15

    Glycation and advanced glycation endproducts (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine if GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses, and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) activation. Inflammatory targets, nuclear factor kappa light chain enhancer of activated B cells (NFκB) and tumor necrosis factor alpha (TNFα), were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation, and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. [Analysis of effects of salt stress on absorption and accumulation of mineral elements in Elymus spp. using atomic absorption spectrophotometer].

    PubMed

    Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin

    2008-12-01

    Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.

  20. Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.

    2015-12-01

    Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.

  1. Absorption and translocation of nitrogen in rhizomes of Leymus chinensis.

    PubMed

    Liu, Hongsheng; Liu, Huajie; Song, Youhong

    2011-03-15

    Leymus chinensis is a dominant species in the Inner Mongolia steppe, northern China. Plant growth in northern China grassland is often limited by low soil nitrogen availability. The objective of this study is to investigate whether rhizomes of Leymus chinensis are involved in the contribution of N uptake. The N concentration, (15)N concentration and (15)N proportion in roots, rhizomes and shoots after 48 h exposure of roots (L(root)) and rhizomes (L(rhizo)) separately and roots and rhizomes together (L(r+r)) to 0.1 mM (15)NH (4)(15)NO(3) solution were measured using root-splitting equipment and stable isotope ((15)N) techniques, respectively. The N content and dry mass were not affected by the labeling treatment. In contrast, the (15)N concentration in shoots, rhizomes and roots was significantly increased by the labeling in rhizomes, indicating that the inorganic nitrogen was absorbed via rhizomes from the solution and can be transported to other tissues, with preference to shoots rather than roots. Meanwhile, the absolute N absorption and translocation among compartments were also calculated. The N absorption via rhizomes was much smaller than via roots; however, the uptake efficiency per surface unit via rhizomes was greater than via roots. The capacity and high efficiency to absorb N nutrient via rhizomes enable plants to use transient nutrient supplies in the top soil surface. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  3. Aconite poisoning following the percutaneous absorption of Aconitum alkaloids.

    PubMed

    Chan, Thomas Y K

    2012-11-30

    In vitro experiment using the modified Franz-type diffusion cell has demonstrated that the human skin is permeable to aconitine and mesaconitine. To characterise the risk of systemic toxicity following the topical applications of aconite tincture and raw aconite roots, relevant reports of percutaneous absorption of Aconitum alkaloids and aconite poisoning are reviewed. Published reports indicate that aconite tincture and raw aconite roots can be absorbed through the skin into systemic circulation to cause fatal and non-fatal aconite poisoning. Both aconite tincture and raw aconite roots contain very high concentrations of Aconitum alkaloids, which allow penetration of the stratum corneum along the diffusion gradient. The risk of systemic toxicity is even higher if Aconitum alkaloids are held in occlusive contact with the skin and the epidermis (stratum corneum) is already damaged. The public should be warned of the danger in using these topical aconite preparations and the risk of systemic toxicity following percutaneous absorption of Aconitum alkaloids. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Fine-tuning of root elongation by ethylene: a tool to study dynamic structure–function relationships between root architecture and nitrate absorption

    PubMed Central

    Le Deunff, Erwan; Lecourt, Julien; Malagoli, Philippe

    2016-01-01

    Background Recently developed genetic and pharmacological approaches have been used to explore NO3−/ethylene signalling interactions and how the modifications in root architecture by pharmacological modulation of ethylene biosynthesis affect nitrate uptake. Key Results Structure–function studies combined with recent approaches to chemical genomics highlight the non-specificity of commonly used inhibitors of ethylene biosynthesis such as AVG (l-aminoethoxyvinylglycine). Indeed, AVG inhibits aminotransferases such as ACC synthase (ACS) and tryptophan aminotransferase (TAA) involved in ethylene and auxin biosynthesis but also some aminotransferases implied in nitrogen (N) metabolism. In this framework, it can be assumed that the products of nitrate assimilation and hormones may interact through a hub in carbon (C) and N metabolism to drive the root morphogenetic programme (RMP). Although ethylene/auxin interactions play a major role in cell division and elongation in root meristems, shaping of the root system depends also on energetic considerations. Based on this finding, the analysis is extended to nutrient ion–hormone interactions assuming a fractal or constructal model for root development. Conclusion Therefore, the tight control of root structure–function in the RMP may explain why over-expressing nitrate transporter genes to decouple structure–function relationships and improve nitrogen use efficiency (NUE) has been unsuccessful. PMID:27411681

  5. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply.

    PubMed

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and

  6. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply

    PubMed Central

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in

  7. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2017-04-26

    Plants compete for nutrients using a range of strategies. We investigated nutrient foraging within nutrient hot-spots simultaneously available to plant species with diverse root traits. We hypothesized that there would be more root proliferation by thin-root species than by thick-root species, and that root proliferation by thin-root species would limit root proliferation by thick-root species. We conducted a root ingrowth experiment in a temperate forest in eastern USA where root systems of different tree species could interact. Tree species varied in the thickness of their absorptive roots, and were associated with either ectomycorrhizal (EM) or arbuscular mycorrhizal (AM) fungi. Thus,more » there were thin- and thick-root AM and thin- and thick-root EM plant functional groups. Half the ingrowth cores were amended with organic nutrients (dried green leaves). Relative root length abundance, the proportion of total root length in a given soil volume occupied by a particular plant functional group, was calculated for the original root population and ingrowth roots after 6 months. The shift in relative root length abundance from original to ingrowth roots was positive in thin-root species but negative in thick-root species (p < .001), especially in unamended patches (AM: +6% vs. -7%; EM: +8% vs. -9%). Being thin-rooted may thus allow a species to more rapidly recolonize soil after a disturbance, which may influence competition for nutrients. Moreover, we observed that nutrient additions amplified the shift in root length abundance of thin over thick roots in AM trees (+13% vs. -14%), but not in EM trees (+1% vs -3%). In contrast, phospholipid fatty acid biomarkers suggested that EM fungal hyphae strongly proliferated in nutrient hot-spots whereas AM fungal hyphae exhibited only modest proliferation. We found no evidence that when growing in the shared patch, the proliferation of thin roots inhibited the growth of thick roots. As a result, knowledge of root

  8. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    Plants compete for nutrients using a range of strategies. We investigated nutrient foraging within nutrient hot-spots simultaneously available to plant species with diverse root traits. We hypothesized that there would be more root proliferation by thin-root species than by thick-root species, and that root proliferation by thin-root species would limit root proliferation by thick-root species. We conducted a root ingrowth experiment in a temperate forest in eastern USA where root systems of different tree species could interact. Tree species varied in the thickness of their absorptive roots, and were associated with either ectomycorrhizal (EM) or arbuscular mycorrhizal (AM) fungi. Thus,more » there were thin- and thick-root AM and thin- and thick-root EM plant functional groups. Half the ingrowth cores were amended with organic nutrients (dried green leaves). Relative root length abundance, the proportion of total root length in a given soil volume occupied by a particular plant functional group, was calculated for the original root population and ingrowth roots after 6 months. The shift in relative root length abundance from original to ingrowth roots was positive in thin-root species but negative in thick-root species (p < .001), especially in unamended patches (AM: +6% vs. -7%; EM: +8% vs. -9%). Being thin-rooted may thus allow a species to more rapidly recolonize soil after a disturbance, which may influence competition for nutrients. Moreover, we observed that nutrient additions amplified the shift in root length abundance of thin over thick roots in AM trees (+13% vs. -14%), but not in EM trees (+1% vs -3%). In contrast, phospholipid fatty acid biomarkers suggested that EM fungal hyphae strongly proliferated in nutrient hot-spots whereas AM fungal hyphae exhibited only modest proliferation. We found no evidence that when growing in the shared patch, the proliferation of thin roots inhibited the growth of thick roots. As a result, knowledge of root

  9. [Allelopathy of garlic root exudates on different receiver vegetables].

    PubMed

    Zhou, Yan-li; Cheng, Zhi-hui; Meng, Huan-wen

    2007-01-01

    By the method of tissue culture under sterilized condition, this paper studied the allelopathy of garlic root exudates on lettuce, hot pepper, radish, cucumber, Chinese cabbage, and tomato. The results showed that garlic root exudates had no evident effects on the germination rate, germination index, shoot height, and protective enzyme system of test crops, but significantly increased the root length, aboveground fresh mass, and root fresh mass of lettuce, with the RIs being +0.163, +0.106, +0.318, respectively. The exudates also increased the root length of Chinese cabbage, with a RI of +0.120. For other test crops, no significant difference was observed between the treatments and the control. Garlic root exudates significantly increased the chlorophyll content and root activity of the receiver vegetables. The strongest promotion effects were found on chlorophyll content in radish, with RI being +0.282, and on root activity of cucumber, with RI being +0.184. The exudates promoted the nutrient absorption of all the receiver vegetables.

  10. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).

    PubMed

    Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao

    2017-11-01

    Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.

    PubMed

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun

    2016-01-01

    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.

  12. Auxin, the organizer of the hormonal/environmental signals for root hair growth

    PubMed Central

    Lee, Richard D.-W.; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547

  13. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.

    PubMed

    Tanaka, Natsuki; Kato, Mariko; Tomioka, Rie; Kurata, Rie; Fukao, Yoichiro; Aoyama, Takashi; Maeshima, Masayoshi

    2014-04-01

    The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.

  14. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  15. Adsorption of Eu(III) onto roots of water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, C.; Mielke, R.E.; Dimaquibo, D.

    1999-05-01

    The water hyacinth (Eichhornia crassipes) has drawn attention as a plant capable of removing pollutants, including toxic metals, from water. The authors are interested in the capacity of the water hyacinth to remediate aquatic environments that have been contaminated with the lanthanide metal, europium Eu(III). Using scanning electron microscopy (SEM) they have been able to determine that Eu(III) is adsorbed onto the surface of the roots from water and that the highest concentration of Eu(III) is on the root hairs. X-ray absorption spectroscopy (XAS) techniques were used to speciate the Eu(III) adsorbed onto the surface of the roots. The XASmore » data for Eu-contaminated water hyacinth roots provides evidence of a Eu-oxygen environment and establishes that Eu(III) is coordinated to 10--11 oxygen atoms at a distance of 2.44 {angstrom}. This likely involves binding of Eu(III) to the root via carboxylate groups and hydration of Eu(III) at the root surface.« less

  16. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

    PubMed

    Kobe, Richard K; Iyer, Meera; Walters, Michael B

    2010-01-01

    Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth

  18. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  19. Modelling of trace metal uptake by roots taking into account complexation by exogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault

    2010-05-01

    The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated

  20. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  1. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique.

    PubMed

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-06-01

    To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.

  2. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  3. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  4. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  5. Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots.

    PubMed

    Souguir, D; Ferjani, E; Ledoigt, G; Goupil, Pascale

    2011-03-01

    Kinetics of stress responses to Cd exposure (50, 100 and 200 μM) expanding from 12 to 48 h were studied in roots of hydroponically cultivated-Vicia faba seedlings. The heavy metal induced toxicity symptoms and growth arrest of Vicia roots gradually to the Cd concentration and duration of the treatment. The intracellular oxidative stress was evaluated with the H(2)O(2) production. The H(2)O(2) content increased gradually with the sequestered Cd and root growth inhibition. Lipid peroxidation-evidenced by malondialdehyde (MDA) content and Evans blue uptake-and genotoxicity-evidenced by mitotic index (MI) and micronuclei (MCN) values-were concomitantly investigated in root tips. By 12 h, root meristematic cells lost 15% of their mitotic activity under 50 or 100 μM Cd treatment and 50% under 200 μM Cd treatment and led cells with MCN, while the MDA content and Evans blue absorption were not affected. The loss of membrane integrity occurred subsequently by 24 h. The increase in MDA content in root cells treated with 50, 100 and 200 μM Cd was significantly higher than the control. By 48 h, the MDA content increased 134, 178 or 208% in root cells treated with 50, 100 and 200 μM Cd, respectively. The Evans blue absorption was also affected by 24 h in roots when treated with 200 μM Cd and gradually increase by 48 h with the Cd concentration of the treatment. The decrease of mitotic activity triggered by 12 h was even higher by 24 h and the MI reduced to 44, 56 or 80% compared to the control in the three different Cd concentrations tested. The different kinetics of early in vivo physiological and cytogenetic responses to Cd might be relevant to the characterization of its toxicity mechanisms in disrupting primarily the mitosis process.

  6. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.

    PubMed

    Baziramakenga, R; Leroux, G D; Simard, R R

    1995-09-01

    Benzoic (BEN) and cinnamic (CIN) acids are commonly found in soils and are considered as strong allelochemicals. Published information suggest that BEN and CIN and other phenolic acids decrease plant growth in part by suppressing nutrient absorption. However, studies on the mechanism of action were not conclusive. We examined the effects of BEN and CIN on the cell plasma membrane in intact soybean (Glycine max L. cv. Maple Bell) seedlings. Treating intact root systems with BEN or CIN rapidly increased electrolyte leakage and ultraviolet absorption of materials into the surrounding solution. After 12 hr of treatment, BEN and CIN lowered the extracellular sulfhydryl group content in roots. The two allelochemicals induced lipid peroxidation, which resulted from free radical formation in plasma membranes, inhibition of catalase and peroxidase activities, and sulfhydryl group depletion. Oxidation or cross-linking of plasma membrane sulfhydryl groups is the first mode of action of both compounds. The BEN- and CIN-induced decrease in soybean nutrient absorption may be a consequence of damage to cell membrane integrity caused by a decrease in sulfhydryl groups followed by lipid peroxidation.

  7. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE PAGES

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  8. Breaking conceptual locks in modelling root absorption of nutrients: reopening the thermodynamic viewpoint of ion transport across the root

    PubMed Central

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background The top-down analysis of nitrate influx isotherms through the Enzyme-Substrate interpretation has not withstood recent molecular and histochemical analyses of nitrate transporters. Indeed, at least four families of nitrate transporters operating at both high and/or low external nitrate concentrations, and which are located in series and/or parallel in the different cellular layers of the mature root, are involved in nitrate uptake. Accordingly, the top-down analysis of the root catalytic structure for ion transport from the Enzyme-Substrate interpretation of nitrate influx isotherms is inadequate. Moreover, the use of the Enzyme-Substrate velocity equation as a single reference in agronomic models is not suitable in its formalism to account for variations in N uptake under fluctuating environmental conditions. Therefore, a conceptual paradigm shift is required to improve the mechanistic modelling of N uptake in agronomic models. Scope An alternative formalism, the Flow-Force theory, was proposed in the 1970s to describe ion isotherms based upon biophysical ‘flows and forces’ relationships of non-equilibrium thermodynamics. This interpretation describes, with macroscopic parameters, the patterns of N uptake provided by a biological system such as roots. In contrast to the Enzyme-Substrate interpretation, this approach does not claim to represent molecular characteristics. Here it is shown that it is possible to combine the Flow-Force formalism with polynomial responses of nitrate influx rate induced by climatic and in planta factors in relation to nitrate availability. Conclusions Application of the Flow-Force formalism allows nitrate uptake to be modelled in a more realistic manner, and allows scaling-up in time and space of the regulation of nitrate uptake across the plant growth cycle. PMID:25425406

  9. ASSESSING THE EFFECTS OF GLOBAL CLIMATE CHANGE ON THE PRODUCTION AND MORTALITY OF DOUGLAS FIR FINE ROOTS USING MINIRHIZOTRONS

    EPA Science Inventory

    Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...

  10. Comparing irradiation parameters on disinfecting enterrecoccus faecalis in root canal disinfection

    NASA Astrophysics Data System (ADS)

    Sarp, Ayşe. S.; Gülsoy, Murat

    2016-02-01

    Although conventional method carries all the debris, studies on persisting infections in root canals show bacteria and their toxins spread from the root canal and contaminate the apical region. Thus developes apical periodontitis or symptoms, and loss of tooth. Even if the treatment has adequate success, anatomy of root canal system can be very complexwith accessory canals. The disinfecting effect of laser radiation has only recently been used in dentistry. Laser irradiation has a bactericidal effect. Each wavelength has its own advantages and limitations according to their different absorption characteristics, depending on their 'absorption coefficient'. The sterilizing efficiency of two types of wavelengths, a new fiber laser 1940- nm Thulium fiber Laser and an 2940 nm Er:YAG Laser were compared in this study. Irradiation with a power of 0.50 W with 1940- nm Thulium fiber Laser disinfected 95,15% of bacteria, however irradiation with same laser power with Er:YAG Laser caused a reduction of 96,48 %. But there was no significant difference in the disinfection effect of two different laser groups ( p < 0.05, Mann- U-Whitney Test). In addition to this, Er :YAG Laser caused three times more reduction from its own positive control group where 1940- nm Thulium fiber Laser caused 2,5 times effective disinfection.

  11. Water absorption behaviour of hybrid interwoven cellulosic fibre composites

    NASA Astrophysics Data System (ADS)

    Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.

    2017-10-01

    The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.

  12. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  13. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  14. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, P.R.; Arora, R.; El Ghaouth, A.

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} rootmore » fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.« less

  15. Tibial avulsion fracture of the posterior root of the medial meniscus in children.

    PubMed

    Iversen, Jonas Vestergård; Krogsgaard, Michael Rindom

    2014-01-01

    Few reports have described avulsion fractures of the posterior root of the medial meniscus in skeletally immature patients. This lesion should not be overlooked as it damages the load absorptive (distributive) function of the meniscus, increasing the risk of cartilage degeneration. Two cases of displaced avulsion fractures of the posterior root of the medial meniscus in children are presented along with a concise report of the literature regarding avulsion fractures of the posterior root of the medial meniscus. Both avulsions were reattached arthroscopically by trans-tibial pull-out sutures with a good clinical result at 2-years follow-up, and in one case, the avulsion was found at re-arthroscopy after 6 weeks to have healed.

  16. [Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests].

    PubMed

    Liu, Yu; Hu, Xiao-Fei; Chen, Fu-Sheng; Yuan, Ping-Cheng

    2013-06-01

    Rhizospheric and non-rhizospheric soils and the absorption, transition, and storage roots were sampled from the mid-subtropical Pinus massoniana and Castanopsis sclerophylla forests to study the CO2 fluxes from soil mineralization and root decomposition in the forests. The samples were incubated in closed jars at 15 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C, respectively, and alkali absorption method was applied to measure the CO2 fluxes during 53 days incubation. For the two forests, the rhizospheric effect (ratio of rhizospheric to non-rhizospheric soil) on the CO2 flux from soil mineralization across all incubation temperature ranged from 1.12 to 3.09, with a decreasing trend along incubation days. There was no significant difference in the CO2 flux from soil mineralization between the two forests at 15 degrees C, but the CO2 flux was significantly higher in P. massoniana forest than in C. sclerophylla forest at 25 degrees C and 35 degrees C, and in an opposite pattern at 45 degrees C. At all incubation temperature, the CO2 release from the absorption root decomposition was higher than that from the transition and storage roots decomposition, and was smaller in P. massoniana than in C. sclerophylla forest for all the root functional types. The Q10 values of the CO2 fluxes from the two forests were higher for soils (1.21-1.83) than for roots (0.96-1.36). No significant differences were observed in the Q10 values of the CO2 flux from soil mineralization between the two forests, but the Q10 value of the CO2 flux from root decomposition was significantly higher in P. massoniana than in C. sclerophylla forest. It was suggested that the increment of CO2 flux from soil mineralization under global warming was far higher than that from root decomposition, and for P. massoniana than for C. sclerophylla forest. In subtropics of China, the adaptability of zonal climax community to global warming would be stronger than that of pioneer community.

  17. Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In situ Rice Roots

    EPA Science Inventory

    The speciation and distribution of cobalt (Co) in soils is poorly understood. This study was conducted using X-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble Co(II) aging, submergence-dried cycling, and the presence of in vivo rice roots on the...

  18. The effect of the heights and thicknesses of the remaining root segments on buccal bone resorption in the socket-shield technique: An experimental study in dogs.

    PubMed

    Tan, Zhen; Kang, Jian; Liu, Wenjia; Wang, Hang

    2018-06-01

    To date only a few studies have been done on the use of the socket-shield technique for preserving the resorption of the buccal bone in aesthetically sensitive sites. Besides, there have been no further studies on the effect of the heights and thicknesses of the remaining root segments on buccal bone resorption when using this method. The aim of this study was to evaluate the effect of different heights and thicknesses of the remaining root segments on bone resorption in the socket-shield technique. Four healthy female beagle dogs were used in this study. The third premolar (P3) and the fourth premolar (P4) on both sides of the mandible were hemisected in the buccal-lingual direction, and the clinical crown of the distal root was beheaded. In the experimental groups, the roots were worn down in the apical direction until they were located at the buccal crestal level (Group A) or 1 mm higher than that level (Group B). In the control group, the distal root segments were extracted. Then, implant placement was performed into the distal root. After 3 months of healing, the specimens were prepared for histological diagnosis. There was no difference between Group A and Group B when using the socket-shield technique, but the results of both groups were better than those of the control group. The height of the root segments has little effect on the bone absorption of alveolar bone, while the bone absorption was strongly influenced by the thickness of the root segments. More precisely, the absorption may decrease if the thickness of the root fragment increases, when the thickness of the root plate is in the 0.5-1.5 mm range. © 2018 Wiley Periodicals, Inc.

  19. Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufrecht, Jayde A.; Ryan, Jennifer M.; Hasim, Sahar

    Root hairs increase root surface area for better water uptake and nutrient absorption by the plant. Because they are small in size and often obscured by their natural environment, root hair morphology and function are difficult to study and often excluded from plant research. In recent years, microfluidic platforms have offered a way to visualize root systems at high resolution without disturbing the roots during transfer to an imaging system. The microfluidic platform presented here builds on previous plant-on-a-chip research by incorporating a two-layer device to confine the Arabidopsis thaliana main root to the same optical plane as the rootmore » hairs. This design enables the quantification of root hairs on a cellular and organelle level and also prevents z-axis drifting during the addition of experimental treatments. We describe how to store the devices in a contained and hydrated environment, without the need for fluidic pumps, while maintaining a gnotobiotic environment for the seedling. After the optical imaging experiment, the device may be disassembled and used as a substrate for atomic force or scanning electron microscopy while keeping fine root structures intact.« less

  20. Imaging the Root Hair Morphology of Arabidopsis Seedlings in a Two-layer Microfluidic Platform

    DOE PAGES

    Aufrecht, Jayde A.; Ryan, Jennifer M.; Hasim, Sahar; ...

    2017-08-01

    Root hairs increase root surface area for better water uptake and nutrient absorption by the plant. Because they are small in size and often obscured by their natural environment, root hair morphology and function are difficult to study and often excluded from plant research. In recent years, microfluidic platforms have offered a way to visualize root systems at high resolution without disturbing the roots during transfer to an imaging system. The microfluidic platform presented here builds on previous plant-on-a-chip research by incorporating a two-layer device to confine the Arabidopsis thaliana main root to the same optical plane as the rootmore » hairs. This design enables the quantification of root hairs on a cellular and organelle level and also prevents z-axis drifting during the addition of experimental treatments. We describe how to store the devices in a contained and hydrated environment, without the need for fluidic pumps, while maintaining a gnotobiotic environment for the seedling. After the optical imaging experiment, the device may be disassembled and used as a substrate for atomic force or scanning electron microscopy while keeping fine root structures intact.« less

  1. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    PubMed

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N

  2. Sorghum Roots are Inefficient in Uptake of EDTA-chelated Lead

    PubMed Central

    Xu, Yong; Yamaji, Naoki; Shen, Renfang; Ma, Jian Feng

    2007-01-01

    Background and Aims Ethylene diamine tetraacetic acid (EDTA)-assisted phytoremediation has been developed to clean up lead (Pb)-contaminated soil; however, the mechanism responsible for the uptake of EDTA–Pb complex is not well understood. In this study, the accumulation process of Pb from EDTA–Pb is characterized in comparison to ionic Pb [Pb(NO3)2] in sorghum (Sorghum bicolor). Methods Sorghum seedlings were exposed to a 0·5 mm CaCl2 (pH 5·0) solution containing 0, 1 mm Pb(NO3)2 or EDTA–Pb complexes at a molar ratio of 1:0·5, 1:1, 1:2 and 1:4 (Pb:EDTA). The root elongation of sorghum at different ratios of Pb:EDTA was measured. Xylem sap was collected after the stem was severed at different times. The concentration of Pb in the shoots and roots were determined by an atomic absorption spectrometer. In addition, the roots were stained with Fluostain I for observation of the root structure. Key Results Lead accumulation in the shoots of the plants exposed to EDTA–Pb at 1:1 ratio was only one-fifth of that exposed to ionic Pb at the same concentration. Lead accumulation decreased when transpiration was suppressed. The concentration of Pb in the xylem sap from the EDTA–Pb-treated plants was about 1/25 000 of that in the external solution. Root elongation was severely inhibited by ionic Pb, but not by EDTA–Pb at a 1:1 ratio. Root staining showed that a physiological barrier was damaged in the roots exposed to ionic Pb, but not in the roots exposed to EDTA–Pb. Conclusions All these results suggest that sorghum roots are inefficient in uptake of EDTA-chelated Pb and that enhanced Pb accumulation from ionic Pb was attributed to the damaged structure of the roots. PMID:17452378

  3. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  4. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  6. Genome-wide association analysis of seedling root development in maize (Zea mays L.).

    PubMed

    Pace, Jordon; Gardner, Candice; Romay, Cinta; Ganapathysubramanian, Baskar; Lübberstedt, Thomas

    2015-02-05

    Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped. Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10(-7)). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots. This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.

  7. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings.

    PubMed

    Fu, Youqiang; Yang, Xujian; Shen, Hong

    2018-06-18

    Iron plaque (IP) on root surface can enhance the tolerance of plants to environmental stresses. However, it remains unclear the impact of Fe 2+ on cadmium (Cd) toxicity to rice (Oryza sativa) seedlings. In this study, the effects of different Fe 2+ and Cd 2+ concentration combinations on rice growth were examined hydroponically. Results indicated that Fe 2+ concentration up to 3.2 mM did not damage rice roots while induced IP formation obviously. Cd 2+ of 10 μM repressed rice growth significantly, while the addition of 0.2 mM Fe 2+ to 10 μM Cd 2+ solution (Cd+Fe) did not damage rice roots, indicating that Fe 2+ could ameliorate Cd toxicity to rice seedlings. Microstructure analysis showed Cd+Fe treatment induced the formation of IP with dense and intricate network structure, Cd adsorption on the root surface was reduced significantly. Cd concentration of rice roots and shoots and Cd translocation from roots to shoots with Fe+Cd treatment were reduced by 34.1%, 36.0% and 20.1%, respectively, in comparison to a single Cd treatment. Noteworthy, the removal of IP resulted in a larger loss of root biomass under Cd treatment. In addition, Cd+Fe treatment increased the activities of root superoxide dismutase and catalase by 105.5% and 177.4%, and decreased H 2 O 2 and O 2 · - accumulation of rice roots by 56.9% and 35.9%, and recovered Cd-triggered electrolyte leakage obviously, when compared with a single Cd treatment. The results from this experiment indicated that the formed dense IP on rice roots decreased Cd absorption and reactive oxygen species accumulation, and Fe 2+ supply alleviated Cd toxicity to rice seedlings. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Root architecture impacts on root decomposition rates in switchgrass

    NASA Astrophysics Data System (ADS)

    de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.

    2010-12-01

    Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature

  10. Root Ideotype Influences Nitrogen Transport and Assimilation in Maize

    PubMed Central

    Dechorgnat, Julie; Francis, Karen L.; Dhugga, Kanwarpal S.; Rafalski, J. A.; Tyerman, Stephen D.; Kaiser, Brent N.

    2018-01-01

    Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program. PMID:29740466

  11. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model

  12. Root rots

    Treesearch

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  13. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  14. Competitive sorption of heavy metals by water hyacinth roots.

    PubMed

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Three-year follow-up results for non-surgical root canal therapy of idiopathic external root resorption on a maxillary canine with MTA: a case report

    PubMed Central

    Huang, Zheng; Chen, Li-Li; Wang, Cong-Yi; Dai, Lin; Cheng, Bo; Sun, Jun; Sun, Jun

    2014-01-01

    External root resorption (ERR) is an uncommon and intractable disease. Treatment alternatives are case-dependant and aim for the repair of the resorptive lesion and long-term retention of the tooth. A forty-year-old Asian female was diagnosed with idiopathic ERR on tooth #11 (the left maxillary canine) by CBCT. Non-surgical root canal therapy was completed with the aid of an operating microscope. The apical third of the root canal was filled with warm gutta-percha and the resorption defect was filled with mineral trioxide aggregate (MTA). The periapical radiographs were taken immediately after operation, one-month follow-up, six-month follow-up and three-year follow-up, respectively. Clinically, the canine was asymptomatic, and no evidence of any further resorption was found. The six-month follow-up radiograph showed initial healing of the bony lesion, while the three-year follow-up radiograph manifested almost complete healing. MTA can be a superior material to be successfully used in the non-surgical treatment of ERR. CBCT is very useful for evaluating the true nature and severity of absorption lesions in root resorption. It is the first complete case report from China about non-surgical treatment of severe ERR along with a relatively long term follow-up. PMID:25031758

  16. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  17. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  18. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  19. Life span and structure of ephemeral root modules of different functional groups from a desert system.

    PubMed

    Liu, Bo; He, Junxia; Zeng, Fanjiang; Lei, Jiaqiang; Arndt, Stefan K

    2016-07-01

    The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  1. Root decisions.

    PubMed

    Hodge, Angela

    2009-06-01

    Root systems have recognizable developmental plans when grown in solution or agar; however, these plans often must be modified to cope with the prevailing conditions in the soil environment such as the avoidance of obstacles and the exploitation of nutrient-rich patches or water zones. The modular structure of roots enables them to respond to their environment, and roots are very adaptive at modifying growth throughout the root system to concentrate their efforts in the areas that are the most profitable. Roots also form associations with microorganisms as a strategy to enhance resource capture. However, while the responses of roots in nutrient patches are well-recognized, overall 'rules of response' and variation in strategy among plant species that can be applied in a number of different environments are still lacking. Finally, there is increasing evidence that root-root interactions are much more sophisticated than previously thought, and the evidence for roots to identify self from non-self roots will be briefly discussed.

  2. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.

    PubMed

    Cardoso, Juan Andrés; Jiménez, Juan de la Cruz; Rao, Idupulapati M

    2014-04-08

    Waterlogging is one of the major factors limiting the productivity of pastures in the humid tropics. Brachiaria humidicola is a forage grass commonly used in zones prone to temporary waterlogging. Brachiaria humidicola accessions adapt to waterlogging by increasing aerenchyma in nodal roots above constitutive levels to improve oxygenation of root tissues. In some accessions, waterlogging reduces the number of lateral roots developed from main root axes. Waterlogging-induced reduction of lateral roots could be of adaptive value as lateral roots consume oxygen supplied from above ground via their parent root. However, a reduction in lateral root development could also be detrimental by decreasing the surface area for nutrient and water absorption. To examine the impact of waterlogging on lateral root development, an outdoor study was conducted to test differences in vertical root distribution (in terms of dry mass and length) and the proportion of lateral roots to the total root system (sum of nodal and lateral roots) down the soil profile under drained or waterlogged soil conditions. Plant material consisted of 12 B. humidicola accessions from the gene bank of the International Center for Tropical Agriculture, Colombia. Rooting depth was restricted by 21 days of waterlogging and confined to the first 30 cm below the soil surface. Although waterlogging reduced the overall proportion of lateral roots, its proportion significantly increased in the top 10 cm of the soil. This suggests that soil flooding increases lateral root proliferation of B. humidicola in the upper soil layers. This may compensate for the reduction of root surface area brought about by the restriction of root growth at depths below 30 cm. Further work is needed to test the relative efficiency of nodal and lateral roots for nutrient and water uptake under waterlogged soil conditions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench)

    PubMed Central

    Klug, Benjamin; Specht, André; Horst, Walter J.

    2011-01-01

    Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10–20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation. PMID:21831842

  4. Root hairs increase root exudation and rhizosphere extension

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebandanadkouki, Mohsen; Kuzyakov, Yakov; Carmintati, Andrea

    2017-04-01

    Plant roots employ various mechanisms to increase their access to limited soil resources. An example of such strategies is the production of root hairs. Root hairs extend the root surface and therefore increase the access to nutrients. Additionally, carbon release from root hairs might facilitate nutrient uptake by spreading of carbon in the rhizosphere and enhancing microbial activity. The aim of this study was to test: i) how root hairs change the allocation of carbon in the soil-plant system; ii) whether root hairs exude carbon into the soil and iii) how differences in C release between plants with and without root hairs affect rhizosphere extension. We grew barley plants with and without root hairs (wild type: WT, bald root barley: brb) in rhizoboxes filled with a sandy soil. Root elongation was monitored over time. After 4 weeks of growth, plants were labelled with 14CO2. A filter paper was placed on the soil surface before labelling and was removed after 36 h. 14C imaging of the soil surface and of the filter paper was used to quantify the allocation of 14C into the roots and the exudation of 14C, respectively. Plants were sampled destructively one day after labeling to quantify 14C in the plant-soil system. 14CO2 release from soil over time (17 d) was quantified by trapping CO2 in NaOH with an additional subset of plants. WT and brb plants had a similar aboveground biomass and allocated similar amounts of 14C into shoots (170 KBq for WT; 152 KBq for brb) and roots one day after labelling. Biomass of root, rhizosphere soil as well as root elongation were lower for brb compared to the wild type. WT plants transported more C from the shoots to the roots (22.8% for WT; 13.8% for brb) and from the root into the rhizosphere (8.8% for WT 3.5% for brb). Yet lower amounts of 14CO2 were released from soil over time for WT. Radial and longitudinal rhizosphere extension was increased for WT compared to brb (4.7 vs. 2.6 mm; 5.6 vs. 3.1 cm). The total exudation which was

  5. EFFECTS OF ELEVATED CO2 ON FINE ROOT DYNAMICS IN A MOJAVE DESERT COMMUNITY: A FACE STUDY

    EPA Science Inventory

    Fine roots ('1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine the effects of elev...

  6. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress

    PubMed Central

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance. PMID:27861528

  7. Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.).

    PubMed

    Li, Yuanya; Liu, Shaojun; Yu, Zhiming; Liu, Yu; Wu, Ping

    2013-06-01

    Novel root-specific promoters are important for developing methods to drive root-specific gene expression for nutrient and water absorption. RT-PCR (reverse transcription polymerase chain reaction) analysis identified high expression levels of Os03g01700 and Os02g37190 in root tissues across developmental stages in comparison with the constitutive genes OsAct1 (rice Actin1 gene), OsUbi1 (rice polyubiquitin rubi1 gene), and OsCc1 (rice cytochrome c gene). The copy numbers of Os03g01700 and Os02g37190 were evaluated by qRT-PCR. The results showed that Os03g01700 and Os02g37190 transcripts were highly accumulated in the examined root tissues but were not detected in young embryos or leaves at the indicated days after germination or in the panicle, in contrast to the ubiquitous expression of OsAct1, OsUbi1, and OsCc1. Additionally, the promoter regions of these two genes were linked to the GUSplus reporter gene and transformed into rice. GUS staining of the transgenic plants showed that the Os03g01700 and Os02g37190 promoters were active in primary and secondary roots throughout the developmental stages, except in root hairs. The GUSPlus transcript levels were also highly root-specific in the transgenic rice. Overall, the two promoters are highly active in the root tissues of rice and can be useful for the root-specific enhancement of target gene(s). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Magneto-optical absorption and cyclotron-phonon resonance in graphene monolayer

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Phuong, Le Thi Thu; Phong, Tran Cong

    2018-03-01

    The optical absorption power by Dirac fermions in a graphene monolayer subjected to a perpendicular magnetic field is calculated using a projection operator technique. The electron-optical phonon interaction with optical deformation potential is taken into account. By varying the photon frequency (energy), we observe in the absorption power a series of cyclotron-phonon resonance (CPR) peaks (i.e., the phonon-assisted cyclotron resonance). It is seen that the resonant photon energy is linearly proportional to the square root of the magnetic field. Also, the half width at half maximum (HWHM) of CPR peaks depends on the magnetic field by the law HWHM = 7.42 √{B } but does not depend on the temperature. In particular, the magnetic field and temperature dependences of the position and HWHM of CPR peaks are in good agreement with those obtained recently by the perturbation theory and an experiment in graphene.

  9. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  10. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Zhang, Weiguo; Qian, Yu; ...

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  11. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  12. Diphenamid metabolism in pepper and an ozone effect. I. Absorption, translocation, and the extent of metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, R.H.; Hoffer, B.L.

    Nutrient-solution-grown pepper (Capsicum frutescens L. Early Calwonder) absorbed 62% of the diphenamid (N,N-dimethyl-2,2-diphenylacetamide) supplied via the roots for 48 h, and 74% in 150 h. Extensive translocation accompanied absorption, and 70 +/- 3% of the absorbed /sup 14/C was present in shoots of plants harvested after 24- to 150-h treatments. Diphenamid was metabolized rapidly to chloroform-soluble and water-soluble compounds, and to unextracted residues. Chloroform-soluble compounds persisted for 150 h and accounted for more than 50% of the /sup 14/C in leaves. Water-soluble compounds other than N-hydroxymethyl-..beta..-D-glycosides accounted for 25% of the water-soluble metabolites in leaves of nonfumigated plants. Ozone fumigationmore » did not affect diphenamid absorption or translocation significantly. In leaves, ozone-enhanced accumulation of water-soluble metabolites more polar than N-hydroxymethyl-N-methyl-2,2-diphenylacetamide-..beta..-D-glucoside (MDAG) and unextracted residues was observed. Ozone fumigation reduced the accumulation of these /sup 14/C-fractions in roots. 16 references, 1 figure, 3 tables.« less

  13. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  14. RootJS: Node.js Bindings for ROOT 6

    NASA Astrophysics Data System (ADS)

    Beffart, Theo; Früh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  15. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant.

    PubMed

    Medas, Daniela; De Giudici, Giovanni; Casu, Maria Antonietta; Musu, Elodia; Gianoncelli, Alessandra; Iadecola, Antonella; Meneghini, Carlo; Tamburini, Elena; Sprocati, Anna Rosa; Turnau, Katarzyna; Lattanzi, Pierfranco

    2015-02-03

    Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.

  16. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  17. Correlation of toxicity with lead content in root tip cells (Allium cepa L.).

    PubMed

    Carruyo, Ingrid; Fernández, Yusmary; Marcano, Letty; Montiel, Xiomara; Torrealba, Zaida

    2008-12-01

    The present study determines lead content in onion root tip cells (Allium cepa L.), correlating it with its toxicity. The treatment was carried at 25 +/- 0.5 degrees C using aqueous solutions of lead chloride at 0.1, 0.25, 0.50, 0.75, and 1 ppm for 12, 24, 48, and 72 h. For each treatment, a control where the lead solution was substituted by distilled water was included. After treatment, the meristems were fixed with a mixture of alcohol-acetic acid (3:1) and colored according to the technique of Feulgen. Lead content was quantified by graphite furnace absorption atomic spectrometry. The lead content in the roots ranged from 3.25 to 244.72 microg/g dry weight, with a direct relation with the concentration and time of exposure. A significant negative correlation was presented (r = -0.3629; p < 0.01) among lead content and root growth increment, and a positive correlation (r = 0.7750; p < 0.01) with the induction of chromosomic aberrations. In conclusion, lead is able to induce a toxic effect in the exposed roots, correlated with its content.

  18. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  19. Rooting Gene Trees without Outgroups: EP Rooting

    PubMed Central

    Sinsheimer, Janet S.; Little, Roderick J. A.; Lake, James A.

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260). PMID:22593551

  20. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  1. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  2. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  3. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  4. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2013-09-01

    Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La(3+)) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La(3+) and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La(3+) and acid rain. The deleterious effects of the combined pollution were stronger than those of single La(3+) or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  6. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.

    PubMed

    Hippler, Franz Walter Rieger; Petená, Guilherme; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Azevedo, Ricardo Antunes; Mattos-Jr, Dirceu

    2018-05-01

    Nutritional disorders caused by copper (Cu) have affected citrus orchards. Since Cu is foliar sprayed as a pesticide to control citrus diseases, this metal accumulates in the soil. Thereby, we evaluated the effects of Cu leaf absorption after spray of different metal sources, as well as roots absorption on growth, nutritional status, and oxidative stress of young sweet orange trees. Two experiments were carried out under greenhouse conditions. The first experiment was set up with varying Cu levels to the soil (nil Cu, 0.5, 2.0, 4.0 and 8.0 g of Cu per plant as CuSO 4 .5H 2 O), whereas the second experiment with Cu application via foliar sprays (0.5 and 2.0 g of Cu per plant) and comparing two metal sources (CuSO 4 .5H 2 O or Cu(OH) 2 ). Copper was mainly accumulated in roots with soil supply, but an increase of oxidative stress levels was observed in leaves. On the other hand, Cu concentrations were higher in leaves that received foliar sprays, mainly as Cu(OH) 2 . However, when sulfate was foliar sprayed, plants exhibited more symptoms of injuries in the canopy with decreased chlorophyll contents and increased hydrogen peroxide and lipid peroxidation levels. Copper toxicity was characterized by sap leakage from the trunk and twigs, which is the first report of this specific Cu excess symptom in woody trees. Despite plants with 8.0 g of Cu soil-applied exhibiting the sap leakage, growth of new plant parts was more vigorous with lower oxidative stress levels and injuries compared to those with 4.0 g of Cu soil-applied (without sap leakage). With the highest level of Cu applied via foliar as sulfate, Cu was eliminated by plant roots, increasing the rhizospheric soil metal levels. Despite citrus likely exhibiting different mechanisms to reduce the damages caused by metal toxicity, such as responsive enzymatic antioxidant system, metal accumulation in the roots, and metal exclusion by roots, excess Cu resulted in damages on plant growth and metabolism when the

  7. Ex Vivo and In Situ Evaluation of 'Dispelling-Wind' Chinese Medicine Herb-Drugs on Intestinal Absorption of Chlorogenic Acid.

    PubMed

    Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji

    2015-12-01

    This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  9. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    PubMed Central

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID

  10. A split-root technique for measuring root water potential.

    PubMed

    Adeoye, K B; Rawlins, S L

    1981-07-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem.In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium.

  11. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  12. Assessing the applicability of the earth impedance method for in situ studies of tree root systems

    PubMed Central

    Urban, Josef; Bequet, Raphael; Mainiero, Raphael

    2011-01-01

    Several electrical methods have been introduced as non-invasive techniques to overcome the limited accessibility to root systems. Among them, the earth impedance method (EIM) represents the most recent development. Applying an electrical field between a cormus and the rooted soil, the EIM measures the absorptive root surface area (ARSA) from grounding resistance patterns. Allometric relationships suggested that this method was a valuable tool. Crucial assumptions for the applicability of the EIM, however, have not been tested experimentally. Focusing on tree root systems, the present study assesses the applicability of the EIM. Six hypotheses, deduced from the EIM approach, were tested in several experiments and the results were compared with conventional methods. None of the hypotheses could be verified and the results allow two major conclusions. First, in terms of an analogue electrical circuit, a tree-root–soil continuum appears as a serial circuit with xylem and soil resistance being the dominant components. Allometric variation in contact resistance, with the latter being the proxy for root surface area, are thus overruled by the spatial and seasonal variation of soil and xylem resistances. Second, in a tree-root–soil continuum, distal roots conduct only a negligible portion of the electric charge. Most of charge carriers leave the root system in the proximal parts of the root–soil interface. PMID:21273337

  13. Arsenic rich iron plaque on macrophyte roots--an ecotoxicological risk?

    PubMed

    Taggart, M A; Mateo, R; Charnock, J M; Bahrami, F; Green, A J; Meharg, A A

    2009-03-01

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root+plaque' material in excess of 1000 mg kg(-1), and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.

  14. Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis.

    PubMed

    Alford, Elan R; Pilon-Smits, Elizabeth A H; Fakra, Sirine C; Paschke, Mark W

    2012-12-01

    A survey of the root-nodule symbiosis in Astragalus and its interaction with selenium (Se) has not been conducted before. Such studies can provide insight into how edaphic conditions modify symbiotic interactions and influence partner coevolution. In this paper plant-organ Se concentration ([Se]) was investigated to assess potential Se exposure to endophytes. • Selenium distribution and molecular speciation of root nodules from Se-hyperaccumulators Astragalus bisulcatus, A. praelongus, and A. racemosus was determined by Se K-edge x-ray absorption spectroscopy. A series of greenhouse experiments were conducted to characterize the response of root-nodule symbiosis in Se-hyperaccumulators and nonhyperaccumulators. • Nodules in three Se-hyperaccumulators (Astragalus crotalariae, A. praelongus, and A. preussii) are reported for the first time. Leaves, flowers, and fruits from Se-hyperaccumulators were routinely above the hyperaccumulator threshold (1,000 µg Se g(-1) DW), but root samples rarely contained that amount, and nodules never exceeded 110 µg Se g(-1) DW. Nodules from A. bisulcatus, A. praelongus, and A. racemosus had Se throughout, with a majority stored in C-Se-C form. Finally, an evaluation of nodulation in Se-hyperaccumulators and nonhyperaccumulators indicated that there was no nodulation inhibition because of plant Se tolerance. Rather, we found that in Se-hyperaccumulators higher levels of Se treatment (up to 100 µM Se) corresponded with higher nodule counts, indicating a potential role for dinitrogen fixation in Se-hyperaccumulation. The effect was not found in nonhyperaccumulators. • As the evolution of Se hyperaccumulation in Astragalus developed, root-nodule symbiosis may have played an integral role.

  15. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  16. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  17. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  18. Biosynthesis of luminescent CdS quantum dots using plant hairy root culture

    NASA Astrophysics Data System (ADS)

    Borovaya, Mariya N.; Naumenko, Antonina P.; Matvieieva, Nadia A.; Blume, Yaroslav B.; Yemets, Alla I.

    2014-12-01

    CdS nanoparticles have a great potential for application in chemical research, bioscience and medicine. The aim of this study was to develop an efficient and environmentally-friendly method of plant-based biosynthesis of CdS quantum dots using hairy root culture of Linaria maroccana L. By incubating Linaria root extract with inorganic cadmium sulfate and sodium sulfide we synthesized stable luminescent CdS nanocrystals with absorption peaks for UV-visible spectrometry at 362 nm, 398 nm and 464 nm, and luminescent peaks at 425, 462, 500 nm. Transmission electron microscopy of produced quantum dots revealed their spherical shape with a size predominantly from 5 to 7 nm. Electron diffraction pattern confirmed the wurtzite crystalline structure of synthesized cadmium sulfide quantum dots. These results describe the first successful attempt of quantum dots synthesis using plant extract.

  19. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Seedling root targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  1. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  2. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.

  3. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  4. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  5. Correlation of root dentin thickness and length of roots in mesial roots of mandibular molars.

    PubMed

    Dwivedi, Shweta; Dwivedi, Chandra Dhar; Mittal, Neelam

    2014-09-01

    The purpose of this study was to analyze the relation of tooth length and distal wall thickness of mesial roots in mandibular molars at different locations (ie, 2 mm below the furcation and at the junction between the middle and apical third). Forty-five mandibular first molars were taken, and the length of each tooth was measured. Then, specimens were divided into three groups according to their length: group I-long (24.2 mm ± 1.8), group II-medium (21 mm ± 1.5) and group III-short (16.8 mm ± 1.8). mesial root of each marked at two levels - at 2 mm below the furcation as well as at junction of apical and middle third of roots. The minimum thickness of the distal root dentine associated with the buccal and lingual canals of the mesial roots was measured, The distance between the buccal and lingual canals and the depth of concavity in the distal surface of the mesial roots were also measured. Statistical analysis was performed by using analysis of variance and the Student-Newman-Keuls test. The minimum thickness of the distal wall of the mesiobuccal canal was significantly different (P < .001) between groups 1 (long) and 3 (short). Distal wall thickness of the mesiobuccal root and distal concavity of the mesial root of mandibular first molars were found to be thinner in longer teeth compared with shorter teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Effects of different soil remediation methods on inhibition of lead absorption and growth and quality of Dianthus superbus L.

    PubMed

    Yang, Xiaoyu; Ma, Siyue; Li, Jianheng

    2017-12-01

    Heavy metal pollution in soil poses a serious threat to the growth of plants used in traditional Chinese medicine. Therefore, a pot experiment was conducted to study the effects of various soil remediation methods on the performance of Herba Dianthi (Dianthus superbus L.) grown on Pb-contaminated soil. The results show that inoculation of Herba Dianthi with arbuscular mycorrhizal fungi (AMF) led to a significant reduction in Pb uptake (P< 0.05), and increased root development and root-to-shoot ratio compared to untreated control plants, along with the highest content of active components. When planting with Trifolium repens, the reduction effect of Pb absorption was insignificant. Herba Dianthi showed improved growth and active ingredients, and the lowest Pb content, with AMF inoculation. The addition of EDTA decreased the growth of Herba Dianthi, but promoted the absorption of Pb. The inhibition of tumor cells was highest in E2. In conclusion, inoculation with AMF can ensure that plant lead content meets testing standards, helping to improve the quality of medicinal herbs.

  7. Root diversity in alpine plants: root length, tensile strength and plant age

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

  8. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves.

    PubMed

    McElrone, Andrew J; Bichler, Justin; Pockman, William T; Addington, Robert N; Linder, C Randal; Jackson, Robert B

    2007-11-01

    Although deep roots can contribute substantially to whole-tree water use, little is known about deep root functioning because of limited access for in situ measurements. We used a cave system on the Edwards Plateau of central Texas to investigate the physiology of water transport in roots at 18-20 m depth for two common tree species, Quercus fusiformis and Bumelia lanuginosa. Using sap flow and water potential measurements on deep roots, we found that calculated root hydraulic conductivity (RHC) fluctuated diurnally for both species and decreased under shading for B. lanuginosa. To assess whether these dynamic changes in RHC were regulated during initial water absorption by fine roots, we used an ultra-low flowmeter and hydroxyl radical inhibition to measure in situ fine root hydraulic conductivity (FRHC) and aquaporin contribution to FRHC (AQPC), respectively. During the summer, FRHC and AQPC were found to cycle diurnally in both species, with peaks corresponding to the period of highest transpirational demand at midday. During whole-tree shade treatments, B. lanuginosa FRHC ceased diurnal cycling and decreased by 75 and 35% at midday and midnight, respectively, while AQPC decreased by 41 and 30% during both time periods. A controlled growth-chamber study using hydroponically grown saplings confirmed daily cycling and shade-induced reductions in FRHC and AQPC. Winter measurements showed that the evergreen Q. fusiformis maintained high FRHC and AQPC throughout the year, while the deciduous B. lanuginosa ceased diurnal cycling and exhibited its lowest annual values for both parameters in winter. Adjustments in FRHC and AQPC to changing canopy water demands may help the trees maintain the use of reliable water resources from depth and contribute to the success of these species in this semi-arid environment.

  9. Meniscus root repair.

    PubMed

    Vyas, Dharmesh; Harner, Christopher D

    2012-06-01

    Root tears are a subset of meniscal injuries that result in significant knee joint pathology. Occurring on either the medial or lateral side, root tears are defined as radial tears or avulsions of the posterior horn attachment to bone. After a root tear, there is a significant increase in tibio-femoral contact pressure concomitant with altered knee joint kinematics. Previous cadaver studies from our institution have shown that root repair of the medial meniscus is successful in restoring joint biomechanics to within normal limits. Indications for operative management of meniscal root tears include (1) a symptomatic medial meniscus root tear with minimal arthritis and having failed non-operative treatment, and (2) a lateral root tear in associated with an ACL tear. In this review, we describe diagnosis, imaging, patient selection, and arthroscopic surgical technique of medial and lateral meniscus root injuries. In addition we highlight the pearls of repair technique, associated complications, post-operative rehabilitation regimen, and expected outcomes.

  10. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    2016-06-15

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  11. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  12. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  13. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    PubMed

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  14. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  15. Comparing root architectural models

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  16. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; ...

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g.,more » Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.« less

  17. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  18. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  19. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  20. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  1. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    PubMed

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  3. Depth and Diameter of the Parent Roots of Aspen Root Suckers

    Treesearch

    Robert E. Farmer

    1962-01-01

    Studies of the Populus tremuloides root system by Day (1944), Sandberg (1951) and Barnes (1959) have all shown lateral roots extending as much as 30 feet from tree base. These roots may branch extensively and sometimes exhibit an "undulating" growth habit. According to the above authors, suckers occur on the segments of these lateral roots...

  4. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    PubMed

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P < 2.9 × 10-6) on chromosomes SBI-02, SBI-03, SBI-05 and SBI-09. Co-localization of significant and suggestive (P < 5.7 × 10-5) associations for several traits indicated hotspots controlling root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions

  5. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  6. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems

    DOE PAGES

    Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less

  7. Uncertainty budgets for liquid waveguide CDOM absorption measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Utschig, Christian; McKee, David

    2017-08-01

    Long path length liquid waveguide capillary cell (LWCC) systems using simple spectrometers to determine the spectral absorption by colored dissolved organic matter (CDOM) have previously been shown to have better measurement sensitivity compared to high-end spectrophotometers using 10 cm cuvettes. Information on the magnitude of measurement uncertainties for LWCC systems, however, has remained scarce. Cross-comparison of three different LWCC systems with three different path lengths (50, 100, and 250 cm) and two different cladding materials enabled quantification of measurement precision and accuracy, revealing strong wavelength dependency in both parameters. Stable pumping of the sample through the capillary cell was found to improve measurement precision over measurements made with the sample kept stationary. Results from the 50 and 100 cm LWCC systems, with higher refractive index cladding, showed systematic artifacts including small but unphysical negative offsets and high-frequency spectral perturbations due to limited performance of the salinity correction. In comparison, the newer 250 cm LWCC with lower refractive index cladding returned small positive offsets that may be physically correct. After null correction of measurements at 700 nm, overall agreement of CDOM absorption data at 440 nm was found to be within 5% root mean square percentage error.

  8. Two-photon Photoactivation to Measure Histone Exchange Dynamics in Plant Root Cells.

    PubMed

    Rosa, Stefanie; Shaw, Peter

    2015-10-20

    Chromatin-binding proteins play a crucial role in chromatin structure and gene expression. Direct binding of chromatin proteins both maintains and regulates transcriptional states. It is therefore important to study the binding properties of these proteins in vivo within the natural environment of the nucleus. Photobleaching, photoactivation and photoconversion (photoswitching) can provide a non-invasive experimental approach to study dynamic properties of living cells and organisms. We used photoactivation to determine exchange dynamics of histone H2B in plant stem cells of the root (Rosa et al. , 2014). The stem cells of the root are located in the middle of the tissue, which made it impossible to carry out photoactivation of sufficiently small and well-defined sub-cellular regions with conventional laser illumination in the confocal microscope, mainly because scattering and refraction effects within the root tissue dispersed the focal spot and caused photoactivation of too large a region. We therefore used 2-photon activation, which has much better inherent resolution of the illuminated region. This is because the activation depends on simultaneous absorption of two or more photons, which in turns depends on the square (or higher power) of the intensity-a much sharper peak. In this protocol we will describe the experimental procedure to perform two-photon photoactivation experiments and the corresponding image analysis. This protocol can be used for nuclear proteins tagged with photoactivable GFP (PA-GFP) expressed in root tissues.

  9. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter

  10. Specialized 'dauciform' roots of Cyperaceae are structurally distinct, but functionally analogous with 'cluster' roots.

    PubMed

    Shane, Michael W; Cawthray, Gregory R; Cramer, Michael D; Kuo, John; Lambers, Hans

    2006-10-01

    When grown in nutrient solutions of extremely low [P] (roots, which are short and carrot shaped, and produce dense numbers of long root hairs. It has been suggested that dauciform roots of monocotyledonous sedges function to acquire P from nutrient-poor, P-fixing soils in a manner similar to that of cluster (proteoid) roots developed by some dicotyledonous species, but without evidence to substantiate this claim. To elucidate the ecophysiological role of dauciform roots, we assessed carboxylate exudation, internal carboxylate and P concentrations and O(2) uptake rates during dauciform root development. We showed that O(2) consumption was fastest [9 nmol O(2) g(-1) fresh mass (FM) s(-1)] and root [P] greatest (0.4 mg P g(-1) FM) when dauciform roots were young and rapidly developing. Citrate was the most abundant carboxylate in root tissues at all developmental stages, and was most concentrated (22.2 micromol citrate g(-1) FM) in young dauciform roots, decreasing by more than half in mature dauciform roots. Peak citrate-exudation rates (1.7 nmol citrate g(-1) FM s(-1)) occurred from mature dauciform roots, and were approximately an order of magnitude faster than those from roots of species without root clusters, and similar to those of mature proteoid (cluster) roots of Proteaceae. Both developing and mature dauciform roots had the capacity to acidify (but not alkalinize) the rhizosphere. Anatomical studies showed that epidermal cells in dauciform roots were greatly elongated in the transverse plane; epidermal cells of parent roots were unmodified. Although structurally distinct, the physiology of dauciform roots in sedges appears to be analogous to that of proteoid roots of Proteaceae and Fabaceae, and hence, dauciform roots would facilitate access to sorbed P and micronutrients from soils of low fertility.

  11. Inhibition of Phosphate Uptake in Corn Roots by Aluminum-Fluoride Complexes1

    PubMed Central

    Façanha, Arnoldo Rocha; Okorokova-Façanha, Anna L.

    2002-01-01

    F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlFx) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlFx reflects their activity as Pi analogs. For this purpose, 32P-labeled phosphate uptake by excised roots and plasma membrane H+-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlFx. In vitro, AlFx competitively inhibited the rate of root phosphate uptake as well as the H+-ATPase activity. Conversely, pretreatment of seedlings with AlFx in vivo promoted no effect on the H+-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlFx pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent 32Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root 32Pi uptake induced by AlFx pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF3 and AlF4− among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed. PMID:12177489

  12. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  13. ROOT.NET: Using ROOT from .NET languages like C# and F#

    NASA Astrophysics Data System (ADS)

    Watts, G.

    2012-12-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  14. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  15. A new Approach for Quantifying Root-Reinforcement of Streambanks: the RipRoot Model

    NASA Astrophysics Data System (ADS)

    Pollen, N. L.; Simon, A.

    2003-12-01

    Riparian vegetation plays an important role in controlling geotechnical and fluvial processes acting along and within streambanks through the binding effects of roots. Quantification of this mechanical effect is therefore essential to accurately model streambank stability. Until now, most attempts to include the effects of root reinforcement by riparian vegetation have used root-cohesion values estimated using the Wu et al. (1979) equation, requiring the tensile strengths and diameters of the roots crossing the potential shear-plane. However, the Wu et al. equation is a static model that assumes that all roots break, and that they all break simultaneously. Field observations and laboratory experiments have shown that in reality the roots do not all break simultaneously, and that the breaking of roots during mass failure is in fact a dynamic process. Static models such as the Wu et al. equation are therefore likely to produce overestimations of cohesion due to roots. As a response to this concern, a dynamic root reinforcement model (RipRoot) was developed, based on the concepts of fiber bundle models (FBM's) used in materials science. Within the model the root-soil system is loaded incrementally resulting in progressive root breaking and redistribution of stresses from the broken roots to the remaining intact roots in the soil matrix. The redistribution and loading process continues until either all of the roots have broken, or equilibrium is reached where the root network supports the driving force imposed on the bank. The increase in bank cohesion using the static Wu et al. equation are 18% to 38% higher than RipRoot for riparian tree species, including Black Willow, Sandbar Willow, Cottonwood, River Birch and Eastern Sycamore, and 49% higher for Switch Grass. These variations in cohesion values can have a significant impact on streambank Factor of Safety (Fs) values calculated using the Simon et al. (2000) bank-stability model. For example, a 3m high silt

  16. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    PubMed

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  17. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  18. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  19. [Frequency of Candida in root canals of teeth with primary and persistent endodontic infections].

    PubMed

    Bernal-Treviño, Angel; González-Amaro, Ana María; Méndez González, Verónica; Pozos-Guillen, Amaury

    Microbiological identification in endodontic infections has focused mainly on bacteria without giving much attention to yeasts, which, due to their virulence factors, can affect the outcomes of root canal treatment. To determine the frequency of Candida in anaerobic conditions in root canals with primary and persistent endodontic infection, as well as to evaluate a microbiological sampling method using aspiration compared to the traditional absorption method with paper points. Fifty microbiological samples were obtained from teeth of 47 patients requiring endodontic treatments, due to either primary or persistent infections. Two microbiological sampling methods were used: an aspiration method, and the traditional paper point absorption method. In each of these methods, two types of medium were used (M 1 -M 4 ). Samples were cultured under anaerobic conditions until reaching 0.5 McFarland turbidity, and then inoculated on Sabouraud dextrose, as well as on anaerobic enriched blood agar plates. Macroscopic and microscopic observations of the colonies were performed. The germ-tube test, growth on CHROMagar, and biochemical identification were performed on the isolated yeasts. Fungal infection was found in 18 (36%) samples out of the 50 teeth evaluated. In the 18 samples positive for fungal infection, 15 out of 36 (41.6%) teeth were taken from a primary infection, and 3 out of 14 (21.4%) from a persistent infection. The aspiration method using Sabouraud dextrose medium recovered a greater diversity of species. Yeasts frequency was higher in teeth with primary infections compared to teeth with persistent infections. The predominant yeast species was Candida albicans. The aspirating sampling method was more efficient in the recovery of Candida isolates than the traditional absorption method. Copyright © 2018 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    PubMed Central

    ZOGHEIB, Lucas Villaça; SAAVEDRA, Guilherme de Siqueira Ferreira Anzaloni; CARDOSO, Paula Elaine; VALERA, Márcia Carneiro; de ARAÚJO, Maria Amélia Máximo

    2011-01-01

    Objective This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. Material and methods Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10), according to the root reconstruction protocol: Group I (control): non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05). Results Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. Conclusion The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol. PMID:22231002

  1. Root and Root Canal Morphology of Human Third Molar Teeth.

    PubMed

    Mohammadi, Zahed; Jafarzadeh, Hamid; Shalavi, Sousan; Bandi, Shilpa; Patil, Shankargouda

    2015-04-01

    Successful root canal treatment depends on having comprehensive information regarding the root(s)/canal(s) anatomy. Dentists may have some complication in treatment of third molars because the difficulty in their access, their aberrant occlusal anatomy and different patterns of eruption. The aim of this review was to review and address the number of roots and root canals in third molars, prevalence of confluent canals in third molars, C-shaped canals, dilaceration and fusion in third molars, autotransplantation of third molars and endodontic treatment strategies for third molars.

  2. Effect of different root canal sealers on fracture strength of simulated immature roots.

    PubMed

    Ulusoy, Özgür İlke Atasoy; Nayır, Yelda; Darendeliler-Yaman, Sis

    2011-10-01

    The objective of this study was to compare the effects of different root canal sealers on fracture resistance of simulated immature teeth. One hundred eight roots were divided into 9 groups. The roots were instrumented except the negative controls. Four millimeters of mineral trioxide aggregate (MTA) barriers were placed apically. The roots were backfilled as follows: group 1, AH Plus+gutta-percha; group 2, EndoREZ+gutta-percha; group 3, EndoREZ+Resilon; group 4, Hybrid Root SEAL+gutta-percha; group 5, Hybrid Root SEAL+Resilon; group 6, iRootSP+gutta-percha; group 7, iRootSP+Resilon; group 8, No obturation other than MTA barrier; group 9, No instrumentation, no obturation. A compressive loading was applied at a speed of 1 mm/min. Data were compared with ANOVA and Duncan tests. Group 5 showed the highest resistance to fracture. The fracture values of group 3 were lower than those of the other experimental groups. Hybrid Root SEAL and iRootSP reinforce the simulated immature roots against fracture when used with either gutta-percha or Resilon. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  4. Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system.

    PubMed

    Souza, Iara da C; Rocha, Lívia D; Morozesk, Mariana; Bonomo, Marina M; Arrivabene, Hiulana P; Duarte, Ian D; Furlan, Larissa M; Monferrán, Magdalena V; Mazik, Krysia; Elliott, Michael; Matsumoto, Silvia T; Milanez, Camilla R D; Wunderlin, Daniel A; Fernandes, Marisa N

    2015-05-15

    Espírito Santo estuaries (Brazil) are impacted by industrial activities, resulting in contamination of water and sediments. This raise questions on biological uptake, storage and consequences of metal contamination to mangrove plants. The goal of this work was evaluating accumulation and translocation of metals from sediment to roots and leaves of Avicennia schaueriana, growing in areas with different degrees of contamination, correlating bioaccumulation with changes in its root anatomy. Highest bioconcentration factors (BCFs) were observed in plants growing in less polluted areas. Conversely, highest translocation factors were found in plants from highest polluted area, evidencing an adaptive response of A. schaueriana to less favourable conditions. Namely, the absorption of metals by roots is diminished when facing highest levels of metals in the environment; alternatively, plants seem to enhance the translocation to diminish the concentration of toxic metals in roots. Root also responded to highly polluted scenarios with modifications of its anatomy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Implementing Dynamic Root Optimization in Noah-MP for Simulating Phreatophytic Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Niu, Guo-Yue; Fang, Yuan-Hao; Wu, Run-Jian; Yu, Jing-Jie; Yuan, Guo-Fu; Pozdniakov, Sergey P.; Scott, Russell L.

    2018-03-01

    Widely distributed in arid and semiarid regions, phreatophytic roots extend into the saturated zone and extract water directly from groundwater. In this paper, we implemented a vegetation optimality model of root dynamics (VOM-ROOT) in the Noah land surface model with multiparameterization options (Noah-MP LSM) to model the extraction of groundwater through phreatophytic roots at a riparian site with a hyperarid climate (with precipitation of 35 mm/yr) in northwestern China. VOM-ROOT numerically describes the natural optimization of the root profile in response to changes in subsurface water conditions. The coupled Noah-MP/VOM-ROOT model substantially improves the simulation of surface energy and water fluxes, particularly during the growing season, compared to the prescribed static root profile in the default Noah-MP. In the coupled model, more roots are required to grow into the saturated zone to meet transpiration demand when the groundwater level declines over the growing season. The modeling results indicate that at the study site, the modeled annual transpiration is 472 mm, accounting for 92.3% of the total evapotranspiration. Direct root water uptake from the capillary fringe and groundwater, which is supplied by lateral groundwater flow, accounts for approximately 84% of the total transpiration. This study demonstrates the importance of implementing a dynamic root scheme in a land surface model for adequately simulating phreatophytic root water uptake and the associated latent heat flux.

  6. Hydraulic conductivity of soil-grown lupine and maize unbranched roots and maize root-shoot junctions.

    PubMed

    Meunier, Félicien; Zarebanadkouki, Mohsen; Ahmed, Mutez A; Carminati, Andrea; Couvreur, Valentin; Javaux, Mathieu

    2018-01-26

    Improving or maintaining crop productivity under conditions of long term change of soil water availability and atmosphere demand for water is one the big challenges of this century. It requires a deep understanding of crop water acquisition properties, i.e. root system architecture and root hydraulic properties among other characteristics of the soil-plant-atmosphere continuum. A root pressure probe technique was used to measure the root hydraulic conductances of seven-week old maize and lupine plants grown in sandy soil. Unbranched root segments were excised in lateral, seminal, crown and brace roots of maize, and in lateral roots of lupine. Their total hydraulic conductance was quantified under steady-state hydrostatic gradient for progressively shorter segments. Furthermore, the axial conductance of proximal root regions removed at each step of root shortening was measured as well. Analytical solutions of the water flow equations in unbranched roots developed recently and relating root total conductance profiles to axial and radial conductivities were used to retrieve the root radial hydraulic conductivity profile along each root type, and quantify its uncertainty. Interestingly, the optimized root radial conductivities and measured axial conductances displayed significant differences across root types and species. However, the measured root total conductances did not differ significantly. As compared to measurements reported in the literature, our axial and radial conductivities concentrate in the lower range of herbaceous species hydraulic properties. In a final experiment, the hydraulic conductances of root junctions to maize stem were observed to highly depend on root type. Surprisingly maize brace root junctions were an order of magnitude more conductive than the other crown and seminal roots, suggesting potential regulation mechanism for root water uptake location and a potential role of the maize brace roots for water uptake more important than reported

  7. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress.

    PubMed

    Ju, Shuming; Yin, Ningning; Wang, Liping; Zhang, Cuiying; Wang, Yukun

    2017-01-01

    Silicon (Si) has an important function in reducing the damage of environmental stress on plants. Acid rain is a serious abiotic stress factor, and Si can alleviate the stress induced by acid rain on plants. Based on these assumptions, we investigated the effects of silicon on the growth, root phenotype, mineral element contents, hydrogen peroxide (H2O2) and antioxidative enzymes of rice (Oryza sativa L.) seedling roots under simulated acid rain (SAR) stress. The results showed that the combined or single effects of Si and/or SAR on rice roots depend on the concentration of Si and the pH of the SAR. The combined or single effects of a low or moderate concentration of Si (1.0 or 2.0 mM) and light SAR (pH 4.0) enhanced the growth of rice roots, and the combined effects were stronger than those of the single treatment. A high concentration of Si (4.0 mM) or severe SAR (pH 2.0) exerted deleterious effects. The incorporation of Si (1.0, 2.0 or 4.0 mM) into SAR with pH 3.0 or 2.0 promoted the rice root growth, decreased the H2O2 content, increased the Si concentration and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) activities, maintained the balance of mineral element (K, Ca, Mg, Fe, Zn, and Cu) concentrations in the roots of rice seedlings compared with SAR alone. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with a low or high concentration of Si (1.0 or 4.0 mM). The observed effects were due to disruptions in the absorption and utilization of mineral nutrients and impacts on the activity of antioxidant enzymes in roots, and this conclusion suggests that the degree of rice root damage caused by acid rain might be attributed to not only acid rain but also the level of Si in the soil.

  8. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress

    PubMed Central

    Wang, Liping; Zhang, Cuiying; Wang, Yukun

    2017-01-01

    Silicon (Si) has an important function in reducing the damage of environmental stress on plants. Acid rain is a serious abiotic stress factor, and Si can alleviate the stress induced by acid rain on plants. Based on these assumptions, we investigated the effects of silicon on the growth, root phenotype, mineral element contents, hydrogen peroxide (H2O2) and antioxidative enzymes of rice (Oryza sativa L.) seedling roots under simulated acid rain (SAR) stress. The results showed that the combined or single effects of Si and/or SAR on rice roots depend on the concentration of Si and the pH of the SAR. The combined or single effects of a low or moderate concentration of Si (1.0 or 2.0 mM) and light SAR (pH 4.0) enhanced the growth of rice roots, and the combined effects were stronger than those of the single treatment. A high concentration of Si (4.0 mM) or severe SAR (pH 2.0) exerted deleterious effects. The incorporation of Si (1.0, 2.0 or 4.0 mM) into SAR with pH 3.0 or 2.0 promoted the rice root growth, decreased the H2O2 content, increased the Si concentration and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) activities, maintained the balance of mineral element (K, Ca, Mg, Fe, Zn, and Cu) concentrations in the roots of rice seedlings compared with SAR alone. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with a low or high concentration of Si (1.0 or 4.0 mM). The observed effects were due to disruptions in the absorption and utilization of mineral nutrients and impacts on the activity of antioxidant enzymes in roots, and this conclusion suggests that the degree of rice root damage caused by acid rain might be attributed to not only acid rain but also the level of Si in the soil. PMID:28291806

  9. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Yang, Sei Hyun; Lee, Hyeong Rae; Yu, Cheng Bin; Pak, Seong Yeol; Oh, Chi Sung; Kang, Yeon June; Youn, Jae Ryoun

    2017-06-01

    Sound absorption of a polyurethane (PU) foam was predicted for various geometries to fabricate the optimum microstructure of a sound absorbing foam. Multiscale numerical analysis for sound absorption was carried out by solving flow problems in representative unit cell (RUC) and the pressure acoustics equation using Johnson-Champoux-Allard (JCA) model. From the numerical analysis, theoretical optimum cell diameter for low frequency sound absorption was evaluated in the vicinity of 400 μm under the condition of 2 cm-80 K (thickness of 2 cm and density of 80 kg/m3) foam. An ultrasonic foaming method was employed to modulate microcellular structure of PU foam. Mechanical activation was only employed to manipulate the internal structure of PU foam without any other treatment. A mean cell diameter of PU foam was gradually decreased with increase in the amplitude of ultrasonic waves. It was empirically found that the reduction of mean cell diameter induced by the ultrasonic wave enhances acoustic damping efficiency in low frequency ranges. Moreover, further analyses were performed with several acoustic evaluation factors; root mean square (RMS) values, noise reduction coefficients (NRC), and 1/3 octave band spectrograms.

  10. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice

    PubMed Central

    Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko

    2001-01-01

    The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120

  11. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  12. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  13. GiA Roots: software for the high throughput analysis of plant root system architecture.

    PubMed

    Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S

    2012-07-26

    Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

  14. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  16. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  17. Corky root rot

    USDA-ARS?s Scientific Manuscript database

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  18. Armillaria root rot

    USDA-ARS?s Scientific Manuscript database

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  19. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    PubMed Central

    Wang, Tao; Li, Chengxiang; Wu, Zhihua; Jia, Yancui; Wang, Hong; Sun, Shiyong; Mao, Chuanzao; Wang, Xuelu

    2017-01-01

    Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development. PMID:28702040

  20. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  2. RootScan: Software for high-throughput analysis of root anatomical traits

    USDA-ARS?s Scientific Manuscript database

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  3. Getting to the roots of it: Genetic and hormonal control of root architecture

    PubMed Central

    Jung, Janelle K. H.; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  4. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development.

    PubMed

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T

    2017-01-01

    Cassava ( Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth.

  5. Cyanogen Metabolism in Cassava Roots: Impact on Protein Synthesis and Root Development

    PubMed Central

    Zidenga, Tawanda; Siritunga, Dimuth; Sayre, Richard T.

    2017-01-01

    Cassava (Manihot esculenta Crantz), a staple crop for millions of sub-Saharan Africans, contains high levels of cyanogenic glycosides which protect it against herbivory. However, cyanogens have also been proposed to play a role in nitrogen transport from leaves to roots. Consistent with this hypothesis, analyses of the distribution and activities of enzymes involved in cyanide metabolism provides evidence for cyanide assimilation, derived from linamarin, into amino acids in cassava roots. Both β-cyanoalanine synthase (CAS) and nitrilase (NIT), two enzymes involved in cyanide assimilation to produce asparagine, were observed to have higher activities in roots compared to leaves, consistent with their proposed role in reduced nitrogen assimilation. In addition, rhodanese activity was not detected in cassava roots, indicating that this competing means for cyanide metabolism was not a factor in cyanide detoxification. In contrast, leaves had sufficient rhodanese activity to compete with cyanide assimilation into amino acids. Using transgenic low cyanogen plants, it was shown that reducing root cyanogen levels is associated with elevated root nitrate reductase activity, presumably to compensate for the loss of reduced nitrogen from cyanogens. Finally, we overexpressed Arabidopsis CAS and NIT4 genes in cassava roots to study the feasibility of enhancing root cyanide assimilation into protein. Optimal overexpression of CAS and NIT4 resulted in up to a 50% increase in root total amino acids and a 9% increase in root protein accumulation. However, plant growth and morphology was altered in plants overexpressing these enzymes, demonstrating a complex interaction between cyanide metabolism and hormonal regulation of plant growth. PMID:28286506

  6. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  7. Root system markup language: toward a unified root architecture description language.

    PubMed

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation.

    PubMed

    Lucas, M; Godin, C; Jay-Allemand, C; Laplaze, L

    2008-01-01

    Root architecture plays an important role in water and nutrient acquisition and in the ability of the plant to adapt to the soil. Lateral root development is the main determinant of the shape of the root system and is controlled by external factors such as nutrient concentration. Here it is shown that lateral root initiation and root gravitropism, two processes that are regulated by auxin, are co-regulated in Arabidopsis. A mathematical model was generated that can predict the effects of gravistimulations on lateral root initiation density and suggests that lateral root initiation is controlled by an inhibitory fields mechanism. Moreover, gene transactivation experiments suggest a mechanism involving a single auxin transport route for both responses. Finally, co-regulation may offer a selective advantage by optimizing soil exploration as supported by a simple quantitative analysis.

  9. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  10. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  11. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  12. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  13. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  14. A (Sub)Micro-Scale Investigation of Fe Plaque Distribution in Selected Wetland Plant Root Epidermis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan

    This study focuses on investigation of the distribution of Fe plaque in the root epidermis of the selected wetland plant species (Phragmites australis, Typha latifolia and Spartina alterniflora) using synchrotron X-ray microfluoresces, X-ray absorption near edge structure and transmission X-ray microscope techniques with (sub)micro-scale resolution. The wetland plants were collected in Liberty State Park, New Jersey, USA, and Yangtze River intertidal zone, Shanghai, China, respectively, during the different time period. Although a number of early studies have reported that Fe-oxides can precipitate on the surface of aquatic plants in the rhizosphere to form iron plaque, the role of Fe plaquemore » in regulating metal biogeochemical cycle has been in discussion for decades. The results from this study show that Fe is mainly distributed in the epidermis non-uniformly, and the major Fe species is ferric Fe (Fe3+). This information is needed to make broad inferences about the relevant plant metal uptake mechanisms because Fe accumulation and distribution in the root system is important to understanding the metal transport processes that control the mobility of metals in plants. This study improves our understanding of Fe plaque distributions and speciation in the wetland plant root system, and helps us to understand the function of Fe plaque in metal transport and accumulation through the root system.« less

  15. Air lateral root pruning affects longleaf pine seedling root system morphology

    Treesearch

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  16. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  17. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  18. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism.

    PubMed

    Taniguchi, Yukimi Y; Taniguchi, Masatoshi; Tsuge, Tomohiko; Oka, Atsuhiro; Aoyama, Takashi

    2010-01-01

    Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) was localized to epidermal cells in the distal root elongation zone and lateral root cap cells adjacent to them, and that exogenous ABA enhanced the activity and extended its area to the entire root cap. Although pldzeta2 mutant root caps did not exhibit a morphological phenotype in either the absence or presence of exogenous ABA, the inhibitory effect of ABA on gravitropism, which was significant in wild-type roots, was not observed in pldzeta2 mutant roots. In root hydrotropism experiments, pldzeta2 mutations significantly retarded or disturbed root hydrotropic responses. A drought condition similar to that used in a hydrotropism experiment enhanced the PLDzeta2 promoter activity in the root cap, as did exogenous ABA. These results suggest that PLDzeta2 responds to drought through ABA signaling in the root cap and accelerates root hydrotropism through the suppression of root gravitropism.

  19. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  20. A role for the root cap in root branching revealed by the non-auxin probe naxillin.

    PubMed

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2012-09-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.

  1. A role for the root cap in root branching revealed by the non-auxin probe naxillin

    PubMed Central

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2013-01-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. PMID:22885787

  2. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots

    PubMed Central

    Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.

    2018-01-01

    Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529

  3. Negative gravitropism in plant roots.

    PubMed

    Ge, Liangfa; Chen, Rujin

    2016-10-17

    Plants are capable of orienting their root growth towards gravity in a process termed gravitropism, which is necessary for roots to grow into soil, for water and nutrient acquisition and to anchor plants. Here we show that root gravitropism depends on the novel protein, NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR). In both Medicago truncatula and Arabidopsis thaliana, loss of NGR reverses the direction of root gravitropism, resulting in roots growing upward.

  4. Effect of lipid/polysaccharide ratio on surface activity of model root mucilage in its solid and liquid states

    NASA Astrophysics Data System (ADS)

    Chen, Fengxian; Arye, Gilboa

    2016-04-01

    The rhizosphere can be defined as the volume of soil around living roots, which is influenced by root activity. The biological, chemical and physical conditions that prevail in the rhizosphere are significantly different from those of the bulk soil. Plant roots can release diverse organic materials in the rhizosphere which may have different effects on its bio-chemo-physical activity. Among these exudates is the root mucilage which can play a role on the maintenance of root-soil contact, lubrication of the root tip, protection of roots from desiccation and disease, stabilization of soil micro-aggregates and the selective absorption and storage of ions. The surface activity of the root mucilage at the liquid-air interface deduced from its surface tension depression relative to water, implying on its amphiphilic nature. Consequently as the rhizosphere dry out, hydrophobic functional groups may exhibit orientation at the solid-air interface and thus, the wettability of the rhizosphere may temporarily decrease. The major fraction of the root mucilage comprise of polysaccharides and to a much lesser extent, amino acids, organic acids, and phospholipids. The most frequent polysaccharide and phospholipids detected in root mucilage are polygalacturonic acid (PGA) and Phosphatidylcholine (PC), respectively. The latter, is thought to be main cause for the surface active nature of root mucilage. Nevertheless, the role and function of root mucilage in the rhizosphere is commonly studied based on model root mucilage that comprise of only one component, where the most frequent ones are PGA or PC (or lecithin). The main objective of this study was to quantify the effect of concentration and PGA/PC ratios on the wettability of a model rhizosphere soil and the surface tension of the model root mucilage at the liquid-air interface. The PGA/PC mixtures were measured for their equilibrium and dynamic surface tension using the Wilhelmy-Plate method. Quartz sand or glass slides were

  5. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  6. A new anatomically based nomenclature for the roots and root canals-part 1: maxillary molars.

    PubMed

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  7. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    PubMed

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.

  8. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    PubMed

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.

  9. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    PubMed

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  10. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation.

    PubMed

    MacLellan, Christopher J; Fuentes, David; Elliott, Andrew M; Schwartz, Jon; Hazle, John D; Stafford, R Jason

    2014-02-01

    Optically activated nanoparticle-mediated heating for thermal therapy applications is an area of intense research. The ability to characterise the spatio-temporal heating potential of these particles for use in modelling under various exposure conditions can aid in the exploration of new approaches for therapy as well as more quantitative prospective approaches to treatment planning. The purpose of this research was to investigate an inverse solution to the heat equation using magnetic resonance temperature imaging (MRTI) feedback, for providing optical characterisation of two types of nanoparticles (gold-silica nanoshells and gold nanorods). The optical absorption of homogeneous nanoparticle-agar mixtures was measured during exposure to an 808 nm laser using real-time MRTI. A coupled finite element solution of heat transfer was registered with the data and used to solve the inverse problem. The L2 norm of the difference between the temperature increase in the model and MRTI was minimised using a pattern search algorithm by varying the absorption coefficient of the mixture. Absorption fractions were within 10% of literature values for similar nanoparticles. Comparison of temporal and spatial profiles demonstrated good qualitative agreement between the model and the MRTI. The weighted root mean square error was <1.5 σMRTI and the average Dice similarity coefficient for ΔT = 5 °C isotherms was >0.9 over the measured time interval. This research demonstrates the feasibility of using an indirect method for making minimally invasive estimates of nanoparticle absorption that might be expanded to analyse a variety of geometries and particles of interest.

  11. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  12. Calcium Uptake by Excised Maize Roots and Interactions With Alkali Cations 1

    PubMed Central

    Maas, E. V.

    1969-01-01

    Ca2+ uptake was studied in short-term experiments using 5-day-old excised maize roots. This tissue readily absorbs Ca2+, and inhibition by dinitrophenol and low temperature shows that the process is metabolically mediated. The uptake of Ca2+, like that of other cations, is influenced by the counter ion, the pH and concentration of the ambient solution, and the presence of other cations. The rate of uptake from various salts decreases in the following order: NO3− > Cl− = Br− > SO42−. K+ and H+ greatly interfere with Ca2+ absorption, while Li+ and Na+ have only slight effects. PMID:16657169

  13. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits.

    PubMed

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-08-17

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato-three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. Published by Oxford University Press on behalf of the Annals of Botany Company.

  14. Imaging and modelling root water uptake

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, M.; Meunier, F.; Javaux, M.; Kaestner, A.; Carminati, A.

    2017-12-01

    Spatially resolved measurement and modelling of root water uptake is urgently needed to identify root traits that can improve capture of water from the soil. However, measuring water fluxes into roots of transpiring plants growing in soil remains challenging. Here, we describe an in-situ technique to measure local fluxes of water into roots. The technique consists of tracing the transport of deuterated water (D2O) in soil and roots using time series neutron radiography and tomography. A diffusion-convection model was used to model the transport of D2O in roots. The model includes root features such as the endodermis, xylem and the composite flow of water in the apoplastic and symplastic pathways. Diffusion permeability of root cells and of the endodermis were estimated by fitting the experiment during the night, when transpiration was negligible. The water fluxes at different position of the root system were obtained by fitting the experiments at daytime. The results showed that root water uptake was not uniform along root system and varied among different root types. The measured profiles of root water uptake into roots were used to estimate the radial and axial hydraulic of the roots. A three-dimensional model of root water uptake was used to fit the measured water fluxes by adjusting the root radial and axial hydraulic conductivities. We found that the estimated radial conductivities decreased with root age, while the axial conducances increased, and they are different among root types. The significance of this study is the development of a method to estimate 1) water uptake and 2) the radial and axial hydraulic conductivities of roots of transpiring plants growing in the soil.

  15. Discrete square root smoothing.

    NASA Technical Reports Server (NTRS)

    Kaminski, P. G.; Bryson, A. E., Jr.

    1972-01-01

    The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.

  16. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  17. Seasonal changes of whole root system conductance by a drought-tolerant grape root system.

    PubMed

    Alsina, Maria Mar; Smart, David R; Bauerle, Taryn; de Herralde, Felicidad; Biel, Carme; Stockert, Christine; Negron, Claudia; Save, Robert

    2011-01-01

    The role of root systems in drought tolerance is a subject of very limited information compared with above-ground responses. Adjustments to the ability of roots to supply water relative to shoot transpiration demand is proposed as a major means for woody perennial plants to tolerate drought, and is often expressed as changes in the ratios of leaf to root area (A(L):A(R)). Seasonal root proliferation in a directed manner could increase the water supply function of roots independent of total root area (A(R)) and represents a mechanism whereby water supply to demand could be increased. To address this issue, seasonal root proliferation, stomatal conductance (g(s)) and whole root system hydraulic conductance (k(r)) were investigated for a drought-tolerant grape root system (Vitis berlandieri×V. rupestris cv. 1103P) and a non-drought-tolerant root system (Vitis riparia×V. rupestris cv. 101-14Mgt), upon which had been grafted the same drought-sensitive clone of Vitis vinifera cv. Merlot. Leaf water potentials (ψ(L)) for Merlot grafted onto the 1103P root system (-0.91±0.02 MPa) were +0.15 MPa higher than Merlot on 101-14Mgt (-1.06±0.03 MPa) during spring, but dropped by approximately -0.4 MPa from spring to autumn, and were significantly lower by -0.15 MPa (-1.43±0.02 MPa) than for Merlot on 101-14Mgt (at -1.28±0.02 MPa). Surprisingly, g(s) of Merlot on the drought-tolerant root system (1103P) was less down-regulated and canopies maintained evaporative fluxes ranging from 35-20 mmol vine(-1) s(-1) during the diurnal peak from spring to autumn, respectively, three times greater than those measured for Merlot on the drought-sensitive rootstock 101-14Mgt. The drought-tolerant root system grew more roots at depth during the warm summer dry period, and the whole root system conductance (k(r)) increased from 0.004 to 0.009 kg MPa(-1) s(-1) during that same time period. The changes in k(r) could not be explained by xylem anatomy or conductivity changes of individual root

  18. Responses of Heterodera glycines and Meloidogyne incognita infective juveniles to root tissues, root exudates, and root extracts from three plant species

    USDA-ARS?s Scientific Manuscript database

    The infective juvenile (J2) stage of endoparasitic plant nematodes uses plant chemical signals, released from roots, to localize and infect hosts. We examined the behaviors of soybean cyst nematode (Heterodera glycines) and root-knot nematode (Meloidogyne incognita) J2s in the presence of root signa...

  19. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat

    PubMed Central

    Vinod; Naik, Bhojaraja K.; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S. M. S.

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010–11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  20. Cr localization and speciation in roots of chromate fed Helianthus annuus L. seedlings using synchrotron techniques.

    PubMed

    de la Rosa, Guadalupe; Castillo-Michel, Hiram; Cruz-Jiménez, Gustavo; Bernal-Alvarado, Jesús; Córdova-Fraga, Teodoro; López-Moreno, Laura; Cotte, Marine

    2014-01-01

    In order to gain knowledge on the potential use of Helianthus annuus L. for the remediation of Cr(VI) polluted waters, hydroponics experiments were set up to determine Cr uptake and tolerance in different Cr(VI)-sulfate conditions, and Cr biotransformations. Results indicated that Cr(VI) promoted seed germination, and plant tolerance was higher at younger plant stages. Cr uptake was dependent on sulfate concentrations. The highest Cr levels in roots and shoots (13,700 and 2,500 mg kg(-1) dry weight (DW), respectively) were obtained in 1 mM sulfate. The lowest Cr uptake in roots (10,600 mg kg(-1) DW) was observed in seedlings treated with no sulfate. In shoots, Cr concentration was of 1,500 mg kg(-1)DW for the 1 mM sulfate treatment, indicating a different level of interaction between chromate and sulfate in both tissues. For the first time, using micro X-ray florescence (muXRF), we demonstrated Cr reaches the root stele and is located in the walls of xylem vessels. Bulk and micro X-ray Absorption Near-Edge Structure (muXANES) results showed that Cr in the roots is mostly in the form of Cr(III) phosphate (80%), with the remainder complexed to organic acids. Our results suggest this plant species may serve for Cr(VI) rhizofiltration purposes.

  1. Tooth Eruption without Roots

    PubMed Central

    2013-01-01

    Root development and tooth eruption are very important topics in dentistry. However, they remain among the less-studied and -understood subjects. Root development accompanies rapid tooth eruption, but roots are required for the movement of teeth into the oral cavity. It has been shown that the dental follicle and bone remodeling are essential for tooth eruption. So far, only limited genes have been associated with root formation and tooth eruption. This may be due to the difficulties in studying late stages of tooth development and tooth movement and the lack of good model systems. Transgenic mice with eruption problems and short or no roots can be used as a powerful model for further deciphering of the cellular, molecular, and genetic mechanisms underlying root formation and tooth eruption. Better understanding of these processes can provide hints on delivering more efficient dental therapies in the future. PMID:23345536

  2. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses.

    PubMed

    Arredondo, J Tulio; Johnson, Douglas A

    2011-11-01

    The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.

  3. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  4. Plant nutrition: root transporters on the move.

    PubMed

    Zelazny, Enric; Vert, Grégory

    2014-10-01

    Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Differential effects of fine root morphology on water dynamics in the root-soil interface

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  6. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  7. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development

    PubMed Central

    Ilina, Elena L.; Logachov, Anton A.; Laplaze, Laurent; Demchenko, Nikolay P.; Pawlowski, Katharina; Demchenko, Kirill N.

    2012-01-01

    Background and Aims In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. Methods The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Key Results Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. Conclusions The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem

  8. CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis.

    PubMed

    Meng, Ling; Buchanan, Bob B; Feldman, Lewis J; Luan, Sheng

    2012-01-31

    CLE peptides, named for the CLV3/ESR-related peptide family, participate in intercellular-signaling pathways. Here we investigated members of the CLE-like (CLEL) gene family that encode peptide precursors recently designated as root growth factors [Matsuzaki Y et al. (2010) Science 329:1065-1067]. CLEL precursors share a similar domain structure with CLE precursors (i.e., they contain a putative N-terminal signal peptide and a C-terminal conserved 13-amino-acid CLEL motif with a variable middle portion). Our evidence shows that, unlike root growth factor, CLEL peptides are (i) unmodified and (ii) function in the regulation of the direction of root growth and lateral root development. Overexpression of several CLEL genes in Arabidopsis resulted in either long roots or long and wavy roots that also showed altered lateral root patterning. Exogenous application of unmodified synthetic 13-amino-acid peptides derived from two CLEL motifs resulted in similar phenotypic changes in roots of wild-type plants. In CLEL peptide-induced long roots, the root apical meristem (RAM) was enlarged and consisted of an increased number of cells, compared with wild-type root apical meristems. The wavy-root phenotype appeared to be independent of other responses of the roots to the environment (e.g., gravitropism, phototropism, and thigmotropism). Results also showed that the inhibition of lateral initiation by CLEL overexpression was not overcome by the application of auxin. These findings establish CLEL as a peptide family with previously unrecognized regulatory functions controlling the pattern of root growth and lateral root development in plants.

  9. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    PubMed Central

    Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). Results The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (p<0.5). There was no significant difference between the laser irradiated group and the ultrasonic irrigated group (p>0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. Conclusion The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated. PMID:28957407

  10. Effects of partial root-zone irrigation on hydraulic conductivity in the soil–root system of maize plants

    PubMed Central

    Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua

    2011-01-01

    Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil–root system (Lsr) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with Lsr in both the whole and irrigated root zones for all three irrigation methods but not with Lsr in the non-irrigated root zone of FPRI. The total Lsr in the irrigated root zone of two PRIs was increased by 49.0–92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of Lsr in a half root zone to Lsr in the whole root zone was ∼50%. For FPRI, the Lsr in the irrigated root zone was close to that of the whole root zone. As for APRI, the Lsr in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the Lsr in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The Lsr in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627

  11. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine

    PubMed Central

    Taneja, Sonali; Kumari, Manju; Anand, Surbhi

    2014-01-01

    Objectives: The objective of this in vitro study was to assess the effect of different chelating agents on the calcium loss and its subsequent effect on the microhardness of the root dentin. Materials and Methods: Ten single rooted lower premolars were selected. The teeth were decoronated and thick transverse sections of 2 mm were obtained from the coronal third of the root. Each section was then divided into four quarters, each part constituting a sample specimen from the same tooth for each group. The treatment groups were: Group 1 (Control): 5% Sodium hypochlorite (NaOCl) for 5 min + distilled water for 5 min; Group 2: 5% NaOCl for 5 min + 17% ethylenediaminetetraacetic acid (EDTA) for 5 min; Group 3: 5% NaOCl for 5 min + 2.25% Peracetic acid (PAA) for 5 min and Group 4: 5% NaOCl for 5 min + QMix for 5 min respectively. The calcium loss of the samples was evaluated using the Atomic Absorption Spectrophotometer followed by determination of their microhardness using Vickers Hardness Tester. Data was analyzed using one-way ANOVA, Post hoc Tukey test and Pearson correlation. Results: The maximum calcium loss and minimum microhardness was observed in Group 3 followed by Group 2, Group 4 and Group 1. There was a statistically significant difference between all the groups except between Groups 2 and 4. Conclusions: Irrigation with NaOCl + 2.25% PAA caused the maximum calcium loss from root dentin and reduced microhardness. A negative correlation existed between the calcium loss and reduction in the microhardness of root dentin. PMID:24778513

  12. Evaluation of Blood Cell Attachment on Er:Yag Laser Applied Root Surface Using Scanning Electron Microscopy

    PubMed Central

    CEKICI, Ali; MADEN, Ilay; YILDIZ, Sercan; SAN, Tangul; ISIK, Gulden

    2013-01-01

    Background: Periodontal regeneration is dependent on the uninterrupted adhesion, maturation and absorption of fibrin clots to a periodontally compromised root surface. The modification of the root surface with different agents has been used for better fibrin clot formation and blood cell attachment. It is known that Er:YAG laser application on dentin removes the smear layer succesfully. Aim: The aim of this study is to observe blood cell attachment and fibrin network formation following ER:YAG laser irradiation on periodontally compromised root surfaces in comparison to chemical root conditioning techniques in vitro. Materials and methods: 40 dentin blocks prepared from freshly extracted periodontally compromised hopeless teeth. Specimens were divided in 5 groups; those applied with PBS, EDTA, Citric acid and Er:YAG. They were further divided into two groups: those which had received these applications, and the control group. The specimens were evaluated with scanning electron microscope and micrographs were taken. Smear layer and blood cell attachment scoring was performed. Results: In the Er:YAG laser applied group, smear layer were totally removed. In the blood applied specimens, better fibrin clot formation and blood cell attachment were observed in the Er:YAG group. In the group that had been applied with citric acid, the smear layer was also removed. The smear layer could not be fully removed in the EDTA group. Conclusion: Er:YAG laser application on the root dentin seems to form a suitable surface for fibrin clot formation and blood cell attachment. Further clinical studies to support these results are necessitated. PMID:23533017

  13. Effects of ethylenediaminetetraacetic, etidronic and peracetic acid irrigation on human root dentine and the smear layer.

    PubMed

    Lottanti, S; Gautschi, H; Sener, B; Zehnder, M

    2009-04-01

    To evaluate the effects of ethylenediaminetetraacetic (EDTA), etidronic (EA) and peracetic acid (PA) when used in conjunction with sodium hypochlorite (NaOCl) as root canal irrigants on calcium eluted from canals, smear layer, and root dentine demineralization after instrumentation/irrigation. Single-rooted human premolars were irrigated as follows (n = 12 per group): (1) 1% NaOCl during instrumentation, deionized water after instrumentation, (2) 1% NaOCl during, 17% EDTA after instrumentation, (3) a 1 : 1-mixture of 2% NaOCl and 18% EA during and after instrumentation, and (4) 1% NaOCl during, 2.25% PA after instrumentation. Irrigant volumes and contact times were 10 mL/15 min during and 5 mL/3 min after instrumentation. The evaluated outcomes were eluted calcium by atomic absorption spectroscopy, smear-covered areas by scanning electron microscopy in secondary electron mode and apparent canal wall decalcifications on root transsections in backscatter mode. For the smear layer analysis, sclerotic dentine was taken into consideration. Results were compared using appropriate parametric and nonparametric tests, alpha = 0.05. The statistical comparison of the protocols regarding calcium elution revealed that protocol (1) yielded less calcium than (3), which yielded less than protocols (2) and (4). Most of the instrumented canal walls treated with one of the decalcifying agents were free of smear layer. Protocols (1) and (3) caused no decalcification of root dentine, whilst (2) and (4) showed substance typical demineralization patterns. The decalcifying agents under investigation were all able to remove or prevent a smear layer. However, they eroded the dentine wall differently.

  14. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  15. The key players of the primary root growth and development also function in lateral roots in Arabidopsis.

    PubMed

    Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun

    2014-05-01

    The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.

  16. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types

    PubMed Central

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  17. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.

  18. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  19. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    PubMed

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  20. Root System Markup Language: Toward a Unified Root Architecture Description Language1[OPEN

    PubMed Central

    Pound, Michael P.; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Leitner, Daniel; Meunier, Félicien; Pridmore, Tony P.; Schnepf, Andrea

    2015-01-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. PMID:25614065

  1. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  2. Superior Root Hair Formation Confers Root Efficiency in Some, But Not All, Rice Genotypes upon P Deficiency.

    PubMed

    Nestler, Josefine; Wissuwa, Matthias

    2016-01-01

    Root hairs are a low-cost way to extend root surface area (RSA), water and nutrient acquisition. This study investigated to what extend variation exists for root hair formation in rice in dependence of genotype, phosphorus (P) supply, growth medium, and root type. In general, genotypic variation was found for three root hair properties: root hair length, density, and longevity. In low P nutrient solution more than twofold genotypic difference was detected for root hair length while only onefold variation was found in low P soil. These differences were mostly due to the ability of some genotypes to increase root hair length in response to P deficiency. In addition, we were able to show that a higher proportion of root hairs remain viable even in mature, field-grown plants under low P conditions. All investigated root hair parameters exhibited high correlations across root types which were always higher in the low P conditions compared to the high P controls. Therefore we hypothesize that a low P response leads to a systemic signal in the entire root system. The genotype DJ123 consistently had the longest root hairs under low P conditions and we estimated that, across the field-grown root system, root hairs increased the total RSA by 31% in this genotype. This would explain why DJ123 is considered to be very root efficient in P uptake and suggests that DJ123 should be utilized as a donor in breeding for enhanced P uptake. Surprisingly, another root and P efficient genotype seemed not to rely on root hair growth upon P deficiency and therefore must contain different methods of low P adaptation. Genotypic ranking of root hair properties did change substantially with growth condition highlighting the need to phenotype plants in soil-based conditions or at least to validate results obtained in solution-based growth conditions.

  3. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake

    USDA-ARS?s Scientific Manuscript database

    Plants are known to adjust their root systems to adapt to changing subsurface water conditions. However, most current land surface models (LSMs) use a prescribed, static root profile, which cuts off the interactions between soil moisture and root dynamics. In this paper, we implemented an optimality...

  5. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  6. Physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption.

    PubMed

    Noda, Yasuhiro; Watanabe, Kazuya; Sanagawa, Akimasa; Sobajima, Yu; Fujii, Satoshi

    2011-10-31

    Pressure ulcers can form with excess pressure and shearing stress on skin tissue. Because pressure ulcer is often accompanies by exudates, selection of appropriate topical emulsion ointment is difficult. Blended ointments consisting of emulsion base and water-soluble base are clinically used for adjustment of wound moist environment. Because regulating the amount of wound exudates can enhance treatment efficacy, two new blended ointments were developed. LY-SL blended ointment consisted of lysozyme hydrochloride water-in-oil (w/o) emulsion (LY-cream) and sulfadiazine macrogol (polyethylene glycol) ointment (SL-pasta). TR-SL blended ointment consisted of tretinoin tocoferil oil-in-water (o/w) emulsion (TR-cream) and SL-pasta (TR-SL). LY-SL and TR-SL were applied to Franz diffusion cell with cellulose membranes for the evaluation of water absorption characteristics at 32 °C. Water absorption rate constants (mg/cm(2)/min(0.5)) were 12.5, 16.3 and 34.6 for LY-cream, TR-cream and SL-pasta, respectively. Water absorption rate constants for LY-SL and TR-SL (SL-pasta 70%) exhibited intermediate values of 21.2 and 27.2, as compared to each ointment alone, respectively. Because amount of water absorbed was linearly related to square root of time, it was suggested that water-absorbable macrogol was surrounded by oily ingredients forming matrix structure. This diffusion-limited structure may regulate water absorption capacity. This is the first report of physicochemical properties of macrogol ointment and emulsion ointment blend developed for regulation of water absorption. The blended ointment can properly regulate amount of exudates in wounds and may be useful for treatment of pressure ulcers. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

    PubMed Central

    Khan, M. A.; Gemenet, Dorcus C.; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution.’ In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses. PMID:27847508

  8. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  9. Endoscopic root canal treatment.

    PubMed

    Moshonov, Joshua; Michaeli, Eli; Nahlieli, Oded

    2009-10-01

    To describe an innovative endoscopic technique for root canal treatment. Root canal treatment was performed on 12 patients (15 teeth), using a newly developed endoscope (Sialotechnology), which combines an endoscope, irrigation, and a surgical microinstrument channel. Endoscopic root canal treatment of all 15 teeth was successful with complete resolution of all symptoms (6-month follow-up). The novel endoscope used in this study accurately identified all microstructures and simplified root canal treatment. The endoscope may be considered for use not only for preoperative observation and diagnosis but also for active endodontic treatment.

  10. Root production method system

    Treesearch

    Wayne Lovelace

    2002-01-01

    The RPM system (Root Production Method) is a multistep production system of container tree production that places primary emphasis on the root system because the root system ultimately determines the tree's survival and performance in its outplanted environment. This particular container production system has been developed to facilitate volume production, in a...

  11. Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus).

    PubMed

    Meng, Zhi Bin; You, Xue Di; Suo, Dong; Chen, Yun Long; Tang, Caixian; Yang, Jian Li; Zheng, Shao Jian

    2013-08-01

    Formation of cluster roots is a typical morphological response to phosphorus (P) deficiency in white lupin (Lupinus albus), but its physiological and molecular mechanisms are still unclear. We investigated the role of auxin in the initiation of cluster roots by distinguishing the sources of auxin, measuring the longitudinal distribution patterns of free indole-3-acetic acid (IAA) along the root and the related gene expressions responsible for polar auxin transport (PAT) in different developmental stages of cluster roots. We found that removal of shoot apex or primary root apex and application of auxin-influx or -efflux transport inhibitors, 3-chloro-4-hydroxyphenylacetic acid, N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid, to the stem did not affect the number of cluster roots and the free-IAA concentration in the roots of P-deficient plants, but when these inhibitors were applied directly to the growth media, the cluster-root formation was greatly suppressed, suggesting the fundamental role of root-derived IAA in cluster-root formation. The concentration of free IAA in the roots was higher in P-deficient plants than in P-adequate ones, and the highest in the lateral-root apex and the lowest in the mature cluster roots. Meanwhile the expression patterns of LaAUX1, LaPIN1 and LaPIN3 transcripts related to PAT was consistent with concentrations of free IAA along the lateral root, indicating the contribution of IAA redistribution in the cluster-root development. We proposed that root-derived IAA plays a direct and important role in the P-deficiency-induced formation of cluster roots. Copyright © Physiologia Plantarum 2012.

  12. Physical root-soil interactions

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  13. Physical root-soil interactions.

    PubMed

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-11-16

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  14. Root Hydraulics and Root Sap Flow in a Panamanian Low-Land Tropical Forest

    NASA Astrophysics Data System (ADS)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.; Beverly, D.; Speckman, H. N.

    2017-12-01

    In the tropics, trees are subjected to increasingly frequent and severe droughts driven by climate change. Given the hydrological benefits associated with tropical forests, such as reduced peak runoff during high precipitation events and increased base flow during drought periods ("sponge-effect"), the underlying plant-hydrological processes at the soil-plant interface have become the focus of recent research efforts. In Panama, the 2015/16 El Niño-Southern Oscillation (ENSO) event ranks amongst the driest and hottest periods on record, thus providing an excellent opportunity to study the effects of drought on tropical forests. Starting in 2015, we instrumented 76 trees with heat-ratio sap flow sensors in regrowing secondary forest (8-, 25-, and 80-year old stands) in the 15 km2 Agua Salud study area, located in central Panama. Of those trees, 16 individuals were instrumented with additional sap flow sensors on three roots each. Data were logged every 30 minutes and soil moisture was measured at 10, 30, 50, and 100 cm depth. Meteorological data were taken from a nearby met-station. Rooting depth and root density were assessed in eight 2×2×2 m soil pits. In April 2017, we measured hydraulic conductance and vulnerability to cavitation of eight species using the centrifuge technique. Trees in 8-year old forest limited transpiration during the drought whereas no such limitation was evident in trees of the 80-year old forest. Root sap flow data show seasonal shifts in water uptake between individual roots of a given tree, with sap flow decreasing in some roots while simultaneously increasing in other roots during the wet-dry season transition. Roots followed a typical log distribution along the profile, with overall root densities of 46, 43, and 52 roots m-2 in the 8-, 25-, and 80-yo stand, respectively. Roots were found up to 200 cm depth in all forests, with roots >5 cm occurring at lower depths (>125 cm) only in 25- and 80-year old forests. Maximum hydraulic

  15. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  16. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  17. Molecular Mechanisms of Root Gravitropism.

    PubMed

    Su, Shih-Heng; Gibbs, Nicole M; Jancewicz, Amy L; Masson, Patrick H

    2017-09-11

    Plant shoots typically grow against the gravity vector to access light, whereas roots grow downward into the soil to take up water and nutrients. These gravitropic responses can be altered by developmental and environmental cues. In this review, we discuss the molecular mechanisms that govern the gravitropism of angiosperm roots, where a physical separation between sites for gravity sensing and curvature response has facilitated discovery. Gravity sensing takes place in the columella cells of the root cap, where sedimentation of starch-filled plastids (amyloplasts) triggers a pathway that results in a relocalization to the lower side of the cell of PIN proteins, which facilitate efflux of the plant hormone auxin efflux. Consequently, auxin accumulates in the lower half of the root, triggering bending of the root tip at the elongation zone. We review our understanding of the molecular mechanisms that control this process in primary roots, and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture and soil exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Root Gravitropism: Quantification, Challenges, and Solutions.

    PubMed

    Muller, Lukas; Bennett, Malcolm J; French, Andy; Wells, Darren M; Swarup, Ranjan

    2018-01-01

    Better understanding of root traits such as root angle and root gravitropism will be crucial for development of crops with improved resource use efficiency. This chapter describes a high-throughput, automated image analysis method to trace Arabidopsis (Arabidopsis thaliana) seedling roots grown on agar plates. The method combines a "particle-filtering algorithm with a graph-based method" to trace the center line of a root and can be adopted for the analysis of several root parameters such as length, curvature, and stimulus from original root traces.

  19. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting

    PubMed Central

    Xu, Dongyang; Miao, Jiahang; Yumoto, Emi; Yokota, Takao; Asahina, Masashi; Watahiki, Masaaki

    2017-01-01

    Abstract Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number. PMID:29016906

  20. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  1. Tree-root control of shallow landslides

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots

  2. Root tips moving through soil

    PubMed Central

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  3. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply

    PubMed Central

    Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M.

    2016-01-01

    Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the

  5. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  6. [Root canal treatment of mandibular first premolar with 4 root canals: a case report].

    PubMed

    Liu, Xin-yang; Zhan, Fu-Liang

    2015-10-01

    The mandibular first premolar can be considered one of the most challenging teeth to treat, due to the complexity of its root canal morphology and increased incidence of multiple canals. A case of endodontic treatment of a mandibular first premolar exhibiting a total of 4 distinct root canals and 4 apical foramina was described. Anatomic variation of root canal morphology should be considered in endodontic treatment to ensure a favorable healing outcome, and its identification could be enhanced by careful examination using a dental operating microscope. Obturation of root canals using a warm vertical compaction technique with a highly-radiopaque root canal sealer, such as AH Plus, after careful ultrasonic activated irrigation might allow the flow of sealer into the narrowed but unprepared part of the canal, thereby facilitating optimum chemo-mechanical debridement of the root canal system.

  7. Root systems of chaparral shrubs.

    PubMed

    Kummerow, Jochen; Krause, David; Jow, William

    1977-06-01

    Root systems of chaparral shrubs were excavated from a 70 m 2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54' N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m 2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m 2 for the open ground is still high enough to make the establishment of other shrubs difficult.

  8. In-vivo analysis of the uptake process of heavy metals through maize roots by using synchrotron X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Bae Geun; Lee, Sang Joon; Gil, Kyehwan

    2016-12-01

    The uptake of heavy metals by plants has been receiving much attention for crop contamination and phytoremediation. We employed synchrotron X-ray fluorescence (XRF) spectroscopy for an in-vivo analysis of heavy-metal uptake through a strand of maize root. A focused X-ray beam of 2.5 × 2.5 μm2 in physical dimensions was scanned along horizontal lines of the maize root at intervals of 3 μm at the 4B X-ray micro-diffraction beamline of the Pohang Accelerator Laboratory (PAL). Time-resolved mapping of the fluorescence intensities from multiple metallic elements in the root tissues provided information about the radial distributions of heavy-metal elements and their temporal variations. The concentrated core stream of heavy-metal elements spread radially up to roughly 500 μm, corresponding to 40 % of the root diameter. The absorption characteristics of three heavy metals, Cr, Mn and Ni, and their physiological features were analyzed. The absolute concentrations and the contents of the heavy-metal elements in the tested maize roots were quantitatively evaluated by using the calibration curve obtained from reference samples with preset concentrations. The uptake quantities of the tested heavy-metal elements are noticeably different, although their molecular weights are similar. This study should be helpful for understanding plant physiology related with heavy-metal uptake.

  9. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice

    PubMed Central

    Uraguchi, Shimpei; Mori, Shinsuke; Kuramata, Masato; Kawasaki, Akira; Arao, Tomohito; Ishikawa, Satoru

    2009-01-01

    Physiological properties involved in divergent cadmium (Cd) accumulation among rice genotypes were characterized using the indica cultivar ‘Habataki’ (high Cd in grains) and the japonica cultivar ‘Sasanishiki’ (low Cd in grains). Time-dependence and concentration-dependence of symplastic Cd absorption in roots were revealed not to be responsible for the different Cd accumulation between the two cultivars because root Cd uptake was not greater in the Cd-accumulating cultivar ‘Habataki’ compared with ‘Sasanishiki’. On the other hand, rapid and greater root-to-shoot Cd translocation was observed in ‘Habataki’, which could be mediated by higher abilities in xylem loading of Cd and transpiration rate as a driving force. To verify whether different abilities in xylem-mediated shoot-to-root translocation generally account for the genotypic variation in shoot Cd accumulation in rice, the world rice core collection, consisting of 69 accessions which covers the genetic diversity of almost 32 000 accessions of cultivated rice, was used. The results showed strong correlation between Cd levels in xylem sap and shoots and grains among the 69 rice accessions. Overall, the results presented in this study revealed that the root-to-shoot Cd translocation via the xylem is the major and common physiological process determining the Cd accumulation level in shoots and grains of rice plants. PMID:19401409

  10. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  11. Rooted in physics

    NASA Astrophysics Data System (ADS)

    Wade, Jess

    2018-04-01

    Roots are fundamental to a plant’s survival, but some of their behaviour at a cellular level remains a mystery to scientists. Jess Wade talks to Giovanni Sena, who is particularly interested in how electric fields can affect root growth and regeneration

  12. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer.

    PubMed

    Chang, Seok-Woo; Lee, So-Youn; Kang, Soo-Kyung; Kum, Kee-Yeon; Kim, Eun-Cheol

    2014-10-01

    The objective of this study was to compare the cytotoxicity, inflammatory response, osteogenic effect, and the signaling mechanism of these biologic activities of 4 calcium compound-based root canal sealers (ie, Sealapex [Sybron Kerr, WA], apatite root sealer [ARS; Dentsply Sankin, Tokyo, Japan], MTA Fillapex [Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil], and iRoot SP [Innovative BioCreamix Inc, Vancouver, Canada]) in human periodontal ligament cells. Cytotoxicity was assessed using the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction, and Western blot analysis. Osteogenic potential was evaluated by alkaline phosphatase activity, alizarin red staining, and marker genes by reverse-transcription polymerase chain reaction. The signal transduction pathways were examined by Western blotting. None of the sealers were cytotoxic. ARS, MTA Fillapex, and iRoot SP induced a lower expression of proinflammatory mediators than Sealapex. All sealers increased ALP activity and the formation of mineralized nodules and up-regulated the expression of osteoblastic marker messenger RNA. ARS, MTA Fillapex, and iRoot SP showed superior osteogenic potential compared with Sealapex. The expression and/or activation of integrin receptors and downstream signaling molecules, including focal adhesion kinase, paxillin, Akt, mitogen-activated protein kinase, and nuclear factor κB, was induced by ARS, MTA Fillapex, and iRoot SP treatment but not by Sealapex treatment. We show for the first time that ARS, MTA Fillapex, and iRoot SP induce a lower expression of inflammatory mediators and enhance osteoblastic differentiation of PDLCs via the integrin-mediated signaling pathway compared with Sealapex. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    PubMed

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  14. Assessment of Root Resorption and Root Shape by Periapical and Panoramic Radiographs: A Comparative Study.

    PubMed

    Ahuja, Puneeta D; Mhaske, Sheetal P; Mishra, Gaurav; Bhardwaj, Atul; Dwivedi, Ruby; Mangalekar, Sachin B

    2017-06-01

    One of the common findings encountered by the clinician at the end of orthodontic treatment is the apical root resorption. Root resorption occurs to various degrees. A severe form of root resorption is characterized by shortening of root for more than 4 mm or more than one-third of the total tooth length. A low incidence rate of resorption is observed based on radiographic findings for the diagnosis of root resorption, panoramic radiography, and periapical radiography. Hence, we evaluated the accuracy of panoramic radiographic films for assessing the root resorption in comparison with the periapical films. This study included the assessment of all the cases in which pre- and post-treatment radiographs were available for analysis of the assessment of the amount of root resorption. Complete records of 80 patients were analyzed. Examination of a total of 900 teeth was done. Mean age of the patients in this study was 21 years ranging from 11 to 38 years. The majority of the patients in the present study were females. All the treatments were carried out by registered experienced orthodontists having minimum experience of more than 10 years. All the cases were divided into two study groups. Group I comprised panoramic radiographic findings, while group II consisted of periapical radiographic findings. For the measurement of crown portion, root portion, and the complete root length, magnification loops of over 100 powers with parallax correction with inbuilt grids were used. Assessment of the tooth length and the crown length was done by the same observers. All the results were analyzed by Statistical Package for the Social Sciences software version 6.0. Maximum amount of root resorption was observed in case of maxillary central incisors and canines among group I and II cases respectively. However, nonsignificant difference was obtained while comparing the mean root resorption in relation to maxillary incisors and canines among the two study groups. While comparing the

  15. [Root resorption and orthodontic treatment].

    PubMed

    Sebbar, M; Bourzgui, F

    2011-09-01

    The aim of our study was to investigate the prevalence of root resorption during and at the end of orthodontic treatment and to assess its relationship with age, sex and treatment with or without extractions. Our study included 82 patients (51 women and 31 men) aged between 6 and 38 years, who received orthodontic treatment. Evaluation of root resorption was performed on panoramics at the beginning and at the end of orthodontic treatment. All the teeth were observed. The degree of root resorption was increased respectively by the standards in four ordinal levels (4). Data analysis was performed by Epi Info 6.0. Root resorption was present in all the teeth and maxillary incisors are the most affected. The correlation between age and root resorption was significant (p = 0.008). Women were more affected by resorption (P = 0.002). Patients treated with extraction showed more root resorption (p = 0.12). Our results suggest that orthodontic treatment is involved in the development of root resorption. The most often teeth resorbed are maxillary incisors. Age, sex and orthodontic extractions can be considered as risk factors for root resorption.

  16. Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply.

    PubMed

    Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M

    2016-05-01

    Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the

  17. Decreased levels of matrix metalloproteinase-2 in root-canal exudates during root canal treatment.

    PubMed

    Pattamapun, Kassara; Handagoon, Sira; Sastraruji, Thanapat; Gutmann, James L; Pavasant, Prasit; Krisanaprakornkit, Suttichai

    2017-10-01

    To determine the matrix metalloproteinase-2 (MMP-2) levels in root-canal exudates from teeth undergoing root-canal treatment. The root-canal exudates from six teeth with normal pulp and periradicular tissues that required intentional root canal treatment for prosthodontic reasons and from twelve teeth with pulp necrosis and asymptomatic apical periodontitis (AAP) were sampled with paper points for bacterial culture and aspirated for the detection of proMMP-2 and active MMP-2 by gelatin zymography and the quantification of MMP-2 levels by ELISA. By gelatin zymography, both proMMP-2 and active MMP-2 were detected in the first collection of root-canal exudates from teeth with pulp necrosis and AAP, but not from teeth with normal pulp, and their levels gradually decreased and disappeared at the last collection. Consistently, ELISA demonstrated a significant decrease in MMP-2 levels in the root-canal exudates of teeth with pulp necrosis and AAP following root canal procedures (p<0.05). Furthermore, the MMP-2 levels were significantly lower in the negative bacterial culture than those in the positive bacterial culture (p<0.001). The levels of MMP-2 in root-canal exudates from teeth with pulp necrosis and AAP were gradually reduced during root canal procedures. Future studies are required to determine if MMP-2 levels may be used as a biomolecule for the healing of apical lesions, similar to the clinical application of MMP-8 as a biomarker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  20. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  1. Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens.

    PubMed

    Wang, Ling Ling; Wang, En Tao; Liu, Jie; Li, Ying; Chen, Wen Xin

    2006-10-01

    Agrobacterium strains have been frequently isolated from the root nodules of different legumes. Various possible mechanisms have been proposed to explain the existence of these bacteria in nodules, but there is no sufficient experimental evidence to support the estimations. In this work, we proved that the Agrobacterium strain CCBAU 81181, which was originally isolated from the root nodules of Onobrychis viciaefolia, and a symbiotic strain of Sinorhizobium meliloti CCBAU 10062 could coinhabit the root nodules of Melilotus dentatus. Analyses were performed by using a fluorescence marker, reisolation of bacteria from nodules, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole cellular proteins, and polymerase chain reaction amplification of symbiotic genes. The inoculation of A. tumefaciens CCBAU 81181 did not affect the growth and nodulation of plants. CCBAU 81181 and 24 other Agrobacterium strains isolated from nodules were incapable of nodulating on their original or alternative host and 22 strains of these strains were endophytes in the roots and stems of their hosts. Also, the tumor-inducing A. tumefaciens strains IAM 13129(T) and C58 were found capable of entering the roots of Glycyrrhiza pallidiflora, but did not cause pathogenic symptoms. With these results, we conclude that A. tumefaciens strains could be endophytic bacteria in the roots, stems, and root nodules. This finding partially explains why Agrobacterium strains were frequently isolated from the surface-sterilized nodules.

  2. Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants.

    PubMed

    Liu, Shiliang; Yang, Rongjie; Pan, Yuanzhi; Ma, Mingdong; Pan, Jiang; Zhao, Yan; Cheng, Qingsu; Wu, Mengxi; Wang, Maohua; Zhang, Lin

    2015-09-01

    Nitric oxide (NO) is a stress-signaling molecule in plants that mediates a wide range of physiological processes and responses to metal toxicity. In this work, various NO modulators (NO donor: SNP; NO scavenger: cPTIO; NO synthase inhibitor: l-NAME; and SNP analogs: sodium nitrite/nitrate and sodium ferrocyanide) were investigated to determine the role of NO in Trifolium repens L. plants exposed to Cd. Cd (100μM) markedly reduced biomass, NO production and chlorophyll (Chl a, Chl b and total Chl) concentration but stimulated reactive oxygen species (ROS) and Cd accumulation in plants. SNP (50μM) substantially attenuated growth inhibition, reduced hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) levels, stimulated ROS-scavenging enzymes/agents, and mitigated the H(+)-ATPase inhibition in proton pumps. Interestingly, SNP considerably up-regulated the levels of jasmonic acid (JA) and proline in plant tissues but down-regulated the levels of ethylene (ET) in both shoots and roots and the level of salicylic acid (SA) in roots only, which might be related to the elevated NO synthesis. Additionally, SNP (25-200μM) regulated mineral absorption and, particularly at 50μM, significantly enhanced the uptake of shoot magnesium (Mg) and copper (Cu) and of root calcium (Ca), Mg and iron (Fe). Nevertheless, the effects of SNP on plant growth were reversed by cPTIO and l-NAME, suggesting that the protective effect of SNP might be associated with NO synthesis in vivo. Moreover, SNP analogs did not display roles similar to that of SNP. These results indicated that NO depleted Cd toxicity by eliminating oxidative damage, enhancing minerals absorption, regulating proton pumps, and maintaining hormone equilibrium. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: A FACE study

    USGS Publications Warehouse

    Phillips, D.L.; Johnson, M.G.; Tingey, D.T.; Catricala, C.E.; Hoyman, T.L.; Nowak, R.S.

    2006-01-01

    Fine roots (??? 1mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free-air CO2 enrichment (FACE) facility in the Mojave Desert of southern Nevada, USA. Three replicate 25m diameter FACE rings were maintained at ambient (??? 370 ??mol mol-1) and elevated CO2 (??? 550 ??mol mol-1) atmospheric concentrations. Twenty-eight minirhizotron tubes were placed in each ring to sample three microsite locations: evergreen Larrea shrubs, drought-deciduous Ambrosia shrubs, and along systematic community transects (primarily in shrub interspaces which account for ??? 85% of the area). Seasonal dynamics were similar for ambient and elevated CO2: fine root production peaked in April-June, with peak standing crop occurring about 1 month later, and peak mortality occurring during the hot summer months, with higher values for all three measures in a wet year compared with a dry year. Fine root standing crop, production, and mortality were not significantly different between treatments except standing crop along community transects, where fine root length was significantly lower in elevated CO2. Fine root turnover (annual cumulative mortality/mean standing crop) ranged from 2.33 to 3.17 year-1, and was not significantly different among CO2 treatments, except for community transect tubes where it was significantly lower for elevated CO2. There were no differences in fine root responses to CO2 between evergreen (Larrea) and drought-deciduous (Ambrosia) shrubs. Combined with observations of increased leaf-level water-use efficiency and lack of soil moisture differences, these results suggest that under elevated CO2 conditions, reduced root systems (compared with ambient CO2) appear sufficient

  4. Lead and cadmium in mangrove root crab (Goniopsis cruentata), in natura and at food processing stages.

    PubMed

    Costa, Renata G; Bah, Homegnon A F; Bandeira, Matheus J; Oliveira, Sérgio S P; Menezes-Filho, José A

    2017-09-01

    Lead (Pb) and cadmium (Cd) were determined in mangrove root crab (Goniopsis cruentata) tissues (in natura) and in two culinary preparations by graphite furnace atomic absorption spectrometry. Mangrove root crab samples from three sampling sites along the Jaguaripe River, Bahia, Brazil, where lead-glazed ceramics are produced, and from two commercial preparations were collected or purchased in March and April 2016. Cd levels in raw and processed samples were below the methods' limits of detection (0.016 mg kg -1 ), while Pb levels in the raw tissues were determined only in the gills (0.67 mg kg -1 ) and in the hepatopancreas (0.14 mg kg -1 ). However, Pb levels increased from 0.05 to 2.84 mg kg -1 in boiled/sorted muscle and in the traditional stew (with a 57-fold increase), respectively. Pb levels augmented significantly in the processed food due to migration of Pb used in the glazing of cooking ceramic utensils, surpassing the Brazilian and international safety limits.

  5. Root susceptibility and inoculum production from roots of eastern oak species to Phytophthora ramorum

    USDA-ARS?s Scientific Manuscript database

    Little is known about root susceptibility of eastern tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Oak radicles of several eastern oak species were exposed to zoospore suspensions of 1, 10, 100, or 1000 zoospores per ml at ...

  6. BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.

    PubMed

    Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu

    2013-09-15

    Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.

  7. Root xylem embolisms and refilling. Relation To water potentials of soil, roots, and leaves, and osmotic potentials of root xylem Sap

    PubMed

    McCully

    1999-03-01

    Embolism and refilling of vessels was monitored directly by cryomicroscopy of field-grown corn (Zea mays L.) roots. To test the reliability of an earlier study showing embolism refilling in roots at negative leaf water potentials, embolisms were counted, and root water potentials (Psiroot) and osmotic potentials of exuded xylem sap from the same roots were measured by isopiestic psychrometry. All vessels were full at dawn (Psiroot -0.1 MPa). Embolisms were first seen in late metaxylem vessels at 8 AM. Embolized late metaxylem vessels peaked at 50% at 10 AM (Psiroot -0.1 MPa), fell to 44% by 12 PM (Psiroot -0.23 MPa), then dropped steadily to zero by early evening (Psiroot -0.28 MPa). Transpiration was highest (8.5 μg cm-2 s-1) between 12 and 2 PM when the percentage of vessels embolized was falling. Embolized vessels were refilled by liquid moving through their lateral walls. Xylem sap was very low in solutes. The mechanism of vessel refilling, when Psiroot is negative, requires further investigation. Daily embolism and refilling in roots of well-watered plants is a normal occurrence and may be a component of an important hydraulic signaling mechanism between roots and shoots.

  8. Root water uptake and lateral interactions among root systems in a temperate forest

    NASA Astrophysics Data System (ADS)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  9. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy.

    PubMed

    Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia

    2016-05-01

    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. © 2016 CNRS. New Phytologist © 2016 New Phytologist Trust.

  10. Re-do aortic root replacement after an allograft aortic root replacement.

    PubMed

    Vrtik, Marian; Tesar, Peter J

    2009-10-01

    Structural degeneration of allograft aortic root is a global process. In addition to valvular degeneration, the allograft wall calcification poses a risk of systemic calcific embolization and late phase anastomotic aneurysm formation and rupture (anecdotal). Furthermore, the valve annulus is often small, and the tissues are rigid making the implantation of an adequately sized prosthesis within the allograft wall difficult. To avoid these issues, we routinely perform re-do aortic root replacement with either a mechanical valve conduit or bio-root composite graft. The technique has been successfully used in 22 consecutive patients with no operative mortality and minimal morbidity.

  11. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Treesearch

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  12. Staining human lymphocytes and onion root cell nuclei with madder root.

    PubMed

    Cücer, N; Guler, N; Demirtas, H; Imamoğlu, N

    2005-01-01

    We performed staining experiments on cells using natural dyes and different mordants using techniques that are used for wool and silk dyeing. The natural dye sources were madder root, daisy, corn cockle and yellow weed. Ferrous sulfate, copper sulfate, potassium tartrate, urea, potassium aluminum sulfate and potassium dichromate were used as mordants. Distilled water, distilled water plus ethanol, heptane, and distilled water plus methanol were used as solvents. All dye-mordant-solvent combinations were studied at pH 2.4, 3.2 and 4.2. The generic staining procedure was to boil 5-10 onion roots or stimulated human lymphocyte (SHL) preparations in a dye bath on a hot plate. Cells were examined at every half hour. For multicolor staining, madder-dyed lymphocytes were decolorized, then stained with Giemsa. The AgNOR technique was performed following the decolorization of Giemsa stained lymphocytes. Good results were obtained for both onion root cells and lymphocytes that were boiled for 3 h in a dye bath that included 4 g madder root, 4 g ferrous sulfate as mordant in 50 ml of 1:1 (v/v) methanol:distilled water. The pH was adjusted to 4.2 with 6 ml acetic acid. We conclude that madder root has potential as an alternative dye for staining biological materials.

  13. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition.

    PubMed

    Chen, Hongmei; Oram, Natalie J; Barry, Kathryn E; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-Lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra

    2017-11-01

    Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we simultaneously assessed the effects of three pathways-root litter quality, soil biota, and soil abiotic conditions-on the relationships between plant diversity (in terms of species richness and the presence/absence of grasses and legumes) and root decomposition using structural equation modeling. Our final structural equation model explained 70% of the variation in root mass loss. However, different measures of plant diversity included in our model operated via different pathways to alter root mass loss. Plant species richness had a negative effect on root mass loss. This was partially due to increased Oribatida abundance, but was weakened by enhanced root potassium (K) concentration in more diverse mixtures. Equally, grass presence negatively affected root mass loss. This effect of grasses was mostly mediated via increased root lignin concentration and supported via increased Oribatida abundance and decreased root K concentration. In contrast, legume presence showed a net positive effect on root mass loss via decreased root lignin concentration and increased root magnesium concentration, both of which led to enhanced root mass loss. Overall, the different measures of plant diversity had contrasting effects on root decomposition. Furthermore, we found that root chemistry and soil biota but not root morphology or soil abiotic conditions mediated these effects of plant diversity on root decomposition.

  14. Root biomass, root/shoot ratio, and soil water content under perennial grasses with different nitrogen rates

    USDA-ARS?s Scientific Manuscript database

    Roots help in soil water and nutrient uptake and provide C input for soil C sequestration, but information on root biomass of bioenergy perennial grasses is lacking. Root/shoot ratios are used to estimate crop root biomass and C inputs, but the values for perennial grasses are also scanty. We examin...

  15. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  16. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings: passive or active uptake?

    PubMed Central

    2010-01-01

    Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water

  17. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil.

    PubMed

    Fan, Pingping; Guo, Dali

    2010-06-01

    Among tree fine roots, the distal small-diameter lateral branches comprising first- and second-order roots lack secondary (wood) development. Therefore, these roots are expected to decompose more rapidly than higher order woody roots. But this prediction has not been tested and may not be correct. Current evidence suggests that lower order roots may decompose more slowly than higher order roots in tree species associated with ectomycorrhizal (EM) fungi because they are preferentially colonized by fungi and encased by a fungal sheath rich in chitin (a recalcitrant compound). In trees associated with arbuscular mycorrhizal (AM) fungi, lower order roots do not form fungal sheaths, but they may have poorer C quality, e.g. lower concentrations of soluble carbohydrates and higher concentrations of acid-insolubles than higher order roots, thus may decompose more slowly. In addition, litter with high concentrations of acid insolubles decomposes more slowly under higher N concentrations (such as lower order roots). Therefore, we propose that in both AM and EM trees, lower order roots decompose more slowly than higher order roots due to the combination of poor C quality and high N concentrations. To test this hypothesis, we examined decomposition of the first six root orders in Fraxinus mandshurica (an AM species) and Larix gmelinii (an EM species) using litterbag method in northeastern China. We found that lower order roots of both species decomposed more slowly than higher order roots, and this pattern appears to be associated mainly with initial C quality and N concentrations. Because these lower order roots have short life spans and thus dominate root mortality, their slow decomposition implies that a substantial fraction of the stable soil organic matter pool is derived from these lower order roots, at least in the two species we studied.

  18. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  19. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  20. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    NASA Astrophysics Data System (ADS)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  1. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    PubMed

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  2. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  3. Osmolarity and root canal antiseptics.

    PubMed

    Rossi-Fedele, G; Guastalli, A R

    2014-04-01

    Antiseptics used in endodontics for disinfection purposes include root canal dressings and irrigants. Osmotic shock is known to cause the alteration of microbial cell viability and might have a role in the mechanism of action of root canal antiseptics. The aim of this review was to determine the role of osmolarity on the performance of antiseptics in root canal treatment. A literature search using the Medline electronic database was conducted up to 30 May 2013 using the following search terms and combinations: 'osmolarity AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmolality AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmotic AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmosis AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; sodium chloride AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm'. Publications were included if the effects of osmolarity on the clinical performance of antiseptics in root canal treatment were stated, if preparations with different osmolarities values were compared and if they were published in English. A hand search of articles published online, 'in press' and 'early view', and in the reference list of the included papers was carried out following the same criteria. A total of 3274 publications were identified using the database, and three were included in the review. The evidence available in endodontics suggests a possible role for hyperosmotic root canal medicaments as disinfectants, and that there is no influence of osmolarity on the tissue dissolution capacity of sodium hypochlorite. There are insufficient data to obtain a sound conclusion regarding the role of hypo-osmosis in root canal disinfection, or osmosis in any further desirable

  4. Environmental Control of Root System Biology.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs.

  5. Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment.

    PubMed

    Blamey, F Pax C; Hernandez-Soriano, Maria C; Cheng, Miaomiao; Tang, Caixian; Paterson, David J; Lombi, Enzo; Wang, Wei Hong; Scheckel, Kirk G; Kopittke, Peter M

    2015-11-01

    Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species' tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg(-1) leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.

    PubMed

    Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai

    2015-10-20

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.

  7. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  8. Hydrologic regulation of plant rooting depth

    PubMed Central

    Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-01-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923

  9. Hydrologic regulation of plant rooting depth.

    PubMed

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  10. Hydrologic regulation of plant rooting depth

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  11. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    PubMed

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  12. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  13. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  14. Endodontic Microsurgical Treatment of a Three-rooted Mandibular First Molar with Separate Distolingual Root: Report of One Case.

    PubMed

    Wang, Han Guo; Xu, Ning; Yu, Qing

    The separate distolingual (DL) roots of three-rooted mandibular first molars are thought to be too difficult for performing apical surgery. This article represents microsurgical treatment of a three-rooted mandibular first molar with a separate DL root. The procedure includes incision and flap retraction, osteotomy, apicoectomy, retropreparation and retrofilling of the root canal, using micro instruments, ultrasonic retrotips and mineral trioxide aggregate (MTA) under a dental operating microscope. Two mm in length of apical root resection, 2 mm in depth of root canal retropreparation with a personalised ultrasonic retrotip, and 2 mm in length of retrofilling with MTA are the key points for accomplishment of apical surgery on separate DL roots. The case was followed up for 15 months after surgery. Clinical and radiographic examinations revealed complete healing of periapical tissue. Separate DL roots of three-rooted mandibular first molars can be treated by endodontic microsurgery with modifications from standard protocol.

  15. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley.

    PubMed

    Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P

    2017-08-01

    The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.

  16. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  17. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  18. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    PubMed

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination

    PubMed Central

    Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-01-01

    Background One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. Material and Methods 60 human mandibular premolars with curvatures between 30–49° and radii between 2–4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Results Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) (P<0.05). The ProTaper Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system (P<0.05). Conclusions Rotary instrumentation systems often generate root defects, but the ProTaper NEXT system generated fewer dentinal defects than the ProTaper Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words:Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture. PMID:29167712

  20. Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis.

    PubMed

    Uga, Yusaku; Assaranurak, Ithipong; Kitomi, Yuka; Larson, Brandon G; Craft, Eric J; Shaff, Jon E; McCouch, Susan R; Kochian, Leon V

    2018-04-20

    Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines derived from a cross between lowland indica rice, IR64, and upland tropical japonica rice, Kinandang Patong, (IK-CSSLs), using 2D & 3D root phenotyping platforms. Lengths of seminal and crown roots in the IK-CSSLs grown under hydroponic conditions were measured by 2D image analysis (RootReader2D). Twelve CSSLs showed significantly longer seminal root length than the recurrent parent IR64. Of these, 8 CSSLs also exhibited longer total length of the three longest crown roots compared to IR64. Three-dimensional image analysis (RootReader3D) for these CSSLs grown in gellan gum revealed that only one CSSL, SL1003, showed significantly longer total root length than IR64. To characterize the root morphology of SL1003 under soil conditions, SL1003 was grown in Turface, a soil-like growth media, and roots were quantified using RootReader3D. SL1003 had larger total root length and increased total crown root length than did IR64, although its seminal root length was similar to that of IR64. The larger TRL in SL1003 may be due to increased crown root length. SL1003 carries an introgression from Kinandang Patong on the long arm of chromosome 1 in the genetic background of IR64. We conclude that this region harbors a QTL controlling crown root elongation.

  1. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  2. Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment1[OPEN

    PubMed Central

    Blamey, F. Pax C.; Hernandez-Soriano, Maria C.; Cheng, Miaomiao; Tang, Caixian; Paterson, David J.; Lombi, Enzo; Wang, Wei Hong; Scheckel, Kirk G.; Kopittke, Peter M.

    2015-01-01

    Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species’ tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg–1 leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment. PMID:26395840

  3. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  4. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  5. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  6. Aquaporins and root water uptake

    USDA-ARS?s Scientific Manuscript database

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  7. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots.

    PubMed

    Li, Dien; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Jaffé, Peter R; Koster van Groos, Paul; Scheckel, Kirk G; Segre, Carlo U; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  8. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  9. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE PAGES

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; ...

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  10. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  11. Electron-paramagnetic-resonance studies of leghaemoglobins from soya-bean and cowpea root nodules. Identification of nitrosyl-leghaemoglobin in crude leghaemoglobin preparations

    PubMed Central

    Maskall, C. Sidney; Gibson, John F.; Dart, Peter J.

    1977-01-01

    1. Leghaemoglobins from soya-bean (Glycine max) and cowpea (Vigna unguiculata) root nodules were purified by chromatography on DEAE-cellulose phosphate columns at pH8.0 and pH5.8, to avoid the relatively low pH (5.2) commonly used to purify these proteins. 2. E.p.r. (electron-paramagnetic-resonance) spectra of the fluoride, azide, hydroxide and cyanide complexes of these ferric leghaemoglobins were very similar to the spectra of the corresponding myoglobin derivatives, indicating that the immediate environment of the iron in leghaemoglobin and myoglobin is similar, an imidazole moiety of histidine being the proximal ligand to the haem iron [cf. Appleby, Blumberg, Peisach, Wittenberg & Wittenberg (1976) J. Biol. Chem. 251, 6090–6096]. 3. E.p.r. spectra of the acid-metleghaemoglobins showed prominent high-spin features very near g=6 and g=2 and, unlike myoglobin, small low-spin absorptions near g=2.26, 2.72 and 3.14. The width of the g=6 absorption derivative at 10–20K was about 4–4.5mT, similar to the value for acid-methaemoglobin. In contrast, a recently published (Appleby et al., 1976) spectrum of acid-metleghaemoglobin a had less high-spin character and a much broader absorption derivative around g=6. 4. E.p.r. spectra of ferric leghaemoglobin nicotinate and imidazole complexes suggest that the low-spin absorption near g=3.14 can be attributed to a trace of ferric leghaemoglobin nicotinate, and those near g=2.26 and 2.72 are from an endogenous dihistidyl haemichrome. 5. A large e.p.r. signal at g=2 in all samples of crude leghaemoglobin was shown to be from nitrosyl-leghaemoglobin. A soya-bean sample contained 27±3% of the latter. A previously unidentified form of soya-bean ferrous leghaemoglobin a was shown to be its nitrosyl derivative. If this is not an artifact, and occurs in the root nodule, the nitrosyl radical may interfere with the function of leghaemoglobin. PMID:23110

  12. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Root replacement using stentless valves in the small aortic root: a propensity score analysis.

    PubMed

    Kunihara, Takashi; Schmidt, Kathrin; Glombitza, Petra; Dzindzibadze, Vachtang; Lausberg, Henning; Schäfers, Hans-Joachim

    2006-10-01

    Root replacement using a stentless bioprosthesis may be the optimal approach to avoid patient-prosthesis mismatch in patients with a small aortic root. Primary root replacement, however, is considered to be associated with increased surgical risk. We compared early outcome of full root replacement with a stentless bioprosthesis with that of aortic valve replacement with a stented bioprosthesis using propensity score-matching analysis. Of 231 patients undergoing elective, first-time aortic valve replacement with a small root (< or = 22 mm), 120 patients were selected using propensity score-matching analysis. They underwent either root replacement using a 23-mm stentless bioprosthesis (stentless group, n = 60) or supra-annular aortic valve replacement using a 21-mm stented bioprosthesis (stented group, n = 60). Preoperative characteristics and frequency of concomitant operations were identical. Duration of operation (196 +/- 54 versus 174 +/- 49 minutes), cardiopulmonary bypass (112 +/- 36 versus 91 +/- 33 minutes), and aortic cross-clamping (76 +/- 21 versus 61 +/- 21 minutes) were significantly longer in the stentless group. However, the need for perioperative transfusion and the incidence of postoperative reexploration for bleeding (3% versus 8%) was lower, and ventilation time was shorter. Mean duration of intensive care and hospital stay were also significantly shorter (2.3 +/- 1.7 versus 4.0 +/- 3.9 days, 8.9 +/- 3.1 versus 12.4 +/- 5.7 days). In-hospital mortality was identical (5% each). No independent predictor for in-hospital mortality was identified. Full root replacement using a stentless bioprosthesis does not increase postoperative morbidity or mortality of aortic valve replacement and may be advantageous in patients with a small aortic root.

  14. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  15. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  16. The possible involvement of root-cap mucilage in gravitropism and calcium movement across root tips of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1986-01-01

    Roots of Allium cepa L. grown in aerated water elongate rapidly, but are not graviresponsive. These roots (1) possess extensive columella tissues comprised of cells containing numerous sedimented amyloplasts, (2) lack mucilage on their tips, and (3) are characterized by a weakly polar movement of calcium (Ca) across their tips. Placing roots in humid air correlates positively with the (1) onset of gravicurvature, (2) appearance of mucilage on tips of the roots, and (3) onset of the ability to transport Ca polarly to the lower side of the root tip. Gravicurvature of roots previously submerged in aerated water is more rapid when roots are oriented vertically for 1-2 h in humid air prior to being oriented horizontally. The more rapid gravicurvature of these roots correlates positively with the accumulation of mucilage at the tips of roots during the time the roots are oriented vertically. Therefore, the onset of gravicurvature and the ability of roots to transport Ca to the lower sides of their tips correlate positively with the presence of mucilage at their tips. These results suggest that mucilage may be important for the transport of Ca across root caps.

  17. Valve sparing aortic replacement - root remodeling.

    PubMed

    Lausberg, Henning F; Schäfers, Hans-Joachim

    2006-01-01

    Aortic root remodeling restores aortic root geometry and improves valve competence. We have used this technique whenever aorto-ventricular diameter is preserved. The operative technique is detained in this presentation. As a result of our 10-year experience with root remodeling we propose this operation as a reproducible option for patients with dilatation of the aortic root.

  18. Imaging tree roots with borehole radar

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Per Wikstrom; Tomas Lundmark; Sune Linder

    2006-01-01

    Ground-penetrating radar has been used to de-tect and map tree roots using surface-based antennas in reflection mode. On amenable soils these methods can accurately detect lateral tree roots. In some tree species (e.g. Pinus taeda, Pinus palustris), vertically orientated tap roots directly beneath the tree, comprise most of the root mass. It is...

  19. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  20. Unearthing the hidden world of roots: Root biomass and architecture differ among species within the same guild

    PubMed Central

    2017-01-01

    The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree’s TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling. PMID:29023553

  1. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  2. Root Formation in Ethylene-Insensitive Plants1

    PubMed Central

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  3. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    PubMed

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots

    Treesearch

    Daniel L. Lindner; Mark T. Banik

    2009-01-01

    To better understand the effects of cloning on observations of fungal ITS sequences from Picea glauca (white spruce) roots two techniques were compared: (i) direct sequencing of fungal ITS regions from individual root tips without cloning and (ii) cloning and sequencing of fungal ITS regions from individual root tips. Effect of root tip size was...

  5. Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils

    NASA Astrophysics Data System (ADS)

    Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma

    2016-04-01

    The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing

  6. Yellow-Poplar Rooting Habits

    Treesearch

    John K. Francis

    1979-01-01

    Although the configuration of pole-sized yellow-poplar root systems in Tennessee is quite variable, a branched taproot with several widely spreading laterals is typical. Rooting depth is particularly limited by clayey texture, wetness, and firmness of subsoils.

  7. Roots and the stability of forested slopes

    Treesearch

    R. R. Ziemer

    1981-01-01

    Abstract - Root decay after timber cutting can lead to slope failure. In situ measurements of soil with tree roots showed that soil strength increased linearly as root biomass increased. Forests clear-felled 3 years earlier contained about one-third of the root biomass of old-growth forests. Nearly all of the roots

  8. Phylogenetic rooting using minimal ancestor deviation.

    PubMed

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  9. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  10. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    .7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.

  11. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    PubMed

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  12. Fungi in neotropical epiphyte roots.

    PubMed

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  13. Micro-Computed Tomography Analysis of the Root Canal Morphology of Palatal Roots of Maxillary First Molars.

    PubMed

    Marceliano-Alves, Marília; Alves, Flávio Rodrigues Ferreira; Mendes, Daniel de Melo; Provenzano, José Claudio

    2016-02-01

    A thorough knowledge of root canal anatomy is critical for successful root canal treatments. This study evaluated the internal anatomy of the palatal roots of maxillary first molars with micro-computed tomography (microCT). The palatal roots of extracted maxillary first molars (n = 169) were scanned with microCT to determine several anatomic parameters, including main canal classification, lateral canal occurrence and location, degree of curvature, main foramen position, apical constriction presence, diameters 1 and 2 mm from the apex and 1 mm from the foramen, minor dentin thickness in those regions, canal volume, surface area, and convexity. All canals were classified as Vertucci type I. The cross sections were oval in 61% of the canals. Lateral canals were found in 25% of the samples. The main foramen did not coincide with the root apex in 95% of the cases. Only 8% of the canals were classified as straight. Apical constriction was identified in 38% of the roots. The minor and major canal diameters and minor dentin thickness were decreased near the apex. The minor dentin thickness 1 mm from the foramen was 0.82 mm. The palatal canals exhibited a volume of 6.91 mm(3) and surface area of 55.31 mm(2) and were rod-shaped. The root canals of the palatal roots were classified as type I. However, some factors need to be considered during the treatment of these roots, including the frequent ocurrence of moderate/severe curvatures, oval-shaped cross-sections, and lateral canals, noncoincidence of the apical foramen with the root apex, and absence of apical constriction in most cases. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  15. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  16. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem

  17. Water Transport Properties of Roots and Root Cortical Cells in Proton- and Al-Stressed Maize Varieties.

    PubMed Central

    Gunse, B.; Poschenrieder, C.; Barcelo, J.

    1997-01-01

    Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques. PMID:12223628

  18. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    PubMed

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  19. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  20. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks

    PubMed Central

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  1. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  2. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.

  3. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    PubMed Central

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  4. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    NASA Astrophysics Data System (ADS)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  5. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; van Beek, Rens; Sutanudjaja, Edwin; Wang-Erlandsson, Lan; Hessels, Tim; Bastiaanssen, Wim; Bierkens, Marc

    2017-04-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. For root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  6. Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico.

    PubMed

    Valdés, María; Asbjornsen, Heidi; Gómez-Cárdenas, Martín; Juárez, Margarita; Vogt, Kristiina A

    2006-03-01

    The effects of a severe drought on fine-root and ectomycorrhizal biomass were investigated in a forest ecosystem dominated by Pinus oaxacana located in Oaxaca, Mexico. Root cores were collected during both the wet and dry seasons of 1998 and 1999 from three sites subjected to different forest management treatments in 1990 and assessed for total fine-root biomass and ectomycorrhizal-root biomass. Additionally, a bioassay experiment with P. oaxacana seedlings was conducted to assess the ectomycorrhizal inoculum potential of the soil for each of the three stands. Results indicated that biomasses of both fine roots and ectomycorrhizal roots were reduced by almost 60% in the drought year compared to the nondrought year. There were no significant differences in ectomycorrhizal and fine-root biomass between the wet and dry seasons. Further, the proportion of total root biomass consisting of ectomycorrhizal roots did not vary between years or seasons. These results suggest that both total fine-root biomass and ectomycorrhizal-root biomass are strongly affected by severe drought in these high-elevation tropical pine forests, and that these responses outweigh seasonal effects. Forest management practices in these tropical pine forests should consider the effects of drought on the capacity of P. oaxacana to maintain sufficient levels of ectomycorrhizae especially when there is a potential for synergistic interactions between multiple disturbances that may lead to more severe stress in the host plant and subsequent reductions in ectomycorrhizal colonization.

  7. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.).

    PubMed

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  8. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.)

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots. PMID:28798764

  9. Changes in root cap pH are required for the gravity response of the Arabidopsis root

    NASA Technical Reports Server (NTRS)

    Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.

    2001-01-01

    Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.

  10. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    PubMed

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright

  11. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    PubMed

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  12. External apical root resorption in maxillary root-filled incisors after orthodontic treatment: A split-mouth design study

    PubMed Central

    Amarilla, Almudena; Espinar-Escalona, Eduardo; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Sánchez-Domínguez, Benito; López-Frías, Francisco J.

    2012-01-01

    Introduction: The purpose of this study was to compare, in a split mouth design, the external apical root resorption (EARR) associated with orthodontic treatment in root-filled maxillary incisors and their contralateral teeth with vital pulps. Methodology: The study sample consisted of 38 patients (14 males and 24 females), who had one root-filled incisor before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the root resortion and the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the endodontically treated incisor and that in its contralateral incisor with a vital pulp. The student’s t-test, chi-square test and logistic regression analysis were used to determine statistical significance. Results: There was no statistically significant difference (p > 0.05) between EARR in vital teeth (1.1 ± 1.0 mm) and endodontically treated incisors (1.1 ± 0.8 mm). Twenty-six patients (68.4%) showed greater resorption of the endodontically treated incisor than its homolog vital tooth (p > 0.05). The mean and standard deviation of PPR were 1.0 ± 0.2. Multivariate logistic regression suggested that PRR does not correlate with any of the variables analyzed. Conclusions: There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root-filled incisors and their contralateral teeth with vital pulps. Key words:Endodontics, orthodontics, root canal treatment, root resorption. PMID:22143731

  13. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar.

    PubMed

    Filpo-Perez, Carolina; Bramante, Clovis Monteiro; Villas-Boas, Marcelo Haas; Húngaro Duarte, Marco Antonio; Versiani, Marco Aurélio; Ordinola-Zapata, Ronald

    2015-02-01

    The aim of this study was to evaluate the morphologic aspects of the root canal anatomy of the distal root of a mandibular first molar using micro-computed tomographic analysis. One-hundred distal roots of mandibular first molars were scanned using a micro-computed tomographic device at an isotropic resolution of 19.6 μm. The percentage frequency distribution of the morphologic configuration of the root canal was performed according to the Vertucci classification system. Two-dimensional parameters (area, perimeter, roundness, aspect ratio, and major and minor diameters) and the cross-sectional shape of the root canal were analyzed in the apical third at every 1-mm interval from the main apical foramen in roots presenting Vertucci types I and II configurations (n = 79). Data were statistically compared using the Kruskal-Wallis and Dunn tests with a significance level set at 5%. Seventy-six percent of the distal roots had a single root canal. Two, three, and four canals were found in 13%, 8%, and 3% of the sample, respectively. In 13 specimens, the configuration of the root canal did not fit into Vertucci's classification. Overall, 2-dimensional parameter values significantly increased at the 3-mm level (P < .05). The prevalence of oval canals was higher at the 1-mm level and decreased at the 5-mm level in which long oval and flattened canals were more prevalent. The distal roots of the mandibular first molars showed a high prevalence of single root canals. The prevalence of long oval and flattened canals increased in the coronal direction. In 13% of the samples, canal configurations that were not included in Vertucci's configuration system were found. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Feynman diagrams and rooted maps

    NASA Astrophysics Data System (ADS)

    Prunotto, Andrea; Alberico, Wanda Maria; Czerski, Piotr

    2018-04-01

    The rooted maps theory, a branch of the theory of homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.

  15. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.

    PubMed

    Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2014-01-01

    Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.

  16. [Effects of the additives and the combination of plants on Pb absorption, growth and quality of Dianthus superbus].

    PubMed

    Yang, Xiao Yu; Li, Cheng; Ma, Si Yue; Li, Jian Heng

    2017-04-18

    A pot experiment was conducted to study the effects of inoculation with arbuscular mycorrhizal (AM) fungi, neighboring plants (Trifolium repens), addition of EDTA and phosphate fertilizer on the performance of Dianthus superbus grown on Pb contaminated soil. The growth and quality of D. superbus were investigated to provide a theoretical basis for the scientific cultivation of Chinese herbal medicine. The results showed that the D. superbus with AM resulted in a significant inhibition of Pb uptake (P<0.05), increase of root development and root/shoot ratio compared to untreated control plants, and with the highest content of active component. The content of emodin reached 6.5 mg·g -1 . When planting with T. repens the reducing effect of Pb absorption induced by AM fungi was insignificant. The quality of D. superbus decreased, and the emodin content decreased to 3.2 mg·g -1 , which was lower than that in the control group. However, D. superbus showed improved growth and active ingredients, and the lowest Pb content (1.3 mg·g -1 ) due to AM fungal inoculation. The addition of EDTA decreased the growth of D. superbus, but promoted the absorption of Pb, with the Pb content to 340.0 mg·g -1 . Calcium phosphate showed the ability to immobilize other heavy metals in the soil, therefore might be more suitable to be applied in the conditions of compound pollution. Considering all of the results, AM fungi play a positive role in protecting the safety and quality of Chinese herbal medicine.

  17. Inhibition of strigolactones promotes adventitious root formation

    PubMed Central

    Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687

  18. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Regulation and functional diversification of root hairs.

    PubMed

    Cui, Songkui; Suzaki, Takuya; Tominaga-Wada, Rumi; Yoshida, Satoko

    2017-10-13

    Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Induction of hairy roots of Panax ginseng and studies on suitable culture condition of ginseng hairy roots].

    PubMed

    Zhao, Shou-Jing; Li, Chang-Yu; Qian, Yan-Chun; Luo, Xiao-Pei; Zhang, Xin; Wang, Xue-Song; Kang, Bo-Yu

    2004-03-01

    Ginseng is a valuable medicinal plant with ginsenosides as its mian effective components. Because ginseng is a perennial plant and has a very strict demand for soil conditions, the way of cultivating ginseng by cutting woods is still used in China at present and thus forest resources has been extremely destroyed. Increasing attention has been paid to the hairy roots induced by the infection of Agrobacterium rhizogenes in the production of plant secondary metabolic products for the hairy roots are characterized by rapid growth and stable hereditary and biochemical traits. That has opened a new way for the industrial production of ginseosides. However, there is little report for such studies from China. In this paper, hairy roots of ginseng were induced from the root explants of two-year-old ginseng by Agrobacterium rhizogenes A4 with directly inoculating. The transformed hairy roots could grow rapidly on MS medium and 1/2 MS medium without hormones. The cultured clones of the hairy roots were established on a solid 1/2 MS medium. After 4 - 5 subcultures the hairy roots still maintained a vigorous growth. A pair of primers were designed and synthesized according to the analytical results of RiA4TL-DNA sequence by Slightom et al . 0.8kb rolC was obtained by PCR using the genome DNA of hairy root of ginseng. Transformation was confirmed by PCR amplification of rolC genes from the hairy roots of P. ginseng. Growth rate of hairy roots on liquid medium increased by 2 times then that of the solid medium. The growth of the hairy roots can be divided into three stages: high speed in the first two weeks, middle speed in the 3 - 4 weeks and low speed hereafter. Changing the culture solution at 2 weeks regular intervals is conductive to maintaining the rapid growth of the hairy roots. By means of determination for specific growth rate and ginsenosides content, the high-yield hairy root clone R9923 was selected. The content of monomer gisenoside of Rg1, Re, Rf, Rbl, Rc, Rb2 and

  1. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  2. Iron absorption from beans with different contents of iron, evaluated by stable isotopes.

    PubMed

    Junqueira-Franco, Márcia Varella Morandi; Dutra de Oliveira, José Eduardo; Nutti, Marilia Regini; Pereira, Helton Santos; Carvalho, José Luiz Vianna de; Abrams, Steven A; Brandão, Camila Fernanda Cunha; Marchini, Júlio Sérgio

    2018-06-01

    The introduction of biofortified foods such as beans with higher iron content may be a useful tool in preventing iron deficiency. The biofortification aims to reach the root of the problem of malnutrition, targets the neediest population, uses embedded distribution mechanisms, is scientifically feasible and effective in terms of cost, and complements other ongoing interventions to control micronutrient deficiency. However, to ensure effectiveness, measurement of the absorption of minerals is essential. The objective of this study was to evaluate the iron bioavailability of common bean BRS Pontal (PO), targeted for biofortification, compared with common bean BRS Estilo in man through reliable techniques that have not been previously used in Brazil. The study included 29 young adult volunteers divided into 2 groups: Group CB (13 subjects) received 100 g of common beans (BRS-Estilo) cooked labeled with iron-58 ( 58 Fe) and Group TBB (16 patients) received 100 g common bean target for iron biofortification (BRS-Pontal), cooked and labeled with iron58 ( 58 Fe). The next day they received the reference dose of ferrous sulfate enriched iron-57 ( 57 Fe). Isotopic evaluation of iron for measurement of iron incorporation into erythrocytes was performed 14 days after consumption. The beans used, were produced, through conventional breeding program, by EMBRAPA/Rice and Beans. The iron absorption was evaluated by assessing the isotopic enrichment of the stable isotope. Mean iron absorption from the meal with common beans was 0.409% (±0.040%) and mean iron incorporation from the meal with target beans for biofortification 0.407% (±0.038%) and did not differ between the groups. This study tested the iron absorption from a single bean meal in healthy volunteers or non anemics, In the present study the iron absorption ratio from common bean Pontal (PO), targeted for biofortification and compared with common bean BRS Estilo was not significantly different. The iron concentration

  3. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

    PubMed Central

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518

  4. Thermotropism by primary roots of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortin, M.-C.; Poff, K.L.

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less

  5. Root susceptibility and inoculum production from roots of Eastern United States oak species to Phytophthora ramorum

    USDA-ARS?s Scientific Manuscript database

    Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...

  6. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Siboni, Francesco; Modena, Enrico; Ciapetti, Gabriela; Prati, Carlo

    2011-07-01

    An innovative light-curable calcium-silicate cement containing a HEMA-TEGDMA-based resin (lc-MTA) was designed to obtain a bioactive fast setting root-end filling and root repair material. lc-MTA was tested for setting time, solubility, water absorption, calcium release, alkalinizing activity (pH of soaking water), bioactivity (apatite-forming ability) and cell growth-proliferation. The apatite-forming ability was investigated by micro-Raman, ATR-FTIR and ESEM/EDX after immersion at 37°C for 1-28 days in DPBS or DMEM+FBS. The marginal adaptation of cement in root-end cavities of extracted teeth was assessed by ESEM/EDX, and the viability of Saos-2 cell on cements was evaluated. lc-MTA demonstrated a rapid setting time (2min), low solubility, high calcium release (150-200ppm) and alkalinizing power (pH 10-12). lc-MTA proved the formation of bone-like apatite spherulites just after 1 day. Apatite precipitates completely filled the interface porosities and created a perfect marginal adaptation. lc-MTA allowed Saos-2 cell viability and growth and no compromising toxicity was exerted. HEMA-TEGDMA creates a polymeric network able to stabilize the outer surface of the cement and a hydrophilic matrix permeable enough to allow water absorption. SiO(-)/Si-OH groups from the mineral particles induce heterogeneous nucleation of apatite by sorption of calcium and phosphate ions. Oxygen-containing groups from poly-HEMA-TEGDMA provide additional apatite nucleating sites through the formation of calcium chelates. The strong novelty was that the combination of a hydraulic calcium-silicate powder and a poly-HEMA-TEGDMA hydrophilic resin creates the conditions (calcium release and functional groups able to chelate Ca ions) for a bioactive fast setting light-curable material for clinical applications in dental and maxillofacial surgery. The first and unique/exclusive light-curable calcium-silicate MTA cement for endodontics and root-end application was created, with a potential

  7. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    PubMed

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  8. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    PubMed Central

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  9. Tracing Cadmium from Culture to Spikelet: Noninvasive Imaging and Quantitative Characterization of Absorption, Transport, and Accumulation of Cadmium in an Intact Rice Plant1[W][OA

    PubMed Central

    Fujimaki, Shu; Suzui, Nobuo; Ishioka, Noriko S.; Kawachi, Naoki; Ito, Sayuri; Chino, Mitsuo; Nakamura, Shin-ichi

    2010-01-01

    We characterized the absorption and short-term translocation of cadmium (Cd) in rice (Oryza sativa ‘Nipponbare’) quantitatively using serial images observed with a positron-emitting tracer imaging system. We fed a positron-emitting 107Cd (half-life of 6.5 h) tracer to the hydroponic culture solution and noninvasively obtained serial images of Cd distribution in intact rice plants at the vegetative stage and at the grain-filling stage every 4 min for 36 h. The rates of absorption of Cd by the root were proportional to Cd concentrations in the culture solution within the tested range of 0.05 to 100 nm. It was estimated that the radial transport from the culture to the xylem in the root tissue was completed in less than 10 min. Cd moved up through the shoot organs with velocities of a few centimeters per hour at both stages, which was obviously slower than the bulk flow in the xylem. Finally, Cd arrived at the panicles 7 h after feeding and accumulated there constantly, although no Cd was observed in the leaf blades within the initial 36 h. The nodes exhibited the most intensive Cd accumulation in the shoot at both stages, and Cd transport from the basal nodes to crown root tips was observed at the vegetative stage. We conclude that the nodes are the central organ where xylem-to-phloem transfer takes place and play a pivotal role in the half-day travel of Cd from the soil to the grains at the grain-filling stage. PMID:20172965

  10. Root morphology and growth of bare-root seedlings of Oregon white oak

    Treesearch

    Peter J. Gould; Constance A. Harrington

    2009-01-01

    Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...

  11. Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations

    PubMed Central

    Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris

    2015-01-01

    Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID

  12. Iron absorption from Southeast Asian diets. II. Role of various factors that might explain low absorption.

    PubMed

    Hallberg, L; Björn-Rasmussen, E; Rossander, L; Suwanik, R

    1977-04-01

    Previously reported levels of iron absorption from common Southeast Asian meals composed of rice, vegetables, and spices were too low to be consistent with the known prevalence of iron deficiency. In the present paper the cause of the low absorption was systematically sought. Variables investigated comprised methodological errors, factors in the diet such as certain foodstuffs, or contaminants inhibiting the absorption and characteristics of the subjects accompanied by malabsorption of dietary iron. The latter was excluded by comparing the absorption from both wheat rolls and a composit rice meal in Thai and Swedish women using the absorption of a small dose of ferrous ascorbate as a common basis of comparison. Two main factors were identified as causing the low absorption in the previous studies: the homogenization of the labeled meals before serving and the use of rice flour instead of rice. Iron absorption from nonhomogenized meals of identical composition as studied previously was many times higher (on an average 0.16 mg) and was consistent with the actual prevalence of iron deficiency in lower socioeconomic groups of Thais mainly consuming the simple meals studied. Recent modifications of the method to measure nonheme iron absorption from composite meals have thus not only made the determination simpler but also more accurate.

  13. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  14. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.

  15. Functional traits and root morphology of alpine plants

    PubMed Central

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-01-01

    Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278

  16. Molecular architecture underlying fluid absorption by the developing inner ear

    PubMed Central

    Honda, Keiji; Kim, Sung Huhn; Kelly, Michael C; Burns, Joseph C; Constance, Laura; Li, Xiangming; Zhou, Fei; Hoa, Michael; Kelley, Matthew W; Morell, Robert J

    2017-01-01

    Mutations of SLC26A4 are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). Slc26a4 expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion. Fluid absorption was sensitive to ouabain and gadolinium but insensitive to benzamil, bafilomycin and S3226. Single-cell RNA-seq analysis of pre- and postnatal endolymphatic sacs demonstrates two types of differentiated cells. Early ribosome-rich cells (RRCs) have a transcriptomic signature suggesting expression and secretion of extracellular proteins, while mature RRCs express genes implicated in innate immunity. The transcriptomic signature of mitochondria-rich cells (MRCs) indicates that they mediate vectorial ion transport. We propose a molecular mechanism for resorption of NaCl by MRCs during development, and conclude that disruption of this mechanism is the root cause of hearing loss associated with EES. PMID:28994389

  17. The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play?

    PubMed Central

    McElrone, A. J.

    2012-01-01

    Vitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp r), % aquaporin contribution to Lp r, scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots. Similar to VvPIP expression patterns, fine-root Lp r and % aquaporin contribution to Lp r determined under both osmotic (Lp r Osm) and hydrostatic (Lp r Hyd) pressure gradients were consistently greater in high-vigour rootstocks. Interestingly, the % aquaporin contribution was nearly identical for Lp r Osm and Lp r Hyd even though a hydrostatic gradient would induce a predominant flow across the apoplastic pathway. In common scion greenhouse experiments, leaf area-specific transpiration (E) and total leaf area increased with rootstock vigour and were positively correlated with fine-root Lp r. These results suggest that increased canopy water demands for scion grafted onto high-vigour rootstocks are matched by adjustments in root-system hydraulic conductivity through the combination of fine-root Lp r and increased root surface area. PMID:23136166

  18. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption

    NASA Astrophysics Data System (ADS)

    Nhan, Le Van; Ma, Chuanxin; Rui, Yukui; Liu, Shutong; Li, Xuguang; Xing, Baoshan; Liu, Liming

    2015-06-01

    This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L-1, and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton.

  19. Control of root meristem establishment in conifers.

    PubMed

    Brunoni, Federica; Ljung, Karin; Bellini, Catherine

    2018-06-19

    The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterwards through lateral root formation. Additionally, adventitious roots can be formed post-embryonically from aerial organs. Induction of adventitious roots forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the adventitious root primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, for example, are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post-embryonic formation in cuttings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    PubMed

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. EFFECTS OF OZONE ON ROOT PROCESSES

    EPA Science Inventory

    Ozone alters root growth and root processes by first reducing photosynthesis and altering foliar metabolic pathways. The alteration in foliar metabolism is reflected in lowered carbohydrate levels in the roots. This can reduce key metabolic processes such as mineral uptake and sy...

  2. Transgenic hairy roots. recent trends and applications.

    PubMed

    Giri, A; Narasu, M L

    2000-03-01

    Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic roots produced by A. rhizogenes infection is characterized by high growth rate and genetic stability. These genetically transformed root cultures can produce higher levels of secondary metabolites or amounts comparable to that of intact plants. Hairy root cultures offer promise for production of valuable secondary metabolites in many plants. The main constraint for commercial exploitation of hairy root cultures is their scaling up, as there is a need for developing a specially designed bioreactor that permits the growth of interconnected tissues unevenly distributed throughout the vessel. Rheological characteristics of heterogeneous system should also be taken into consideration during mass scale culturing of hairy roots. Development of bioreactor models for hairy root cultures is still a recent phenomenon. It is also necessary to develop computer-aided models for different parameters such as oxygen consumption and excretion of product to the medium. Further, transformed roots are able to regenerate genetically stable plants as transgenics or clones. This property of rapid growth and high plantlet regeneration frequency allows clonal propagation of elite plants. In addition, the altered phenotype of hairy root regenerants (hairy root syndrome) is useful in plant breeding programs with plants of ornamental interest. In vitro transformation and regeneration from hairy roots facilitates application of biotechnology to tree species. The ability to manipulate trees at a cellular and molecular level shows great potential for clonal propagation and genetic improvement. Transgenic root system offers tremendous potential for introducing additional genes along with the Ri T-DNA genes for alteration of metabolic pathways and production of useful metabolites or compounds of interest. This article discusses various applications and perspectives of hairy root cultures and the recent progress achieved

  3. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  4. Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; Nie, Yuanyuan; Bai, Shahla Hosseini; Zhou, Lingyan; Shao, Junjiong; Cheng, Weisong; Wang, Jiawei; Hu, Fengqin; Fu, Yuling

    2018-06-07

    Extreme drought is likely to become more frequent and intense as a result of global climate change, which may significantly impact plant root traits and responses (i.e., morphology, production, turnover, and biomass). However, a comprehensive understanding of how drought affects root traits and responses remains elusive. Here, we synthesized data from 128 published studies under field conditions to examine the responses of 17 variables associated with root traits to drought. Our results showed that drought significantly decreased root length and root length density by 38.29% and 11.12%, respectively, but increased root diameter by 3.49%. However, drought significantly increased root: shoot mass ratio and root cortical aerenchyma by 13.54% and 90.7%, respectively. Our results suggest that drought significantly modified root morphological traits and increased root mortality, and the drought-induced decrease in root biomass was less than shoot biomass, causing higher root: shoot mass ratio. The cascading effects of drought on root traits and responses may need to be incorporated into terrestrial biosphere models to improve prediction of the climate-biosphere feedback. This article is protected by copyright. All rights reserved.

  5. Modelling Root Systems Using Oriented Density Distributions

    NASA Astrophysics Data System (ADS)

    Dupuy, Lionel X.

    2011-09-01

    Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.

  6. Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots.

    PubMed

    Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi

    2016-11-01

    Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. How Can Science Education Foster Students' Rooting?

    ERIC Educational Resources Information Center

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  8. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1993-01-01

    Roots of Pisum sativum L. and Zea mays L. were exposed to different moisture gradients established by placing both wet cheesecloth (hydrostimulant) and saturated aqueous solutions of various salts in a closed chamber. Atmospheric conditions with different relative humidity (RH) in a range between 98 and 86% RH were obtained at root level, 2 to 3mm from the water-saturated hydrostimulant. Roots of Silver Queen corn placed vertically with the tips down curved sideways toward the hydrostimulant in response to approximately 94% RH but did not respond positively to RH higher than approximately 95%. The positive hydrotropic response increased linearly as RH was lowered from 95 to 90%. A maximum response was observed at RH between 90 and 86%. However, RH required for the induction of hydrotropism as well as the responsiveness differed among plant species used; gravitropically sensitive roots appeared to require a somewhat greater moisture gradient for the induction of hydrotropism. Decapped roots of corn failed to curve hydrotropically, suggesting the root cap as a major site of hydrosensing.

  9. Water movement through plant roots - exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu

    2017-12-01

    In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation

  10. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  11. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  12. Tunneling induced absorption with competing Nonlinearities.

    PubMed

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-12-13

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.

  13. New substitution models for rooting phylogenetic trees.

    PubMed

    Williams, Tom A; Heaps, Sarah E; Cherlin, Svetlana; Nye, Tom M W; Boys, Richard J; Embley, T Martin

    2015-09-26

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. © 2015 The Authors.

  14. Genomic Regions Influencing Seminal Root Traits in Barley.

    PubMed

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  15. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans

    USDA-ARS?s Scientific Manuscript database

    Calcium absorption efficiency and bone mineral mass are increased in adolescents who regularly consume inulin-type fructans (ITF). The mechanism of action in increasing absorption is unknown but may be related to increased colonic calcium absorption. We conducted a study in young adults designed to ...

  16. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  17. Water distribution at the root-soil interface: is there more water next to roots?

    NASA Astrophysics Data System (ADS)

    Carminati, A.; Moradi, A.; Oswald, S.; Vetterlein, D.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Plants are big water movers and have a significant impact on soil water dynamics as well as on the global water cycle. Despite the relevance of root water uptake in terrestrial ecology, the movement of water from soil to roots still presents important open questions, e.g the following two. Which are the properties of the soil near the roots? And what effect do these properties have on soil plant water relations? Most models are based on brute-force spatial averaging of soil properties and assume that the bulk soil has the same properties as the rhizosphere. However, there is evidence in the literature that the rhizosphere has specific properties that may affect water and nutrient uptake (Young 1995, Gregory 2007). In order to investigate the rhizosphere hydraulic properties and their effect on soil plant water relations, we used neutron radiography and neutron tomography to image the water content distribution in soils during plant transpiration. Rectangular (quasi-2D) and cylindrical containers were filled with sandy soil and planted with lupins (Lupinus albus). Three weeks after planting, the samples were equilibrated at water potentials of -10 and 30 hPa and have been imaged for 5 days at intervals of 6 hours. At day 5 the samples were irrigated again via capillary rise and the water distribution was monitored for 4 more days. During the first day of the drying period, regions of water depletion formed around the central part of the tap root where first order laterals were present. As the soil dried up, the picture changed: instead of less water around the roots, as commonly supposed by models, we observed that more water was present around the lateral roots. Interestingly, these regions during drying were retaining high water content, but after irrigation remained markedly drier than the bulk soil. Our hypothesis is that high water content near roots during drying and lower water content during rewetting are explained by the presence of bio-polymers exuded by

  18. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  20. Predictable root recession coverage.

    PubMed

    Hoexter, David L

    2006-01-01

    Gingival recession, exposure of the tooth's root, is undesirable and, in many situations, contrary to normal physiology. Today's root coverage is predictable. With the use of an acellular dermal matrix membrane (Fasciablast), we can achieve a new blood supply and predictable coverage, with no second surgical procedure. Youth, esthetics and physiology are restored.

  1. Cellular and molecular mechanisms of tooth root development

    PubMed Central

    Li, Jingyuan; Parada, Carolina

    2017-01-01

    ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844

  2. Differential-optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1977-01-01

    Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.

  3. Root hair development in grasses and cereals (Poaceae).

    PubMed

    Dolan, Liam

    2017-08-01

    Root hairs are tubular, cellular outgrowths of epidermal cells that extend from the root surface into the soil. Root hairs tether root systems to their growth substrate, take up inorganic nutrients and water, and interact with the soil microflora. At maturity, the root epidermis comprises two cell types; cells with root hairs and hairless epidermal cells. These two cell types alternate with each other along longitudinal files in grasses and cereals (Poaceae). While the mechanism by which this alternating pattern develops is unknown, the later stages of root hair differentiation are controlled by a conserved mechanism that promotes root hair development among angiosperms. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Chemical root pruning of conifer seedlings in Mexico

    Treesearch

    Arnulfo Aldrete; John G. Mexal

    2002-01-01

    Many countries grow seedlings for reforestation in polybags where root spiraling and root egression can decrease seedling survival and growth following outplanting. The overall objectives of this study were to investigate the effect of chemical root pruning on root spiraling, root egression, and nursery performance of Pinus pseudostrobus, P...

  5. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  6. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  7. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  8. Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae).

    PubMed

    Rodriguez-Alonso, Gustavo; Matvienko, Marta; López-Valle, Mayra L; Lázaro-Mixteco, Pedro E; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G; Shishkova, Svetlana

    2018-06-04

    Many Cactaceae species exhibit determinate growth of the primary root as a consequence of root apical meristem (RAM) exhaustion. The genetic regulation of this growth pattern is unknown. Here, we de novo assembled and annotated the root apex transcriptome of the Pachycereus pringlei primary root at three developmental stages, with active or exhausted RAM. The assembled transcriptome is robust and comprehensive, and was used to infer a transcriptional regulatory network of the primary root apex. Putative orthologues of Arabidopsis regulators of RAM maintenance, as well as putative lineage-specific transcripts were identified. The transcriptome revealed putative orthologues of most proteins involved in housekeeping processes, hormone signalling, and metabolic pathways. Our results suggest that specific transcriptional programs operate in the root apex at specific developmental time points. Moreover, the transcriptional state of the P. pringlei root apex as the RAM becomes exhausted is comparable to the transcriptional state of cells from the meristematic, elongation, and differentiation zones of Arabidopsis roots along the root axis. We suggest that the transcriptional program underlying the drought stress response is induced during Cactaceae root development, and that lineage-specific transcripts could contribute to RAM exhaustion in Cactaceae.

  9. Modelling root reinforcement in shallow forest soils

    USGS Publications Warehouse

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  10. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  11. Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research

    PubMed Central

    Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John

    2010-01-01

    Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273

  12. The inflow of Cs-137 in soil with root litter and root exudates of Scots pine

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia

    2017-04-01

    In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and <0.5% - on the soil / soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates

  13. Parallel evolution of storage roots in morning glories (Convolvulaceae).

    PubMed

    Eserman, Lauren A; Jarret, Robert L; Leebens-Mack, James H

    2018-05-29

    Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a

  14. Low phosphate alters lateral root setpoint angle and gravitropism.

    PubMed

    Bai, Hanwen; Murali, Bhavna; Barber, Kevin; Wolverton, Chris

    2013-01-01

    Lateral roots, responsible for water and nutrient uptake, maintain nonvertical angles throughout development. Soil phosphate is one limiting nutrient for plant growth that is known to induce changes to root system architecture, such as increased lateral root formation. This study seeks to determine whether phosphate concentration affects lateral root orientation in addition to its previously described influences on root architecture. Images of intact Arabidopsis root systems were recorded for 24 h, and lateral root tip angles were measured for wild-type and mutant pgm-1 and pin3-1 roots on a full or low phosphate medium. Setpoint angles of unstimulated root systems were determined, as were gravitropic responses of lateral roots over time. The root system setpoint angles of wild-type and mutant pin3-1 roots showed a shift toward a more vertical orientation on low orthophosphate (Pi) medium. The gravitropic responses of both pgm-1 and pin3-1 roots on low Pi medium was elevated relative to control Pi medium. Mutations in two phosphate transporters with high levels of expression in the root showed a gravitropic response similar to wild-type roots grown on low Pi, supporting a role for Pi status in regulating lateral root gravitropism. Lateral root orientation and gravitropism are affected by Pi status and may provide an important additional parameter for describing root responses to low Pi. The data also support the conclusion that gravitropic setpoint angle reacts to nutrient status and is under dynamic regulation.

  15. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  16. Modeling the Kinetics of Root Gravireaction

    NASA Astrophysics Data System (ADS)

    Kondrachuk, Alexander V.; Starkov, Vyacheslav N.

    2011-02-01

    The known "sun-flower equation" (SFE), which was originally proposed to model root circumnutating, was used to describe the simplest tip root graviresponse. Two forms of the SFE (integro-differential and differential-delayed) were solved, analyzed and compared with each other. The numerical solutions of these equations were found to be matching with arbitrary accuracy. The analysis of the solutions focused on time-lag effects on the kinetics of tip root bending. The results of the modeling are in good correlation with an experiment at the initial stages of root tips graviresponse. Further development of the model calls for its systematic comparison with some specially designed experiments, which would include measuring the kinetics of root tip bending before gravistimulation over the period of time longer than the time lag.

  17. Improving the twilight model for polar cap absorption nowcasts

    NASA Astrophysics Data System (ADS)

    Rogers, N. C.; Kero, A.; Honary, F.; Verronen, P. T.; Warrington, E. M.; Danskin, D. W.

    2016-11-01

    During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real-time measurements of the integrated proton flux-energy spectrum, J. However, empirical models in common use cannot account for regional and day-to-day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A>/&sqrt;J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error-function transition over a range of solar-zenith angles (χl < χ < χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth-shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998-2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age-weighted measurements from 25 riometers. The technique reduces model bias, and root-mean-square errors are reduced by up to 30% compared with a model employing no riometer data assimilation.

  18. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua

    2013-01-01

    Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  20. External apical root resorption in maxillary root-filled incisors after orthodontic treatment: a split-mouth design study.

    PubMed

    Llamas-Carreras, José María; Amarilla, Almudena; Espinar-Escalona, Eduardo; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Sánchez-Domínguez, Benito; López-Frías, Francisco Javier

    2012-05-01

    The purpose of this study was to compare, in a split mouth design, the external apical root resorption (EARR) associated with orthodontic treatment in root-filled maxillary incisors and their contralateral teeth with vital pulps. The study sample consisted of 38 patients (14 males and 24 females), who had one root-filled incisor before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the root resortion and the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the endodontically treated incisor and that in its contralateral incisor with a vital pulp. The student's t-test, chi-square test and logistic regression analysis were used to determine statistical significance. There was no statistically significant difference (p > 0.05) between EARR in vital teeth (1.1 ± 1.0 mm) and endodontically treated incisors (1.1 ± 0.8 mm). Twenty-six patients (68.4%) showed greater resorption of the endodontically treated incisor than its homolog vital tooth (p > 0.05). The mean and standard deviation of PPR were 1.0 ± 0.2. Multivariate logistic regression suggested that PRR does not correlate with any of the variables analyzed. There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root-filled incisors and their contralateral teeth with vital pulps.

  1. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    PubMed

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number.

    PubMed

    Prince, Silvas J; Valliyodan, Babu; Ye, Heng; Yang, Ming; Tai, Shuaishuai; Hu, Wushu; Murphy, Mackensie; Durnell, Lorellin A; Song, Li; Joshi, Trupti; Liu, Yang; Van de Velde, Jan; Vandepoele, Klaas; Grover Shannon, J; Nguyen, Henry T

    2018-05-10

    Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural (RSA) traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNP) based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, three significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions. This article is protected by copyright. All rights reserved.

  3. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  4. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  5. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April

  6. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  8. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. SHORT-ROOT regulates vascular patterning, but not apical meristematic activity in the Arabidopsis root through cytokinin homeostasis

    PubMed Central

    Hao, Yueling; Cui, Hongchang

    2012-01-01

    SHORT-ROOT (SHR) is a key regulator of radial patterning and stem-cell renewal in the Arabidopsis root. Although SHR is expressed in the stele, its function in the vascular tissue was not recognized until recently. In shr, the protoxylem is missing due to the loss of expression of microRNA165A (miR165A) and microRNA166B (miR165B). shr is also defective in lateral root formation, but the mechanism remains unclear. To dissect the SHR developmental pathway, we recently have identified its direct targets at the genome scale by chromatin immunoprecipitation followed by microarray analysis (ChIP-chip). In further studies, we have shown that SHR regulates cytokinin homeostasis through cytokinin oxidase 3 and that this role of SHR is critical to vascular patterning in the root. In this communication we report that SHR also regulates miR165A and miR166B indirectly through its effect on cytokinin homeostasis. Although cytokinin is inhibitory to root growth, the root-apical-meristem defect in shr was not alleviated by reduction of endogenous cytokinin. These results together suggest that SHR regulates vascular patterning, but not root apical meristematic activity, through cytokinin homeostasis. PMID:22476466

  10. Effect of tree roots on shallow-seated landslides

    Treesearch

    Kazutoki Abe Abe; Robert R. Ziemer

    1991-01-01

    Forest vegetation, especially tree roots, helps stabilize hillslopes by reinforcing soil shear strength. To evaluate the effect of tree roots on slope stability, information about the amount of roots and their strength should be known. A simulation model for the root distribution of Cryptomeria japonica was proposed where the number of roots in each 0.5-cm diameter...

  11. Performance of Slash Pine Bare-Root Seedlings and Containerized Rooted Cuttings Planted on Five Dates in Louisiana

    Treesearch

    Alper Akgul; Michael G. Messina; Alan Wilson; Joe Weber

    2004-01-01

    Landowners are interested in extending the normal planting season, as well as the comparative field performance, of nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on field performance of two stock types of slash pine (Pinus elliottii Engelm.) was examined. Slash pine bare-root seedlings (BRS) and...

  12. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection

    PubMed Central

    Jiang, Nong-hui; Jiang, Bo; Zhang, Yong-yan; Wu, Bo; Hu, Min-lun; Zeng, Ji-wu; Yan, Hua-xue; Yi, Gan-jun; Zhong, Guang-yan

    2015-01-01

    Root samples of ‘Sanhu’ red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in

  13. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Krajcarová, L; Novotný, K; Kummerová, M; Dubová, J; Gloser, V; Kaiser, J

    2017-10-01

    The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO 4 or AgNO 3 solutions with a concentration of 10µmoll -1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll -1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag + ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections

  14. Enhanced Labeling Techniques to Study the Cytoskeleton During Root Growth and Gravitropism

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.

    2005-01-01

    Gravity effects the growth and development of all living organisms. One of the most obvious manifestations of gravity's effects on biological systems lies in the ability of plants to direct their growth along a path that is dictated by the gravity vector (called gravitropism). When positioned horizontally, in florescence stems and hypocotyls in dicots, and pulvini in monocots, respond by bending upward whereas roots typically bend downward. Gravitropism allows plants to readjust their growth to maximize light absorption for photosynthesis and to more efficiently acquire water and nutrients form the soil. Despite its significance for plant survival, there are still major gaps in understanding the cellular and molecular processes by which plants respond to gravity. The major aim of this proposal was to develop improved fluorescence labeling techniques to aid in understanding how the cytoskeleton modulated plant responses to gravity.

  15. Rooting sitka spruce from southeast Alaska.

    Treesearch

    Donald L. Copes

    1987-01-01

    Rooting and shoot growth characteristics of 10-, 15-, and 20-year-old Sitka spruce cuttings were studied. Twigs from three branch orders were tested with or without 5000 parts per million indole-3-butyric acid (IBA) hormone treatment. Rooting success averaged 64 percent. The effect of ortet age on rooting success was not significant. Cuttings from first-order branch...

  16. 2,4-diacetylphloroglucinol alters plant root development.

    PubMed

    Brazelton, Jessica N; Pfeufer, Emily E; Sweat, Teresa A; Gardener, Brian B McSpadden; Coenen, Catharina

    2008-10-01

    Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.

  17. Effect of personalized external aortic root support on aortic root motion and distension in Marfan syndrome patients.

    PubMed

    Izgi, Cemil; Nyktari, Evangelia; Alpendurada, Francisco; Bruengger, Annina Studer; Pepper, John; Treasure, Tom; Mohiaddin, Raad

    2015-10-15

    Personalized external aortic root support (PEARS) is a novel surgical approach with the aim of stabilizing the aortic root size and decreasing risk of dissection in Marfan syndrome patients. A bespoke polymer mesh tailored to each patient's individual aorta shape is produced by modeling and then surgically implanted. The aim of this study is to assess the mechanical effects of PEARS on the aortic root systolic downward motion (an important determinant of aortic wall stress), aortic root distension and on the left ventricle (LV). A cohort of 27 Marfan patients had a prophylactic PEARS surgery between 2004 and 2012 with 24 having preoperative and follow-up cardiovascular magnetic resonance imaging studies. Systolic downward aortic root motion, aortic root distension, LV volumes/mass and mitral annular systolic excursion before the operation and in the latest follow-up were measured randomly and blinded. After a median follow-up of 50.5 (IQR 25.5-72) months following implantation of PEARS, systolic downward motion of aortic root was significantly decreased (12.6±3.6mm pre-operation vs 7.9±2.9mm latest follow-up, p<0.00001). There was a tendency for a decrease in systolic aortic root distension but this was not significant (median 4.5% vs 2%, p=0.35). There was no significant change in LV volumes, ejection fraction, mass and mitral annular systolic excursion in follow-up. PEARS surgery decreases systolic downward aortic root motion which is an important determinant of longitudinal aortic wall stress. Aortic wall distension and Windkessel function are not significantly impaired in the follow-up after implantation of the mesh which is also supported by the lack of deterioration of LV volumes or mass. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Preliminary Investigation of Several Root Designs for Cermet Turbine Blades in Turbojet Engine III : Curved-root Design

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Deutsch, George C; Morgan, William C

    1955-01-01

    Stresses om tje root fastenings of turbine blades were appreciably reduced by redesign of the root. The redesign consisted in curving the root to approximately conform to the camber of the airfoil and elimination of the blade platform. Full-scale jet-engine tests at rated speed using cermet blades of the design confirmed the improvement.

  19. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    NASA Astrophysics Data System (ADS)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  20. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  1. Root architecture and wind-firmness of mature Pinus pinaster.

    PubMed

    Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier

    2005-11-01

    This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.

  2. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance

    PubMed Central

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra ‘NTAS’ and A. stolonifera ‘Penncross’ plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2 -) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2 - and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2 - accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress. PMID:26382960

  3. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance.

    PubMed

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra 'NTAS' and A. stolonifera 'Penncross' plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2(-)) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2(-) and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2(-) accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress.

  4. [Root system distribution and biomechanical characteristics of Bambusa oldhami].

    PubMed

    Zhou, Ben-Zhi; Xu, Sheng-Hua; An, Yan-Fei; Xu, Sheng-Hua

    2014-05-01

    To determine the mechanism of soil stabilizing through Bambusa oldhami root system, the vertical distribution of B. oldhami root system in soil was investigated, and the tensile strength of individual root and soil shear strength were measured in B. oldhami forest. The dry mass, length, surface area and volume of the B. oldhami root system decreased with the increasing soil depth, with more than 90% of the root system occurring in the 0-40 cm soil layer. The root class with D 1 mm occupied the highest percentage of the total in terms of root length, accounting for 79.6%, but the lowest percentage of the total in terms of root volume, accounting for 8.2%. The root class with D >2 mm was the opposite, and the root class with D= 1-2 mm stayed in between. The maximum tensile resistance of B. oldhami root, either with 12% moisture content or a saturated moisture content, increased with the increasing root diameter, while the tensile strength decreased with the increasing root diameter in accordance with power function. Tensile strength of the root, with either of the two moisture contents, was significantly different among the diameter classes, with the highest tensile strength occurring in the root with D < or = 1 mm and the lowest in the root with D > or = 2 mm. The tensile strength of root with 12% moisture content was significantly higher than that with the saturated moisture content, and less effect of moisture content on root tensile strength would occur in thicker roots. The shear strengths of B. oldhami forest soil and of bare soil both increased with the increasing soil depth. The shear strength of B. oldhami forest soil had a linear positive correlation with the root content in soil, and was significantly higher than that of bare soil. The shear strength increment in B. oldhami forest was positively correlated with the root content in soil according to an exponential function, but not related significantly with soil depth.

  5. Identification of Key Root Volatiles Signaling Preference of Tomato Over Spinach by the Root Knot Nematode Meloidogyne incognita.

    PubMed

    Murungi, Lucy K; Kirwa, Hillary; Coyne, Danny; Teal, Peter E A; Beck, John J; Torto, Baldwyn

    2018-06-25

    The root knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, is a serious pest of tomato (Solanum lycopersicum) and spinach (Spinacea oleracea) in sub-Saharan Africa. In East Africa these two crops are economically important and are commonly intercropped by smallholder farmers. The role of host plant volatiles in M. incognita interactions with these two commodities is currently unknown. Here, we investigate the olfactory basis of attraction of tomato and spinach roots by the infective second stage juveniles (J2s) of M. incognita. In olfactometer assays, J2s were attracted to root volatiles from both crops over moist sand (control), but in choice tests using the two host plants, volatiles of tomato roots were more attractive than those released by spinach. Root volatiles sampled by solid phase micro-extraction (SPME) fiber and analysed by gas chromatography/mass spectrometry (GC/MS) identified a total of eight components, of which five (2-isopropyl-3-methoxypyrazine, 2-(methoxy)-3-(1-methylpropyl)pyrazine, tridecane, and α- and β-cedrene) occurred in the root-emitted volatiles of both plants, with three (δ-3-carene, sabinene and methyl salicylate) being specific to tomato root volatiles. In a series of bioassays, methyl salicylate contributed strongly to the attractiveness of tomato, whereas 2-isopropyl-3-methoxypyrazine and tridecane contributed to the attractiveness of spinach. M. incognita J2s were also more attracted to natural spinach root volatiles when methyl salicylate was combined, than to spinach volatiles alone, indicating that the presence of methyl salicylate in tomato volatiles strongly contributes to its preference over spinach. Our results indicate that since both tomato and spinach roots are attractive to M. incognita, identifying cultivars of these two plant species that are chemically less attractive can be helpful in the management of root knot nematodes.

  6. Electrotropism of maize roots. Role of the root cap and relationship to gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[beta-ethylether]-N,N,N',N' -tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.

  7. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  8. Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Jones, R. L.

    2012-12-01

    Cavity-enhanced absorption spectroscopy is now widely used as an ultrasensitive technique in observing weak spectroscopic absorptions. Photons inside the cavity are reflected back and forth between the mirrors with reflectivities R close to one and thus (on average) exploit an absorption pathlength L that is 1/(1 - R) longer than a single pass measurement. As suggested by the Beer-Lambert law, this increase in L results in enhanced absorbance A (given by αL with α being the absorption coefficient) which in turn favours the detection of weak absorptions. At the same time, however, only (1 - R) of the incident light can enter the cavity [assuming that mirror transmission T is equal to (1 - R)], so that the reduction in transmitted light intensity Δ I caused by molecular absorption equates to that would be obtained if in fact no cavity were present. The enhancement in A = Δ I/ I, where I is the total transmitted light intensity, achievable from CEAS therefore comes not from an increase in Δ I, but a sharp decrease in I. In this paper, we calculate the magnitudes of these two terms before and after a cavity is introduced, and aim at interpreting the sensitivity improvement offered by cavity-enhanced absorption spectroscopy from this observable-oriented (i.e. Δ I and I) perspective. It is first shown that photon energy stored in the cavity is at best as intense as the input light source, implying that any absorbing sample within the cavity is exposed to the same or even lower light intensity after the cavity is formed. As a consequence, the intensity of the light absorbed or scattered by the sample, which corresponds to the Δ I term aforementioned, is never greater than would be the case in a single pass measurement. It is then shown that while this "numerator" term is not improved, the "denominator" term, I, is reduced considerably; therefore, the increase in contrast ratio Δ I/ I is solely contributed by the attenuation of transmitted background light I and is

  9. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  10. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  11. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  12. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Heuristic aspect of the lateral root initiation index: A case study of the role of nitric oxide in root branching.

    PubMed

    Lira-Ruan, Verónica; Mendivil, Selene Napsucialy; Dubrovsky, Joseph G

    2013-10-01

    Lateral root (LR) initiation (LRI) is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO) promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length), we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. • Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP]) and/or an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide [cPTIO]). LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. • Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment.

  14. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    PubMed Central

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  15. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Gilbert, Gregory S; Kadowaki, Kohmei

    2013-01-01

    In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities. PMID:23762515

  16. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.

    PubMed

    Ramzan, Nadia; Noreen, Nayara; Perveen, Zahida; Shahzad, Saleem

    2016-08-01

    Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Project Work on Plant Roots.

    ERIC Educational Resources Information Center

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  18. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  19. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress

    NASA Astrophysics Data System (ADS)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan

    2017-04-01

    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  20. Thirsty tree roots exude more carbon.

    PubMed

    Preece, Catherine; Farré-Armengol, Gerard; Llusià, Joan; Peñuelas, Josep

    2018-05-01

    Root exudation is an important input of carbon into soils and affects plant and soil communities, but little is known about the effect of climatic factors such as drought on exudation, and its ability to recover. We studied the impact of increasing drought on root exudation and its subsequent recovery in the Mediterranean tree species Quercus ilex L. in a greenhouse study by measuring the amount of total organic carbon in exudates. The amount of exudation per unit root area increased with drought duration and was 21% higher under the most extreme drought scenario compared with the non-droughted control. The amount of root exudation did not differ between the treatments following 6 weeks of re-watering, indicating a strong capacity for recovery in this species. We concluded that drought could affect the amount of root exudation, which could in turn have a large impact on microbial activity in the rhizosphere, and alter these microbial communities, at least in the short term. This tree species may be able to return to normal levels of root exudation after a drought event, but long-term exudate-mediated impacts on Mediterranean forest soils may be an unforeseen effect of drought.

  1. Coupling between absorption and scattering in disordered colloids

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.

    We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.

  2. Roots of polynomials by ratio of successive derivatives

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Putt, C. W.

    1972-01-01

    An order of magnitude study of the ratios of successive polynomial derivatives yields information about the number of roots at an approached root point and the approximate location of a root point from a nearby point. The location approximation improves as a root is approached, so a powerful convergence procedure becomes available. These principles are developed into a computer program which finds the roots of polynomials with real number coefficients.

  3. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  4. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  5. Beneficial microbes affect endogenous mechanisms controlling root development

    PubMed Central

    Verbon, Eline H.; Liberman, Louisa M.

    2016-01-01

    Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect root growth and development within Arabidopsis thaliana root. These effects lead to dramatic changes in root system architecture, that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology. PMID:26875056

  6. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  7. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.

    PubMed

    Klein, Eyal; Ofek, Maya; Katan, Jaacov; Minz, Dror; Gamliel, Abraham

    2013-01-01

    Soil suppressiveness to Fusarium disease was induced by incubating sandy soil with debris of wild rocket (WR; Diplotaxis tenuifolia) under field conditions. We studied microbial dynamics in the roots of cucumber seedlings following transplantation into WR-amended or nonamended soil, as influenced by inoculation with Fusarium oxysporum f. sp. radicis-cucumerinum. Disease symptoms initiated in nonamended soil 6 days after inoculation, compared with 14 days in WR-amended soil. Root infection by F. oxysporum f. sp. radicis-cucumerinum was quantified using real-time polymerase chain reaction (PCR). Target numbers were similar 3 days after inoculation for both WR-amended and nonamended soils, and were significantly lower (66%) 6 days after inoculation and transplanting into the suppressive (WR-amended) soil. This decrease in root colonization was correlated with a reduction in disease (60%) 21 days after inoculation and transplanting into the suppressive soil. Fungal community composition on cucumber roots was assessed using mass sequencing of fungal internal transcribed spacer gene fragments. Sequences related to F. oxysporum, Fusarium sp. 14005, Chaetomium sp. 15003, and an unclassified Ascomycota composed 96% of the total fungal sequences in all samples. The relative abundances of these major groups were highly affected by root inoculation with F. oxysporum f. sp. radicis-cucumerinum, with a 10-fold increase in F. oxysporum sequences, but were not affected by the WR amendment. Quantitative analysis and mass-sequencing methods indicated a qualitative shift in the root's bacterial community composition in suppressive soil, rather than a change in bacterial numbers. A sharp reduction in the size and root dominance of the Massilia population in suppressive soil was accompanied by a significant increase in the relative abundance of specific populations; namely, Rhizobium, Bacillus, Paenibacillus, and Streptomyces spp. Composition of the Streptomyces community shifted

  8. Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium.

    PubMed

    Arias, Milton Senen Barcos; Peña-Cabriales, Juan José; Alarcón, Alejandro; Maldonado Vega, María

    2015-01-01

    The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and (32)P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg(-1) substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg(-1)) shoot dry weight than non-colonized controls (26.5 mg Pb kg(-1)) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg(-1) root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.

  9. Glucose absorption in acute peritoneal dialysis.

    PubMed

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  10. Ecology of root colonizing Massilia (Oxalobacteraceae).

    PubMed

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  11. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  12. Can Crops with Greater Rooting Systems Improve Nitrogen Retention and Mitigate Emissions of Nitrous Oxide?

    NASA Astrophysics Data System (ADS)

    Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan

    2016-04-01

    It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas

  13. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  14. Infection, Reproduction Potential, and Root Galling by Root-knot Nematode Species and Concomitant Populations on Peanut and Tobacco

    PubMed Central

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. 'Florigiant' and M. incognita-resistant tobacco cv. 'McNair 373' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations. PMID:19277277

  15. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  16. Phototropism and gravitropism in lateral roots of Arabidopsis.

    PubMed

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  17. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana.

    PubMed

    Joel, Daniel M; Chaudhuri, Swapan K; Plakhine, Dina; Ziadna, Hammam; Steffens, John C

    2011-05-01

    The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower. Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone. We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. THttpServer class in ROOT

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  19. Crop root behavior coordinates phosphorus status and neighbors: from field studies to three-dimensional in situ reconstruction of root system architecture.

    PubMed

    Fang, Suqin; Gao, Xiang; Deng, Yan; Chen, Xinping; Liao, Hong

    2011-03-01

    Root is a primary organ to respond to environmental stimuli and percept signals from neighboring plants. In this study, root responses in maize (Zea mays)/soybean (Glycine max) intercropping systems recognized soil phosphorus (P) status and neighboring plants in the field. Compared to self culture, the maize variety GZ1 intercropping with soybean HX3 grew much better on low P, but not in another maize variety, NE1. This genotypic response decreased with increasing distance between plants, suggesting that root interactions were important. We further conducted a detailed and quantitative study of root behavior in situ using a gel system to reconstruct the three-dimensional root architecture. The results showed that plant roots could integrate information on P status and root behavior of neighboring plants. When intercropped with its kin, maize or soybean roots grew close to each other. However, when maize GZ1 was grown with soybean HX3, the roots on each plant tended to avoid each other and became shallower on stratified P supply, but not found with maize NE1. Furthermore, root behavior in gel was highly correlated to shoot biomass and P content for field-grown plants grown in close proximity. This study provides new insights into the dynamics and complexity of root behavior and kin recognition among crop species in response to nutrient status and neighboring plants. These findings also indicate that root behavior not only depends on neighbor recognition but also on a coordinated response to soil P status, which could be the underlying cause for the different growth responses in the field.

  20. Study of external root resorption during orthodontic treatment in root filled teeth compared with their contralateral teeth with vital pulps.

    PubMed

    Llamas-Carreras, J M; Amarilla, A; Solano, E; Velasco-Ortega, E; Rodríguez-Varo, L; Segura-Egea, J J

    2010-08-01

    To determine whether root filled teeth and those with vital pulps exhibit a similar degree of external root resorption (ERR) as a consequence of orthodontic treatment. The study sample consisted of 77 patients, with a mean age of 32.7 +/- 10.7 years, who had one root filled tooth before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the root filled tooth and that in its contralateral tooth with a vital pulp. The student's t-test, anova and logistic regression analysis were used to determine statistical significance. The mean PRR was 1.00 +/- 0.13, indicating that, in the total sample, there were no significant differences in root resorption in the root filled teeth and their contralateral teeth with vital pulps. Multivariate logistic regression analysis suggested that PRR was significantly greater in incisors (P = 0.0014; odds ratio = 6.2885, C.I. 95% = 2.0-19.4), compared to other teeth, and in women (P = 0.0255; odds ratio = 4.2, C.I. 95% = 1.2-14.6), compared to men. There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root filled teeth and their contralateral teeth with vital pulps.