Science.gov

Sample records for absorption spectra calculated

  1. Calculation of polarized IR absorption spectra for trans-1,4-polyisoprenes of various conformations

    NASA Astrophysics Data System (ADS)

    Abdulov, Kh. Sh.

    2008-07-01

    Polarized IR spectra for two conformations of trans-1,4-polyisoprene (α-and β-gutta-percha) were calculated. The IR dichroism of the absorption bands was calculated for both conformations. The computed results for polarized IR spectra and IR dichroism agree reasonably well with the respective experiment data.

  2. Terahertz absorption spectra of oxidized polyethylene and their analysis by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Komatsu, Marina; Hosobuchi, Masashi; Xie, Xiaojun; Cheng, Yonghong; Furukawa, Yukio; Mizuno, Maya; Fukunaga, Kaori; Ohki, Yoshimichi

    2014-09-01

    Low-density polyethylene, either cross-linked or not, was oxidized and its absorption spectra were measured in the terahertz (THz) range and infrared range. The absorption was increased by the oxidation in the whole THz range. In accord with this, infrared absorption due to carbonyl groups appears. Although these results indicate that the increase in absorption is induced by oxidation, its attribution to resonance or relaxation is unclear. To clarify this point, the vibrational frequencies of three-dimensional polyethylene models with and without carbonyl groups were quantum chemically calculated. As a result, it was clarified that optically inactive skeletal vibrations in polyethylene become active upon oxidation. Furthermore, several absorption peaks due to vibrational resonances are induced by oxidation at wavenumbers from 20 to 100 cm-1. If these absorption peaks are broadened and are superimposed on each other, the absorption spectrum observed experimentally can be reproduced. Therefore, the absorption is ascribable to resonance.

  3. Calculation of Electronic Absorption Spectra with Account of Thermal Geometry Fluctuations

    NASA Astrophysics Data System (ADS)

    Guzha, Maris V.; Svitenkov, Andrew I.

    2016-08-01

    An influence of thermal fluctuations of molecule's geometry on calculated electronic-absorption Vis/Uv spectra is considered. Paper presents the quantum chemical modeling of the electronic-absorption spectra for the collection of graphene samples (44, 56, 60, 68 atoms). The calculations were performed by time dependent density functional theory (TDDFT) method in combination with molecular dynamics (MD) simulation at T=300 K. The noticeable changing of spectra relative to single point TDDFT calculation was discovered for two of four structures. We associate achieved results with perturbation of hydrogen and carbon atoms on the edges of the structures. We believe that suggested methodology will be useful in application engineering researches of novel molecules and molecular complexes.

  4. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  5. Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color

    NASA Astrophysics Data System (ADS)

    Johannessen, S. C.; Miller, W. L.; Cullen, J. J.

    2003-09-01

    The absorption of ultraviolet and visible radiation by colored or chromophoric dissolved organic matter (CDOM) drives much of marine photochemistry. It also affects the penetration of ultraviolet radiation (UV) into the water column and can confound remote estimates of chlorophyll concentration. Measurements of ocean color from satellites can be used to predict UV attenuation and CDOM absorption spectra from relationships between visible reflectance, UV attenuation, and absorption by CDOM. Samples were taken from the Bering Sea and from the Mid-Atlantic Bight, and water types ranged from turbid, inshore waters to the Gulf Stream. We determined the following relationships between in situ visible radiance reflectance, Lu/Ed (λ) (sr-1), and diffuse attenuation of UV, Kd(λ) (m-1): Kd(323nm) = 0.781[Lu/Ed(412)/Lu/Ed(555)]-1.07; Kd(338nm) = 0.604[Lu/Ed(412)/Lu/Ed(555)]-1.12; Kd(380 nm) = 0.302[Lu/Ed(412)/Lu/Ed(555)]-1.24. Consistent with published observations, these empirical relationships predict that the spectral slope coefficient of CDOM absorption increases as diffuse attenuation of UV decreases. Excluding samples from turbid bays, the ratio of the CDOM absorption coefficient to Kd is 0.90 at 323 nm, 0.86 at 338 nm, and 0.97 at 380 nm. We applied these relationships to SeaWiFS images of normalized water-leaving radiance to calculate the CDOM absorption and UV attenuation in the Mid-Atlantic Bight in May, July, and August 1998. The images showed a decrease in UV attenuation from May to August of approximately 50%. We also produced images of the areal distribution of the spectral slope coefficient of CDOM absorption in the Georgia Bight. The spectral slope coefficient increased offshore and changed with season.

  6. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  7. Calculation of vibrational and electronic excited state absorption spectra of arsenic-water complexes using density functional theory

    NASA Astrophysics Data System (ADS)

    Huang, L.; Lambrakos, S. G.; Shabaev, A.; Massa, L.

    2016-05-01

    Calculations are presented of vibrational and electronic excited-state absorption spectra for As-H2O complexes using density function theory (DFT) and time-dependent density functional theory (TD-DFT). DFT and TD-DFT can provide interpretation of absorption spectra with respect to molecular structure for excitation by electromagnetic waves at frequencies within the IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H2O complexes consisting of relatively small numbers of water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and TD-DFT calculated absorption spectra represent quantitative estimates that can be correlated with additional information obtained from laboratory measurements and other types of theory based calculations. The DFT software GAUSSIAN was used for the calculations of excitation states presented here.

  8. THz Absorption Spectra of Fe Water Complexes Interacting with O3 Calculated by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Huang, L.; Lambrakos, S. G.; Shabaev, A.; Massa, L.; Yapijakis, C.

    2013-05-01

    The need for better monitoring of water quality and levels of water contamination implies a need for determining the dielectric response properties of water contaminants with respect to electromagnetic wave excitation. In addition to monitoring contaminants, there is an associated need for monitoring chemical processes that are for deactivation or assistance in the removal of water contaminants. Iron and manganese are two naturally occurring water contaminants, where iron is in general at much higher concentrations. Correspondingly, a process that is highly effective for assisting filtration of water contaminants, including iron and manganese, is the addition in solution of Ozone, i.e., the preozonation process. The present study uses density functional theory (DFT) for the calculation of ground-state resonance structure associated with Fe water complexes interacting with Ozone in solution. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions can provide for different types of analyses concerning water contaminants. In particular, dielectric response functions can provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT-calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground-state resonance structure presented in this article.

  9. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  10. First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl

    SciTech Connect

    Zhao, Shijun; Zhang, Shen; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-06-15

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics (FPMD) method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. It is shown that approximate description of ionization in FPMD has small influence on Hugoniot pressure due to mutual compensation of electronic kinetic pressure and virial pressure. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  11. A test of the possibility of calculating absorption spectra by mixed quantum-classical methods

    NASA Astrophysics Data System (ADS)

    Haug, Kenneth; Metiu, Horia

    1992-10-01

    Some of the most efficient methods for studying systems having a large number of degrees of freedom treat a few degrees of freedom quantum mechanically and the remainder classically. Here we examine how these methods fare when used to calculate the cross section for photon absorption by a quantum system imbedded in a medium. To test the method, we study a model which has two degrees of freedom and mimicks the properties of a one-dimensional alkali atom-He dimer. We treat the electron motion quantum mechanically and the distance between the He atom and the alkali ion classically. Light absorption occurs because the electron is coupled to radiation. The calculation of the absorption cross section by quantum-classical methods fails rather dramatically-at certain frequencies, the absorption coefficient is negative. By comparing with exact quantum calculations, we show that this failure takes place because the time evolution of the classical variables influences the dynamics of the quantum degree of freedom through the Hamiltonian only; important information, which a fully quantum treatment would put in the wave function, is missing. To repair this flaw, we experiment with a method which uses a swarm of classical trajectories to generate a ``classical wave function.'' The results are encouraging, but require substantial computer time when the number of classical variables is large. We argue that in the limit of many classical degrees of freedom, accurate calculations can be performed by using the time-dependent Hartree method and treating some degrees of freedom by exact numerical methods (e.g., a fast Fourier transform procedure) and the others by Gaussian wave packets or any other propagation method that is accurate for a very short time. This procedure leads to a simple time domain picture of dephasing and line broadening in the case of a localized quantum system imbedded in a medium with heavy atoms.

  12. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  13. All-electron first-principles GW+Bethe-Salpeter calculation for optical absorption spectra of sodium clusters

    SciTech Connect

    Noguchi, Yoshifumi; Ohno, Kaoru

    2010-04-15

    The optical absorption spectra of sodium clusters (Na{sub 2n}, n{<=} 4) are calculated by using an all-electron first-principles GW+Bethe-Salpeter method with the mixed-basis approach within the Tamm-Dancoff approximation. In these small systems, the excitonic effect strongly affects the optical properties due to the confinement of exciton in the small system size. The present state-of-the-art method treats the electron-hole two-particle Green's function by incorporating the ladder diagrams up to the infinite order and therefore takes into account the excitonic effect in a good approximation. We check the accuracy of the present method by comparing the resulting spectra with experiments. In addition, the effect of delocalization in particular in the lowest unoccupied molecular orbital in the GW quasiparticle wave function is also discussed by rediagonalizing the Dyson equation.

  14. Final State Projection Method in Charge-Transfer Multiplet Calculations: An analysis of Ti L-edge Absorption Spectra

    PubMed Central

    Kroll, Thomas; Solomon, Edward I.; de Groot, Frank M. F.

    2016-01-01

    A projection method to determine the final state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d0 system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a non-trivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  15. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  16. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  17. Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wang

    1994-04-01

    The moments method is used to calculate the density of states and optical-absorption spectra of large quantum systems. This method uses random wave functions to calculate 500 Chebyshev moments of the density of states (5002 for the optical-absorption spectra), and transforms these moments back to energy space. The results compare well with direct calculations on a large, 2048 Si-atom bulklike supercell system. To demonstrate its utility, the spectra of a realistic quantum dot with 1035 Si and 452 H atoms are calculated using an empirical pseudopotential Hamiltonian and a plane-wave basis of wave functions.

  18. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems.

  19. Quantum mechanical calculation of the collision-induced absorption spectra of N{sub 2}–N{sub 2} with anisotropic interactions

    SciTech Connect

    Karman, Tijs; Groenenboom, Gerrit C.; Avoird, Ad van der; Miliordos, Evangelos; Hunt, Katharine L. C.

    2015-02-28

    We present quantum mechanical calculations of the collision-induced absorption spectra of nitrogen molecules, using ab initio dipole moment and potential energy surfaces. Collision-induced spectra are first calculated using the isotropic interaction approximation. Then, we improve upon these results by considering the full anisotropic interaction potential. We also develop the computationally less expensive coupled-states approximation for calculating collision-induced spectra and validate this approximation by comparing the results to numerically exact close-coupling calculations for low energies. Angular localization of the scattering wave functions due to anisotropic interactions affects the line strength at low energies by two orders of magnitude. The effect of anisotropy decreases at higher energy, which validates the isotropic interaction approximation as a high-temperature approximation for calculating collision-induced spectra. Agreement with experimental data is reasonable in the isotropic interaction approximation, and improves when the full anisotropic potential is considered. Calculated absorption coefficients are tabulated for application in atmospheric modeling.

  20. Calculation of absorption and emission spectra of [n]cycloparaphenylenes: the reason for the large Stokes shift.

    PubMed

    Sundholm, Dage; Taubert, Stefan; Pichierri, Fabio

    2010-03-20

    The electronic absorption and emission spectra of the [n]cycloparaphenylenes with n = 6,7,...,11 ([n]CP) have been studied at the time-dependent density functional theory level. The calculations show that the optical gap increases with increasing size of the ring due to reduced ring strain in the larger carbon nanohoops, whereas the energy of the first bright state follows the opposite trend for the studied [n]CPs. For the excited-state structures, the C-C bonds between the phenylene groups have a significant double-bond character giving rise to a continuous electron delocalisation pathway around the ring. The torsion angles between the phenylene moieties are much smaller for the excited state than for the ground state suggesting that the excited state has a stronger electron delocalisation around the carbon nanohoop than for the ground state. The double bond character of the phenylene C-C bonds declines and the phenylene torsion angle increases with increasing ring size. The aromatic stabilisation of the excited state due to the continuous electron delocalisation pathway is probably the main reason for the large Stokes shift. The excited state of the larger [n]CPs are less aromatic than the smaller ones explaining why the Stokes shift decreases with increasing size of the ring. For large [n]CPs, the excitation-energy spectrum forms bands making localisation of the excitons feasible. Localisation of the excitons probably leads to the observed ring-size independence of the electronic excitation spectra for large [n]CPs. PMID:20200754

  1. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  2. Theoretical calculations of X-ray absorption spectra of a copper mixed ligand complex using computer code FEFF9

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Shrivastava, B. D.

    2014-09-01

    The terms X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) refer, respectively, to the structure in the X-ray absorption spectrum at low and high energies relative to the absorption edge. Routine analysis of EXAFS experiments generally makes use of simplified models and several many-body parameters, e.g. mean free paths, many-body amplitude factors, and Debye-Waller factors, as incorporated in EXAFS analysis software packages like IFEFFIT which includes Artemis. Similar considerations apply to XANES, where the agreement between theory and experiment is often less satisfactory. The recently available computer code FEFF9 uses the real-space Green's function (RSGF) approach to calculate dielectric response over a broad spectrum including the dominant low-energy region. This code includes improved treatments of many-body effects such as inelastic losses, core-hole effects, vibrational amplitudes, and the extension to full spectrum calculations of optical constants including solid state effects. In the present work, using FEFF9, we have calculated the X-ray absorption spectrum at the K-edge of copper in a complex, viz., aqua (diethylenetriamine) (isonicotinato) copper(II), the crystal structure of which is unknown. The theoretical spectrum has been compared with the experimental spectrum, recorded by us at the XAFS beamline 11.1 at ELETTRA synchrotron source, Italy, in both XANES and EXAFS regions.

  3. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    NASA Astrophysics Data System (ADS)

    Li, Zi; Zhang, Shen; Wang, Cong; Kang, Wei; Zhang, Ping

    2016-05-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  4. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra.

    PubMed

    Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A

    2012-02-14

    An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

  5. Calculation and interpretation of vibronic absorption and fluorescence spectra of the first electronic nπ* transitions of pyridine and pyrimidine

    NASA Astrophysics Data System (ADS)

    Ten, G. N.; Kadrov, D. M.; Berezin, M. K.; Baranov, V. I.

    2014-11-01

    We have calculated vibronic spectra of the first electronic nπ* transitions of pyridine and pyrimidine in the isolated state using the DFT method in the Franck-Condon approximation. Vibrational spectra for the ground and excited states have been calculated in the anharmonic approximation, which allowed us to refine the assignment of normal vibrations of pyridine and pyrimidine. We have done a complete interpretation of the vibrational structure of the absorption and fluorescence spectra of pyridine and pyrimidine. It has been shown that Fermi resonances between fundamental and combination vibrations and overtones 12 and 16 b + 4, 6 a and 2 × 16 b affect the formation of the vibrational structure of electronic spectra of pyrimidine. Good agreement between calculated and experimental spectra confirms the correctness of the models of the two molecules in their ground and excited states, which makes it possible to use the models in further investigations of various properties of these molecules in electronically excited states, e.g., tautomerism of pyrimidine bases of nucleic acids.

  6. Calculated Hanle transmission and absorption spectra of the {sup 87}Rb D{sub 1} line with residual magnetic field for arbitrarily polarized light

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-09-15

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  7. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    SciTech Connect

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  8. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    SciTech Connect

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan; Kim, Sunghwan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  9. Structures of Plutonium(IV) and Uranium(VI) with N,N-Dialkyl Amides from Crystallography, X-ray Absorption Spectra, and Theoretical Calculations.

    PubMed

    Acher, Eléonor; Hacene Cherkaski, Yanis; Dumas, Thomas; Tamain, Christelle; Guillaumont, Dominique; Boubals, Nathalie; Javierre, Guilhem; Hennig, Christoph; Solari, Pier Lorenzo; Charbonnel, Marie-Christine

    2016-06-01

    The structures of plutonium(IV) and uranium(VI) ions with a series of N,N-dialkyl amides ligands with linear and branched alkyl chains were elucidated from single-crystal X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and theoretical calculations. In the field of nuclear fuel reprocessing, N,N-dialkyl amides are alternative organic ligands to achieve the separation of uranium(VI) and plutonium(IV) from highly concentrated nitric acid solution. EXAFS analysis combined with XRD shows that the coordination structure of U(VI) is identical in the solution and in the solid state and is independent of the alkyl chain: two amide ligands and four bidentate nitrate ions coordinate the uranyl ion. With linear alkyl chain amides, Pu(IV) also adopt identical structures in the solid state and in solution with two amides and four bidentate nitrate ions. With branched alkyl chain amides, the coordination structure of Pu(IV) was more difficult to establish unambiguously from EXAFS. Density functional theory (DFT) calculations were consequently performed on a series of structures with different coordination modes. Structural parameters and Debye-Waller factors derived from the DFT calculations were used to compute EXAFS spectra without using fitting parameters. By using this methodology, it was possible to show that the branched alkyl chain amides form partly outer-sphere complexes with protonated ligands hydrogen bonded to nitrate ions. PMID:27171842

  10. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  11. Optical absorption spectra of pairs of small metal particles

    NASA Astrophysics Data System (ADS)

    Quinten, M.; Kreibig, U.; Schönauer, D.; Genzel, L.

    1985-06-01

    The influence of plasma resonance coupling in small Au particle pairs on their optical properties was calculated including retardation effects. The latter prove to be important for sizes above 15 nm. For pairs of smaller particles a Maxwell-Garnett formula is derived and absorption spectra are calculated explicitly. Comparison with optical absorption spectra measured on aggregated Au particle hydrosols, gives good agreement concerning the splitting up of the dipolar single-particle plasma resonance band.

  12. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  13. Comparative Study of Absorption Spectra of V2+, Cr3+, and Mn4+ in α-Al2O3 Based on First-Principles Configuration--Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Novita, Mega; Ogasawara, Kazuyoshi

    2012-10-01

    First-principles configuration--interaction (CI) calculations of the multiplet structures and the ground-state (GS) absorption spectra of isoelectronic 3d3 ions such as V2+, Cr3+, and Mn4+ in α-Al2O3 have been performed. The results of the molecular orbital (MO) calculations without lattice-relaxation effect indicated that the GSMOs are not appropriate for the calculation of the absorption spectra in the case of V2+ in α-Al2O3 (α-Al2O3:V2+) due to the strong mixing between the V 3d orbitals and the conduction band. Therefore we investigated the effect of orbital-relaxation by tentatively performing CI calculations using MOs obtained for several excited states and the CI calculation using the MOs in the intermediate t2g{}1.5eg{}1.5 configuration was found to give reasonable theoretical spectra. The theoretical peak energies and the relative peak intensities were improved further for α-Al2O3:V2+ and α-Al2O3:Cr3+ by consideration of energy corrections such as configuration-dependent correction (CDC) and correlation correction (CC). The comparison between the theoretical spectra and the experimental ones indicated that the theoretical spectra were significantly improved for α-Al2O3:V2+ and α-Al2O3:Cr3+ by consideration of the lattice-relaxation effect. As a result, the tendency of the variation of the peak energies among the isoelectronic 3d3 ions was clearly reproduced by the first-principles calculations. It was also found that none of the orbital-relaxation, the lattice-relaxation, CDC, and CC has significant effects on the absorption spectra of Mn4+ in α-Al2O3.

  14. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  15. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  16. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  17. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  18. X-ray absorption spectra of hexagonal ice and liquid water by all-electron Gaussian and augmented plane wave calculations.

    PubMed

    Iannuzzi, Marcella

    2008-05-28

    Full potential x-ray spectroscopy simulations of hexagonal ice and liquid water are performed by means of the newly implemented methodology based on the Gaussian augmented plane waves formalism. The computed spectra obtained within the supercell approach are compared to experimental data. The variations of the spectral distribution determined by the quality of the basis set, the size of the sample, and the choice of the core-hole potential are extensively discussed. The second part of this work is focused on the understanding of the connections between specific configurations of the hydrogen bond network and the corresponding contributions to the x-ray absorption spectrum in liquid water. Our results confirm that asymmetrically coordinated molecules, in particular, those donating only one or no hydrogen bond, are associated with well identified spectral signatures that differ significantly from the ice spectral profile. However, transient local structures, with half formed hydrogen bonds, may still give rise to spectra with dominant postedge contributions and relatively weaker oscillator strengths at lower energy. This explains why by averaging the spectra over all the O atoms of liquid instantaneous configurations extracted from ab initio molecular dynamics trajectories, the spectral features indicating the presence of weak or broken hydrogen bonds turn out to be attenuated and sometimes not clearly distinguishable.

  19. X-ray absorption spectra of hexagonal ice and liquid water by all-electron Gaussian and augmented plane wave calculations

    NASA Astrophysics Data System (ADS)

    Iannuzzi, Marcella

    2008-05-01

    Full potential x-ray spectroscopy simulations of hexagonal ice and liquid water are performed by means of the newly implemented methodology based on the Gaussian augmented plane waves formalism. The computed spectra obtained within the supercell approach are compared to experimental data. The variations of the spectral distribution determined by the quality of the basis set, the size of the sample, and the choice of the core-hole potential are extensively discussed. The second part of this work is focused on the understanding of the connections between specific configurations of the hydrogen bond network and the corresponding contributions to the x-ray absorption spectrum in liquid water. Our results confirm that asymmetrically coordinated molecules, in particular, those donating only one or no hydrogen bond, are associated with well identified spectral signatures that differ significantly from the ice spectral profile. However, transient local structures, with half formed hydrogen bonds, may still give rise to spectra with dominant postedge contributions and relatively weaker oscillator strengths at lower energy. This explains why by averaging the spectra over all the O atoms of liquid instantaneous configurations extracted from ab initio molecular dynamics trajectories, the spectral features indicating the presence of weak or broken hydrogen bonds turn out to be attenuated and sometimes not clearly distinguishable.

  20. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  1. Calculating Effect of Point Defects on Optical Absorption Spectra of III-V Semiconductor Superlattices Based on (8x8) k-dot-p Band Structures

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey; Cardimona, David; Krishna, Sanjay

    For a superlattice which is composed of layered zinc-blende structure III-V semiconductor materials, its realistic anisotropic band structures around the Gamma-point are calculated by using the (8x8)k-dot-p method with the inclusion of the self-consistent Hartree potential and the spin-orbit coupling. By including the many-body screening effect, the obtained band structures are further employed to calculate the optical absorption coefficient which is associated with the interband electron transitions. As a result of a reduced quasiparticle lifetime due to scattering with point defects in the system, the self-consistent vertex correction to the optical response function is also calculated with the help of the second-order Born approximation.

  2. Stability properties of wines by absorption spectra

    NASA Astrophysics Data System (ADS)

    Larena, A.; Vega, J.

    1986-03-01

    The temporal evolution of absorption spectra (370-700 nm) of different spanish wines has been studied by us under the influence of air presence, and the light exposition. In particular, we have exposed the wines to a magenta light. Nevertheless, the color coordinates of wine show a little relative variation (0.1-1 %)

  3. Poster 2:Ab initio calculations of low temperature hydrocarbon spectra for astrophysics: application to the modeling of methane absorption in the Titan atmosphere in a wide IR range

    NASA Astrophysics Data System (ADS)

    Rey, Michael; Nikitin, Andrei; Bezard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir

    2016-06-01

    Knowledge of intensities of spectral transitions in various temperature ranges including very low-T conditions is essential for the modeling of optical properties of planetary atmospheres and for other astrophysical applications. The temperature dependence of spectral features is crucial, but quantified experimental information in a wide spectral range is generally missing. A significant progress has been recently achieved in first principles quantum mechanical predictions (ab initio electronic structure + variational nuclear motion calculations) of rotationally resolved spectra for hydrocarbon molecules such as methane , ethylene and their isotopic species [1,2] . We have recently reported the TheoReTS information system (theorets.univ-reims.fr, theorets.tsu.ru) for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces [3] that permits online simulation of radiative properties including low-T conditions of cold planets. In this work, we apply ab initio predictions of the spectra of methane isotopologues down to T=80 K for the modeling of the transmittance in the atmosphere of Titan, Saturn's largest satellite explored by the Cassini-Huygens space mission. A very good agreement over the whole infrared range from 6,000 to 11,000 cm-1 compared with observations obtained by the Descent Imager / Spectral Radiometer (DISR) on the Huygens probe [4,5] at various altitudes will be reported.

  4. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  5. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  6. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices.

  7. Theoretical investigations of absorption and fluorescence spectra of protonated pyrene.

    PubMed

    Chin, Chih-Hao; Lin, Sheng Hsien

    2016-05-25

    The equilibrium geometry and 75 vibrational normal-mode frequencies of the ground and first excited states of protonated pyrene isomers were calculated and characterized in the adiabatic representation by using the complete active space self-consistent field (CASSCF) method. Electronic absorption spectra of solid neon matrixes in the wavelength range 495-415 nm were determined by Maier et al. and they were analyzed using time-dependent density functional theory calculations (TDDFT). CASSCF calculations and absorption and emission spectra simulations by one-photon excitation equations were used to optimize the excited and ground state structures of protonated pyrene isomers. The absorption band was attributed to the S0 → S1 electronic transition in 1H-Py(+), and a band origin was used at 20580.96 cm(-1). The displaced harmonic oscillator approximation and Franck-Condon approximation were used to simulate the absorption spectrum of the (1) (1)A' ← X[combining tilde](1)A' transition of 1H-Py(+), and the main vibronic transitions were assigned for the first ππ* state. It shows that the vibronic structures were dominated by one of the eight active totally symmetric modes, with ν15 being the most crucial. This indicates that the electronic transition of the S1((1)A') state calculated in the adiabatic representation effectively includes a contribution from the adiabatic vibronic coupling through Franck-Condon factors perturbed by harmonic oscillators. The present method can adequately reproduce experimental absorption and fluorescence spectra of a gas phase. PMID:27181017

  8. Calculation of interaction-induced spectra using complex absorbing potentials

    SciTech Connect

    Gustafsson, Magnus; Antipov, Sergey V.

    2010-10-29

    A complex absorbing potential method is implemented for calculation of collision-induced spectra. The scheme provides a way to avoid the integration of the Schroedinger equation to very large separations of the collisional pair. The method is tested by reproducing a previously computed absorption spectrum for H-He at two different temperatures.

  9. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  10. Quantitative calculation of the absorption spectrum of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Ogilvie, J. F.; Fee, G. J.

    2014-03-01

    With mathematical software (Maple), we have calculated quantitatively the entire absorption spectrum of the hydrogen atom in its electronic ground state for transitions to both discrete and continuum states, within the purview of non-relativistic wave mechanics. We present plots of wave functions in both coordinate and momentum representations and the calculated spectra.

  11. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  12. First-principles calculations of solid and liquid aluminum optical absorption spectra near the melting curve: Ambient and high-pressure results

    SciTech Connect

    Ogitsu, Tadashi; Benedict, Lorin X.; Schwegler, Eric; Draeger, Erik W.; Prendergast, David

    2009-12-04

    Here, we present ab initio calculations of the linear optical conductivity of heated Al at ambient pressure and at the conditions relevant for shock melting (P~125 GPa, T~5000 K). It is shown that the visible and near-UV optical spectrum is very sensitive to the phase (fcc solid versus liquid) of Al for both P=0 and 125 GPa. The ambient-P results confirm an earlier prediction and the results of a recent experiment while the high-(P,T) results allow us to conclude that in situ measurements of optical constants should be able to diagnose the shock melting of Al.

  13. First-principles calculations of solid and liquid aluminum optical absorption spectra near the melting curve: Ambient and high-pressure results

    DOE PAGES

    Ogitsu, Tadashi; Benedict, Lorin X.; Schwegler, Eric; Draeger, Erik W.; Prendergast, David

    2009-12-04

    Here, we present ab initio calculations of the linear optical conductivity of heated Al at ambient pressure and at the conditions relevant for shock melting (P~125 GPa, T~5000 K). It is shown that the visible and near-UV optical spectrum is very sensitive to the phase (fcc solid versus liquid) of Al for both P=0 and 125 GPa. The ambient-P results confirm an earlier prediction and the results of a recent experiment while the high-(P,T) results allow us to conclude that in situ measurements of optical constants should be able to diagnose the shock melting of Al.

  14. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  15. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  16. Effects of lowly ionized ions on silicon K-shell absorption spectra

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Liang, G. Y.; Wang, F. L.; Zhong, J. Y.; Zhao, G.

    2016-05-01

    Context. In both astrophysical and laboratory plasmas, K-shell absorption spectra have become powerful diagnostic tools to investigate electron density and temperature. These spectra are also widely used to verify the opacity codes in laboratory settings. Aims: We report the effects of the low ionization silicon ions, namely from Si I to Si V, which have rarely been considered in previous models, on the K-shell silicon absorption spectra. Methods: The Si K-shell atomic data were calculated with the flexible atomic code, which is a fully relativistic atomic program with configuration interaction taken into consideration. Detailed level accounting models were employed to calculate the absorption spectra. Results: We calculate the Si absorption spectra in local thermodynamic equilibrium conditions with temperature and density ranges of 20-70 eV and ~1020 cm-3 to ~1022 cm-3, respectively, and show the contributions of the lowly ionized ions to the K-shell absorption spectra of silicon. We also investigate the effects of the different atomic data on the absorption spectra. We find good agreement between our results and these from OPLIB. Conclusions: We find that the contributions from these lowly ionized ions cannot be neglected at relative low temperatures. Accurate experimental measurements are needed to benchmark the theoretical calculations.

  17. Calculated late time spectra of supernovae

    SciTech Connect

    Axelrod, T.S.

    1987-10-30

    We consider here the nebular phase spectra of supernovae whose late time luminosity is provided by the radioactive decay of /sup 56/Ni and /sup 56/Co synthesized in the explosion. A broad variety of supernovae are known or suspected to fall in this category. This includes all SNIa and SNIb, and at least some SNII, in particular SN1987a. At sufficiently late times the expanding supernova becomes basically nebular in character due to its decreasing optical depth. The spectra produced during this stage contain information on the density and abundance structure of the entire supernova, as opposed to spectra near maximum light which are affected only by the outermost layers. A numerical model for nebular spectrum formation is therefore potentially very valuable for answering currently outstanding questions about the post-explosion supernova structure. As an example, we can hope to determine the degree of mixing which occurs between the layers of the ''onion-skin'' abundance structure predicted by current one dimensional explosion calculations. In the sections which follow, such a numerical model is briefly described and then applied to SN1972e, a typical SNIa, SN1985f, an SNIb, and finally to SN1987a. In the case of SN1987a predicted spectra are presented for the wavelength range from 1 to 100 microns at a time 300 days after explosion. 18 refs., 6 figs.

  18. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  19. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  20. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  1. Vibronic Structures in Absorption and Fluorescence Spectra of Firefly Oxyluciferin in Aqueous Solutions.

    PubMed

    Hiyama, Miyabi; Noguchi, Yoshifumi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2015-01-01

    To elucidate the factors determining the spectral shapes and widths of the absorption and fluorescence spectra for keto and enol oxyluciferin and their conjugate bases in aqueous solutions, the intensities of vibronic transitions between their ground and first electronic excited states were calculated for the first time via estimation of the vibrational Franck-Condon factors. The major normal modes, overtones and combination tones in absorption and fluorescence spectra are similar for all species. The theoretical full widths at half maximum of absorption spectra are 0.4-0.7 eV and those for the fluorescence spectra are 0.4-0.5 eV, except for phenolate-keto that exhibits exceptionally sharp peak widths due to the dominance of the 0-0' or 0'-0 band. These spectral shapes and widths explain many relevant features of the experimentally observed spectra. PMID:25946599

  2. Substitution effects on the absorption spectra of nitrophenolate isomers.

    PubMed

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-01

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  3. Identification of THz absorption spectra of chemicals using neural networks

    NASA Astrophysics Data System (ADS)

    Shen, Jingling; Jia, Yan; Liang, Meiyan; Chen, Sijia

    2007-09-01

    Absorption spectra in the range from 0.2 to 2.6 THz of chemicals such as illicit drugs and antibiotics obtaining from Terahertz time-domain spectroscopy technique were identified successfully by artificial neural networks. Back Propagation (BP) and Self-Organizing Feature Map (SOM) were investigated to do the identification or classification, respectively. Three-layer BP neural networks were employed to identify absorption spectra of nine illicit drugs and six antibiotics. The spectra of the chemicals were used to train a BP neural network and then the absorption spectra measured in different times were identified by the trained BP neural network. The average identification rate of 76% was achieved. SOM neural networks, another important neural network which sorts input vectors by their similarity, was used to sort 60 absorption spectra from 6 illicit drugs. The whole network was trained by setting a 20×20 and a 16×16 grid, and both of them had given satisfied clustering results. These results indicate that it is feasible to apply BP and SOM neural networks model in the field of THz spectra identification.

  4. Structure of amphotericin B aggregates based on calculations of optical spectra

    SciTech Connect

    Hemenger, R.P.; Kaplan, T.; Gray, L.J.

    1983-01-01

    The degenerate ground state approximation was used to calculate the optical absorption and CD spectra for helical polymer models of amphotericin B aggregates in aqueous solution. Comparisons with experimental spectra indicate that a two-molecule/unit cell helical polymer model is a possible structure for aggregates of amphotericin B.

  5. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  6. [Transient UV absorption spectra of artemisinin reacting with sodium hydroxide].

    PubMed

    Gao, Yan-Jun; Ping, Li; Yang, Li-Jun; Wang, Qi-Ming; Xue, Jun-Peng; Wu, Da-Cheng; Li, Rui-Xia

    2009-03-01

    UV absorption spectrum of artemisinin and transient absorption spectra of various concentrations of artemisinin reacting with sodium hydroxide were measured by using an intensified spectroscopic detector ICCD. The exposure time of each spectrum was 0.1 ms. Results indicate that artemisinin has an obvious UV absorption band centered at 212.52 nm and can react with sodium hydroxide easily. All absorption spectra of different concentrations of artemisinin reacting with sodium hydroxide have the similar changes, but the moment at which the changes happened is different. After adding sodium hydroxide into artemisinin in ethanol solution, there was a new absorption band centered at 288 nm appearing firstly. As reaction went on, the intensity of another absorption band centered at 260 nm increased gradually. At the end of the reaction, a continuous absorption band from 200 to 350 nm with the peak at 245 nm formed finally. No other transient absorption spectral data are available on the reaction of artemisinin with sodium hydroxide currently. The new spectral information obtained in this experiment provides very important experimental basis for understanding the properties of artemisinin reacting with alkaline medium and is useful for correctly using of artemisinin as a potential anticancer drug.

  7. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  8. A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.

    2009-01-01

    In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…

  9. UV optical absorption spectra analysis of spodumene crystals from Brazil

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Watari, Kazunori; Mizukami, Akiyoshi; Bonventi, Waldemar; Ito, Amando Siuiti

    2007-04-01

    The spectral decomposition analysis was applied to the optical absorption spectra of spodumene crystals from the Brazilian eastern pegmatitic province. The analyzed samples were natural, treated at 400 °C for 24 h and those irradiated with γ rays of 60Co with doses up to 5 MGy. The attributions of the lines were made taking in account highly accurate quantum mechanical calculations. The heated sample had only three lines, which were not affected by irradiation. One of them at 7.58 eV was attributed to an oxygen vacancy defect and the other two at 5.07 and 4.64 eV to a peroxy-type defect. The analysis of the growth of the lines with the irradiation showed that they belong to two groups of defects. The first group of lines at 4.2, 5.3 and 5.9 eV was attributed to a silanone-type defect. The other group of lines at 1.36, 2.0, 2.6, 3.6 and 5.0 eV was attributed to a type of Mn 3+ defect. The natural and irradiated samples also showed a line at 2.3 eV, which was attributed to another type of diamagnetic Mn 3+ defect.

  10. Energy and optical absorption spectra of endohedral metallofullerenes with Gd or Ho as strongly correlated π-electron systems

    NASA Astrophysics Data System (ADS)

    Bubnov, V. P.; Kareev, I. E.; Lobanov, B. V.; Murzashev, A. I.; Nekrasov, V. M.

    2016-08-01

    Isomerically pure endohedral metallofullerenes Gd@C82(C2v), Ho@C82( C 2 v ), and their monoanions have been synthesized and separated. The optical absorption spectra of solutions of obtained compounds in o-dichlorobenzene have been studied. Within the Hubbard model, the energy spectrum of isomer of C 2 v symmetry (no. 9) of fullerene C82 has been calculated. Based on the obtained spectrum, optical absorption spectra of endohedral metallofullerenes Gd@C82 and Ho@C82 and their monoanions have been simulated. The calculated optical absorption spectra have been compared with experimental ones; it has been found that qualitative agreement between them is observed.

  11. Theoretical study of absorption and fluorescence spectra of firefly luciferin in aqueous solutions.

    PubMed

    Hiyama, Miyabi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2012-01-01

    The absorption and fluorescence spectra of firefly luciferin, which is an analog of oxyluciferin, are investigated by performing the density functional theory (DFT) calculations, especially focusing on the experimentally unassigned peaks. Time-dependent DFT calculations are performed for the excited states of firefly luciferin and its conjugate acids and bases. We find that (1) the peaks in the experimental absorption spectra correspond to the excited states of not only (6'O(-), 4COO(-)) and (6'OH, 4COO(-)), but also (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (2) the peaks in the experimental fluorescence spectra correspond to the excited states of not only (6'O(-), 4COO(-)), but also (6'OH, 4COO(-)), (6'O(-), 4COOH), (6'OH, 4COOH) and (6'OH, 3H(+), 4COOH); (3) the unassigned peak near 400 nm in the experimental absorption spectra at pH 1 is assigned to the absorption from the equilibrium ground state to the first excited state of (6'OH, 3H(+), 4COOH); and (4) the unassigned peak at 610 nm in the experimental fluorescence spectra corresponds to the transition from the equilibrium first excited state to the ground state of (6'OH, 4COO(-)). PMID:22364397

  12. Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers.

    PubMed

    Wu, Wenpeng; Cao, Zexing; Zhao, Yi

    2012-03-21

    The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.

  13. Absorption spectra of crystalline limestones experimentally deformed or tectonised

    NASA Astrophysics Data System (ADS)

    Cervelle, B.; ChayéD'Albissin, M.; Gouet, G.; Visocekas, R.

    1982-11-01

    Diffuse-reflectance spectra have been measured for a series of samples of Carrara marble experimentally deformed under different cylindrical stress ( P = 0, 100, 250, 500, 980 bars). The creation of point defects that results has been shown up classically by irradiation with β rays (40 krads), thus producing a typical blue coloration linked with the formation of colour centres. The diffuse-reflectance spectra, measured on powders with a microscope-spectrometer in the visible range (400-800 nm), allow the determination of the absorption spectra by means of the Kubelka-Munk function. These absorption spectra have been measured for each of the deformed samples, as well as for different fractions of a very deformed specimen subsequently heated at temperatures between 100 and 500° C for a fixed time. In the same way, tectonised crystalline limestones, of various origins, were studied without any other treatment than the irradiation with β rays. From this study the following preliminary conclusions have been drawn: (1) The absorption spectrum of an undeformed but merely irradiated specimen of crystalline limestone is practically monotonous, but in the deformed specimens a broad band of absorption appears, having a maximum at 620 nm with several shoulders, the chief of which is at 520 nm. (2) This absorption band shows the existence of colour centres, the density of which can be estimated relatively by means of the chromaticity coordinates x and y of the C.I.E. obtained from the diffuse-reflectance spectra (C.I.E. = Commission Internationale de l'Éclairage). (3) An overgrinding of calcite generates defects that have the same spectra as those produced during the experimental deformation. Consequently, in obtaining the powders of grain size 50-80 μm needed for the diffuse spectrometry, great care must be exercised. (4) For a given confining pressure, the defect density is proportional to the deformation rate. (5) One can calibrate the effect of the annealing of

  14. Simple Monte Carlo methods to estimate the spectra evaluation error in differential-optical-absorption spectroscopy.

    PubMed

    Hausmann, M; Brandenburger, U; Brauers, T; Dorn, H P

    1999-01-20

    Differential-optical-absorption spectroscopy (DOAS) permits the sensitive measurement of concentrations of trace gases in the atmosphere. DOAS is a technique of well-defined accuracy; however, the calculation of a statistically sound measurement precision is still an unsolved problem. Usually one evaluates DOAS spectra by performing least-squares fits of reference absorption spectra to the measured atmospheric absorption spectra. Inasmuch as the absorbance from atmospheric trace gases is usually very weak, with optical densities in the range from 10(-5) to 10(-3), interference caused by the occurrence of nonreproducible spectral artifacts often determines the detection limit and the measurement precision. These spectral artifacts bias the least-squares fitting result in two respects. First, spectral artifacts to some extent are falsely interpreted as real absorption, and second, spectral artifacts add nonstatistical noise to spectral residuals, which results in a significant misestimation of the least-squares fitting error. We introduce two new approaches to investigate the evaluation errors of DOAS spectra accurately. The first method, residual inspection by cyclic displacement, estimates the effect of false interpretation of the artifact structures. The second method applies a statistical bootstrap algorithm to estimate properly the error of fitting, even in cases when the condition of random and independent scatter of the residual signal is not fulfilled. Evaluation of simulated atmospheric measurement spectra shows that a combination of the results of both methods yields a good estimate of the spectra evaluation error to within an uncertainty of ~10%.

  15. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  16. Reassignment of the Iron (3) Absorption Bands in the Spectra of Mars

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.

    1985-01-01

    Absorption features in the near-infrared and visible region reflectance spectra of Mars have been assigned to specific Fe (3+) crystal-field and o(2-) yields Fe(3+) charge transfer transitions. Recently, near-ultraviolet absorption spectra of iron oxides were obtained and the energies of o(2-) yields Fe(3+) charge-transfer (LMCT) transitions were determined from accurate SCF-X # alpha-SW molecular orbital calculations on (FeO6)(9-) and (FeO4)(5-) clusters. Both the theoretical and experimental results, together with existing data in the literature, show that some of the previous Fe(3+) band assignments in the spectra of Mars need to be revised. The theory of Fe(3+) spectra in minerals is discussed and applied to the spectrum of Mars.

  17. Infrared absorption spectra of metal carbides, nitrides and sulfides

    NASA Technical Reports Server (NTRS)

    Kammori, O.; Sato, K.; Kurosawa, F.

    1981-01-01

    The infrared absorption spectra of 12 kinds of metal carbides, 11 kinds of nitrides, and 7 kinds of sulfides, a total of 30 materials, were measured and the application of the infrared spectra of these materials to analytical chemistry was discussed. The measurements were done in the frequency (wave length) range of (1400 to 400/cm (7 to 25 mu). The carbides Al4C3, B4C, the nitrides AlN, BN, Si3N4, WB, and the sulfides Al2S3, FeS2, MnS, NiS and PbS were noted to have specific absorptions in the measured region. The sensitivity of Boron nitride was especially good and could be detected at 2 to 3 micrograms in 300 mg of potassium bromide.

  18. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  19. Interpretation of NO2 absorption in twilight sky spectra

    NASA Astrophysics Data System (ADS)

    McMahon, B. B.

    1984-07-01

    A multiple scattering model has been developed to calculate nitrogen dioxide (NO2) absorption in the light from the zenith sky during twilight. Model studies show that this absorption is not very sensitive to the atmospheric temperature profile or to tropospheric NO2. The model was used to interpret some ground-based measurements of NO2 sky absorption. Values for the total stratospheric column amount vary from 2 to 12 x 10 to the 15th molec/sq cm, and the mean altitude of the stratospheric concentration profile is around 35 km. These observations are in broad agreement with those of other workers.

  20. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  1. Assessing the Atmospheric Impact of CF3CClH2 (HCFC-133a): Laboratory Measurements of OH Kinetics and UV and Infrared Absorption Spectra Combined with Model Calculations

    NASA Astrophysics Data System (ADS)

    McGillen, M.; Bernard, F.; Fleming, E. L.; Jackman, C. H.; Burkholder, J. B.

    2014-12-01

    CF3CClH2 (HCFC-133a) was recently detected in the atmosphere and its atmospheric mixing ratio has quadrupled over the last 10 years. As expected for this class of compound, HCFC-133a is both an ozone-depleting substance and a greenhouse gas. Precise knowledge of its atmospheric degradation and radiative efficiency is critical to understanding its effect upon the atmosphere. The predominant atmospheric loss process for HCFC-133a is via reaction with the OH radical, where the rate coefficient for this reaction is poorly constrained, especially below room temperature. UV photolysis is a minor loss process, although large discrepancies exist among the reported spectrum measurements. The infrared spectrum of HCFC-133a is presently not available in the literature. The primary focus of this work was to reduce the uncertainties in the atmospheric loss processes of HCFC-133a and its radiative efficiency. Rate coefficient measurements for the OH + HCFC-133a reaction over the temperature range 233-397 K will be reported. In addition, UV absorption spectrum measurements over the wavelength (184.95-240 nm) and temperature (213-323 K) ranges and infrared absorption measurements from 500-4000 cm-1 will be reported. These results are used in 2-D atmospheric model calculations to quantify the atmospheric loss processes, atmospheric lifetime, ozone depletion potential, radiative efficiency, and global warming potential of HCFC-133a. These important metrics will enable informed policy decisions regarding HCFC-133a.

  2. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  3. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile

    2012-11-01

    Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.

  4. Effects of compositional variation on absorption spectra of lunar pyroxenes

    NASA Technical Reports Server (NTRS)

    Hazen, R. M.; Bell, P. M.; Mao, H. K.

    1978-01-01

    Polarized absorption spectra of lunar pyroxenes with a range of iron, calcium, magnesium, titanium and chromium contents were measured on polished, oriented single crystals; spectral data on pure synthetic FeSiO3 were also recorded. The bands at 1 and 2 microns were found to vary significantly in position with composition within the pyroxene quadrilateral; wavelengths increased with increasing calcium and iron. In the visible region, a weak band at 640 nm correlates in intensity with Cr2O3, but not with titanium as had been previously suggested. The 505-nm ferrous iron peak is a sharp doublet in most low-calcium pyroxenes but a singlet in augites. A peak at 475 nm and an intense absorption edge below 700 nm correlated with titanium content.

  5. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  6. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  7. S0 → Sn and S1 → Sn absorption spectra of thio-distyrylbenzenes

    NASA Astrophysics Data System (ADS)

    Baraldi, Ivan; Ginocchietti, Gabriella; Mazzucato, Ugo; Spalletti, Anna

    2007-08-01

    The molecular structures and the S0 → Sn and S1 → Sn absorption spectra of 1,4-distyrylbenzene and four thio-analogues, where the side phenyl rings are replaced by 2'-thienyl or 3'-thienyl groups and the central benzene ring is replaced by a 2,5-disubstituted thiophene ring, have been investigated by a combined theoretical and experimental approach. The rotational isomerism of these flexible molecules has been analyzed by ab initio quantum chemistry methodologies. The S0 → Sn one-photon absorption spectra and the S1 → Sn transient spectra have been calculated using the CS INDO S-CI and SDT-CI procedures. The calculations on conformational isomers indicate that the stable molecular structures are those where the quasi-single bonds of the vinylene groups have almost planar s-trans configuration. In the 1,4-compounds, there may be an equilibrium between two molecular forms of C2h and C2v symmetry in the model of planar conformations. As concerns the UV-vis absorption spectra, the importance of the cis band, as probe to investigate the molecular structure of the 2,5-compounds, has been pointed out, and the presence of an equilibrium between two rotamers in the compound bearing side 3'-thienyl groups has been confirmed. The S1 → Sn absorption spectra are interpretable only with configuration interaction calculations including the multiple excited configurations. In this respect, the role played by the H2 → L2 double excitation has been emphasized.

  8. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  9. Theoretical electronic absorption and natural circular dichroism spectra of (-)-trans-cyclooctene

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Bondo; Koch, Henrik

    2000-02-01

    Using the random phase approximation and coupled cluster singles and doubles linear response theory in conjunction with two basis sets of augmented double-zeta quality and two nuclear geometries, we have calculated electronic absorption and natural circular dichroism spectra of (-)-trans-cyclooctene. We present a density functional theory optimized nuclear geometry whose ground state electric dipole moment and harmonic vibrational spectrum compare well with experimental data. The coupled cluster results obtained with this nuclear geometry are in good agreement with experimental electronic spectra, although the original interpretation of the most intense low-lying band as a π→π* transition is contradicted.

  10. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  11. Ab Initio Simulation of the Absorption Spectra of Photoexcited Carriers in TiO2 Nanoparticles.

    PubMed

    Nunzi, Francesca; De Angelis, Filippo; Selloni, Annabella

    2016-09-15

    We investigate the absorption spectra of photoexcited carriers in a prototypical anatase TiO2 nanoparticle using hybrid time dependent density functional theory calculations in water solution. Our results agree well with experimental transient absorption spectroscopy data and shed light on the character of the transitions. The trapped state is always involved, so that the SOMO/SUMO is the initial/final state for the photoexcited electron/hole absorption. For a trapped electron, final states in the low energy tail of the conduction band correspond to optical transitions in the IR, while final states at higher energy correspond to optical transitions in the visible. For a trapped hole, the absorption band is slightly blue-shifted and narrower in comparison to that of the electron, consistent with its deeper energy level in the band gap. Our calculations also show that electrons in shallow traps exhibit a broad absorption in the IR, resembling the feature attributed to conductive electrons in experimental spectra. PMID:27569530

  12. Analytic calculations of anharmonic infrared and Raman vibrational spectra

    PubMed Central

    Louant, Orian; Ruud, Kenneth

    2016-01-01

    Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673

  13. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  14. Comparing Ultraviolet Spectra against Calculations: Year 2 Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2004-01-01

    The five-year goal of this effort is to calculate high fidelity mid-W spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this second year, the comparison of our calculations against observed high-resolution mid- W spectra was extended to stars as metal-rich as the Sun, and to hotter and cooler stars, further improving the list of atomic line parameters used in the calculations. We also published the application of our calculations based on the earlier list of line parameters to the observed mid-UV and optical spectra of a mildly metal-poor globular cluster in the nearby Andromeda galaxy, Messier 3 1.

  15. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications. PMID:27168298

  16. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications.

  17. Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Gerasimova, Yu. V.; Sofronova, S. N.; Gudim, I. A.; Oreshonkov, A. S.; Vtyurin, A. N.; Ivanenko, A. A.

    2016-01-01

    Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal in the spectral range of 30-1700 cm-1 have been measured at temperatures from 6 to 300 K. The experimental spectra have been analyzed based on the semiempirical calculation of the lattice dynamics and the analysis of correlation diagrams of borate complexes. No changes associated with structural phase transitions have been detected in the temperature range of measurements; the effect of magnetic ordering on the infrared absorption spectra has not been observed.

  18. [Study on the absorption and fluorescence spectra of ethylene glycol and glycerol].

    PubMed

    Xu, Hui; Zhu, Tuo; Yu, Rui-Peng

    2007-07-01

    The absorption and fluorescence spectra of ethylene glycol and glycerol solution induced by UV light were studied respectively in the present paper. The most intense absorption wavelength for both of them was located at 198 nm. Moreover, fluorescence was detected when induced by suitable UV light, and the corresponding fluorescence spectra were listed. But there is no obvious relationship found between the fluorescence intensity and the excited wavelength, and a further research should be done. From the first derivative fluorescence spectra of ethylene glycol, it was concluded that under the UV light of 210 nm, the variation speed for relative intensity proved to be the fastest. In contrast, when excited by 225 nm, the speed proved to be the slowest. In addition, based on the quantum calculation and the transition from HOMO to LUMO of electronics in one-dimensional quantum well, the authors attempted to give out the value of absorption wavelength. In consideration of the bond-length variety brought out by the chain processing, the error between the experimental and calculation values should be apprehensible, and the latter can serve as some reference value in theory.

  19. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  20. Accounting for self-absorption in calculation of light collection in plastic scintillators

    NASA Astrophysics Data System (ADS)

    Senchyshyn, V.; Lebedev, V.; Adadurov, A.; Budagov, J.; Chirikov-Zorin, I.

    2006-10-01

    This paper concerns Monte Carlo calculations of light collection in plastic scintillators with accounting for self-absorption. Two approaches are compared: a monochrome one, which takes into account light absorption at a wavelength of the emission spectra maximum, and a spectral one, which accounts for the absorption dependence on a wave length over the whole range of scintillating photon emission. Both approaches are used in light yield calculations for OPERA and Super-Nemo detectors. It is shown that the monochrome approach overestimates light collection values 1.5-2 times, while the spectral one leads to better agreement with experiment.

  1. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    PubMed

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.

  2. Measurements of niobium absorption spectra in plasmas with nearly full M-shell configurations

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; Harris, J. W. O.; Graham, P.; Davidson, S. J.; James, S. F.; Crowley, B. J. B.; Clark, E. L.; Smith, C. C.; Upcraft, L.

    2007-10-01

    A systematic study has been carried out on the changes in the L-shell absorption structure of niobium as a result of changing the population of the n = 3 shell from full to having vacancies in the 3d level. The niobium spectra were measured in the 2-3 keV frequency range, which spanned the 2p-nd transitions where 3 ≤ n ≤ 11. In addition to the detailed structure in these arrays the data also show 2s-4p and 2p-4s transitions and the bound-free L edge. The frequencies and widths of transition arrays, transmission between arrays, and the absorption due to the bound-free edge, can be seen in the data. The sample conditions were found from a combination of two-dimensional radiation-hydrodynamics calculations using the AWE NYM code and flux measurements using X-ray diodes, measurements of 1s-2p absorption spectra in aluminium and mixed aluminium/niobium samples. The electron temperature error, inferred from the modelling, is ±2 eV, with a density error of 30%. The data were recorded over the temperature range from ˜28 to 45 eV and show marked changes in the spectra over this range. The data were compared to spectra predicted by the AWE CASSANDRA [B.J.B. Crowley, J.W.O. Harris, J. Quant. Spectrosc. Radiat. Transfer 71 (2000) p. 257] opacity code. The calculated spectra were able to reproduce the measurements reasonably well. However, there are some differences in line positions that cannot be accounted for by gradients and there are differences in the array structure in the prediction and the measurements, with additional structure predicted but not seen in the measurements. There is also lower transmission on the blue side of the 2p-3d transition arrays compared to prediction.

  3. Absorption-Mode Fourier Transform Mass Spectrometry: The Effects of Apodization and Phasing on Modified Protein Spectra

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P. A.; Barrow, Mark P.; Lin, Cheng; O'Connor, Peter B.

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  4. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra.

    PubMed

    Qi, Yulin; Li, Huilin; Wills, Rebecca H; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P A; Barrow, Mark P; Lin, Cheng; O'Connor, Peter B

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  5. Vibrational spectra and DFT calculations of sonderianin diterpene

    NASA Astrophysics Data System (ADS)

    Oliveira, I. M. M.; Santos, H. S.; Sena, D. M.; Cruz, B. G.; Teixeira, A. M. R.; Freire, P. T. C.; Braz-Filho, R.; Sousa, J. W.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Bernardino, A. C. S. S.; Gusmão, G. O. M.; Bento, R. R. F.

    2015-11-01

    In the present study, the natural product sonderianin diterpene (C21H26O4), a diterpenoid isolated from Croton blanchetianus, with potential application in the drug industry, was characterized by nuclear magnetic resonance, infrared and Raman spectroscopy. Vibrational spectra were supported by Density Functional Theory calculations. Infrared and Raman spectra of sonderianin were recorded at ambient temperature in the regions from 400 cm-1 to 3600 cm-1 and from 40 cm-1 to 3500 cm-1, respectively. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this organic compound. A comparison with experimental spectra allowed us to assign all of the normal modes of the crystal. The assignment of the normal modes was carried out by means of potential energy distribution.

  6. Constraining The Reionization History With QSO Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. R.; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an Early Reionization Model (ERM) in which the intergalactic medium is reionized by PopIII stars at z~14, and (ii) a more standard Late Reionization Model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z~6. An example of simulated spectra is provided by FIG.1. From the analysis of current Lyα forest data at z<6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z>6, however, clear differences start to emerge which are best quantified by the dark gap width distribution. We find that 35 (zero) per cent of the lines of sight within 5.750Å in the rest frame of the QSO if re-ionization is not (is) complete at z>~6 (FIG.2). Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the lines of sight in the redshift range 6.0-6.6; in the same range, LRM predicts no peaks of width >0.8Å (FIG.3). We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z>6.

  7. X-ray Attenuation and Absorption Calculations.

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  8. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    SciTech Connect

    Barton, Dennis; König, Carolin; Neugebauer, Johannes

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  9. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    NASA Astrophysics Data System (ADS)

    Barton, Dennis; König, Carolin; Neugebauer, Johannes

    2014-10-01

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called "independent mode, displaced harmonic oscillator" (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  10. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  11. Calculation of laser absorption by metal powders in additive manufacturing.

    PubMed

    Boley, C D; Khairallah, S A; Rubenchik, A M

    2015-03-20

    We have calculated the absorption of laser light by a powder of metal spheres, typical of the powder employed in laser powder-bed fusion additive manufacturing. Using ray-trace simulations, we show that the absorption is significantly larger than its value for normal incidence on a flat surface, due to multiple scattering. We investigate the dependence of absorption on powder content (material, size distribution, and geometry) and on beam size.

  12. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  13. Infrared absorption spectra of various doping states in cuprate superconductors

    SciTech Connect

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-02-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs.

  14. Infrared absorption spectra of various doping states in cuprate superconductors

    SciTech Connect

    Yonemitsu, K.; Bishop, A.R. ); Lorenzana, J. )

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs.

  15. Molecular structures and absorption spectra assignment of corrole NH tautomers.

    PubMed

    Beenken, Wichard; Presselt, Martin; Ngo, Thien H; Dehaen, Wim; Maes, Wouter; Kruk, Mikalai

    2014-02-01

    The individual absorption spectra of the two NH tautomers of 10-(4,6-dichloropyrimidin-5-yl)-5,15-dimesitylcorrole are assigned on the basis of the Gouterman four-orbital model and a quantum chemical TD-DFT study. The assignment indicates that the red-shifted T1 tautomer is the one with protonated pyrrole nitrogen atoms N(21), N(22) and N(23), whereas the blue-shifted T2 tautomer has pyrrole nitrogen atoms N(21), N(22) and N(24) protonated. A wave-like nonplanar distortion of the macrocycle in the ground state is found for both NH tautomers, with the wave axis going through the pyrroles containing N(22) and N(24). The 7C plane determined by the least-squares distances to the carbon atoms C1, C4, C5, C6, C9, C16, and C19 is suggested as a mean corrole macrocycle plane for the analysis of out-of-plane distortions. The magnitude of these distortions is distinctly different for the two NH tautomers, leading to substantial perturbations of their acid-base properties, which are rationalized by the interplay of the degree of out-of-plane distortion of the macrocycle as a whole and the tendency of the pyrrole nitrogen atoms toward pyramidalization, with the former leading to a basicity increase whereas the latter enhances the acidity.

  16. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    SciTech Connect

    Aleksa, V. Ozerenskis, D.; Pucetaite, M.; Sablinskas, V.; Cotter, C.; Guirgis, G. A.

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  17. Calculating vibrational spectra of molecules using tensor train decomposition

    NASA Astrophysics Data System (ADS)

    Rakhuba, Maxim; Oseledets, Ivan

    2016-09-01

    We propose a new algorithm for calculation of vibrational spectra of molecules using tensor train decomposition. Under the assumption that eigenfunctions lie on a low-parametric manifold of low-rank tensors we suggest using well-known iterative methods that utilize matrix inversion (locally optimal block preconditioned conjugate gradient method, inverse iteration) and solve corresponding linear systems inexactly along this manifold. As an application, we accurately compute vibrational spectra (84 states) of acetonitrile molecule CH3CN on a laptop in one hour using only 100 MB of memory to represent all computed eigenfunctions.

  18. Calculation of the vibrational spectra of cytosine derivatives by the CNDO/2 force method. Part III. Planar vibrations of cytosine

    NASA Astrophysics Data System (ADS)

    Kuczera, Krzysztof; Szczesniak, Marian; Szczepaniak, Krystyna

    1988-02-01

    Calculations of harmonic force constants by the CNDO/2 FORCE method with Pulay's empirical correction are performed for the amino-keto-N 4H and amino-enol tautomeric forms of cytosine. Frequencies, normal modes and fundamental transition absorption intensities for in-plane vibrations are found. On the bases of the calculations assignments of IR absorption bands of nitrogen and argon matrix spectra of cytosine to normal vibrational modes of the two tautomers are proposed.

  19. Electronic properties and absorption spectra of ZnSnP2 using mBJ potential

    NASA Astrophysics Data System (ADS)

    Joshi, Ritu; Ahuja, B. L.

    2015-06-01

    We present the energy bands and density of states of ZnSnP2 using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP2 in photovoltaic and optoelectronic devices.

  20. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  1. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra.

    PubMed

    Petit, Andrew S; Subotnik, Joseph E

    2015-09-01

    Whereas surface hopping is usually used to study populations and mean-field dynamics to study coherences, in two recent papers, we described a procedure for calculating dipole-dipole correlation functions (and therefore absorption spectra) directly from ensembles of surface hopping trajectories. We previously applied this method to a handful of one-dimensional model problems intended to mimic the gas phase. In this article, we now benchmark this new procedure on a set of multidimensional model problems intended to mimic the condensed phase and compare our results against other standard semiclassical methods. By comparison, we demonstrate that methods that include only dynamical information from one PES (the standard Kubo approaches) exhibit large discrepancies with the results of exact quantum dynamics. Furthermore, for model problems with nonadiabatic excited state dynamics but no quantized vibrational structure in the spectra, our surface hopping approach performs comparably to using Ehrenfest dynamics to calculate the electronic coherences. That being said, however, when quantized vibrational structures are present in the spectra but the electronic states are uncoupled, performing the dynamics on the mean PES still outperforms our present method. These benchmark results should influence future studies that use ensembles of independent semiclassical trajectories to model linear as well as multidimensional spectra in the condensed phase.

  2. Constraining the reionization history with QSO absorption spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. Roy; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an early reionization model (ERM) in which the intergalactic medium is reionized by Pop III stars at z ~ 14, and (ii) a more standard late reionization model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z ~ 6. From the analysis of current Lyα forest data at z < 6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z > 6, however, clear differences start to emerge which are best quantified by the dark gap and peak width distributions. We find that 35 (0) per cent of the lines of sight (LOS) within 5.7 < z < 6.3 show dark gaps of widths >50Å in the rest frame of the QSO if reionization is not (is) complete at z >~ 6. Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the LOS in the redshift range 6.0-6.6 in the same range, LRM predicts no peaks of width >0.8Å. We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z > 6. We finally discuss strengths and limitations of our method.

  3. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    PubMed

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface. PMID:27183273

  4. Ultrafast optical nonlinearity, electronic absorption, vibrational spectra and solvent effect studies of ninhydrin

    NASA Astrophysics Data System (ADS)

    Sajan, D.; Devi, T. Uma; Safakath, K.; Philip, Reji; Němec, Ivan; Karabacak, M.

    2013-05-01

    FT-IR, FT-Raman and UV-Vis spectra of the nonlinear optical molecule ninhydrin have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of B3LYP density functional theory method. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. Solvent effects have been calculated using time-dependent density functional theory in combination with the polarized continuum model. Natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Employing the open-aperture z-scan technique, nonlinear optical absorption of the sample has been studied in the ultrafast and short-pulse excitation regimes, using 100 fs and 5 ns laser pulses respectively. It is found that ninhydrin exhibits optical limiting for both excitations, indicating potential photonic applications.

  5. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  6. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  7. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives.

    PubMed

    Masoud, Mamdouh S; Hagagg, Sawsan S; Ali, Alaa E; Nasr, Nessma M

    2012-08-01

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υ(max)(-)) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υ(max)(-) on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  8. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  9. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  10. Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Using a new 2D radiative transfer algorithm, we have calculated the thermally reradiated infrared spectra of the compact dust tori which are thought to surround many AGN. These tori radiate anisotropically. Face-on tori may be from one-half to a few orders of magnitude brighter than edge-on tori throughout the infrared. Their spectra at nearly all viewing angles are basically 'bumps' which are about 50 percent wider than blackbodies and peak in the mid-infrared at a wavelength determined mainly by the flux of nuclear radiation on the inner edge of the torus. The infrared color temperatures are hotter for face-on tori than edge-on tori by about 100 K. The 10 micron silicate feature often associated with dust can appear in absorption, emission, or not at all. There is a rough tendency for absorption features to be more prominent for edge-on tori than for face-on tori.

  11. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    PubMed

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models. PMID:27529792

  12. Intelligent information extraction from reflectance spectra Absorption band positions. [application to laboratory and earth-based telescope spectra

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Jones, J. L.

    1986-01-01

    A multiple high-order derivative analysis algorithm has been developed which can automatically extract absorption band positions from low-quality reflectance spectra with little degredation of accuracy. Overlapping bands with comparable widths and intensities can be resolved whose centers are as close as 0.3-0.5 W, with safer resolution limits of 0.6-1.0 W band center separations suggested for overlapping bands that are dissimilar. The segment length for smoothing is continually adjusted to about 0.5 W to minimize signal distortion, and a spectral pattern recognition algorithm predicts the signal spectrum and calculates approximate W across the spectrum using its second derivative. A single-pass cubic spline is applied to the smoothed data, and a sliding segment sixth-order polynomial is fit to the spectrum, with the length of the segment being continuously locally adjusted to 1.0 W across the spectrum. Good reliability and consistency of the algorithm is demonstrated with application to laboratory and earth-based telescope spectra.

  13. New Absorption Spectra of CH_2 Near 780 NM

    NASA Astrophysics Data System (ADS)

    Xin, Ju; Wang, Zhong; Sears, Trevor J.

    2009-06-01

    The near infrared and visible spectrum (tilde{b}^1B_1 - tilde{a}^1A_1) of singlet CH_2 has been the subject of much study. However, the region between the red end of the visible part of the spectrum and about 800 nm has not been recorded since the pioneering work of Herzberg and Johns. We have remeasured the absorption spectrum between approximately 769 and 806 nm at near shot-noise-limited sensitivity and Doppler-limited resolution using a frequency-modulated extended cavity diode laser source. Rotational branches in 7 vibronic bands involving K_a = 0-4 have been assigned using known ground state combination differences. Most of them have not previously been observed and some reassignments of the Herzberg and Johns analysis have been made. Comparison with the most complete available calculated ro-vibronic energy level structure helped considerably in making the assignments, and the observed vibronic levels are assigned to levels of both tilde{a} and tilde{b} electronic character. The calculated energy levels show moderate, up to 10 cm^{-1}, apparently random, differences from the observed levels The new data will certainly help to refine the singlet potential and also provide additional avenues for future kinetics and dynamics studies of the radical. G. Herzberg and J. W. C. Johns Proc. R. Soc. London Ser. A, 295, 107 (1966) J. -P. Gu, G. Hirsch, R J Buenker, M. Brumm, G. Osmann, P. R. Bunker and P. Jensen J. Molec. Struc., 517-8, 247 (2000) Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Ju Xin acknowledges support from the Faculty and Student Teams program of the Educational Programs Department at Brookhaven National Laboratory.

  14. Absorption spectra of typical space materials in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.

    1981-01-01

    In order to develop a data base for potential optical degradation of space vacuum ultraviolet instruments, the collected volatile condensed material (CVCM) transmittance was measured in the wavelength region from 115 nm to 300 nm. The parent outgassing materials included: the adhesives, Ablebond 36-2, Trabond BB-2116, EA-9309, and Scotchweld 2216; the paints, Chemglaze Z-306, Z-306 over 9922 primer, Z-306 over AP-131 primer, Cat-A-Lac 463-3-8, 463-3-8 over primer, 3M Nextel 401-C10, and 401-C10 over 901-P1 primer; the resins, Fiberite 934, Solithane 113/C113-300 Formulation no. 1, and 113/C113-300 Formulation no. 8; the lubricants, Lube-Lok 4306 and RT/Duroid 5813; and the double-sided adhesive tape 3M-415. The effect of thermal vacuum conditioning of selected materials was also studied. The transmittance measurements were used to calculate the absorption coefficient for each of 28 different source materials versus wavelength.

  15. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  16. Interpretation of X-ray absorption spectra of As(III) in solution using Monte Carlo simulations.

    PubMed

    Canche-Tello, Jesus; Vargas, M Cristina; Hérnandez-Cobos, Jorge; Ortega-Blake, Iván; Leclercq, Amelie; Solari, Pierre Lorenzo; Den Auwer, Christophe; Mustre de Leon, José

    2014-11-20

    We performed X-ray absorption spectroscopy measurements on the arsenic K-edge of As(III) in solution under acidic conditions. Extended X-ray absorption fine structure (EXAFS) and X-ray near edge structure (XANES) spectra were compared with theoretical calculations which use local atomic structure configurations, either derived from density functional theory (DFT) energy minimization (EM) calculations or based on classical Monte Carlo (MC) simulations, for a As(OH)3 cluster surrounded by water molecules. The nearest arsenic-oxygen distances obtained from the fit of the XAFS spectra are consistent with the distances present in configurations derived from Monte Carlo simulations but not with those obtained from DFT-EM calculations. Calculations of XANES using either DFT-EM or the average configuration obtained from MC simulations do not reproduce the XANES spectra in the vicinity of the absorption edge. However, specific local atomic structural configurations of the As(OH)3 and water molecules, obtained from MC simulations, which show some ordering of water molecules up to 5 Å from the arsenic, reproduce qualitatively the experimental spectra. These results highlight the capability of XANES to yield information about hydration of ions in solution.

  17. Effects of domain size on x-ray absorption spectra of boron nitride doped graphenes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hua, Weijie; Wang, Bo-Yao; Pong, Way-Faung; Glans, Per-Anders; Guo, Jinghua; Luo, Yi

    2016-08-01

    Doping is an efficient way to open the zero band gap of graphene. The control of the dopant domain size allows us to tailor the electronic structure and the properties of the graphene. We have studied the electronic structure of boron nitride doped graphenes with different domain sizes by simulating their near-edge X-ray absorption fine structure (NEXAFS) spectra at the N K-edge. Six different doping configurations (five quantum dot type and one phase-separated zigzag-edged type) were chosen, and N K-edge NEXAFS spectra were calculated with large truncated cluster models by using the density functional theory with hybrid functional and the equivalent core hole approximation. The opening of the band gap as a function of the domain size is revealed. We found that nitrogens in the dopant boundary contribute a weaker, red-shifted π* peak in the spectra as compared to those in the dopant domain center. The shift is related to the fact that these interfacial nitrogens dominate the lowest conduction band of the system. Upon increasing the domain size, the ratio of interfacial atom decreases, which leads to a blue shift of the π* peak in the total NEXAFS spectra. The spectral evolution agrees well with experiments measured at different BN-dopant concentrations and approaches to that of a pristine h-BN sheet.

  18. Theoretical study on absorption and emission spectra of pyrrolo-C analogues

    NASA Astrophysics Data System (ADS)

    Liu, Hongxia; Liu, Jianhua; Yang, Yan; Li, Yan; Wang, Haijun

    2015-01-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of Pyrrolo-C (PyC) and its analogues which are modified via the conjugation or fusion of different aromatic ring to the PyC core. We also consider the effects of aqueous solution and base pairing. The results show that the fluorescent pyrrolo-C analogues can pair with guanosine to form stable H-bonded WC base pairs. The calculated absorption peaks of modified deoxyribonucleosides agree well with the measured data. The absorption and emission maxima of the pyrrolo-C analogues are greatly red shifted compared with nature C. The solvent effects can induce wavelength blue shift and increase the oscillator strengths in both the absorption and emission spectra. With regard to the WC base pairs, the B3LYP functional reveals that the lowest energy transitions of modified GC base pairs are charge transfer excitation while the CAM-B3LYP functional predicts that all the lowest transitions are localised on the pyrrolo-C analogues. The M062X and CAM-B3LYP functionals show good agreement with respect to both the value of the lowest energy transitions as well as the oscillator strengths.

  19. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  20. Modeling the absorption spectra of Er3+ and Yb3+ in a phosphate glass

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Sardar, Dhiraj K.; Zandi, Bahram; Hutchinson, J. Andrew; Trussell, C. Ward

    2003-10-01

    Absorption spectra of Er3+ and Yb3+ ions, codopants in a phosphate glass, are reported at 8 K and at wavelengths between 350 and 1600 nm. Detailed structure appearing in the spectra, associated with individual multiplet states, 2S+1LJ, of Er3+(4f11) and Yb3+(4f13) is interpreted using a ligand-field coordination sphere model to characterize the microscopic environment surrounding the rare earth ions in multiple sites. Inhomogeneous broadening of the spectra is likely due to different configurations of PO4 tetrahedra clustered about a caged rare earth ion in the amorphous host. Similarity between the Er3+ spectrum in the glass and in the spectrum of single-crystal LiErP4O12, where Er3+ occupies sites of C2 symmetry, suggests that an averaged site symmetry of C2 is a reasonable approximation for Er3+ and Yb3+ ions in the phosphate glass. Calculated splitting of multiplet states by the ligand-field cluster model are compared with energy levels derived from the observed absorption peaks and well-defined shoulders. Inhomogeneous broadening of the spectra limit the precision in establishing the energy of the multiplet splittings, but the analysis is useful for modeling studies of the Er:Yb:phosphate glass as an eye-safe laser (1.53 μm). The splitting of the Yb3+(4f13)2FJ states is determined using parameters obtained from the Er3+ set by means of the three-parameter theory. No adjustments were made to the Yb3+ parameters that predict multiplet splittings in reasonable agreement with experimental data.

  1. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    PubMed

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  2. Absorption spectra of graphene nanoribbons in a composite magnetic field

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Wu, M. F.; Hsieh, C. T.

    2015-10-01

    The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks can be further classified into principal and secondary peaks. The spectral intensity and frequency of the absorption peaks depend sensitively on the strength and modulation period of the composite field. The transition channels of the absorption peaks are also analyzed. There exists an optical selection rule which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the spectral frequency of the absorption peaks with the field strength is explored.

  3. Application of adjusted data in calculating fission-product decay energies and spectra

    NASA Astrophysics Data System (ADS)

    George, D. C.; Labauve, R. J.; England, T. R.

    1982-06-01

    The code ADENA, which approximately calculates fussion-product beta and gamma decay energies and spectra in 19 or fewer energy groups from a mixture of U235 and Pu239 fuels, is described. The calculation uses aggregate, adjusted data derived from a combination of several experiments and summation results based on the ENDF/B-V fission product file. The method used to obtain these adjusted data and the method used by ADENA to calculate fission-product decay energy with an absorption correction are described, and an estimate of the uncertainty of the ADENA results is given. Comparisons of this approximate method are made to experimental measurements, to the ANSI/ANS 5.1-1979 standard, and to other calculational methods. A listing of the complete computer code (ADENA) is contained in an appendix. Included in the listing are data statements containing the adjusted data in the form of parameters to be used in simple analytic functions.

  4. Anisotropy of optical absorption spectra of rare-earth orthoaluminate DyAlO3

    NASA Astrophysics Data System (ADS)

    Valiev, U. V.; Gruber, J. B.; Rakhimov, Sh. A.; Nabelkin, O. A.

    2003-06-01

    The polarization spectra of optical absorption for the 4f-4f transition 6H15/2 6F3/2 and 6H15/2 6F5/2 in the rare-earth orthoaluminate DyAlO3 have been studied experimentally at the temperature T = 78 K. It has been shown that the non-trivial character of the polarization absorption spectra anisotropy for low temperatures can be explained by a contribution of the J-J mixing mechanism for the excited multiplets of the ground 4f(n) configuration of the Dy3+ ion in the low-symmetry crystalline field in the orthoaluminate structure. The results of numerical calculations of energies and wave functions of the Stark sublevels of the excited multiplets 6F3/2 and 6F5/2 are presented for the ground 4f9 configuration of the rare-earth Dy3+ ion in the crystalline field of Cs symmetry.

  5. FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole.

    PubMed

    Rai, Amareshwar K; Singh, Rachana; Singh, K N; Singh, V B

    2006-02-01

    FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value. PMID:16098806

  6. Calculation and Comparative Analysis of the IR Spectra of Homobrassinolide and (22S,23S)-Homobrassinolide

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Korolevich, M. V.

    2015-09-01

    Normal vibrational frequencies and absolute IR band intensities of the biologically active steroid phytohormones homobrassinolide and (22S,23S)-homobrassinolide were calculated in the framework of an original approach that combined classical analysis of normal modes using molecular mechanics with quantum-chemical estimation of the absolute intensities. IR absorption bands were interpreted based on a comparison of the experimental and theoretical absorption spectra. The impact of structural differences in the side chains of these molecules on the formation of their IR spectra in the region 1500-950 cm -1 was estimated.

  7. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  8. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  9. A method for normalization of X-ray absorption spectra

    SciTech Connect

    Weng, T.-C.; Waldo, G.S.; Penner-Hahn, J.E.

    2010-07-20

    Accurate normalization of X-ray absorption data is essential for quantitative analysis of near-edge features. A method, implemented as the program MBACK, to normalize X-ray absorption data to tabulated mass absorption coefficients is described. Comparison of conventional normalization methods with MBACK demonstrates that the new normalization method is not sensitive to the shape of the background function, thus allowing accurate comparison of data collected in transmission mode with data collected using fluorescence ion chambers or solid-state fluorescence detectors. The new method is shown to have better reliability and consistency and smaller errors than conventional normalization methods. The sensitivity of the new normalization method is illustrated by analysis of data collected during an equilibrium titration.

  10. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  11. A computer code to calculate line by line atmospheric transmission spectra on a microcomputer

    NASA Astrophysics Data System (ADS)

    Safren, H. G.

    1987-07-01

    A computer program is described which calculates line by line atmospheric transmission spectra on a microcomputer. Radiance calculations are not included. The program is written in FORTRAN and could be modified to run on a microcomputer other than the one on which it was implemented, except that the plotting routine would have to be replaced. The program is based on the 1978 Air Force Geophysics Laboratory LASER routine, and uses absorption line data from the 1982 update of the AFGL Atmospheric Absorption Line Parameters Compilation; segments of needed line data are taken from the tape, preprocessed into the form used by the program and stored on floppy disks. The program calculates transmission spectra over a variety of paths and spanning an arbitrarily chosen wavelength or frequency range; the path may be chosen to be horizontal, vertical or slanted at any zenith angle, and may extend between any two altitudes between 0 and 15 km. Aerosol effects are included, presently based on the 1976 Shettle and Fenn models, plus some molecular continuum effects and Rayleigh scattering.

  12. Infrared absorption spectra of methylidene radicals in solid neon.

    PubMed

    Lu, Hsiao-Chi; Lo, Jen-Iu; Lin, Meng-Yeh; Peng, Yu-Chain; Chou, Sheng-Lung; Cheng, Bing-Ming; Ogilvie, J F

    2014-07-28

    Infrared absorption lines of methylidene--(12)C(1)H, (13)C(1)H, and (12)C(2)H--dispersed in solid neon at 3 K, recorded after photolysis of methane precursors with vacuum-ultraviolet light at 121.6 nm, serve as signatures of these trapped radicals.

  13. Exciton-Like Behavior in Low-Energy Absorption Spectra of Simple Alloys

    NASA Astrophysics Data System (ADS)

    Bakshi, Mira Hemendraray

    The valence excitation (ns('2) (--->) nsnp) spectra of Mg, Zn, and Ca impurities at various concentrations in Li have been measured. Polarization modulation ellipsometry was used to determine the impurity-induced changes in real and imaginary parts of the dielectric function simultaneously, together with the differential reflectivity, in the energy range 1.5 - 4.5 eV. The most important result at sufficiently dilute alloy compositions, is that the system investigated display a distinct absorption peak above the Drude background. The height of this peak varies linearly with impurity content. The impurity-specific character of these spectral features points to exciton-like behavior at low-energy, arising from atomic-like excitations in which the electron and the hole linger together at the impurity site. Existing theories of alloy spectra do not explain these effects, because they do not include the Coulomb correlations between the interacting quasiparticles created in the optical event, or the way in which the interacting pair is confined to the impurity site by the mutual field. A remarkable added result of this research is that the exciton-like behavior can be followed with increasing impurity content, all the way to the pure Mg response, when it becomes the interband transition. This has led Kunz and Flynn to reformulate the theory of optical absorption including excited state interactions; and to apply the theory to the spectrum of pure Mg. The Coulomb interaction causes striking effects which are in generally good agreement with experiment. Zn-Li alloys behave differently. At an alloy composition for which Zn-Zn interactions become prevalent, the local, impurity-specific character of the spectrum disappears, leaving only a featureless Drude-like absorption. These results have provoked cluster calculations by Boisvert and Kunz, which predict the spectral shifts, and exhibit qualitatively similar persistence for Mg-Li, and broadening for Zn-Li.

  14. Tddft Calculations of Transient IR Spectra of DNA

    NASA Astrophysics Data System (ADS)

    Richard, Ryan M.; Herbert, John M.

    2011-06-01

    Establishment of ultraviolet radiation's role in DNA mutation has led to an increasing interest in understanding the electronic excited state dynamics of DNA. It is known that upon excitation of the ground state, the DNA bases are excited to an optically bright ππ^* state that then quickly decays back to the ground state; however, further investigations have shown that there are long-lived states within the excited state manifolds, which may be able to influence the excited state dynamics. The goal of our study is to calculate, with the aid of time-dependent density functional theory, several transient infrared spectra of double stranded and single stranded DNA in both gas phase and in solution, in order to help sort out the exact role of these states in the relaxation processes of DNA by comparison to available experimental data.

  15. Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine

    NASA Astrophysics Data System (ADS)

    Ayala, A. P.; Siesler, H. W.; Wardell, S. M. S. V.; Boechat, N.; Dabbene, V.; Cuffini, S. L.

    2007-02-01

    Nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'e][1,4]diazepin-6-one) is an antiretroviral drug belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. As most of this kind of antiretroviral drugs, nevirapine displays a butterfly-like conformation which is preserved in complexes with the HIV-1 reverse transcriptase. In this work, we present a detailed vibrational spectroscopy investigation of nevirapine by using mid-infrared, near-infrared, and Raman spectroscopies. These data are supported by quantum mechanical calculations, which allow us to characterize completely the vibrational spectra of this compound. Based on these results, we discuss the correlation between the vibrational modes and the crystalline structure of the most stable form of nevirapine.

  16. Calculation of 3s photoemission spectra of vanadium on graphite

    SciTech Connect

    Krueger, P.; Taguchi, M.; Parlebas, J.C.; Kotani, A.

    1997-06-01

    A few years ago, a satellite structure in the vanadium 3s x-ray photoemission spectroscopy (XPS) spectrum of V clusters upon graphite was observed and attributed to the presence of magnetic moments on the V surface. Here, we present calculations of these spectra using a cluster model that takes into account intra-atomic d-d and d{endash}core electron correlation and hybridization between V d and graphite {pi} states. When the V-graphite distance is increased from 1.5 to 2.0 {Angstrom} the system undergoes a low-to-high spin transition, which is clearly evidenced in the evolution of the XPS line shape. Although direct comparison with experiment is difficult, our study suggests that the observed satellite is due to core hole screening rather than a magnetic moment on the V atom. {copyright} {ital 1997} {ital The American Physical Society}

  17. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    NASA Astrophysics Data System (ADS)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-06-01

    The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  18. Data processing of absorption spectra from photoionized plasma experiments at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-15

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  19. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  20. The absorption spectra of the complexes of uranium (VI) with some β-diketones

    USGS Publications Warehouse

    Feinstein, H.I.

    1956-01-01

    The absorption spectra of the complexes of uranium (VI) with four β-dike tones were determined under various conditions of pH, concentration of uranium, and alcohol concentration. Under optimum conditions, the maximum molar absorptivity (31,200) is obtained using 2-furoyltrifluoroacetone. This compares with about 4,000 and 19,000 for the thiocyanate and dibenzoylmethane complexes, respectively.

  1. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  2. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2011-09-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  3. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  4. Collison-induced rototranslational absorption spectra of H/sub 2/-He pairs at temperatures from 40 to 3000 K

    SciTech Connect

    Borysow, J.; Frommhold, L.; Birnbaum, G.

    1988-03-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H/sub 2/-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K. 28 references.

  5. Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K

    NASA Technical Reports Server (NTRS)

    Borysow, Jacek; Frommhold, Lothar; Birnbaum, George

    1988-01-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H2-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K.

  6. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  7. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    PubMed

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  8. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  9. Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?

    PubMed

    Tian, Yuxi; Scheblykin, Ivan G

    2015-09-01

    Organometal halide (OMH) perovskites have attracted lots of attention over the last several years due to their very promising performance as the materials for solar cells and light-emitting devices. Photophysical processes in these hybrid organic-inorganic semiconductors are still heavily debated. To know precise absorption spectra is absolutely necessary for quantitative understanding of the fundamental properties of OMH perovskites. We show that to measure the absorption of perovskite materials correctly is a difficult task which could be easily overlooked by the community. Many of the published absorption spectra exhibit a characteristic step-like featureless shape due to light scattering, high optical density of individual perovskite crystals and poor coverage of the substrate. We show how to recognize these artifacts, to avoid them, and to use absorption spectra of films for estimation of the surface coverage ratio. PMID:27120683

  10. Autophaser: an algorithm for automated generation of absorption mode spectra for FT-ICR MS.

    PubMed

    Kilgour, David P A; Wills, Rebecca; Qi, Yulin; O'Connor, Peter B

    2013-04-16

    Phase correction of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry data allows the spectra to be presented in absorption mode. Absorption mode spectra offer superior mass resolving power (up to a factor of 2), mass accuracy, and sensitivity over the conventional magnitude mode. Hitherto, the use of absorption mode in FT-ICR mass spectrometry has required either specially adapted instrumentation or a manually intensive process of phase correction or has ignored the potentially significant effects of image charge and the associated frequency shifts. Here we present an algorithm that allows spectra recorded on unadapted FT-ICR mass spectrometers to be phase corrected, their baseline deviations removed, and then an absorption mode spectrum presented in an automated manner that requires little user interaction. PMID:23373960

  11. Autophaser: an algorithm for automated generation of absorption mode spectra for FT-ICR MS.

    PubMed

    Kilgour, David P A; Wills, Rebecca; Qi, Yulin; O'Connor, Peter B

    2013-04-16

    Phase correction of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry data allows the spectra to be presented in absorption mode. Absorption mode spectra offer superior mass resolving power (up to a factor of 2), mass accuracy, and sensitivity over the conventional magnitude mode. Hitherto, the use of absorption mode in FT-ICR mass spectrometry has required either specially adapted instrumentation or a manually intensive process of phase correction or has ignored the potentially significant effects of image charge and the associated frequency shifts. Here we present an algorithm that allows spectra recorded on unadapted FT-ICR mass spectrometers to be phase corrected, their baseline deviations removed, and then an absorption mode spectrum presented in an automated manner that requires little user interaction.

  12. Accurate convergence of transient-absorption spectra using pulsed lasers.

    PubMed

    Brazard, Johanna; Bizimana, Laurie A; Turner, Daniel B

    2015-05-01

    Transient-absorption spectroscopy is a common and well-developed technique for measuring time-dependent optical phenomena. One important aspect, especially for measurements using pulsed lasers, is how to average multiple data acquisition events. Here, we use a mathematical analysis method based on covariance to evaluate various averaging schemes. The analysis reveals that the baseline and the signal converge to incorrect values without balanced detection of the probe, shot-by-shot detection, and a specific method of averaging. Experiments performed with sub-7 fs pulses confirm the analytic results and reveal insights into molecular excited-state vibrational dynamics.

  13. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  14. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ∼ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  15. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  16. Absorption spectra and speciation of plutonium(VI) with phosphate

    SciTech Connect

    Weger, H.T.; Reed, D.

    1996-02-01

    Plutonium(VI)-phosphate species in aqueous solution, at pH < 2.4, formed two species: PuO{sub 2}H{sub 2}PO{sub 4}{sup +} (characterized by an 835 nm absorption band) and the solid phase PuO{sub 2}(H{sub 2}PO{sub 4}){sub 2}. The stability constant {beta} for the PuO{sub 2}H{sub 2}PO{sub 4}{sup +} species was determined to be log {beta} = 2.1 {+-} 0.1 (ionic strength = 0.6--0.9 M) and log {beta}{sup T} = 2.6 {+-} 0.15 (zero ionic strength). Four Pu(VI)-phosphate species (absorption bands at 842, 846, 857, and 866 nm) formed at pH = 2.4 to 12.2 and are characterized by polynuclear behavior, the formation of precipitates, and colloidal properties. The 842 and 846 nm species are believed to be [PuO{sub 2}(HPO{sub 4}){sub m}]{sub n} and [PuO{sub 2}(NaPO{sub 4}){sub m}]{sub n}. The 857 and 866 nm species area as yet unidentified. The speciation of plutonium with phosphate is of interest to radionuclide migration studies because phosphate is present in many groundwaters and may be used as an actinide getter in nuclear waste disposal. An actinide getter is a complexing agent that forms insoluble phases with actinides, thereby reducing their migration.

  17. Chemical Sensitivity of the Sulfur K-Edge X-ray Absorption Spectra of Organic Disulfides.

    PubMed

    Pickering, Ingrid J; Barney, Monica; Cotelesage, Julien J H; Vogt, Linda; Pushie, M Jake; Nissan, Andrew; Prince, Roger C; George, Graham N

    2016-09-22

    Sulfur K-edge X-ray absorption spectroscopy increasingly is used as a tool to provide speciation information about the sulfur chemical form in complex samples, with applications ranging from fossil fuels to soil science to health research. As part of an ongoing program of systematic investigations of the factors that affect the variability of sulfur K near-edge spectra, we have examined the X-ray absorption spectra of a series of organic symmetric disulfide compounds. We have used polarized sulfur K-edge spectra of single crystals of dibenzyl disulfide to confirm the assignments of the major transitions in the spectrum as 1s → (S-S)σ* and 1s → (S-C)σ*. We also have examined the solution spectra of an extended series of disulfides and show that the spectra change in a systematic and predictable manner with the nature of the external group. PMID:27571342

  18. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  19. Absorption spectra of shocked liquid CS/sub 2/

    SciTech Connect

    Dallman, J.C.

    1985-01-01

    The importance of shock initiation of high explosives (HE) was understood as early as 1863 when Alfred Nobel introduced the detonator as a means of detonating nitroglycerine. The critical pressure rise times required to achieve shock initiation and steady propagation of detonation are determined by the chemical and mechanical properties of an explosive. Although progress has been made in the understanding of the effects of mechanical properties, the detailed effects of high pressures on chemical reaction mechanisms are still only poorly understood. This paper reports the results of two experiments using CS/sub 2/, which is known to undergo electronic state transitions when shocked to high pressures. The goal of these experiments was to examine the known shock-generated expansion of CS/sub 2/ absorption bands while generating the shocks with a flyer plate system driven by high explosives.

  20. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  1. Interpretation of unexpected behavior of infrared absorption spectra of ScF3 beyond the quasiharmonic approximation

    NASA Astrophysics Data System (ADS)

    Piskunov, Sergei; Žguns, Pjotrs A.; Bocharov, Dmitry; Kuzmin, Alexei; Purans, Juris; Kalinko, Aleksandr; Evarestov, Robert A.; Ali, Shehab E.; Rocca, Francesco

    2016-06-01

    Scandium fluoride (ScF3), having cubic ReO3-type structure, has attracted much scientific attention due to its rather strong negative thermal expansion (NTE) in the broad temperature range from 10 to 1100 K. Here we use the results of diffraction and extended x-ray absorption fine-structure (EXAFS) spectroscopy to interpret the influence of NTE on the temperature dependence of infrared absorption spectra of ScF3. Original infrared absorption and EXAFS experiments in a large temperature range are presented and interpreted using ab initio lattice dynamics simulations within and beyond quasiharmonic approximations. We demonstrate that ab initio electronic structure calculations, based on the linear combination of atomic orbitals method with hybrid functionals, are able to reproduce well the experimental values of lattice parameter a0, band gap Eg, and lattice dynamics in ScF3. However, the simulations performed within quasiharmonic approximation fail to reproduce the temperature dependence of two infrared active bands due to the F-Sc-F bending (at 220 cm-1) and Sc-F stretching (at 520 cm-1) modes present in the infrared absorption spectra. To overcome this problem, an approach beyond the quasiharmonic approximation is proposed: It accounts for the negative thermal expansion of the lattice and for fluorine atom displacements due to strong F vibrational motion perpendicular to the cubic axes and allows us to explain qualitatively the temperature behavior of infrared spectra of ScF3.

  2. CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.

    PubMed

    Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong

    2016-09-01

    Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. PMID:27127208

  3. DFT study of the effect of substituents on the absorption and emission spectra of Indigo

    PubMed Central

    2012-01-01

    Background Theoretical analyses of the indigo dye molecule and its derivatives with Chlorine (Cl), Sulfur (S), Selenium (Se) and Bromine (Br) substituents, as well as an analysis of the Hemi-Indigo molecule, were performed using the Gaussian 03 software package. Results Calculations were performed based on the framework of density functional theory (DFT) with the Becke 3- parameter-Lee-Yang-Parr (B3LYP) functional, where the 6-31 G(d,p) basis set was employed. The configuration interaction singles (CIS) method with the same basis set was employed for the analysis of excited states and for the acquisition of the emission spectra. Conclusions The presented absorption and emission spectra were affected by the substitution position. When a hydrogen atom of the molecule was substituted by Cl or Br, practically no change in the absorbed and emitted energies relative to those of the indigo molecule were observed; however, when N was substituted by S or Se, the absorbed and emitted energies increased. PMID:22809100

  4. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra.

    PubMed

    Baldassarre, Maurizio; Li, Chenge; Eremina, Nadejda; Goormaghtigh, Erik; Barth, Andreas

    2015-01-01

    Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase. PMID:26184143

  5. Infrared spectra and density functional theory calculations of the tantalum and niobium carbonyl dinitrogen complexes.

    PubMed

    Lu, Zhang-Hui; Jiang, Ling; Xu, Qiang

    2009-07-21

    Laser-ablated tantalum and niobium atoms react with CO and N(2) mixtures in excess neon to produce carbonyl metal dinitrogen complexes, NNMCO (M = Ta, Nb), (NN)(2)TaCO, and NNTa(CO)(2), as well as metal carbonyls and dinitrogen complexes. These carbonylmetal dinitrogen complexes are characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and mixed isotopic splitting patterns. Density functional theory calculations have been performed on these novel species. The good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts supports the identification of these species from the matrix infrared spectra. Natural bond orbital analysis and plausible reaction mechanisms for the formation of the products are discussed.

  6. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    PubMed

    Ghassoun; Jehouani

    2000-10-01

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at Es = 2 MeV and Es = 676.45 eV, whereas the energy cut-off is fixed at Ec = 2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions.

  7. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  8. The Vibrational Spectra of Bactericide molecules: Terahertz Spectroscopy and Density Functional Theory Calculations

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Wang, Qiang

    2011-02-01

    In the room temperature and nitrogen conditions, we presented well-resolved absorption spectra and indexes of refraction of bactericide molecules in the far infrared radiation (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS). As illustrative examples we discussed the absorption spectra of captan and folpet in THz region. The absorption coefficient and index of refraction of them were obtained. Meanwhile, density functional theory (DFT) with software package Gaussian 03 using B3LYP theory was employed for optimization and vibration analysis. With the help of Gaussian View 3.09, the distinct absorption peaks of those molecules were assigned with reliable accuracy. They were caused by intermolecular hydrogen-bonding, molecular torsion or vibration modes, absorption of water molecules, etc. As the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, the THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound.

  9. Absorption spectra and photolysis of methyl peroxide in liquid and frozen water.

    PubMed

    Epstein, Scott A; Shemesh, Dorit; Tran, Van T; Nizkorodov, Sergey A; Gerber, R Benny

    2012-06-21

    Methyl peroxide (CH(3)OOH) is commonly found in atmospheric waters and ices in significant concentrations. It is the simplest organic peroxide and an important precursor to hydroxyl radical. Many studies have examined the photochemical behavior of gaseous CH(3)OOH; however, the photochemistry of liquid and frozen water solutions is poorly understood. We present a series of experiments and theoretical calculations designed to elucidate the photochemical behavior of CH(3)OOH dissolved in liquid water and ice over a range of temperatures. The molar extinction coefficients of aqueous CH(3)OOH are different from the gas phase, and they do not change upon freezing. Between -12 and 43 °C, the quantum yield of CH(3)OOH photolysis is described by the following equation: Φ(T) = exp((-2175 ± 448)1/T) + 7.66 ± 1.56). We use on-the-fly ab initio molecular dynamics simulations to model structures and absorption spectra of a bare CH(3)OOH molecule and a CH(3)OOH molecule immersed inside 20 water molecules at 50, 200, and 220 K. The simulations predict large sensitivity in the absorption spectrum of CH(3)OOH to temperature, with the spectrum narrowing and shifting to the blue under cryogenic conditions because of constrained dihedral motion around the O-O bond. The shift in the absorption spectrum is not observed in the experiment when the CH(3)OOH solution is frozen suggesting that CH(3)OOH remains in a liquid layer between the ice grains. Using the extinction coefficients and photolysis quantum yields obtained in this work, we show that under conditions with low temperatures, in the presence of clouds with a high liquid-water content and large solar zenith angles, the loss of CH(3)OOH by aqueous photolysis is responsible for up to 20% of the total loss of CH(3)OOH due to photolysis. Gas phase photolysis of CH(3)OOH dominates under all other conditions.

  10. Separation of scattering and absorption contributions in UV/visible spectra of resonant systems.

    PubMed

    Micali, N; Mallamace, F; Castriciano, M; Romeo, A; Scolaro, L M

    2001-10-15

    Resonance light scattering (RLS) is a phenomenon due to an enhancement of the scattered light in close proximity to an absorption band. The effect is easily detectable in the case of strongly absorbing chromophores, which are able to interact, thus leading to large aggregates (Pasternack, R. F.; Collings, P. J. Science 1995, 269, 935). The measurement of absorption spectra from solutions containing such resonant systems can lead to misleading results. In this paper, a simple method is described to obtain absorption spectra of aggregated species with a fairly good correction of the scattering component. The RLS spectrum, obtained using a common spectrofluorimeter, is correlated to the extinction spectrum of the same sample, allowing for an estimation of the scattering contribution to the total extinction spectrum. The method has been successfully applied both on real samples containing aggregated chromophores, such as porphyrins, chlorophyll a and gold colloids, and by simulating extinction spectra.

  11. Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach.

    PubMed

    Li, Hao; Chernyak, Vladimir Y; Tretiak, Sergei

    2012-12-20

    The exciton scattering (ES) method allows efficient calculations of spectroscopic observables in large low-dimensional conjugated molecular systems. To compute the transition dipoles between the ground and excited electronic states, we should extract the ES dipole parameters from quantum chemistry calculations in simple molecular fragments. In this manuscript, we show how to retrieve these parameters from any reference quantum chemistry model that uses an arbitrary nonorthogonal and possibly overcomplete atomic orbital basis set. Our approach relies on the natural atomic orbital (NAO) representation, in which the basis functions are orthonormal and the atom-like character is preserved. We apply the ES approach, combined with the NAO analysis to optical spectra of branched phenylacetylene oligomers. Absorption spectra predicted by the ES method demonstrate close agreement with the results of direct quantum chemistry calculations, when the Time-Dependent Density Functional Theory (TD-DFT) being used as a reference. This testifies applicability of a variety of quantum-chemical techniques, where the NAO population analysis can be conducted, for the ES framework. PMID:26291103

  12. Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach.

    PubMed

    Li, Hao; Chernyak, Vladimir Y; Tretiak, Sergei

    2012-12-20

    The exciton scattering (ES) method allows efficient calculations of spectroscopic observables in large low-dimensional conjugated molecular systems. To compute the transition dipoles between the ground and excited electronic states, we should extract the ES dipole parameters from quantum chemistry calculations in simple molecular fragments. In this manuscript, we show how to retrieve these parameters from any reference quantum chemistry model that uses an arbitrary nonorthogonal and possibly overcomplete atomic orbital basis set. Our approach relies on the natural atomic orbital (NAO) representation, in which the basis functions are orthonormal and the atom-like character is preserved. We apply the ES approach, combined with the NAO analysis to optical spectra of branched phenylacetylene oligomers. Absorption spectra predicted by the ES method demonstrate close agreement with the results of direct quantum chemistry calculations, when the Time-Dependent Density Functional Theory (TD-DFT) being used as a reference. This testifies applicability of a variety of quantum-chemical techniques, where the NAO population analysis can be conducted, for the ES framework.

  13. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  14. Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM

    NASA Astrophysics Data System (ADS)

    Tanga, M.; Schady, P.; Gatto, A.; Greiner, J.; Krause, M. G. H.; Diehl, R.; Savaglio, S.; Walch, S.

    2016-10-01

    Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z> 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 cm-3) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10. However the UV/optical and soft X-ray absorbing column densities for such sightlines are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess by up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.

  15. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  16. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  17. Electronic absorption spectra of cryogenic systems with hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Meister, T. G.; Zelikina, G. Ya.; Artamonova, O. M.

    1989-05-01

    The thermodynamic equilibrium ? has been studied by recording the 1Lb band of benzene and toluene (YR 2) dissolved in liquid Kr and CF 4 (toluene was also dissolved in liquid Ar), with addition of CHF 3(R 1XH) in a broad temperature range for each of the systems. The narrowness of the vibronic components (VC) of the 1Lb band in cryogenic solvents, i.e. liquified gases, made it possible to work with the separate vibronic components 6 10( A00) for benzene and 0-0 for toluene. The values of the equilibrium constant K were obtained by measuring the integrated intensities of the VCs of the 1Lb band of the complex and of the monomer. The enthalpy Wg  |Δ Hg| of the unexcited complex R 1XH⋯YR 2 formation was obtained from the temperature dependence of the K values; the enthalpy change Δ W due to the electronic excitation in YR 2 was obtained from the spectral shift due to the H-bond formation; therefore the enthalpy We  |Δ He| of formation of the excited complex R 1XH⋯(YE) 2* was calculated: We = Wg - Δ W. For both complexes in all the solvents used the following enthalpy values were obtained: Wg = 2.4±0.4 kcal mol -1; We = 1.6±0.5 kcal mol -1.

  18. Performance of DFT Methods in the Calculation of Optical Spectra of TCF-Chromophores

    SciTech Connect

    Andzelm, Jan; Rinderspacher, Berend C.; Rawlett, Adam M.; Dougherty, Joseph; Baer, Roi; Govind, Niranjan

    2009-10-01

    We present electronic structure calculations of the ultraviolet/visible (UV-Vis) spectra of highly active push-pull chromophores containing tricyanofuran (TCF) acceptor group. In particular, we have applied the recently developed long-range corrected Baer-Neuhauser-Livshits (BNL) exchange-correlation functional. The performance of this functional compares favorably with other density functional theory (DFT) approaches, including the CAM-B3LYP functional. The accuracy of UV-Vis results for these molecules is best at low values of attenuation parameters (γ) for both BNL and CAM-B3LYP functionals. The optimal value of γ is different for the charge-transfer (CT) and π-π* excitations. The BNL and PBE0 exchange correlation functionals capture the CT states particularly well while the π-π* excitations are less accurate and system dependent. Chromophore conformations, which considerably affect the molecular hyperpolarizability, do not significantly influence the UV-Vis spectra on average. As expected, the color of chromophores is a sensitive function of modifications to its conjugated framework, and is not significantly affected by increasing aliphatic chain length linking a chromophore to a polymer. For selected push-pull aryl-chromophores, we find a significant dependence of absorption spectra on the strength of diphenylaminophenyl donors.

  19. The calculated in vitro and in vivo chlorophyll a absorption bandshape.

    PubMed Central

    Zucchelli, Giuseppe; Jennings, Robert C; Garlaschi, Flavio M; Cinque, Gianfelice; Bassi, Roberto; Cremonesi, Oliviero

    2002-01-01

    The room temperature absorption bandshape for the Q transition region of chlorophyll a is calculated using the vibrational frequency modes and Franck-Condon (FC) factors obtained by line-narrowing spectroscopies of chlorophyll a in a glassy (Rebane and Avarmaa, Chem. Phys. 1982; 68:191-200) and in a native environment (Gillie et al., J. Phys. Chem. 1989; 93:1620-1627) at low temperatures. The calculated bandshapes are compared with the absorption spectra of chlorophyll a measured in two different solvents and with that obtained in vivo by a mutational analysis of a chlorophyll-protein complex. It is demonstrated that the measured distributions of FC factors can account for the absorption bandshape of chlorophyll a in a hexacoordinated state, whereas, when pentacoordinated, reduced FC coupling for vibrational frequencies in the range 540-850 cm(-1) occurs. The FC factor distribution for pentacoordinated chlorophyll also describes the native chlorophyll a spectrum but, in this case, either a low-frequency mode (nu < 200 cm(-1)) must be added or else the 262-cm(-1) mode must increase in coupling by about one order of magnitude to describe the skewness of the main absorption bandshape. PMID:11751324

  20. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  1. Absorption spectra of wide-gap semiconductors in their transparency region

    NASA Astrophysics Data System (ADS)

    Imangholi, Babak; Hasselbeck, Michael P.; Sheik-Bahae, Mansoor

    2003-11-01

    The linear absorption spectra of GaP, TiO 2, ZnSe, and ZnS are measured in their transparency range using a two-color, excite-probe Z-scan. ZnS has the lowest absorption coefficient (˜10 -5 cm -1) in the wavelength range 840-900 nm, making it an excellent material for use as a luminescence extracting lens in semiconductor laser cooling experiments. Direct observation of two-photon absorption in ZnSe using only low power, continuous laser beams is also reported.

  2. Conformational effects in the absorption spectra and photochemistry of [2, n](9,10)anthracenophanes ( n = 2,3)

    NASA Astrophysics Data System (ADS)

    Dunand, Albert; Ferguson, James; Puza, Miroslav; Robertson, Glen B.

    1980-11-01

    The absorption spectra of [2.2](9,10)anthracenophane (1) and [2.3](9,10)anthracenophane (II), in condensed media, contain overlapping contributions from two conformational isomers with quite different spectra. The spectra of the two conformations of I and of one conformation of II have been separately determined by a solid state method. This involved the incorporation of the photoisomers of I (1,2,7,8,-tetrahydro-2a,6b[1',2']:8a, 12b[1″,2″] -dibenzenodibenzo [a,c] dicyclo- buta[e.g]cyclooctene) and II (1,2,8,9-tetrahydro-2a,6b[1',2']:9a,13b[1″,2″]-dibenzeno-7H-dibenzo[a,e]cyclobuta[c]-cyclopenta[g]cyclooctene) in host single crystals of the photoisomer of 1,3-di(9-anthryl)propane, I and II were then obtained by thermal dissociation and their spectra measured at 8 K. The two conformers of 1 were separated by photoselection, the rotated conformer being between 4 and 5 times more photoreactive than the translated conformer. A modified molecular force field program was used to simulate the environment around the guest molecule (I) and the resultant geometries and orientations in the (disordered) site of the host crystal are in excellent agreement with the polarization analysis of the absorption spectra. Two crystal orientations of the rotated conformer were found. For II, the rotated conformation, with two orientations, dominates the absorption spectrum and the translated conformer could not be obtained by photoselection. The force field program was used to calculate the molecular geometries (gas phase) of both conformations of I and II and their photoisomers, I was also obtained by ultraviolet photodissociation of its photoisomer at 8 K. Both conformers were obtained with the same ratio as for the thermally treated crystals. This result considered with the photoselection experiments, demonstrates that the reversible photoisomerization does not proceed via biradical intermediate.

  3. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  4. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  5. Absorption Band Modeling in Reflectance Spectra: Availability of the Modified Gaussian Model

    NASA Astrophysics Data System (ADS)

    Sunshine, J. M.; Pieters, C. M.; Pratt, S. F.; McNaron-Brown, K. S.

    1999-03-01

    The modified Gaussian model, a physically based description of absorption bands in spectra, has been updated to provide compatibility with most computer systems. These new versions, written in MATLAB and IDL, are available at the RELAB Website (www.planetary.brown.edu).

  6. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  7. Absorption and Fluorescence Spectra of Poly(p-phenylenevinylene) (PPV) Oligomers: An ab Initio Simulation

    PubMed Central

    2014-01-01

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations. PMID:25415930

  8. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    SciTech Connect

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-15

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of {+-}14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 {mu}m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within {+-}25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  9. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure. PMID:27510989

  10. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure.

  11. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  12. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  13. Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Erkin; Kokhkharov, Abdumutallib; Kuvondikov, Vakhobjon; Nematov, Sherzod; Nusretov, Rafael

    2015-10-01

    The efficiency of solar radiation conversion in a model system of artificial photosynthesis, the porphyrin-fullerene assembly, is analyzed. A study of the optical absorption spectra of the porphyrin and the fullerene molecules, as well as their assembly in organic solutions, made it possible to estimate the energy efficiency of the conversion. Numerical values of the energy efficiency, defined as the fraction of the light quantum energy converted to the chemical potential of separated charges, are calculated for low- and high-concentration solutions of such a supramolecular system. The possibility of the efficient utilization of long-wavelength solar radiation in the high-concentration porphyrin-fullerene assembly solution in toluene and benzene is shown. In the photovoltaic system consisting of such a supramolecular active element, a thin ZnO film with a nanostructured surface may be introduced as a secondary acceptor of electrons from fullerene molecules. An enhancement of the transformation of separated charges of the porphyrin-fullerene assembly into electrical current by means of the ZnO film deposited on the surface of the anode electrode in such a heterogenic photovoltaic unit is proposed.

  14. Automatic phase correction of fourier transform NMR spectra based on the dispersion versus absorption (DISPA) lineshape analysis

    NASA Astrophysics Data System (ADS)

    Sotak, Christopher H.; Dumoulin, Charles L.; Newsham, Mark D.

    A method for automatic phase correction of Fourier transform NMR spectra bused on the dispersion versus absorption (DISPA) lineshape analysis is described. The DISPA display of a single misphased Lorentzian line gives a unit circle which has been rotated about the origin (relative to its "reference circle") by a number of degrees equal to the phase misadjustment. This rotation, Φ, is a combination of the zero- and first-order phase angles at the frequency of the resonance. Calculation of Φ for two or more resonances allows the spectral phasing parameters to be determined and applied to correct the spectrum. This approach has been implemented in both automatic and "semi-automatic" modes.

  15. Electronic properties and absorption spectra of ZnSnP{sub 2} using mBJ potential

    SciTech Connect

    Joshi, Ritu Ahuja, B. L.

    2015-06-24

    We present the energy bands and density of states of ZnSnP{sub 2} using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP{sub 2} in photovoltaic and optoelectronic devices.

  16. X-ray absorption spectra of water within a plane-wave Car-Parrinello molecular dynamics framework

    NASA Astrophysics Data System (ADS)

    Cavalleri, Matteo; Odelius, Michael; Nilsson, Anders; Pettersson, Lars G. M.

    2004-11-01

    We describe the implementation of a simple technique to simulate core-level spectra within the Car-Parrinello plane-waves molecular dynamics framework. The x-ray absorption (XA) spectra are generated using the transition potential technique with the effect of the core hole included through a specifically developed pseudopotential for the core-excited atom. Despite the lack of 1s core orbitals in the pseudopotential treatment, the required transition moments are accurately calculated without reconstruction of the all-electron orbitals. The method is applied to the oxygen XA spectra of water in its various aggregation states, but it is transferable to any first-row element. The computed spectra are compared favorably with the results from all-electron cluster calculations, as well as with experimental data. The periodicity of the plane-wave technique improves the description of condensed phases. The molecular dynamics simulation enables in principle a proper treatment of thermal effects and dynamical averaging in complex systems.

  17. Temperature and pH effects on myoglobin optical absorption spectra

    NASA Astrophysics Data System (ADS)

    Ciesielski, Wayne A.; Arakaki, Lorilee S. L.; Schenkman, Kenneth A.

    2005-03-01

    Myoglobin is an important intracellular oxygen transport molecule in muscle. Oxygen binding to myoglobin can be determined spectroscopically due to differences in absorption of oxymyoglobin and deoxymyoglobin. Myoglobin oxygenation can be used as a measure of intracellular oxygen tension in muscle. We sought to determine the effects of differences in temperature and pH on myoglobin absorption spectra in the near-infrared spectral region. Transmission spectra were taken of pure solutions of oxymyoglobin and deoxymyoglobin at 10°, 20°, 30°, and 40°C at pH values of 6.0, 7.0, and 8.0 (n=4). In second derivative spectra at 40°C, the deoxymyoglobin peak near 760 nm was shifted by 0.9-1.2 nm toward longer wavelengths relative to 10°C at constant pH. Differences in pH did not result in statistically significant shifts in this peak at constant temperature. Estimations of myoglobin saturation from myoglobin spectra with intermediate saturations were obtained by least squares (LS) and partial least squares (PLS) analyses. Both algorithms estimate myoglobin saturation with small root mean square errors (<1e-6) when component spectra and calibration set spectra are at the same temperature as test spectra (n=100). However, when spectra at 20°C or 40°C were used as component spectra in LS with test spectra at 30°C (all at pH 7.0), errors were 0.8% and 1.4%, respectively. PLS analysis of 30°C test spectra using 20°C or 40°C calibration set spectra yielded errors of 1.6% and 1.5%, respectively. When the PLS analysis is endpoint corrected, these errors become vanishingly small. These results demonstrate that peak shifts due to temperature are potential sources of error if calibration and test spectra differ by 10°C. These errors can be minimized by appropriate spectral analytic methods.

  18. Diagnosing temperature change inside sonoluminescing bubbles by calculating line spectra.

    PubMed

    An, Yu; Li, Chaohui

    2009-10-01

    With the numerical calculation of the spectrum of single bubble sonoluminescence, we find that when the maximum temperature inside a dimly luminescing bubble is relatively low, the spectral lines are prominent. As the maximum temperature of the bubble increases, the line spectrum from the bright bubble weakens or even fades away relative to the background continuum. The calculations in this paper effectively interpret the observed phenomena, indicating that the calculated results, which are closely related to the spectrum profile, such as temperature and pressure, should be reliable. The present calculation tends to negate the existence of a hot plasma core inside a sonoluminescing bubble.

  19. Sticking to (first) principles: quantum molecular dynamics and Bayesian probabilistic methods to simulate aquatic pollutant absorption spectra.

    PubMed

    Trerayapiwat, Kasidet; Ricke, Nathan; Cohen, Peter; Poblete, Alex; Rudel, Holly; Eustis, Soren N

    2016-08-10

    This work explores the relationship between theoretically predicted excitation energies and experimental molar absorption spectra as they pertain to environmental aquatic photochemistry. An overview of pertinent Quantum Chemical descriptions of sunlight-driven electronic transitions in organic pollutants is presented. Second, a combined molecular dynamics (MD), time-dependent density functional theory (TD-DFT) analysis of the ultraviolet to visible (UV-Vis) absorption spectra of six model organic compounds is presented alongside accurate experimental data. The functional relationship between the experimentally observed molar absorption spectrum and the discrete quantum transitions is examined. A rigorous comparison of the accuracy of the theoretical transition energies (ΔES0→Sn) and oscillator strength (fS0→Sn) is afforded by the probabilistic convolution and deconvolution procedure described. This method of deconvolution of experimental spectra using a Gaussian Mixture Model combined with Bayesian Information Criteria (BIC) to determine the mean (μ) and standard deviation (σ) as well as the number of observed singlet to singlet transition energy state distributions. This procedure allows a direct comparison of the one-electron (quantum) transitions that are the result of quantum chemical calculations and the ensemble of non-adiabatic quantum states that produce the macroscopic effect of a molar absorption spectrum. Poor agreement between the vertical excitation energies produced from TD-DFT calculations with five different functionals (CAM-B3LYP, PBE0, M06-2X, BP86, and LC-BLYP) suggest a failure of the theory to capture the low energy, environmentally important, electronic transitions in our model organic pollutants. However, the method of explicit-solvation of the organic solute using the quantum Effective Fragment Potential (EFP) in a density functional molecular dynamics trajectory simulation shows promise as a robust model of the hydrated organic

  20. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    SciTech Connect

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław; Melikidze, George I.

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have put specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.

  1. C IV Broad Absorption Line Variability in QSO spectra from SDSS I-III Surveys

    NASA Astrophysics Data System (ADS)

    De Cicco, D.; Brandt, W. N.; Paolillo, M.; Grier, C. J.

    2016-08-01

    We present the results of our study of C IV broad absorption line (BAL) variability in the spectra of more than 1500 QSO's from several SDSS I-III surveys. Absorption lines in QSO spectra are due to outflowing winds which originate from the accretion disk, at a distance on the order of 1/100 - 1/10 pc from the central super-massive black hole (SMBH). Winds trigger the accretion mechanism onto the SMBH removing angular momentum from the disk and, since they evacuate gas from the host galaxy, they are believed to play a fundamental role in galaxy evolution. Absorption lines can be classified on the basis of their width and of the observed transitions, and their equivalent width can change on timescales from months to years, due to variations in the covering factor and/or in the ionization level. We analyzed the largest sample ever used for such kind of studies. We find that the fraction of disappearing BALs is three times larger than the one found in previous works. Strong evidence is found for a coordinated variability in spectra with multiple BAL troughs which may be interpreted in terms of disk-wind rotation, and/or variations in the physical status of the shielding gas. We also find that, in spectra with multiple BAL troughs, the disappearing ones are generally those with the highest central velocity.

  2. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  3. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-01

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  4. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films.

    PubMed Central

    Muccio, D D; Cassim, J Y

    1979-01-01

    The absorption and circular dichroic (CD) spectra of purple membrane films in which the plane of the membranes is oriented perpendicular to the incident beam are compared with the solution spectra. This enables one to relate structural features of the purple membrane to a coordinate system as defined by a normal to the membrane plane and two mutually perpendicular in-plane axes. The film and solution absorption spectra were similar except for a relative depression in the 200 - 225-nm region of the film spectrum. However, the CD spectra showed significant differences in the visible region, where the biphasic band in the solution spectrum was replaced by a single positive band at 555 nm in the film spectrum and in the far ultraviolet region, where the 208-nm band was deleted from the film spectra of the native and regenerated membranes. Moreover, a small shoulder occurred at 208 nm in the film spectrum of the bleached membrane. The near ultraviolet spectra also showed differences, whereas the 317-nm band remained essentially the same for both spectra. Based on excitonic interpretations of the visible and far ultraviolet spectra the following conclusions were reached: (a) a relatively strong in-plane monomeric interaction occurs between te retinyl chromophore and apoprotein; (b) the helical axes of the native and regenerated membrane proteins are oriented primarily normal to the membrane plane; and (c) the helical axes of the bleached membrane proteins are tilted more in-plane than the axes of the native or regenerated membrane. Additional conclusions were that an interaction occurs between an in-plane magnetic dipole moment of the retinyl chromophore and probably an in-plane electric dipole moment of a nearby aromatic amino acid(s), and that although the membrane is anisotropic with respect to coupling between electric and magnetic moments of the aromatic amino acids, the transition dipole moments of the aromatic amino acids are not preferentially oriented in either

  5. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  6. Calculation of the Kramers-Kronig transform of X-ray spectra by a piecewise Laurent polynomial method.

    PubMed

    Watts, Benjamin

    2014-09-22

    An algorithm is presented for the calculation of the Kramers-Kronig transform of a spectrum via a piecewise Laurent polynomial method. This algorithm is demonstrated to be highly accurate, while also being computationally efficient. The algorithm places no requirements on data point spacing and is capable of integrating across the full spectrum (i.e. from zero to infinity). Further, we present a computer application designed to aid in calculating the Kramers-Kronig transform on near-edge experimental X-ray absorption spectra (extended with atomic scattering factor data) in order to produce the dispersive part of the X-ray refractive index, including near-edge features.

  7. Calculation of the Kramers-Kronig transform of X-ray spectra by a piecewise Laurent polynomial method.

    PubMed

    Watts, Benjamin

    2014-09-22

    An algorithm is presented for the calculation of the Kramers-Kronig transform of a spectrum via a piecewise Laurent polynomial method. This algorithm is demonstrated to be highly accurate, while also being computationally efficient. The algorithm places no requirements on data point spacing and is capable of integrating across the full spectrum (i.e. from zero to infinity). Further, we present a computer application designed to aid in calculating the Kramers-Kronig transform on near-edge experimental X-ray absorption spectra (extended with atomic scattering factor data) in order to produce the dispersive part of the X-ray refractive index, including near-edge features. PMID:25321829

  8. Simulation of the structures and calculation of IR Spectra of (22 s,23 s)-Homobrassinolide conformers

    NASA Astrophysics Data System (ADS)

    Andrianov, V. M.; Korolevich, M. V.

    2012-07-01

    Frequencies and intensities of normal vibrations of (22 S,23 S)-homobrassinolide, a biologically active representative of steroidal phytohormones, were calculated within the framework of an original approach that combined a classical analysis of normal vibrations by a molecular mechanics method with a quantum-chemical estimation of absolute intensities. Two molecular structures with different side-chain conformations were considered. The molecular IR absorption bands in the range 1500-900 cm-1 were interpreted for the first time and the influence of the side-chain conformation on the IR spectrum was analyzed based on a comparison of the experimental and calculated spectra.

  9. Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes.

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-01-22

    Laser-ablated iron, ruthenium, and osmium atoms react with hydrogen in excess argon, neon and pure hydrogen to produce the FeH(2) molecule, and the FeH(2)(H(2))(3), RuH(H(2))(4), RuH(2)(H(2))(4), and (H(2))MH complexes (M = Fe, Ru, Os), as identified through infrared spectra with D(2) and HD substitution. DFT frequency calculations support the assignment of absorptions observed experimentally. The FeH(2) molecule has a quintet ground state with a quasi-linear structure, and is repulsive to the addition of one more H(2) ligand: however, with three more H(2) ligands, stable triplet and singlet state FeH(2)(H(2))(3) supercomplexes can be formed. The quintet FeH(2) molecule and FeH(2)(H(2))(3) supercomplex undergo reversible near-ultraviolet photochemical rearrangement in solid neon and hydrogen. The RuH(2) molecule has a bent triplet ground state and forms the stable singlet RuH(2)(H(2))(4) supercomplex, but only the latter is observed in these experiments. In like fashion RuH has a quartet ground state and the doublet RuH(H(2))(4) complex is trapped in solid hydrogen. All three (H(2))MH complexes with lower energy than MH(3) are trapped, and no absorptions are observed for MH(3) molecules.

  10. Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes.

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-01-22

    Laser-ablated iron, ruthenium, and osmium atoms react with hydrogen in excess argon, neon and pure hydrogen to produce the FeH(2) molecule, and the FeH(2)(H(2))(3), RuH(H(2))(4), RuH(2)(H(2))(4), and (H(2))MH complexes (M = Fe, Ru, Os), as identified through infrared spectra with D(2) and HD substitution. DFT frequency calculations support the assignment of absorptions observed experimentally. The FeH(2) molecule has a quintet ground state with a quasi-linear structure, and is repulsive to the addition of one more H(2) ligand: however, with three more H(2) ligands, stable triplet and singlet state FeH(2)(H(2))(3) supercomplexes can be formed. The quintet FeH(2) molecule and FeH(2)(H(2))(3) supercomplex undergo reversible near-ultraviolet photochemical rearrangement in solid neon and hydrogen. The RuH(2) molecule has a bent triplet ground state and forms the stable singlet RuH(2)(H(2))(4) supercomplex, but only the latter is observed in these experiments. In like fashion RuH has a quartet ground state and the doublet RuH(H(2))(4) complex is trapped in solid hydrogen. All three (H(2))MH complexes with lower energy than MH(3) are trapped, and no absorptions are observed for MH(3) molecules. PMID:19099441

  11. Chemical-state analysis of organic semiconductors using soft X-ray absorption spectroscopy combined with first-principles calculation.

    PubMed

    Natsume, Yutaka; Kohno, Teiichiro; Minakata, Takashi; Konishi, Tokuzo; Gullikson, Eric M; Muramatsu, Yasuji

    2012-02-16

    The chemical states of organic semiconductors were investigated by total-electron-yield soft X-ray absorption spectroscopy (TEY-XAS) and first-principles calculations. The organic semiconductors, pentacene (C(22)H(14)) and pentacenequinone (C(22)H(12)O(2)), were subjected to TEY-XAS and the experimental spectra obtained were compared with the 1s core-level excited spectra of C and O atoms, calculated by a first-principles planewave pseudopotential method. Excellent agreement between the measured and the calculated spectra were obtained for both materials. Using this methodology, we examined the chemical states of the aged pentacene, and confirmed that both C-OH and C═O chemical bonds are generated by exposure to air. This result implies that not only oxygen but also humidity causes pentacene oxidation.

  12. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  13. Two-dimensional J-spectra with absorption-mode lineshapes

    NASA Astrophysics Data System (ADS)

    Pell, Andrew J.; Keeler, James

    2007-12-01

    Two-dimensional J-spectroscopy offers the possibility of a complete separation of chemical shifts and J-couplings. However, the usefulness of the experiment is considerably reduced by the fact that peaks in the spectra have the phase-twist lineshape. We present a simple new spectroscopic method for recording J-spectra in which the peaks are both in the absorption mode and retain their natural intensities, albeit at the cost of a considerable reduction in the signal-to-noise ratio. No special data-processing is required. The method is tested on quinine, and the steroid dehydroisoandrosterone.

  14. Absorption spectra of HCFC-22 around 829/cm at atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients of HCFC-22 have been measured around 829/cm in the laboratory at various temperature-pressure combinations chosen to represent tangent heights (as in solar-occultation experiments) or layers in the atmosphere. The data measured employing the Doppler-limited spectra resolution (about 10 exp -4/cm) of a tunable diode laser spectrometer are free of instrumental distortion and are more practical in this case than the spectral line parameters adapted in conventional line-by-line procedures for analyzing atmospheric spectra. The present data obtained with N2 as the broadening gas are shown to be directly applicable to the real atmosphere.

  15. Calculation of vibrational spectra for dioxouranium monochloride monomer and dimers

    NASA Astrophysics Data System (ADS)

    Umreiko, D. S.; Shundalau, M. B.; Zazhogin, A. P.; Komyak, A. I.

    2010-09-01

    Structural models were built and spectral characteristics were calculated based on ab initio calculations for the monomer and dimers of dioxouranium monochoride UO2Cl. The calculations were carried out in the effective core potential LANL2DZ approximation for the uranium atom and all-electron basis sets using DFT methods for oxygen and chlorine atoms (B3LYP/cc-pVDZ). The monomer UO2Cl was found to possess an equilibrium planar (close to T-shaped) configuration with C2v symmetry. The obtained spectral characteristics were analyzed and compared with experimental data. The adequacy of the proposed models and the qualitative agreement between calculation and experiment were demonstrated.

  16. Ab Initio Calculations of X-ray Spectra: Atomic Multiplet and Molecular Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of Transition Metal Complexes.

    PubMed

    Josefsson, Ida; Kunnus, Kristjan; Schreck, Simon; Föhlisch, Alexander; de Groot, Frank; Wernet, Philippe; Odelius, Michael

    2012-12-01

    A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra for aqueous Ni(2+) and XA spectra for a polypyridyl iron complex. Our quantum chemical calculations on a high level of accuracy in a post-Hartree-Fock framework give excellent agreement with experiment. This opens the door to reliable and detailed information on chemical interactions and the valence electronic structure in 3d transition-metal complexes also in transient excited electronic states. As we combine a molecular-orbital description with a proper treatment of local atomic electron correlation effects, our calculations uniquely allow, in particular, identifying the influence of interatomic chemical interactions versus intra-atomic correlations in the L-edge X-ray spectra.

  17. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement

    SciTech Connect

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  18. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    PubMed

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets. PMID:27343458

  19. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  20. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    PubMed

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets.

  1. First-principles calculation of electronic spectra of light-harvesting complex II.

    PubMed

    König, Carolin; Neugebauer, Johannes

    2011-06-14

    We report on a fully quantum chemical investigation of important structural and environmental effects on the site energies of chlorophyll pigments in green-plant light-harvesting complex II (LHC II). Among the tested factors are technical and structural aspects as well as effects of neighboring residues and exciton couplings in the chlorophyll network. By employing a subsystem time-dependent density functional theory (TDDFT) approach based on the frozen density embedding (FDE) method we are able to determine site energies and electronic couplings separately in a systematic way. This approach allows us to treat much larger systems in a quantum chemical way than would be feasible with a conventional density functional theory. Based on this method, we have simulated a series of mutagenesis experiments to investigate the effect of a lack of one pigment in the chlorophyll network on the excitation properties of the other pigments. From these calculations, we can conclude that conformational changes within the chlorophyll molecules, direct interactions with neighboring residues, and interactions with other chlorophyll pigments can lead to non-negligible changes in excitation energies. All of these factors are important when site energies shall be calculated with high accuracy. Moreover, the redistribution of the oscillator strengths due to exciton coupling has a large impact on the calculated absorption spectra. This indicates that modeling mutagenesis experiments requires us to consider the entire set of chlorophyll molecules in the wild type and in the mutant, rather than just considering the missing chlorophyll pigment. An analysis of the mixing of particular excitations and the coupling elements in the FDEc calculation indicates that some pigments in the chlorophyll network act as bridges which mediate the interaction between other pigments. These bridges are also supported by the calculations on the "mutants" lacking the bridging pigment.

  2. Source brightness fluctuation correction of solar absorption Fourier Transform mid infrared spectra

    NASA Astrophysics Data System (ADS)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-01-01

    Solar absorption Fourier Transform infrared spectrometry is considered a precise and accurate method for the observation of trace gases in the atmosphere. The precision and accuracy of such measurements are dependent on the stability of the light source. Fluctuations in the source brightness reduce the precision and accuracy of the trace gas concentrations, but cannot always be avoided. Thus, a strong effort is made within the community to reduce the impact of source brightness fluctuations by applying a correction on the spectra following the measurements. So far, it could be shown that the precision and accuracy of CO2 total column concentrations could be improved by applying a source brightness fluctuation correction to spectra in the near infrared spectral region. The analysis of trace gas concentrations obtained from spectra in the mid infrared spectral region is fundamental. However, spectra below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents a source brightness fluctuation correction. Here, we show a method of source brightness fluctuation correction, which can be applied on spectra in the whole infrared spectral region including spectra measured with a MCT detector. We present a solution to remove the unknown offset in MCT interferograms allowing MCT spectra for an application of source brightness fluctuation correction. This gives an improvement in the quality of MCT spectra and we demonstrate an improvement in the retrieval of O3 profiles and total column concentrations. For a comparison with previous studies, we apply our source brightness fluctuation correction method on spectra in the near infrared spectral region and show an improvement in the retrieval of CO2 total column concentrations.

  3. Effect of deprotonation on absorption and emission spectra of Ru(II)-bpy complexes functionalized with carboxyl groups.

    PubMed

    Badaeva, Ekaterina; Albert, Victor V; Kilina, Svetlana; Koposov, Alexey; Sykora, Milan; Tretiak, Sergei

    2010-08-21

    Changes in the ground and excited state electronic structure of the [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) complex induced by functionalization of bpy ligands with carboxyl and methyl groups in their protonated and deprotonated forms are studied experimentally using absorption and emission spectroscopy and theoretically using density functional theory (DFT) and time dependent DFT (TDDFT). The introduction of the carboxyl groups shifts the metal-to-ligand-charge-transfer (MLCT) absorption and emission bands to lower energies in functionalized complexes. Our calculations show that this red-shift is due to the stabilization of the lowest unoccupied orbitals localized on the substituted ligands, while the energies of the highest occupied orbitals localized on the Ru-center are not significantly affected. Consistent with previously observed trends in optical spectra of related Ru(II) complexes, deprotonation of the carboxyl groups results in a blue shift in the absorption and phosphorescence spectra. The effect originates from interplay of positive and negative solvatochromism in the protonated and deprotonated complexes, respectively. This results in more delocalized character of the electron transition orbitals in the deprotonated species and a strong destabilization of the three lowest unoccupied orbitals localized on the substituted and unsubstituted ligands, all of which contribute to the lowest-energy optical transitions. We also found that owing to the complexity of the excited state potential energy surfaces, the calculated lowest triplet excited state can be either weakly optically allowed (3)MLCT or optically forbidden Ru (3)d-d transition depending on the initial wavefunction guess used in TDDFT calculations. PMID:20556275

  4. Emission and absorption spectra of some bridged 1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Mellor, J. M.; Pathirana, R. N.; Stibbard, J. H. A.

    Absorption spectra in neutral and acidic media are reported for a series of bridged 1,5-benzodiazepines, which are unable to tautomerize. Comparison is made with non-bridged 1,5-benzodiazepines capable of tautomeric rearrangement. Both bridged and non-bridged 1,5-benzodiazepines are essentially non-fluorescent due to the "proximity effect" of interaction between singlet ηπ* and ππ* states of similar energy, a phenomenon previously recognised in six-membered nitrogen heterocycles.

  5. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    NASA Astrophysics Data System (ADS)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  6. The use of commercial glass as a potential gamma accidental dosimeter through the absorption spectra

    NASA Astrophysics Data System (ADS)

    Kharita, M. H.; Yousef, S.; Bakr, S.

    2012-05-01

    Various types of commercial glass (ordinary windows, cathode ray tubes, glass kitchenware) have been studied as potential accidental radiation dosimeters. The proposed method utilizes the changes in the glasses' absorption spectra as a result of irradiation. A 60Co gamma irradiation cell has been used to irradiate samples with doses ranging from 5 to 200 Gy. The transmittance was measured using a photospectrometer (UV-visible spectrometry). The results demonstrate that the transmittance spectra of most of the glass samples change in linear proportion to the exposure dose. Moreover, the study considers the fading effect on the absorption spectra of the irradiated samples for fading times up to 100 days at room temperature. The results of this work demonstrate that several widely used types of glass can be used as high-dose accidental dosimeters for doses ranging between 8 and 200 Gy. A reasonable calibration line can be established for any irradiated glass sample by heating, re-irradiating with standard doses and measuring the related absorption coefficient. Further investigations are needed to decrease the minimum detectable dose of the proposed method and to study the effect of glass composition on radiation response.

  7. Hot Experimental Absorption Spectra of CH_4 in the Pentad and Octad Region

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Dulick, Michael; Bernath, Peter F.

    2014-06-01

    We present comprehensive line lists of CH_4 at high temperatures for the pentad and octad region (2400-5000 wn). These spectra improve on our previous emission measurements for this region by using a new quartz sample cell in conjunction with a tube furnace (pictured). Ten temperatures have been recorded from room temperature up to 1000°C and our technique involves the acquisition of four separate Fourier transform infrared spectra at each temperature, thus accounting for both the emission and absorption of the molecule and the cell. By combining these four spectra we obtain true transmission spectra of hot CH_4 in this region. Analysis of this set of spectra enables the production of a line list that includes the position, intensity and empirical lower state energy. Our spectra and line lists can be used directly to model planetary atmospheres and brown dwarfs. Hargreaves, R.J., Beale, C.A., Michaux, L., Irfan, M., & Bernath, P.F. 2012, ApJ, 757, 46

  8. Consistency analysis of plastic samples based on similarity calculation from limited range of the Raman spectra

    NASA Astrophysics Data System (ADS)

    Lai, B. W.; Wu, Z. X.; Dong, X. P.; Lu, D.; Tao, S. C.

    2016-07-01

    We proposed a novel method to calculate the similarity between samples with only small differences at unknown and specific positions in their Raman spectra, using a moving interval window scanning across the whole Raman spectra. Two ABS plastic samples, one with and the other without flame retardant, were tested in the experiment. Unlike the traditional method in which the similarity is calculated based on the whole spectrum, we do the calculation by using a window to cut out a certain segment from Raman spectra, each at a time as the window moves across the entire spectrum range. By our method, a curve of similarity versus wave number is obtained. And the curve shows a large change where the partial spectra of the two samples is different. Thus, the new similarity calculation method identifies samples with tiny difference in their Raman spectra better.

  9. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  10. Twin-peaks absorption spectra of excess electron in ionic liquids

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Yoshida, Yoichi; Takahashi, Kenji

    2014-07-01

    The solvated electron in room temperature ionic liquids (RTILs) has been the subject of several investigations and several reports exist on its nature and absorption spectrum. These studies concluded that the solvated electron exhibits an absorption spectrum peaking in the 1000-1400 nm region; a second absorption band peaking in the UV region has been assigned to the hole or dication radicals simultaneously formed in the system. Here we report on the fate of the excess electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, P14+/NTf2- using nanosecond pulse radiolysis. Scavenging experiments allowed us to record and disentangle the complex spectrum measured in P14+/NTf2-. We identified a bi-component absorption spectrum, due to the solvated electron, the absorption maxima located at 1080 nm and around 300 nm, as predicted by previous ab-initio molecular dynamics simulations for the dry excess electron. We also measured the spectra using different ionic liquids and confirmed the same feature of two absorption peaks. The present results have important implications for the characterization of solvated electrons in ionic liquids and better understanding of their structure and reactivity.

  11. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  12. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  13. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    PubMed

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  14. Absorption spectra and photoresponse observation of Cu2O thin film photoanodes

    NASA Astrophysics Data System (ADS)

    Mani, Endri; Garuthara, Rohana

    2014-03-01

    Electrodeposition was used to deposit Cu2O thin films on ITO substrates. The deposited Cu2O films were characterized by photocurrent, absorption and reflectance spectroscopy. Photoresponse of the film clearly indicated n-type behavior of Cu2O in photoelectrochemical cells. The effects of chlorine doped photoanodes deposited in different solution pH on the magnitude of their photocurrent are studied. The low temperature absorption spectra of chlorine doped Cu2O films are found to depend on the solution pH in the range 10.0-7.5. Optical absorption spectra of Cu2O films were measured in the temperature range 79K - 295K. The Urbach's tail was observed for n-type conductive Cu2O films in the temperature range 79K to 295K. The Urbach's energy as a function of temperature for Cu2O films were studied. The results will be discussed with emphasis on the reflectance, absorption and photoresponse observation.

  15. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  16. Nonlinear fitting of absorption edges in K-edge densitometry spectra

    SciTech Connect

    Collins, M.; Hsue, Sin-Tao

    1997-11-01

    A new method for analyzing absorption edges in K-Edge Densitometry (KED) spectra is introduced. This technique features a nonlinear function that specifies the empirical form of a broadened K-absorption edge. Nonlinear fitting of the absorption edge can be used to remove broadening effects from the KED spectrum. This allows more data near the edge to be included in the conventional KED fitting procedure. One possible benefit is enhanced precision of measured uranium and plutonium concentrations. Because no additional hardware is required, several facilities that use KED may eventually benefit from this approach. Applications of nonlinear KED fitting in the development of the Los Alamos National Laboratory (LANL) hybrid K-edge/x-ray fluorescence (XRF) densitometer system are described.

  17. DUO: A general program for calculating spectra of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Lodi, Lorenzo; Tennyson, Jonathan; Stolyarov, Andrey V.

    2016-05-01

    DUO is a general, user-friendly program for computing rotational, rovibrational and rovibronic spectra of diatomic molecules. DUO solves the Schrödinger equation for the motion of the nuclei not only for the simple case of uncoupled, isolated electronic states (typical for the ground state of closed-shell diatomics) but also for the general case of an arbitrary number and type of couplings between electronic states (typical for open-shell diatomics and excited states). Possible couplings include spin-orbit, angular momenta, spin-rotational and spin-spin. Corrections due to non-adiabatic effects can be accounted for by introducing the relevant couplings using so-called Born-Oppenheimer breakdown curves. DUO requires user-specified potential energy curves and, if relevant, dipole moment, coupling and correction curves. From these it computes energy levels, line positions and line intensities. Several analytic forms plus interpolation and extrapolation options are available for representation of the curves. DUO can refine potential energy and coupling curves to best reproduce reference data such as experimental energy levels or line positions. DUO is provided as a Fortran 2003 program and has been tested under a variety of operating systems.

  18. NEXAFS spectra of aromatic molecules by plane-wave calculations

    NASA Astrophysics Data System (ADS)

    Fratesi, Guido; Brivio, Gian Paolo

    2013-03-01

    Near-edge x-ray absorption fine structure (NEXAFS) is a powerful technique which allows one to determine several important properties of organic molecules, both in the gas phase and in the bulk or adsorbed one and especially, by performing angle-dependent measurements with polarized x-rays, to the absolute orientation of molecules. This calls for the association of measured peaks to specific transitions, which can be guided by theory. To this respect, the use of numerically-efficient yet accurate first-principles simulations in determining the spectral features is desirable, aiming at simulating fairly large systems such as molecules interacting with metal/dielectric surfaces. We consider here a technique from the literature to derive effectively the spectrum from density-functional theory, using pseudopotentials and plane wave basis sets, that was mostly applied to bulk systems. The basic aspects to its applicability to molecular systems will be discussed, taking as examples benzene, pentacene, and related molecules and comparing to experimental and theoretical data in the literature with special emphasis on the spectrum dependence on the photon polarization.

  19. Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells.

    PubMed

    Cerezo, Javier; Avila Ferrer, Francisco J; Santoro, Fabrizio

    2015-05-01

    We simulate from first-principles the absorption spectra of five structure-related coumarin derivatives utilized in dye sensitized solar cells (DSSCs), investigating the vibronic and solvent contributions to the position and width of the spectra in ethanol. Ground and excited state potential energy surfaces (PESs) are modeled by Density Functional Theory (DFT) and its time-dependent (TD) expression for the excited state (TD-DFT). The solute vibronic structure associated with the spectrum is calculated by a TD formalism, accounting for both Duschinsky and temperature effects, while solvent inhomogeneous broadening is evaluated according to Marcus' theory, computing the solvent reorganization energy by the state-specific implementation of the polarizable continuum model (PCM) within TD-DFT. We adopted both the standard hybrid PBE0 and the range separated CAM-B3LYP functionals showing that the latter performs better both concerning the vibronic and solvent-induced contributions to the absorption lineshape. The different predictions of the two functionals are then rationalized in terms of the charge transfer (CT) character of the transitions showing that, in this class of compounds, it is strongly dependent on the nuclear structure. Such a dependence introduces a bias in the PBE0 PES that has a drastic impact on the vibronic spectra. We show that both the intrinsic vibronic structure and the solvent broadening play a relevant role in differentiating the absorption width of the five dyes. In this sense, our results provide a guide to understand the sources of spectral broadening of this family of dyes, a valuable help for a rational design of new molecules to improve DSSC devices.

  20. Absorption spectra and optical parameters of lithium-potassium sulphate single crystals

    NASA Astrophysics Data System (ADS)

    El-Fadl, A. Abu; Gaffar, M. A.; Omar, M. H.

    1999-09-01

    The optical transmittance and reflectance near the fundamental absorption region along the c- and a-axes of lithium potassium sulphate single crystal (LKS) are measured at room temperature. From the data the absorption coefficient ( α) and the optical band gap ( Eopt.g) were deduced. The type of transition was determined. The steepness parameter ( σ), the temperature dependence of the energy gap and the exciton energy ( E0) were also calculated. The extinction coefficient, the refractive index and both the real and imaginary parts of the dielectric permittivity were calculated as functions of the photon energy.

  1. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yu. N.; Solodov, A. A.; Solodov, A. M.; Petrova, T. M.; Naumenko, O. V.

    2016-07-01

    A description of the spectroscopic complex at V.E. Zuev Institute of Atmospheric Optics, SB RAS, operating in a wide spectral range with high threshold sensitivity to the absorption coefficient is presented. Measurements of weak lines and nonselective spectra of CO2 and H2O were performed based on the built setup. As new application of this setup, positions and intensities of 152 weak lines of H2O were measured between 2400 and 2560 cm-1 with threshold sensitivity of 8.6×10-10 cm-1, and compared with available calculated and experimental data. Essential deviations between the new intensity measurements and calculated data accepted in HITRAN 2012 and GEISA 2015 forthcoming release are found.

  2. Calculation of Vibrational Spectra for Coordinated Thiocyanate Ion in Acetonitrile

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. P.

    2016-07-01

    The impact of the association of lithium cation with NCS- ion in acetonitrile on the vibrational spectrum was studied by the density-functional method in the B3LYP/6-31+G(d,p) approximation. The best agreement between experimental and calculated ionic association data was achieved taking into account the nonspecific solvation, oversolvation, and solubility of ionic complexes within the discrete-continuum model. The microstructures of the thiocyanate ion in a contact ion pair with lithium cation and ion-pair dimer and trimer in acetonitrile were established.

  3. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  4. Calculated Neutron and Gamma-ray Spectra across the Prismatic Very High Temperature Reactor Core

    SciTech Connect

    James W. Sterbentz

    2008-05-01

    Neutron and gamma-ray flux spectra are calculated using the MCNP5 computer code and a one-sixth core model of a prismatic Very High Temperature Reactor based on the General Atomics Gas Turbine-Modular Helium Reactor. Spectra are calculated in the five inner reflector graphite block rings, three annular active core fuel rings, three outer graphite reflector block rings, and the core barrel. The neutron spectra are block and fuel pin averages and are calculated as a function of temperature and burnup. Also provided are the total, fast, and thermal radial profile fluxes and core barrel dpa rates.

  5. First-principles calculation of electronic structure and optical absorption of BN ZnO

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, Andre

    2015-03-01

    The α-BN structure of ZnO, a nonequilibrium phase with a transition pressure of 25 GPa, has been found in nano structures of ZnO. The structural difference between the BN structure and the equilibrium wurtzite structure can play an important role for applications of nanostructured ZnO. In order to understand the difference, first principles calculations have been performed on both phases. The electronic structure is computed using the GW method based on Density Functional Theory and HSE hybrid functional calculations. The GW method includes the quasiparticle effects due to the screened electron-electron interaction which gives an accurate description of the electronic band structure and density of states. After that, by solving the Bethe-Salpeter Equation for the optical polarization function, which take excitonic effects into account, we have achieved an accurate description of optical absorption spectra for both structures. We find a good agreement with experimental and previous computational results for WZ structure, and predict the absorption for the BN structure. The BN structure shows a larger band gap and we found a very large optical anisotropy: The gap for extraordinary light polarization is almost 0.7eV larger than that for ordinary light polarization.

  6. The effect of implanting boron on the optical absorption and electron paramagnetic resonance spectra of silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Stesmans, A.; Weeks, R. A.; Weller, R. A.

    2008-09-01

    Silica samples (type III, Corning 7940) were implanted with B using multiple energies to produce a layer ˜600 nm thick in which the concentration of B ranged from 0.034 to 2.04 at. %. Optical absorption spectra were measured from 1.8 to 6.5 eV. Electron paramagnetic resonance (EPR) measurements were generally made at ˜20.3 and 33 GHz for sample temperatures ranging from 77 to 100 K. Based on the EPR spectra three types of defects, namely, Eγ', the E'-type 73 G split doublet (E73'), and the peroxyradical (POR) were identified. No oxygen-associated hole centers (OHCs) nor specific B-associated paramagnetic defects were detected, not even at the largest B concentration of 2.04 at. %. Unlike previous assignments, there was no correlation between the 4.83 eV optical absorption band and the observed PORs. From these results, we infer that in addition to POR, there is at least one additional Si-related state absorbing in the 4.8-4.9 eV range that is likely diamagnetic. The 5.85 eV optical absorption band is found to be due to the Eγ' and E73' centers, with, in average, quite similar oscillator strengths inferred as before. Both the optical absorption and the electron spin resonance data can be satisfactorily explained without the need for specific B-associated defect site (s). As no OHCs are detected by ESR, these do not seem to make a detectable contribution to the optical spectra.

  7. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  8. Raman and infrared spectra and theoretical calculations of dipicolinic acid, dinicotinic acid, and their dianions

    NASA Astrophysics Data System (ADS)

    McCann, Kathleen; Laane, Jaan

    2008-11-01

    The Raman and infrared spectra of dipicolinic acid (DPA) and dinicotinic acid (DNic) and their salts (CaDPA, Na 2DPA, and CaDNic) have been recorded and the spectra have been assigned. Ab initio and DFT calculations were carried out to predict the structures and vibrational spectra and were compared to the experimental results. Because of extensive intermolecular hydrogen bonding in the crystals of these molecules, the calculated structures and spectra for the individual molecules agree only moderately well with the experimental values. Theoretical calculations were also carried out for DPA dimers and DPA·2H 2O to better understand the intermolecular interactions. The spectra do show that DPA and its calcium salt, which are present in anthrax spores, can be distinguished from the very similar DNic and CaDNic.

  9. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  10. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  11. Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3.

    PubMed

    Zhu, Xi; Su, Haibin; Marcus, Rudolph A; Michel-Beyerle, Maria E

    2014-09-01

    Electronic structure and light absorption properties of the perovskite CH3NH3PbI3 are investigated by relativistic density functional theory with quasiparticle GW corrections and many-body interactions. The nature of the Wannier exciton is studied by solving the Bethe-Salpeter equation augmented with the analysis of a conceptual hydrogen-like model. The computed absorption spectrum unravels a remarkable absorption "gap" between the first two absorption peaks. This discontinuity is maintained in the calculated tetragonal structure that, however, is not stable at low temperature. Most importantly, the discontinuity is also observed in the experimental absorption spectrum of the orthorhombic single crystal at low temperature (4 K). However, in contrast to the single crystal, in a polycrystalline perovskite film at 5 K the "gap" is filled by a monotonously increasing absorption throughout the visible range. This feature of thin films points to the potential significance of defect absorption for the excellent light harvesting properties of perovskite-based solar cells. PMID:26278260

  12. [Time resolved UV-Vis absorption spectra of quercetin reacting with various concentrations of sodium hydroxide].

    PubMed

    Yang, Li-Jun; Li, Ping; Gao, Yan-Jun; Li, Hui-Feng; Wu, Da-Cheng; Li, Rui-Xia

    2009-06-01

    A real time investigation of chemical reaction process of quercetin with various concentrations of sodium hydroxide was performed by using an intensified spectroscopic detector ICCD. The time resolved UV-Vis absorption spectra of 5 x 10(-5) mol x L(-1) quercetin respectively reacting with sodium hydroxide at concentrations of 2, 0.2, 0.1, 0.04 and 0.02 mol x L(-1) were acquired. A total of 200 spectra with the same exposure time of 0.1 ms for each spectrum but different time interval between two consecutive spectra were recorded for each reaction. The first 50 spectra have the time interval of 20 ms, the next 50 have 1 s, and the last 100 have 2 s. Results indicate that quercetin reacted with sodium hydroxide easily and there was an intermediate product formed during the reaction, with different concentrations of reactants, the changes of absorption bands were the same, but the moments at which the changes happened were different and the total reaction time was various from 1 s to 100 s. Spectra recorded showed the disappearing process of the typical bands centered at 254 and 374 nm of pure quercetin, the growing and disappearing processes of a new band centered at 427 nm of the intermediate product, and the growing process of the new band centered at 314 nm of the final product obviously. No other transient spectroscopic data are currently available on the reaction of quercrtin with sodium hydroxide, the results obtained in the present work provide useful experimental data for the study of the microscopic process of the reaction.

  13. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  14. Variational Calculations of IR Ro-Vibrational Spectra for Nitric Acid

    NASA Astrophysics Data System (ADS)

    Pavlyuchko, A. I.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    To model the atmospheric composition of the potentially habitable planets, it is essential to have comprehensive data on the spectroscopic properties of the main molecular absorbers. This is especially true in the infrared region which is dominated by transitions of polyatomic molecules [1]. Nitric acid (HNO3) is an important constituent of the Earth atmosphere where it is a prominent bio-signature. Here we present simulations of the absorption spectra for HNO3. We have developed a variational method to solve the ro-vibrational Schrödinger equation for a general polyatomic molecule. The ro-vibrational Hamiltonian is given by [2] where the internal curvilinear vibrational coordinates qi are used to represent the displacements of the bond lengths and bond angles, ?ij(q) are elements of the matrix of the kinematic coefficients, t is the determinant of this matrix, 'a are the Euler angles, and μab(q) is the inverse matrix of the tensor of inertia. The potential energy function, V (q), is given by a fourthorder polynomial expansion in terms of Morse variables xi = 1 - e-iqi for the stretching coordinates and xi = qi for the bending coordinates. The dipole moment of the molecule is presented in the form of a Taylor series of the 2nd order in terms of qi. The parameters of the potential energy and the dipole moment functions of HNO3 were calculated by the quantum chemical method at the CCSD(T)/aug-cc-pVQZ level of theory. With this potential energy function, agreement between the calculated and experimental fundamental frequencies of vibrations is within 5 cm -1. The harmonic part of the potential function was then optimized by fitting to the experimental fundamental frequencies and used to simulate the IR spectra of HNO3. The results are in good agreement with the experimental data. The figure shows an example of the simulated spectra of HNO3 in the area of the strong Fermi resonance between the -5 and 2-9 bands along with an experimental counterpart. The resulting

  15. Assignment of bacteriochlorophyll a ligation state from absorption and resonance raman spectra

    SciTech Connect

    Callahan, P.M.; Cotton, T.M.

    1987-11-11

    Absorption and Soret excitation resonance Raman (RR) spectra have been obtained for a series of coordination forms on monomeric bacteriochlorophyll a (BChl a). Strong and moderate intensity bands are observed in the RR spectrum at 1609 and 1530 cm/sup -1/ for five-coordinate species, which shift to 1595 and 1512 cm/sup -1/, respectively, in the six-coordinate form. These coordination-sensitive vibrations are independent of the nature of the axial ligand and are suggested to have significant C/sub a/ C/sub m/ character, while several other less intense coordination-sensitive bands at 1463, 1444, and 1375 cm/sup -1/ are considered to arise from C/sub b/C/sub b/ and C/sub a/N stretching vibrations. These coordination-sensitive RR bands were used to determine BChl a ligation state in the solvents used, and structure correlations based on absorption maxima have been developed. The Q/sub x/ absorption band position is sensitive not only to BChl a Mg/sup 2 +/ coordination number but also to the nature of the axial ligand, i.e., oxygen, sulfur, or nitrogen. Q/sub x/ maxima are observed at 570, 575-580, and 582 nm for five-coordinate oxygen, sulfur, and nitrogen ligands, respectively, and at 590-595 and 605-612 nm, for six-coordinate oxygen and nitrogen species, respectively. The Q/sub y/ absorption maximum is insensitive to coordination number changes but is dependent on the nature of the axial ligand: 770 nm for oxygen ligand(s) and 775 nm for nitrogen ligand(s). A similar series of absorption and Soret excitation RR spectra were obtained for the demetalated form of BChl a, BPheo a.

  16. Calculation of Raman optical activity spectra for vibrational analysis.

    PubMed

    Mutter, Shaun T; Zielinski, François; Popelier, Paul L A; Blanch, Ewan W

    2015-05-01

    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules.

  17. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  18. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  19. Time variations of narrow absorption lines in high resolution quasar spectra

    NASA Astrophysics Data System (ADS)

    Boissé, P.; Bergeron, J.; Prochaska, J. X.; Péroux, C.; York, D. G.

    2015-09-01

    Aims: We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of five distant sources were assembled, for which two spectra are available, either VLT/UVES or Keck/HIRES, which were taken several years apart. Methods: We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behaviour of a broad variety of absorption line systems by sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lyα systems, as well as neutral gas within our own Galaxy. Results: Intervening absorption lines from Mg ii, Fe ii, or proxy species with lines of lower opacity tracing the same kind of (moderately ionised) gas appear in general to be remarkably stable (1σ upper limits as low as 10% for some components on scales in the range 10-100 au), even for systems at zabs ≈ ze. Marginal variations are observed for Mg ii lines towards PKS 1229-021 at zabs = 0.83032; however, we detect no systems that display any change as large as those reported in low resolution SDSS spectra. The lack of clear variations for low β Mg ii systems does not support the existence of a specific population of absorbers made of swept-up gas towards blazars. In neutral or diffuse molecular media, clear changes are seen for Galactic Na i lines towards PKS 1229-02 (decrease in N by a factor of four for one of the five components over 9.7 yr), corresponding to structure on a scale of about 35 au, in good agreement with known properties of the Galactic interstellar medium. Tentative variations are detected for H2J = 3 lines towards FBQS J2340-0053 at zabs = 2.05454 (≃35% change in column density, N, over 0.7 yr in the rest frame), suggesting

  20. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  1. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  2. Crystal-field analysis for RE 3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd 3+ ions doped into SrLaGa 3O 7 and BaLaGa 3O 7 crystals and Tm 3+ ions in SrGdGa 3O 7

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.

    2011-08-01

    Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3O 7:Nd 3+ (SLG:Nd), BaLaGa 3O 7:Nd 3+ (BLG:Nd), and SrGdGa 3O 7:Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq. Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and assignment of the energy levels involved in the potential laser transitions at about 1800 nm due to Tm 3+ ions in SGG crystals. The evaluated emission cross-section is about two times lower than that obtained previously.

  3. X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles.

    PubMed

    Pascal, Tod A; Wujcik, Kevin H; Velasco-Velez, Juan; Wu, Chenghao; Teran, Alexander A; Kapilashrami, Mukes; Cabana, Jordi; Guo, Jinghua; Salmeron, Miquel; Balsara, Nitash; Prendergast, David

    2014-05-01

    The X-ray absorption spectra (XAS) of lithium polysulfides (Li2Sx) of various chain lengths (x) dissolved in a model solvent are obtained from first-principles calculations. The spectra exhibit two main absorption features near the sulfur K-edge, which are unambiguously interpreted as a pre-edge near 2471 eV due to the terminal sulfur atoms at either end of the linear polysulfide dianions and a main-edge near 2473 eV due to the (x - 2) internal atoms in the chain, except in the case of Li2S2, which only has a low-energy feature. We find an almost linear dependence between the ratio of the peaks and chain length, although the linear dependence is modified by the delocalized, molecular nature of the core-excited states that can span up to six neighboring sulfur atoms. Thus, our results indicate that the ratio of the peak area, and not the peak intensities, should be used when attempting to differentiate the polysulfides from XAS.

  4. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects.

    PubMed

    Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo

    2016-06-14

    Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one-photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495

  5. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    SciTech Connect

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.; Zhu, R. B.; Wu, W. Z.; Li, A. H.; Yang, Y. Q.; Dai, Z. F.; Su, W. H.

    2008-03-28

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane because of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.

  6. Measurability of Kinetic Temperature from Metal Absorption-Line Spectra Formed in Chaotic Media

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Takahara, Fumio; Agafonova, Irina I.

    1999-06-01

    We present a new method for recovering the kinetic temperature of the intervening diffuse gas to an accuracy of 10%. The method is based on the comparison of unsaturated absorption-line profiles of two species with different atomic weights. The species are assumed to have the same temperature and bulk motion within the absorbing region. The computational technique involves the Fourier transform of the absorption profiles and the consequent entropy-regularized χ2-minimization (ERM) to estimate the model parameters. The procedure is tested using synthetic spectra of C+, Si+, and Fe+ ions. The comparison with the standard Voigt fitting analysis is performed, and it is shown that the Voigt deconvolution of the complex absorption-line profiles may result in estimated temperatures that are not physical. We also successfully analyze Keck telescope spectra of C II λ1334 and Si II λ1260 lines observed at the redshift z=3.572 toward the quasar Q1937-1009 by Tytler et al. Based in part on data obtained at the W. M. Keck Observatory, which is jointly operated by the University of California and the California Institute of Technology.

  7. Effects of Spectralon absorption on reflectance spectra of typical planetary surface analog materials.

    PubMed

    Zhang, Hao; Yang, Yazhou; Jin, Weidong; Liu, Chujian; Hsu, Weibiao

    2014-09-01

    Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target. PMID:25321507

  8. Effects of Spectralon absorption on reflectance spectra of typical planetary surface analog materials.

    PubMed

    Zhang, Hao; Yang, Yazhou; Jin, Weidong; Liu, Chujian; Hsu, Weibiao

    2014-09-01

    Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target.

  9. Bethe-Salpeter Equation Approach for Calculations of X-ray Spectra

    NASA Astrophysics Data System (ADS)

    Vinson, John

    X-ray spectroscopy is a powerful and widely used tool for the investigation of the electronic structure of a large variety of solid state materials, including crystals materials, liquids, amorphous solids, molecules, and extended states such as clusters or interfaces. The local nature of x-ray mediated electronic excitations, involving transitions to or from localized, atomic-like, core levels, makes them ideal probes of local electronic properties: bonding character, charge transfer, and local geometry. The interpretation of spectra relies on modeling the excitations accurately to provide a concrete connection between specific properties of a system and the resulting x-ray spectrum. As experimental techniques and facilities have improved, including third generation synchrotron sources and the advent of x-ray free electron lasers, measurements have been taken on wider ranges of systems, exploring the effects of temperature and pressure, and at higher resolutions than before, but theoretical techniques have lagged. Our goal is to develop a first-principles theoretical framework capable of achieving quantitative agreement with x-ray absorption near-edge structure (XANES) experiments. This thesis aims to develop the Bethe-Salpeter equation (BSE), a particle-hole Green's function method, for describing the excited electronic state produced in core-level x-ray absorption and related spectroscopies. Building upon density functional theory along with self-energy corrections, our approach provides connection to experiment with minimal adjustable parameters, to both aid in interpretation and highlight unaccounted for physical processes. While a fully parameter-free method for calculating x-ray spectroscopy remains elusive, our method presented here allows for quantitative comparison to experiment without system-dependent fits. This method has been implemented in the OCEAN software package, and results are presented for both insulating and metallic materials, including 3d

  10. Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra

    SciTech Connect

    Okotrub, A. V. Belavin, V. V.; Bulusheva, L. G.; Gusel'nikov, A. V.; Kudashov, A. G.; Vyalikh, D. V.; Molodtsov, S. L.

    2008-09-15

    The properties of materials containing carbon nanotubes depend on the degree of alignment and the internal structure of nanotubes. It is shown that the degree of misorientation of carbon nanotubes in samples can be evaluated from the measurements of the angular dependences of the carbon X-ray emission and carbon X-ray absorption spectra. The CK{sub {alpha}} emission and CK X-ray absorption spectra of the array of multiwalled carbon nanotubes synthesized by catalytic thermolysis of a mixture of fullerene and ferrocene are measured. A comparison of the calculated model dependences of the relative intensities of the {pi} and {sigma} bands in the spectra with the experimental results makes it possible to evaluate the degree of misorientation of nanotubes in the sample and their internal texture.

  11. Toward panchromatic organic functional molecules: density functional theory study on the electronic absorption spectra of substituted tetraanthracenylporphyrins.

    PubMed

    Qi, Dongdong; Jiang, Jianzhuang

    2011-12-01

    To achieve full solar spectrum absorption of organic dyes for organic solar cells and organic solar antenna collectors, a series of tetraanthracenylporphyrin derivatives including H(2)(TAnP), H(2)(α-F(4)TAnP), H(2)(β,β'-F(8)TAnP), H(2)(γ,γ'-F(8)TAnP), H(2)(δ,δ'-F(8)TAnP), H(2)[α-(NH(2))(4)TAnP], H(2)[β,β'-(NH(2))(8)TAnP], H(2)[γ,γ'-(NH(2))(8)TAnP], and H(2)[δ,δ'-(NH(2))(8)TAnP] was designed and their electronic absorption spectra were systematically studied on the basis of TDDFT calculations. The nature of the broad and intense electronic absorptions of H(2)(TAnP) in the range of 500-1700 nm is clearly revealed, and different types of π → π* electronic transitions associated with different absorption bands are revealed to correspond to different electron density moving direction between peripherally fused 14-electron-π-conjugated anthracene units and the central 18-electron-π-conjugated porphyrin core. Introduction of electron-donating groups onto the periphery of the H(2)(TAnP) macrocycle is revealed to be able to lead to novel NIR dyes such as H(2)[α-(NH(2))(4)TAnP] and H(2)[δ,δ'-(NH(2))(8)TAnP] with regulated UV-vis-NIR absorption bands covering the full solar spectrum in the range of 300-2400 nm.

  12. Interpretation of the resonance Raman spectra of linear tetrapyrroles based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Kneip, Christa; Hildebrandt, Peter; Németh, Károly; Mark, Franz; Schaffner, Kurt

    1999-10-01

    Raman spectra of linear methine-bridged tetrapyrroles in different conformational and protonation states were calculated on the basis of scaled force fields obtained by density functional theory. Results are reported for protonated phycocyanobilin in the extended ZZZasa configuration, as it is found in C-phycocyanin of cyanobacteria. The calculated spectra are in good agreement with experimental spectra of the protein-bound chromophore in the α-subunit of C-phycocyanin and allow a plausible and consistent assignment of most of the observed resonance Raman bands in the region between 1000 and 1700 cm -1.

  13. Absorption features in the 5-8 micron spectra of protostars

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Bregman, J.; Goebel, J.; Witteborn, F. C.; Dhendecourt, L. B.

    1984-01-01

    High signal-to-noise ratio spectra in the range of 5-8 microns of four sources embedded in molecular clouds are examined using low-temperature laboratory measurements of the 5-8-micron spectra of simple molecules and their mixtures. The absorption, apparent in all four sources, is characterized by highly distinct features ranging from two relatively narrow bands at 6.0 and 6.8 microns in W33A to a broad, shallow, and partially structured feature extending from 5.2 to 7.8 microns in Mon R2-IRS2, BN, and NGC2264. The first feature (W33A) is explained by the OH bending mode in H2O and the CH deformation modes in saturated hydrocarbons; while the second feature (Mon R2-IRS2-type) is explained by the presence of a mixture of saturated and unsaturated hydrocarbons possibly containing strongly electronegative groups.

  14. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  15. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  16. Solvent effects on the S0 →S2 absorption spectra of β-carotene

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Long; Wang, De-Min; Zheng, Zhi-Ren; Li, Ai-Hua; Su, Wen-Hui

    2010-01-01

    Absorption spectra of β-carotene in 31 solvents are measured in ambient conditions. Solvent effects on the 0-0 band energy, the bandwidth, and the transition moment of the S0 → S2 transition are analysed. The discrepancies between published results of the solvent effects on the 0-0 band energy are explained by taking into account microscopic solute-solvent interactions. The contributions of polarity and polarizability of solvents to 0-0 band energy and bandwidth are quantitatively distinguished. The 0-0 transition energy of the S2 state at the gas phase is predicted to locate between 23000 and 23600 cm-1.

  17. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  18. On Different Absorption Components in the X-ray Spectra of the Intermediate Polar Systems

    NASA Astrophysics Data System (ADS)

    Balman, S.; Okcu, B.

    2014-07-01

    We present orbital phase-resolved spectroscopy of the Intermediate polars (IP) AO Psc, HT Cam, V1223 Sgr and XSS J0056+4548 using the XMM-Newton EPIC pn data. We detect increase of absorption by neutral hydrogen column density N_{H} during the phases corresponding to the orbital minima in a range ˜ (1.0-2.0)× 10^{22} cm^{-2}. AO Psc indicates spectral hardening in the soft plasma emission component. HT Cam, reveals an increase of N_{H} at the orbital minimum from 0.05× 10^{22} cm^{-2} to 0.13× 10^{22} cm^{-2}. These high N_{H} values are most likely a result of absorption by the bulge material at the accretion impact zone. We discuss implications of this interms of warmabsorbers in IPs and bulge temperatures. The four IPs reveal a second high absorption component that is constant over the orbital phase in a range (5.0-11.0)× 10^{22} cm^{-2}. We attribute this component to the accretion column/curtain. These results are in accordance with the orbital phase-resolved analysis presented in Pekon & Balman (2011) for EX Hya and (2012) for FO Aqr. We strongly suggest that absorption by the bulge at the accretion impact zone is a distinct component in the IP X-ray spectra.

  19. Analytic and numerical calculations of quantum synchrotron spectra from relativistic electron distributions

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.; Petrosian, V.

    1987-01-01

    Calculations are performed numerically and analytically of synchrotron spectra for thermal and power-law electron distributions using the single-particle synchrotron power spectrum derived from quantum electrodynamics. It is found that the photon energy at which quantum effects appear is proportional to temperature and independent of field strength for thermal spectra; quantum effects introduce an exponential roll-off away from the classical spectra. For power law spectra, the photon energy at which quantum effects appear is inversely proportional to the magnetic field strength; quantum effects produce a steeper power law than is found classically. The results are compared with spectra derived from the classical power spectrum with an energy cutoff ensuring conservation of energy. It is found that an energy cutoff is generally an inadequate approximation of quantum effects for low photon energies and for thermal spectra, but gives reasonable results for high-energy emission from power-law electron distributions.

  20. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  1. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  2. New calculations of the atmospheric cosmic radiation field--results for neutron spectra.

    PubMed

    Clem, J M; De Angelis, G; Goldhagen, P; Wilson, J W

    2004-01-01

    The propagation of primary cosmic rays through the Earth's atmosphere and the energy spectra of the resulting secondary particles have been calculated using the Monte Carlo transport code FLUKA with several novel auxiliary methods. Solar-modulated primary cosmic ray spectra were determined through an analysis of simultaneous proton and helium measurements made on spacecraft or high-altitude balloon flights. Primary protons and helium ions are generated within the rigidity range of 0.5 GV-20 TV, uniform in cos2theta. For a given location, primaries above the effective angle-dependent geomagnetic cut-off rigidity, and re-entrant albedo protons, are transported through the atmosphere. Helium ions are initially transported using a separate transport code called HEAVY to simulate fragmentation. HEAVY interfaces with FLUKA to provide interaction starting points for each nucleon originating from a helium nucleus. Calculated cosmic ray neutron spectra and consequent dosimetric quantities for locations with a wide range of altitude (atmospheric depth) and geomagnetic cut-off are presented and compared with measurements made on a high-altitude aeroplane. Helium ion propagation using HEAVY and inclusion of re-entrant albedo protons with the incident primary spectra significantly improved the agreement of the calculated cosmic ray neutron spectra with measured spectra. These cosmic ray propagation calculations provide the basis for a new atmospheric ionising radiation (AIR) model for air-crew dosimetry, calculation of effects on microelectronics, production of cosmogenic radionuclides and other uses. PMID:15353685

  3. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  4. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    NASA Astrophysics Data System (ADS)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  5. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    PubMed

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. PMID:24840486

  6. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging.

    PubMed

    Bestvater, F; Spiess, E; Stobrawa, G; Hacker, M; Feurer, T; Porwol, T; Berchner-Pfannschmidt, U; Wotzlaw, C; Acker, H

    2002-11-01

    Two-photon absorption and emission spectra for fluorophores relevant in cell imaging were measured using a 45 fs Ti:sapphire laser, a continuously tuneable optical parametric amplifier for the excitation range 580-1150 nm and an optical multichannel analyser. The measurements included DNA stains, fluorescent dyes coupled to antibodies as well as organelle trackers, e.g. Alexa and Bodipy dyes, Cy2, Cy3, DAPI, Hoechst 33342, propidium iodide, FITC and rhodamine. In accordance with the two-photon excitation theory, the majority of the investigated fluorochromes did not reveal significant discrepancies between the two-photon and the one-photon emission spectra. However, a blue-shift of the absorption maxima ranging from a few nanometres up to considerably differing courses of the spectrum was found for most fluorochromes. The potential of non-linear laser scanning fluorescence microscopy is demonstrated here by visualizing multiple intracellular structures in living cells. Combined with 3D reconstruction techniques, this approach gives a deeper insight into the spatial relationships of subcellular organelles. PMID:12423261

  7. Plasmonic resonance absorption spectra in mid-infrared in an array of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Nader Esfahani, Nima; Hendrickson, Joshua R.; Cleary, Justin W.; Walker, Dennis E.; Chen, Kuei-Hsien; Chen, Li-Chyong; Mou, Shin

    2013-12-01

    We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp <= λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-tunable photodetectors based on graphene's plasmonic excitations.

  8. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    NASA Astrophysics Data System (ADS)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  9. Absorption spectra of e-beam-excited Ne, Ar, and Kr, pure and in binary mixtures.

    PubMed

    Levchenko, A O; Ustinovskii, N N; Zvorykin, V D

    2010-10-21

    A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1 MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ∼285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(∗)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (∗) (λ∼325 nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (∗)(npπ (3)Π(g))←Rg(2) (∗)(msσ (3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.

  10. A wavelet analysis for the X-ray absorption spectra of molecules

    SciTech Connect

    Penfold, T. J.; Tavernelli, I.; Rothlisberger, U.; Milne, C. J.; Abela, R.; Reinhard, M.; Nahhas, A. El; Chergui, M.

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  11. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    SciTech Connect

    Ringholm, Magnus; Ruud, Kenneth; Bast, Radovan; Oggioni, Luca; Ekström, Ulf

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  12. The nonlinear spectra of transneptunian objects: Evidence for organic absorption bands

    NASA Astrophysics Data System (ADS)

    Fraser, W.; Brown, M.; Emery, J.

    2014-07-01

    The reflectance spectra of small (D≲250 km) transneptunian objects (TNOs) are generally quite simple. Water-ice absorption is the only feature firmly detected on the majority of TNOs (Brown et al. 2012). Tentative detections of other materials have been presented (e.g., Barucci et al. 2011), but generally speaking, the spectra of small TNOs are nearly linear in the optical (0.5 < λ < 0.9 μ m; Fornasier et al. 2009) and NIR ranges (1.0 < λ < 1.5 μ m) with water-ice absorption apparent at longer wavelengths (Barkume et al. 2008). Each region is well described by a spectral slope, with the optical slope being typically redder than in the NIR (Hainaut and Delsanti, 2002, 2012). Here we present new spectral photometry of two TNOs which do not fit this simple prescription. We will present photometry of TNOs taken from HST during cycles 17 and 18. Unlike most objects, two TNOs do not exhibit linear optical spectra. Rather, they exhibit upward curvatures shortward of λ ˜ 1 μ m, with colors becoming redder with increasing wavelength. Previously published spectra and photometry exhibit similar optical shapes on a number of TNOs, including Borasisi, Pholus, Chariklo, Asbolus, and 2003 AZ_{84} (Romon-Martin et al. 2002, Alvarez-Candal et al. 2008, Fornasier 2009, Hainaut and Delsanti 2012). An interesting candidate for the upward curvature is complex C- and N-bearing hydrocarbons. These organic materials exhibit a broad absorption centered in the UV which is caused by a valence-conduction energy gap (see Moroz et al. 1998). The specific shape of the feature depends on the molecular structure of the organic material, with longer hydrocarbons generally producing wider absorptions. The assertion that the optical spectra of small TNOs are influenced by this hydrocarbon feature is reasonable as the feature is the general result of irradiation of simple organic H-, C-, and N-bearing materials, not dissimilar to that expected to occur on young TNOs (Brunetto et al. 2006

  13. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.

    PubMed

    Buck, D R; Savikhin, S; Struve, W S

    1997-01-01

    We describe simulations of absorption difference spectra in strongly coupled photosynthetic antennas. In the presence of large resonance couplings, distinctive features arise from excited-state absorption transitions between one- and two-exciton levels. We first outline the theory for the heterodimer and for the general N-pigment system, and we demonstrate the transition between the strong and weak coupling regimes. The theory is applied to Fenna-Matthews-Olson (FMO) bacteriochlorophyll a protein trimers from the green photosynthetic bacterium Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from the green bacterium Chlorobium tepidum.

  14. Absorption, fluorescence, and Raman spectra of mass-selected rhenium dimers in argon matrices

    NASA Astrophysics Data System (ADS)

    Hu, Zhendong; Dong, Jian-Guo; Lombardi, John R.; Lindsay, D. M.; Harbich, W.

    1994-07-01

    We report absorption, laser fluorescence, and Raman spectra for Re2 in an argon matrix prepared by the mass-selected ion deposition technique. The dirhenium absorption spectrum consists of seven band systems (A-G) extending from the near infrared into the ultraviolet region. For the A system (a simple vibrational progression), we find T0=10 817(1) cm-1, ωe=317.1(5) cm-1 and ωexe=1.0(1) cm-1. A Franck-Condon analysis of the A system intensities predicts that this state has a smaller equilibrium internuclear distance than the ground state (Δre=-0.073 Å), in violation of Badger's rule. The B system starts at 13 250 cm-1 and consists of four overlapping (and possibly perturbed) subsystems, whose average vibrational spacing is 270(11) cm-1. The C, D, E, and F systems (vibrational spacings in parentheses) are centered at 22 300 cm-1 (210 cm-1), 24 500 cm-1 (195 cm-1), 29 150 cm-1 (175 cm-1), and 32 900 cm-1 (160 cm-1), respectively. Weak fluorescence spectra, obtained upon laser excitation into the A system, were characterized by vibrational progressions to the dimer ground (X) state and to a low lying (X') state for which T0=357.6(5) cm-1 and ωe=332.3(2) cm-1. Raman and fluorescence progressions to the ground state were observed when the B system was excited. These data give ωe=337.9(49) cm-1 for the dimer ground state in good agreement with measurements from photodetachment spectra [J. Am. Chem. Soc. 108, 178 (1986)]. We propose likely assignments for the low lying electronic states of Re2 and discuss our results in terms of the bonding in the other group VIIB dimers, Mn2 and Tc2.

  15. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  16. Stratospheric N(2)O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1).

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, D G; Smith, M A; Seals, R K; Larsen, J C; Rinsland, P L

    1982-12-01

    A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km. PMID:20401069

  17. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-12-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  18. New Decay Data Sub-library for Calculation of Nuclear Reactors Antineutrino Spectra

    NASA Astrophysics Data System (ADS)

    Sonzogni, Alejandro; McCutchan, Elizabeth; Johnson, Timothy

    2015-10-01

    The ENDF/B-VII.1 decay data sub-library contains up-to-date decay properties for all known nuclides and can be used in a wide variety of applications such as decay heat, delayed nu-bar and astrophysics. We have recently completed an upgrade to the ENDF/B-VII.1 decay data sub-library in order to better calculate antineutrino spectra from fission of actinide nuclides. This sub-library has been used to identify the main contributors to the antineutrino spectra as well as to derive a systematic behavior of the energy integrated spectra similar to that of the beta-delayed neutron multiplicities. The main improvements have been the use of the TAGS data from Algora et al and Greenwood et al, as well as some of the single beta spectrum data from Rudstam et al to obtain beta minus level feedings. Additionally, we have calculated the antineutrino spectra for neutron energies higher than thermal, needed for highly-enriched uranium cores, such as the HFIR in ORNL that will be used in the PROSPECT experiment. These calculations are relevant since the high precision beta spectra which are used in many antineutrino calculations were measured at thermal energies. The impact of the fission yield data on these calculations will be discussed. This work was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  19. Phase speed spectra of transient eddy fluxes and critical layer absorption

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Held, Isaac M.

    1991-01-01

    Tropospheric zonal mean eddy fluxes of heat and momentum, and the divergence of the Eliassen-Palm flux, are decomposed into contributions from different zonal phase speeds. Data analyzed are the European Center for Medium Range Weather Forecasts operational global analyses covering 1980-1987. Eastward moving medium-scale waves (zonal waves 4-7) dominate the spectra of lower tropospheric heat fluxes in both hemispheres and all seasons. Upper tropospheric wave flux spectra are similar to the low level spectra in midlatitudes, but shift to slower zonal phase speeds as low latitudes are approached. The cause of this shift is the selective absorption of faster moving components in midlatitudes as the waves propagate meridionally. Latitude-phase speed distributions of eddy fluxes are constructed and compared to the zonal mean wind structure. These results demonstrate that upper tropospheric eddies break and decelerate the zonal mean flow approximately 10-20 deg in latitude away from their critical line (where phase speed equals zonal wind speed). Comparisons are also made with results from the middle stratosphere.

  20. Shape of the absorption and fluorescence spectra of condensed phases and transition energies.

    PubMed

    Lagos, Miguel; Paredes, Rodrigo

    2014-11-13

    General integral expressions for the temperature-dependent profile of the spectral lines of photon absorption and emission by atomic or molecular species in a condensed environment are derived with no other hypothesis than: (a) The acoustic vibrational modes of the condensed host medium constitute the thermodynamic energy reservoir at a given constant temperature, and local electronic transitions modifying the equilibrium configuration of the surroundings are multiphonon events, regardless of the magnitude of the transition energy. (b) Electron-phonon coupling is linear in the variations of the bond length. The purpose is to develop a theoretical tool for the analysis of the spectra, allowing us to grasp highly accurate information from fitting the theoretical line shape function to experiment, including those spectra displaying wide features. The method is illustrated by applying it to two dyes, Lucifer Yellow CH and Coumarin 1, which display fluorescence maxima of 0.41 and 0.51 eV fwhm. Fitting the theoretical curves to the spectra indicates that the neat excitation energies are 2.58 eV ± 2.5% and 3.00 eV ± 2.0%, respectively.

  1. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    SciTech Connect

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-04-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at approx.295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport.

  2. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a

    NASA Astrophysics Data System (ADS)

    Le Bris, Karine; Graham, Laura

    2015-01-01

    The integrated absorption cross-sections of HFC-143a (CH3CF3) differ substantially in the literature. This leads to an important uncertainty on the value of the radiative efficiency of this molecule. The ambiguity on the absorption cross-sections of HFC-143a is highlighted by the existence of two significantly different datasets in the HITRAN database. To solve the issue, we performed high-resolution Fourier transform infrared laboratory measurements of HFC-13a and compared the spectra with the two HITRAN datasets and with the data from the Pacific Northwest National Laboratory (PNNL). The experimental methods and data analysis techniques are examined and typical sources of errors are discussed. The integrated intensities of the main bands are compared to other literature values. It was found that the integrated absorption cross-section values in the highest range - around 13.8 ×10-17 cm .molecule-1 in the 570-1500 cm-1 spectral band - show the most consistency between authors.

  3. Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra

    SciTech Connect

    Koszykowski, M.L.; Farrow, R.L.; Palmer, R.E.

    1985-10-01

    High-resolution coherent anti-Stokes Raman spectroscopy spectra of the N/sub 2/ Q branch at 294 K have been obtained at 1, 5, and 10 atm. Even at 1-atm pressure, disagreements with spectra calculated using the isolated line approximation were observed, indicating the importance of collisional narrowing effects in describing these spectra. A method of using the full G-matrix approach for the calculation of these spectra that is both exact and computationally efficient (requiring only one matrix diagonalization and inversion per spectrum) is discussed. Excellent agreement with experimental data is obtained using this method and a simple exponential gap model for the off-diagonal G-matrix elements.

  4. Numerical calculations of wall pressure spectra for equilibrium turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Momii, K.; Jinno, K.; Ueda, T.; Koike, T.

    1983-08-01

    The streamwise wavenumber spectra of wall pressure fluctuations are numerically calculated by using the profiles of mean velocity gradient, vertical turbulent intensity, and vertical velocity correlation which have already been obtained by various investigators. The formulations of convective velocities obtained by Panton and Linebarger (1974) are employed in the transformations of wavenumber spectra into frequency spectra. The transformed frequency spectra show good agreement with the experimental results by Willmarth and Wooldridge (1962) for a zero pressure gradient and by Bradshaw (1967) for an adverse pressure gradient. It is found that the streamwise anisotropy of velocity correlation in turbulent boundary layer increases the level of the spectra in low wavenumbers. Moreover, the effect of downstream pressure gradient is found to be equivalent to that of the anisotropy of the turbulence.

  5. Laboratory studies at high resolution of the infrared absorption spectra of a number of gases found in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hunt, R. H.

    1983-01-01

    The infrared absorption spectra of a number of gases found in planetary atmospheres were studied at high resolution. Absorption line measurements which can be of value for the interpretation of planetary spectra in terms of molecular abundances and conditions in the planetary atmospheres were provided. The high resolution spectra have yielded measurements of individual vibration rotation line parameters including positions, strengths, pressure broadened widths and, where assignments were unknown, the temperature sensitivity of the strengths. Such information allows the determinations of the absorption of a given molecular gas under planetary conditions of temperature and pressure and at the same time it provides the data necessary if the spectra are to be understood in terms of basic molecular theory. Thus this work has included spectral analysis in the form of line assignments as well as fitting of the data to Hamiltonian models. Such fitting is very useful in that it helps to confirm and extend the assignments.

  6. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2015-11-01

    A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.

  7. Comparison of HITRAN Calculated Spectra with Laboratory Measurements of the 820, 940, 1130, and 1370 nm Water Vapor Bands

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Pilewskie, P.; Gore, Warren J.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    Several groups have recently been working to improve the near-infrared spectrum of water vapor on HITRAN. The unit-conversion errors found by Giver, et al have now been corrected on the recently released HITRAN-2000. The most important aspect of this article for atmospheric absorption was increasing all the HITRAN-1996 intensities of the 940 nm band by nearly 15%. New intensity measurements of this band by Brown, et al (submitted to J. Mol. Spec.) have now been included in the latest HITRAN. However, Belmiloud, et al discuss new data in the 633-1175 nm region which they expect will substantially increase the calculated absorption of solar radiation by water vapor. They suggest the 4 bands at 725, 820, 940, and 1130 nm are all stronger than the sum of the line intensities currently on HITRAN. For the 725 and 820 nm bands, their recommended intensity increases are 10% and 15%, about the same as previously noted by Grossmann and Browell and Ponsardin and Browell. Belmiloud, et al only suggest a 6% increase for the 940 nm. band over the corrected HITRAN-1996 intensities, but a large 38% increase for the 1130 nm band. The new data discussed by Belmiloud, et al have now been published in greater detail by Schermaul, et al. The intensity increase for the 1130 nm band discussed by Belmiloud, et al is very substantial; it is important to quickly determine if the HITRAN intensity values are in error by as much as they claim. Only intensity errors for the strong lines could result in the total band intensity being in error by such a large amount. To quickly get a number of spectra of the entire near-infrared region from 650 to 1650 nm, we used the Solar Spectral Flux Radiometer with our 25-meter base path White absorption cell. This moderate resolution spectrometer is a flight instrument that has flown on the Sandia Twin Otter for the ARESE 11 experiment. The measured band profiles were then compared to calculated spectra using the latest HITRAN line intensities, convolved

  8. Site-selective excitation and polarized absorption and emission spectra of trivalent thulium and erbium in strontium fluorapatite

    NASA Astrophysics Data System (ADS)

    Gruber, John B.; Wright, Andrew O.; Seltzer, Michael D.; Zandi, Bahram; Merkle, Larry D.; Hutchinson, J. Andrew; Morrison, Clyde A.; Allik, Toomas H.; Chai, Bruce H. T.

    1997-05-01

    Polarized fluorescence spectra produced by site-selective excitation, and conventional polarized absorption spectra were obtained for Tm3+ and Er3+ ions individually incorporated into single crystals of strontium fluorapatite, Sr5(PO4)3F, also known as SFAP. Substitution of the trivalent rare earth ion for divalent strontium was achieved by passive charge compensation during Czochralski growth of the fluorapatite crystals. Spectra were obtained between 1780 and 345 nm at temperatures from 4 K to room temperature on crystals having the hexagonal structure [P63/m(C6h2)]. The polarized fluorescence spectra due to transitions from multiplet manifolds of Tm3+(4f12), including 1D2, 1G4, and 3H4 to manifolds 3H6 (the ground-state manifold), 3F4, 3H5, 3H4, and 3F3 were analyzed for the details of the crystal-field splitting of the manifolds. Fluorescence lifetimes were measured for Tm3+ transitions from 1D2, 1G4, and 3H4 at room temperature and from 1G4 at 16 K. Results of the analysis indicate that the majority of Tm3+ ions occupy sites having Cs symmetry. A point-charge lattice-sum calculation was made in which the crystal-field components, Anm, were determined assuming that trivalent thulium replaces divalent strontium in the metal site having Cs symmetry. Results support the conclusion that the nearest-neighbor fluoride (F-) is replaced by divalent oxygen (O2-), thus preserving overall charge neutrality and local symmetry. Crystal-field splitting calculations predict energy levels in agreement with results obtained from an analysis of the experimental data. By varying the crystal-field parameters, Bnm, we obtained a rms difference of 7 cm-1 between 43 calculated and experimental Stark levels for Tm3+(4f12) in Tm:SFAP. Absorption and fluorescence spectra are also reported for Er3+ ions in Er:SFAP. Measurement of the temporal decay of the room temperature fluorescence from the 4I11/2 and 4I13/2 manifolds yielded fluorescence lifetimes of 230±20 μs and 8.9±0.1 ms

  9. Calculating absorption shifts for retinal proteins: computational challenges.

    PubMed

    Wanko, M; Hoffmann, M; Strodel, P; Koslowski, A; Thiel, W; Neese, F; Frauenheim, T; Elstner, M

    2005-03-01

    Rhodopsins can modulate the optical properties of their chromophores over a wide range of wavelengths. The mechanism for this spectral tuning is based on the response of the retinal chromophore to external stress and the interaction with the charged, polar, and polarizable amino acids of the protein environment and is connected to its large change in dipole moment upon excitation, its large electronic polarizability, and its structural flexibility. In this work, we investigate the accuracy of computational approaches for modeling changes in absorption energies with respect to changes in geometry and applied external electric fields. We illustrate the high sensitivity of absorption energies on the ground-state structure of retinal, which varies significantly with the computational method used for geometry optimization. The response to external fields, in particular to point charges which model the protein environment in combined quantum mechanical/molecular mechanical (QM/MM) applications, is a crucial feature, which is not properly represented by previously used methods, such as time-dependent density functional theory (TDDFT), complete active space self-consistent field (CASSCF), and Hartree-Fock (HF) or semiempirical configuration interaction singles (CIS). This is discussed in detail for bacteriorhodopsin (bR), a protein which blue-shifts retinal gas-phase excitation energy by about 0.5 eV. As a result of this study, we propose a procedure which combines structure optimization or molecular dynamics simulation using DFT methods with a semiempirical or ab initio multireference configuration interaction treatment of the excitation energies. Using a conventional QM/MM point charge representation of the protein environment, we obtain an absorption energy for bR of 2.34 eV. This result is already close to the experimental value of 2.18 eV, even without considering the effects of protein polarization, differential dispersion, and conformational sampling.

  10. SOURCES: a code for calculating (alpha,n), spontaneous fission, and delayed neutron sources and spectra.

    PubMed

    Wilson, W B; Perry, R T; Charlton, W S; Parish, T A; Shores, E F

    2005-01-01

    SOURCES is a computer code that determines neutron production rates and spectra from (alpha,n) reactions, spontaneous fission and delayed neutron emission owing to the decay of radionuclides in homogeneous media, interface problems and three-region interface problems. The code is also capable of calculating the neutron production rates due to (alpha,n) reactions induced by a monoenergetic beam of alpha particles incident on a slab of target material. The (alpha,n) spectra are calculated using an assumed isotropic angular distribution in the centre-of-mass system with a library of 107 nuclide decay alpha-particle spectra, 24 sets of measured and/or evaluated (alpha,n) cross sections and product nuclide level branching fractions, and functional alpha particle stopping cross sections for Z < 106. Spontaneous fission sources and spectra are calculated with evaluated half-life, spontaneous fission branching and Watt spectrum parameters for 44 actinides. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron sources. It also provides an analysis of the contributions to that source by each nuclide in the problem. PMID:16381695

  11. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  12. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  13. Constraints on Reionization and Source Properties from the Absorption Spectra of z > 6.2 Quasars

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Haiman, Zoltán

    2007-05-01

    We make use of hydrodynamical simulations of the intergalactic medium (IGM) to create model quasar absorption spectra. We compare these model spectra with the observed Keck spectra of three z>6.2 quasars with full Gunn-Peterson troughs: SDSS J1148+5251 (z=6.42), SDSS J1030+0524 (z=6.28), and SDSS J1623+3112 (z=6.22). We fit the probability density distributions (PDFs) of the observed Lyα optical depths (τα) with those generated from the simulation by exploring a range of values for the size of the quasar's surrounding H II region, RS; the volume-weighted mean neutral hydrogen fraction in the ambient IGM, x¯HI; and the quasar's ionizing photon emissivity, N˙Q. In order to avoid averaging over possibly large sight line-to-sight line fluctuations in IGM properties, we analyze each observed quasar independently. We find the following results for J1148+5251, J1030+0524, and J1623+3112: the best-fit sizes RS are 40, 41, and 29 (comoving) Mpc, respectively. For the later two quasars, the value is significantly larger than the radius corresponding to the wavelength at which the quasar's flux vanishes. These constraints are tight, with only ~10% uncertainties, comparable to those caused by redshift determination errors. The best-fit values of N˙Q are 2.1, 1.3, and 0.9×1057 s-1, respectively, with a factor of ~2 uncertainty in each case. Finally, the best-fit values of x¯HI are 0.16, 1.0, and 1.0, respectively. The uncertainty in the case of J1148+5251 is large, and x¯HI is not well constrained. However, for both J1030+0524 and J1623+3112, we find a significant lower limit of x¯HI>~0.033. Our method is different from previous analyses of the GP absorption spectra of these quasars, and our results strengthen the evidence that the rapid end stage of reionization is occurring near z~6.

  14. Absorption spectra of blue-light-emitting oligoquinolines from time-dependent density functional theory.

    PubMed

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2008-11-01

    Recently, it has been discovered that a series of four conjugated oligomers, oligoquinolines, exhibits many desirable properties of organic materials for developing high-performance light-emitting diodes: good blue color purity, high brightness, high efficiency, and high glass-transition temperatures. In this work, we investigate the optical absorption of oligoquinolines in the gas phase and chloroform (CHCl3) solution, respectively, using time-dependent density functional theory with the adiabatic approximation for the dynamical exchange-correlation potential. Our calculations show that the first peak of optical absorption corresponds to the lowest singlet excited state, whereas several quasi-degenerate excited states contribute to the experimentally observed higher-frequency peak. We find that, compared with the gas phase, there is a moderate red shift in excitation energy in solution due to the solute-solvent interaction simulated using the polarizable continuum model. Our results show that the lowest singlet excitation energies of oligoquinolines in chloroform solution calculated with the adiabatic hybrid functional PBE0 are in a good agreement with experiments. Our simulated optical absorption agrees well with the experimental data. Finally, analysis of the natural transition orbitals corresponding to the excited states in question underscores the underlying electronic delocalization properties. PMID:18844398

  15. Rototranslational absorption spectra of H/sub 2/-H/sub 2/ pairs in the far infrared

    SciTech Connect

    Meyer, W.; Frommhold, L.; Birnbaum, G.

    1989-03-01

    For the computation of the induced dipole moments, the collisional H/sub 2/-H/sub 2/ complex is treated as a molecule in the self-consistent field and size-consistent, coupled electron pair approximations. The basis set accounts for 95% of the correlation energies and separates correctly at distant range. The average of the induced dipole components is obtained for the case of both H/sub 2/ molecules in the vibrational groundstate (v = v' = 0) and recast in a simple but accurate analytical form. The analytical dipole expression is used for computations of the spectral moments (sum rules) and line shapes of the collision-induced rototranslational absorption spectra of molecular hydrogen in the far infrared, over a range of frequencies from 0 to 2200 cm/sup -1/, and for temperatures from 77 to 300 K, using a quantum formalism. Proven isotropic potential models are input. Numerical consistency of the line-shape calculations with the sum rules is observed at the 1% level. The comparison of the computational results with the available measurements shows agreement within the estimated uncertainties of the measurements of typically better than 10%. This fact suggests that the theory is capable of predicting these spectra reliably at temperatures for which no measurements exist.

  16. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory†

    PubMed Central

    Derricotte, Wallace D.; Evangelista, Francesco A.

    2015-01-01

    Orthogonality constrained density functional theory (OCDFT) is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree–Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine. PMID:25690350

  17. Electronic absorption spectra of linear and cyclic Cn+ n=7-9 in a neon matrix

    NASA Astrophysics Data System (ADS)

    Fulara, Jan; Shnitko, Ivan; Batalov, Anton; Maier, John P.

    2005-07-01

    The Cn+n=7-9 cations were produced by electron-impact ionization of perchloronaphthalene, mass selected, and their electronic absorption spectra in 6K neon matrices recorded. The linear and cyclic isomers of C7+ and C8+ are detected. Three systems of linear C7+ are observed with origin bands near 770, 332, and 309nm. The cyclic C7+ shows two transitions near 676 and 448nm. One system of linear C9+ is observed commencing at 371nm. Linear C8+ shows five dipole-allowed electronic transitions from the X˜Πg2 ground state, and the strongest ones have the origin bands at 890.8 and 308.1nm. Five electronic transitions of cyclic C8+ are also discernible.

  18. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  19. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    NASA Astrophysics Data System (ADS)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  20. Electronic absorption spectra of H₂C₆O⁺ isomers: produced by ion-molecule reactions.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Maier, John P

    2015-01-01

    Three absorption systems with origins at 354, 497, and 528 nm were detected after mass-selected deposition of H2C6O(+) in a 6 K neon matrix. The ions were formed by the reaction of C2O with HC4H(+) in a mixture of C3O2 and diacetylene in a hot cathode source, or by dissociative ionization of tetrabromocyclohexadienone. The 497 and 354 nm systems are assigned to the 1(2)A″ ← X(2)A″ and 2(2)A″ ← X(2)A″ electronic transitions of B(+), (2-ethynylcycloallyl)methanone cation, and the 528 nm absorption to the 1(2)A2 ← X(2)B1 transition of F(+), 2-ethynylbut-3-yn-1-enone-1-ylide, on the basis of calculated excitation energies with CASPT2. PMID:25495044

  1. Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of Organometallic Platinum(II) Terpyridine Complexes.

    PubMed

    Arena, Giuseppe; Calogero, Giuseppe; Campagna, Sebastiano; Monsù Scolaro, Luigi; Ricevuto, Vittorio; Romeo, Raffaello

    1998-06-01

    A series of new organometallic platinum(II) complexes containing terdentate polypyridine ligands has been prepared and characterized. Their absorption spectra in 4:1 (v/v) MeOH/EtOH fluid solution at room temperature and luminescence in the same matrix at 77 K have been investigated. The new species are [Pt(terpy)Ph]Cl (3, terpy = 2,2':6',2"-terpyridine, Ph = phenyl), [Pt(Ph-terpy)Cl]Cl (4, Ph-terpy = 4'-phenyl-2,2':6',2"-terpyridine), [Pt(Ph-terpy)Me]Cl (5), and [Pt(Ph-terpy)Ph]Cl (6). The results have been compared with those for [Pt(terpy)Cl]Cl (1) and [Pt(terpy)Me]Cl (2). NMR data evidence that all the complexes but 3 and 6 oligomerize in solution leading to stacked species. The absorption spectra are dominated by moderately intense metal-to-ligand charge-transfer (MLCT) bands in the visible region and by intense ligand-centered (LC) bands in the UV region. All the compounds are luminescent in a 4:1 (v/v) MeOH/EtOH rigid matrix at 77 K, exhibiting a structured emission within the range 460-600 nm. This feature is assigned to formally (3)LC excited states which receive substantial contribution from closely lying (3)MLCT levels. Complexes 1, 2, 4, and 5 also exhibit a relatively narrow and unstructured luminescence band within the range 680-800 nm, which dominates the luminescence spectrum on increasing concentration and exciting at longer wavelengths. The band is assigned to a dsigma(metal) --> pi(polypyridine) ((3)MMLCT) state, originating from metal-metal interactions occurring in head-to-tail dimers (or polymers). A third broad band is shown by 1 and 4 under all concentration conditions and by 2 and 5 only in concentrated solutions and is attributed to excimeric species originating from pi-pi interactions due to stacking between polypyridine ligands.

  2. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  3. The infrared, Raman, NMR and UV spectra, ab initio calculations and spectral assignments of 2-amino-4-chloro-6-methoxypyrimidine

    NASA Astrophysics Data System (ADS)

    Cinar, Z.; Karabacak, M.; Cinar, M.; Kurt, M.; Chinna babu, P.; Sundaraganesan, N.

    2013-12-01

    The 2-amino-4-chloro-6-methoxypyrimidine abbreviated as ACMP have been investigated by both the experimental and theoretical methods; through this work we provide the essential fact about the structural and vibrational insights. The optimized molecular structure, atomic charges, vibrational frequencies and ultraviolet spectral interpretation of ACMP have been studied by performing DFT/B3LYP/6-311++G(df,pd) level of theory. The FT-IR, FT-Raman spectra were recorded in the region 4000-400 cm-1 and 4000-50 cm-1 respectively. The UV absorption spectrum of the compound that dissolved in ethanol and water solution were recorded in the range of 200-400 nm. The scaled wavenumbers are compared with the experimental values. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Based on the UV spectrum and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. The 1H, 13C and DEPT 135 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using with the Gauge Including Atomic Orbital (GIAO) method and compared with experimental results. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations.

  4. Calculation of gain and luminescence spectra of quantum-cascade laser structures taking into account asymmetric emission line broadening

    SciTech Connect

    Ushakov, D V; Manak, I S; Kononenko, V K

    2010-05-26

    The energy levels, wave functions, and matrix elements of optical dipole transitions are calculated numerically for superlattice quantum-cascade structures. The effect of spectral broadening on the shape of emission spectra is estimated and semiphenomenological asymmetric profiles of emission line broadening are proposed. It is shown that the electroluminescence spectra well agree with the calculated spontaneous recombination spectra. (lasers)

  5. Study of the Effect of the Pulse Width of the Excitation Source on the Two-Photon Absorption and Two-Photon Circular Dichroism Spectra of Biaryl Derivatives.

    PubMed

    Vesga, Yuly; Hernandez, Florencio E

    2016-09-01

    Herein we report on the expanded theoretical calculations and the experimental measurements of the two-photon absorption (TPA) and two-photon circular dichroism (TPCD) spectra of a series of optically active biaryl derivatives (R-BINOL, R-VANOL, and R-VAPOL) using femtosecond pulses. The comparative analysis of the experimental TPCD spectra obtained with our tunable amplified femtosecond system with those previously measured in our group on the same series of compounds in the picosecond regime reveals a decrease in the amplitude of the signal and an improvement in matching with the theory in the former. These results can be explained based on the negligible contribution of excited state absorption (ESA) using femtosecond pulses compared to the picosecond regime. We show how ESA affects both the strength of the signal and the shape of the TPA and TPCD spectra. TPA and TPCD spectra were obtained using the double L-scan technique over a broad spectral range (450-750 nm) using 90 fs pulses at 50 Hz repetition rate produced by an amplified femtosecond system. The theoretical calculations were performed using modern analytical response theory within the time-dependent density functional theory (TD-DFT) approach using CAM-B3LYP and 6-311++G(d,p) basis sets. PMID:27525702

  6. Infrared Absorption Spectra of Jahn-Teller Systems: Application to the Transition-Metal Trifluorides MnF3 and NiF3.

    PubMed

    Mondal, Padmabati; Domcke, Wolfgang

    2014-05-14

    The theory for the calculation of vibronic absorption spectra within a Jahn-Teller (JT) active electronic state from first principles has been developed. The infrared absorption spectra of the (5)E' ground state, the low-lying (5)E″ excited state of MnF3, and the (4)E' state of NiF3 have been computed and analyzed. Dipole moment derivatives have been determined by a linear-plus-quadratic expansion of nuclear dipole moment functions in the JT-active coordinates. Electronic transition dipole moments have been taken into account in the Condon approximation in the diabatic representation. The initial and final vibronic states have been expanded in a product of diabatic electronic states and vibrational basis functions. The effect of spin-orbit coupling on the vibronic infrared spectra of these molecules in their JT-active electronic states has been investigated, by employing the Breit-Pauli spin-orbit operator. The effect of temperature on the vibronic infrared spectra has also been explored. These results represent the first theoretical study of vibronic infrared spectra of JT-active states in transition metal compounds.

  7. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    PubMed

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  8. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    NASA Astrophysics Data System (ADS)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  9. Change in the absorption spectra of blood exposed to a low-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Mit'kovskaya, N. P.; Galai, O. A.; Kuchinskii, A. V.; Laskina, O. V.

    2007-03-01

    We have used the absorption spectra of whole blood in the UV-visible and IR regions of the spectrum to study changes in the structure of the molecular components of blood when exposed to a low-frequency pulsed magnetic field used to treat ischemic heart disease. We show that pronounced changes in the spectra when the blood is directly exposed in vivo to a magnetic field may be due to breaking of the bond between the heme group and the protein of the hemoglobin, as a consequence of changes in the intermolecular interactions in the polypeptide chains of the hemoglobin and also the spin states of the paramagnetic heme components. Exposure to a magnetic field results in changes in the conformations of the polypeptide chains of hemoglobin and the rate of dissociation of oxyhemoglobin. The structural changes in the hemoglobin molecule are considered as one of the possible primary mechanisms of action on blood in vivo for a low-frequency pulsed magnetic field.

  10. Linewidth Extraction From the THz Absorption Spectra Using a Modified Lorentz Model

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Zhang, Han; Lan, Jinhui

    2013-10-01

    Identification of specific materials is one of the most promising THz applications. It is commonly achieved by comparing the experimental peak central frequencies of the transmission or absorption spectra with a database for known materials while neglecting the linewidths. However, due to the restriction of the signal-to-noise ratio, only a narrow band, extending from several hundred GHz to several THz, can be used. It is difficult to distinguish two materials from each other if their peaks' central frequencies are similar. In this paper, we present a modified Lorentz model by taking the scattering effect into account. The modified Lorentz model can be used for the extraction of reliable absorption peak parameters, i.e. the central frequency and linewidth. On comparison with our experiments, we observed that the parameters extracted using the modified Lorentz model in glutamine samples of different concentrations exhibited a better agreement than those obtained using the traditional model. Therefore, the utilization of the narrow THz band to identify materials can be improved by comparing both the central frequency and linewidth obtained from this method.

  11. Spectra and structure of small ring compounds. LXVII vibrational spectra, variable temperature FT-IR spectra of krypton solutions, conformational stability and ab initio calculations of 1-bromosilacyclobutane.

    PubMed

    Gounev, T K; Guirgis, G A; Zhen, P; Durig, J R

    2000-11-15

    The infrared (3,200-30 cm(-1) spectra of gaseous and solid 1-bromosilacyclobutane, c-C3H6SiBrH, have been recorded. Additionally, the Raman spectra of the liquid (3,200- 30 cm(-1) with quantitative depolarization values and the solid have been recorded. Both the equatorial and the axial conformers have been identified in the fluid phases, Variable temperature ( - 105 to - 150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 182 +/- 18 cm(-1) (2.18 +/- 0.22 kJ/mol) with the equatorial conformer the more stable rotamer and only conformer remaining in the annealing solid. At ambient temperature there is approximately 22% of the axial conformer present in the vapor phase. A complete vibrational assignment is proposed for both conformers based on infrared contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretch, the Si-H bond distance of 1.483 A has been determined for both the equatorial and the axial conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d) and 6-311 +/- G(d,p) basis sets at levels of Hartree Fock (RHF) and/or Moller- Plesset with full electron correlation by the perturbation method to the second order (MP2). The results are discussed and compared to those obtained for some similar molecules.

  12. Absorption spectra of isomeric OH adducts of 1,3,7-trimethylxanthine

    SciTech Connect

    Vinchurkar, M.S.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.; Schmidt, K.H.; Jonah, C.D.

    1997-04-17

    The reactions of OH{sup .}, O{sup .-}, and SO{sub 4}{sup .-} with 1,3,7-trimethylxanthine (caffeine) were studied by pulse radiolysis with optical and conductance detection techniques. The absorption spectra of transients formed in OH{sup .} reaction in neutral solutions exhibited peaks at 310 and 335 nm, as well as a broad absorption maximum at 500 nm, which decayed by first-order kinetics. The rate (k = (4.0 {+-} 0.5) x 10{sup 4} s{sup -1}) of this decay is independent of pH in the range 4-9 and is in agreement with that determined from the conductance detection (k = 4 x 10{sup 4} s{sup -1}). The spectrum in acidic solutions has only a broad peak around 330 nm with no absorption in the higher wavelength region. The intermediates formed in reaction of O{sup .-} absorb around 310 and at 350 nm, and the first-order decay at the latter wavelength was not seen. The OH radical adds to C-4 (X-40H{sup .}) and C-8 (X-80H{sup .}) positions of caffeine in the ratio 1:2 as determined from the redox titration and conductivity measurements. H abstraction from the methyl group is an additional reaction channel in O{sup .-} reaction. Dehydroxylation of the X-40H{sup .} adduct occurs, whereas the X-80H{sup .} adduct does not undergo ring opening. The spectrum obtained for OH{sup .} reaction in oxygenated solutions is similar to that observed in SO{sub 4}{sup .-} reaction in basic solutions. 25 refs., 5 figs., 1 tab.

  13. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  14. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  15. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  16. Ab initio calculation of x-ray absorption of iron up to 3 Mbar and 8000 K

    NASA Astrophysics Data System (ADS)

    Mazevet, S.; Recoules, V.; Bouchet, J.; Guyot, F.; Harmand, M.; Ravasio, A.; Benuzzi-Mounaix, A.

    2014-03-01

    Using ab initio simulations within the generalized gradient approximation, we calculate x-ray absorption near edge spectra (XANES) at the iron K edge throughout the high-pressure phase diagram and up to extreme density and temperature conditions that are representative of the Earth's inner core (up to 3 Mbar and 8000 K). We show that XANES spectra near the Fe K edge exhibit clear signatures for the different high-temperature, high-pressure phases of iron. This suggests that XANES spectroscopy might be used to resolve ongoing controversies regarding both the high-pressure melting curve of iron and the nature of the solid phases undergoing melting up to several Mbar. In contrast to diffraction measurements, it also offers a severe constraint for density functional theory predictions of the transport properties of iron by providing direct information on the electronic structure of iron at these extreme conditions.

  17. Nonadiabatic calculations of ultraviolet absorption cross section of sulfur monoxide: Isotopic effects on the photodissociation reaction

    SciTech Connect

    Danielache, Sebastian O.; Tomoya, Suzuki; Nanbu, Shinkoh; Kondorsky, Alexey; Tokue, Ikuo

    2014-01-28

    Ultraviolet absorption cross sections of the main and substituted sulfur monoxide (SO) isotopologues were calculated using R-Matrix expansion technique. Energies, transition dipole moments, and nonadiabatic coupling matrix elements were calculated at MRCI/AV6Z level. The calculated absorption cross section of {sup 32}S{sup 16}O was compared with experimental spectrum; the spectral feature and the absolute value of photoabsorption cross sections are in good agreement. Our calculation predicts a long lived photoexcited SO* species which causes large non-mass dependent isotopic effects depending on the excitation energy in the ultraviolet region.

  18. Time-independent eigenstate-free calculation of vibronic spectra beyond the harmonic approximation

    NASA Astrophysics Data System (ADS)

    Petrenko, Taras; Rauhut, Guntram

    2015-12-01

    The calculation of vibronic spectra and resonance Raman intensities can be performed on the basis of the Raman wavefunction (RWF) formalism. In general, the well-known sum-over-states (SOS) and time-dependent methods can be applied for calculating the RWF. We present an alternative route in which the RWF is determined pointwise in a spectral range on the basis of the inhomogeneous Schrödinger equation using an iterative subspace method, in which explicit state-by-state calculations of vibrational eigenstates are bypassed. We study this approach within the framework of vibrational configuration interaction theory in conjunction with high-level electronic structure calculations for the multidimensional Born-Oppenheimer potential energy surface. The method benefits from an implicit account of interference effects between vibrational states, so that its computational cost correlates with the required resolution in the spectra. The accuracy and efficiency of the method with respect to comparable SOS calculations are tested for the simulation of the photoelectron spectra of ClO2, HS2 - , ZnOH-, and Zn(H2O)+.

  19. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  20. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  1. Analytical approach to calculation of response spectra from seismological models of ground motion

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.

  2. Electronic structure of ReO3Me by variable photon energy photoelectron spectroscopy, absorption spectroscopy and density functional calculations.

    PubMed

    de Simone, Monica; Coreno, Marcello; Green, Jennifer C; McGrady, Sean; Pritchard, Helen

    2003-03-24

    Valence photoelectron (PE) spectra have been measured for ReO(3)Me using a synchrotron source for photon energies ranging between 20 and 110 eV. Derived branching ratios (BR) and relative partial photoionization cross sections (RPPICS) are interpreted in the context of a bonding model calculated using density functional theory (DFT). Agreement between calculated and observed ionization energies (IE) is excellent. The 5d character of the orbitals correlates with the 5p --> 5d resonances of the associated RPPICS; these resonances commence around 47 eV. Bands with 5d character also show a RPPICS maximum at 35 eV. The RPPICS associated with the totally symmetric 4a(1) orbital, which has s-like character, shows an additional shape resonance with an onset of 43 eV. The PE spectrum of the inner valence and core region measured with photon energies of 108 and 210 eV shows ionization associated with C 2s, O 2s, and Re 4f and 5p electrons. Absorption spectra measured in the region of the O1s edge showed structure assignable to excitation to the low lying empty "d" orbitals of this d(0) molecule. The separation of the absorption bands corresponded with the calculated orbital splitting and their intensity with the calculated O 2p character. Broad bands associated with Re 4d absorption were assigned to (2)D(5/2) and (2)D(3/2) hole states. Structure was observed associated with the C1s edge but instrumental factors prevented firm assignment. At the Re 5p edge, structure was observed on the (2)P(3/2) absorption band resulting from excitation to the empty "d" levels. The intensity ratios differed from that of the O 1s edge structure but were in good agreement with the calculated 5d character of these orbitals. An absorption was observed at 45 eV, which, in the light of the resonance in the 4a(1) RPPICS, is assigned to a 4a(1) --> ne, na(2) transition. The electronic structure established for ReO(3)Me differs substantially from that of TiCl(3)Me and accounts for the difference in

  3. Effect of Clouds on the Calculated Vertical Distribution of Shortwave Absorption in the Tropics

    SciTech Connect

    McFarlane, Sally A.; Mather, James H.; Ackerman, Thomas P.; Liu, Zheng

    2008-09-23

    High vertical resolution profiles of cloud properties were obtained from cloud radars operated by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus in the Tropical Western Pacific (TWP). Broadband flux calculations using a correlated k-distribution model were performed to estimate the effect of clouds on the total column and vertical distribution of shortwave absorption at these tropical sites. Sensitivity studies were performed to examine the role of precipitable water vapor, cloud vertical location, optical depth, and particle size on the SW column absorption. On average, observed clouds had little impact on the calculated total SW column absorption at the two sites, but a significant impact on the vertical distribution of SW absorption. Differences in the column amount, vertical profiles, and diurnal cycle of SW absorption at the two sites were due primarily to differences in cirrus cloud frequency.

  4. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1972-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra were calculated using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron-leakage spectrum at the particular latitude considered support the theory that the cosmic-ray-albedo-neutron-decay mechanism is the source of the protons and electrons trapped in the Van Allen belts.

  5. Calculated power absorption patterns for hyperthermia applicators consisting of electric dipole arrays.

    PubMed

    Tsai, C T; Durney, C H; Christensen, D A

    1984-03-01

    We have applied the plane-wave spectrum method to obtain a technique for calculating the internal fields in a lossy dielectric half-space irradiated by rather arbitrary sources. We used the technique to calculate power absorption profiles of some idealized aperture sources to gain insight into how the source parameters affect the power absorption profile. With this insight, we next calculated power absorption profiles of some linear electric dipole antenna arrays. From these results we developed a simpler method of optimizing the antenna parameters by calculating their field pattern in an infinite water medium, which does not require the PWS method and is therefore faster and cheaper. Using this technique, we found an antenna array with reasonably practical parameters that produces an appealing calculated power absorption profile. We also made some calculations based on a simple approximate model that indicate that a three-element dipole array on the front of a patient and a similar one on the back could produce deep central heating. Although our calculations are based on a somewhat crude dielectric half-space model of the body, the results provide valuable insight about power absorption profiles and indicate that practical systems for producing deep internal heating without overheating the surface of the body could be developed.

  6. The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment.

    PubMed

    Olovsson, W; Weinhardt, L; Fuchs, O; Tanaka, I; Puschnig, P; Umbach, E; Heske, C; Draxl, C

    2013-08-01

    We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.

  7. Microscopic optical model calculations of 4He, 12C-nucleus absorption cross sections

    NASA Technical Reports Server (NTRS)

    Dubey, R. R.; Khandelwal, G. S.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    Calculations of absorption cross sections using a microscopic first-order optical potential for heavy-ion scattering are compared with experiments. In-medium nucleon-nucleon (NN) cross sections were used to calculate the two-body scattering amplitude. A medium-modified first-order optical potential was obtained for heavy-ion scattering using the in-medium two-body scattering amplitude. A partial wave expansion of the Lippmann-Schwinger equation in momentum space was used to calculate the absorption cross sections for various systems. The results are presented for the absorption cross sections for 4He-nucleus and 12C-nucleus scattering systems and are compared with the experimental values in the energy range 18-83A MeV. The use of the in-medium NN cross sections is found to result in significant reduction of the free space absorption cross sections in agreement with experiment.

  8. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    SciTech Connect

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  9. Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A.; Frauenheim, Thomas

    2013-11-01

    To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in

  10. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  11. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  12. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  13. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  14. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2002-12-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127-22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg II, Fe II, V II, etc observed in STIS/E230H spectra (see accompanying posters by Gull, Vieira, and Danks). The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-1 above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30x30 arcsec for FUSE, 0.2x0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic miniumum in 2003.

  15. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2003-01-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127- 22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg 11, Fe II, V II, etc observed in STIS/E230H spectra. The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-l above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30 x 30 arcsec for FUSE, 0.2 x 0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic minimum in 2003.

  16. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  17. Optical Absorption Spectra of Cr3+ and Cr4+ in Sr3Ga2Ge4O14 Garnet Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Deng, Peizhen; Zhang, Qiang; Gan, Fuxi

    1995-07-01

    Single crystals of Sr3Ga2Ge4O14:Cr are grown by the Czochralski method. The polarized optical absorption spectra of Cr in visible and near-infrared wavelength are presented and analyzed. It is suggested that Cr enters the octahedral and tetrahedral positions as Cr3+ and Cr4+ respectively.

  18. Accurate calculation of the x-ray absorption spectrum of water via the GW/Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Gilmore, Keith; Vinson, John; Kas, Josh; Vila, Fernando; Rehr, John

    2014-03-01

    We calculate x-ray absorption spectra (XAS) of water within the OCEAN code, which combines plane-wave, pseudopotential electronic structure, PAW transition elements, GW self-energy corrections, and the NIST BSE solver. Due to the computational demands of this approach, our initial XAS calculations were limited to 17 molecule super cells. This lead to unphysical, size dependent effects in the calculated spectra. To treat larger systems, we extended the OCEAN interface to support well-parallelized codes such as QuantumESPRESSO. We also implemented an efficient interpolation scheme of Shirley. We applied this large-scale GW/BSE approach to 64 molecule unit cell structures of water obtained from classical DFT/MD and PIMD simulations. In concurrence with previous work, we find the calculated spectrum both qualitatively and quantitatively reproduces the experimental features. The agreement implies that structures based on PIMD, which are similar to the traditional distorted tetrahedral view, are consistent with experimental observations. Supported by the DOE CMCSN through DOE award DE-SC0005180 (Princeton University) and in part by DOE Grant No. DE-FG03-97ER45623 (JJR) with computer support from NERSC.

  19. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  20. Spectra for the A = 6 reactions calculated from a three-body resonance model

    NASA Astrophysics Data System (ADS)

    Paris, Mark W.; Hale, Gerald M.

    2016-06-01

    We develop a resonance model of the transition matrix for three-body breakup reactions of the A = 6 system and present calculations for the nucleon observed spectra, which are important for inertial confinement fusion and Big Bang nucleosynthesis (BBN). The model is motivated by the Faddeev approach where the form of the T matrix is written as a sum of the distinct Jacobi coordinate systems corresponding to particle configurations (α, n-n) and (n; n-α) to describe the final state. The structure in the spectra comes from the resonances of the two-body subsystems of the three-body final state, namely the singlet (T = 1) nucleon-nucleon (NN) anti-bound resonance, and the Nα resonances designated the ground state (Jπ = {{{3^ - }} over 2}) and first excited state (Jπ = {{{1^ - }} over 2}) of the A = 5 systems 5He and 5Li. These resonances are described in terms of single-level, single-channel R-matrix parameters that are taken from analyses of NN and Nα scattering data. While the resonance parameters are approximately charge symmetric, external charge-dependent effects are included in the penetrabilities, shifts, and hard-sphere phases, and in the level energies to account for internal Coulomb differences. The shapes of the resonance contributions to the spectrum are fixed by other, two-body data and the only adjustable parameters in the model are the combinatorial amplitudes for the compound system. These are adjusted to reproduce the observed nucleon spectra from measurements at the Omega and NIF facilities. We perform a simultaneous, least-squares fit of the tt neutron spectra and the 3He3He proton spectra. Using these amplitudes we make a prediction of the α spectra for both reactions at low energies. Significant differences in the tt and 3He3He spectra are due to Coulomb effects.

  1. [Searching QSO candidates and calculating their redshfit from a flood of spectra].

    PubMed

    Song, Yi-Han; Luo, A-Li; Zhao, Yong-Heng

    2011-09-01

    In the present paper the author offers a method to search the QSO candidates and calculate their redshfit using their broad emission lines which are the most important character of quasars. It is hard to identify the lines in the quasar's spectra due to their redshifts distributing on a broad range. Spectra contain two components. One is continuum and the other is lines. The author uses a method of LFPS (low frequency points set) to build the continuum and detect the obvious emission lines, a method that can avoid the broad emission lines as a part of the continuum. The redshift can be calculated by comparing the extracted lines with the line table. The classification can be done with both emission lines and the redshift. For a better accurate rate to recognize the lines, this paper provides a method to estimate the level of the local noise. The method this paper used is independent of the flux calibration of the spectra. It can work for the spectra of the present LAMOST.

  2. Theoretical modeling and interpretation of X-ray absorption spectra of liquid water.

    PubMed

    Wang, R L C; Kreuzer, H J; Grunze, M

    2006-11-01

    We report extensive calculations to examine the capability of theory to explain the XAS spectra of liquid water. Several aspects that enter the theoretical model are addressed, such as the quantum mechanical methods, the statistics and the XAS model. As input into our quantum mechanical calculations we will use structural information on liquid water obtained from first principles and from classical molecular dynamics simulations. As XAS models, we will examine the full core hole and the half core hole approximations to transition state theory. The quantum mechanics is performed on the basis of density functional theory. We conclude from this study that recent experimental results are fully consistent with, and can be completely explained by, present day theory, in particular, the pre-edge peak is reproduced. We also find that the average bond coordination in liquid water is 3.1 and that the assertion in a recent paper that the hydrogen bond number is much less than that cannot be substantiated. Our calculations emphasize that further advances in our understanding of water can only be made by more sophisticated spectroscopy with significantly increased resolution.

  3. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star.

    PubMed

    Cottam, J; Paerels, F; Mendez, M

    2002-11-01

    The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO0748-676. We identify the most significant features with the Fe XXVI and XXV n = 2-3 and O VIII n = 1-2 transitions, all with a redshift of z = 0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M approximately 1.3-2.0 solar masses; refs 2-5), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter. PMID:12422210

  4. Temporal-frequency spectra for plane and spherical waves in a millimetric wave absorption band

    NASA Astrophysics Data System (ADS)

    Siqueira, Glaucio L.; Cole, Roy S.

    1991-02-01

    Complete analytical expressions for the temporal power spectral density functions in a millimetric wave absorption region for plane and spherical waves have been developed for both amplitude and phase fluctuations due to atmospheric turbulence. Asymptotic expressions for both high and low scintillation frequencies are derived. Theoretical expressions for the differential phase power spectrum (i.e., the phase difference between two frequencies) are also presented. Experimental results of amplitude and differential phase scintillations measured on a 4.1-km link across central London, are presented. Results show that the plane wave case gives the best agreement with theory for this particular link. It is also shown that neglecting the cross-spectral density term at the higher scintillation frequencies for the differential phase spectrum can lead to a large difference between the theoretical and experimental power spectra. In particular, for a small frequency separation and a large value of the outer scale of turbulence, the highest scintillation frequencies are too low to neglect the cross term.

  5. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution.

    PubMed

    Cheng, Yuan-Yuan; Liu, Ya-Jun

    2016-07-01

    Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state. PMID:27165852

  6. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    NASA Astrophysics Data System (ADS)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  7. Electronic absorption spectra of protonated pyrene and coronene in neon matrixes.

    PubMed

    Garkusha, Iryna; Fulara, Jan; Sarre, Peter J; Maier, John P

    2011-10-13

    Protonated pyrene and coronene have been isolated in 6 K neon matrixes. The cations were produced in the reaction of the parent aromatics with protonated ethanol in a hot-cathode discharge source, mass selected, and co-deposited with neon. Three electronic transitions of the most stable isomer of protonated pyrene and four of protonated coronene were recorded. The strongest, S(1) ← S(0) transitions, are in the visible region, with onset at 487.5 nm for protonated pyrene and 695.6 nm for protonated coronene. The corresponding neutrals were also observed. The absorptions were assigned on the basis of ab initio coupled-cluster and time-dependent density functional theory calculations. The astrophysical relevance of protonated polycyclic aromatic hydrocarbons is discussed.

  8. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.

    PubMed Central

    Buck, D R; Savikhin, S; Struve, W S

    1997-01-01

    We describe simulations of absorption difference spectra in strongly coupled photosynthetic antennas. In the presence of large resonance couplings, distinctive features arise from excited-state absorption transitions between one- and two-exciton levels. We first outline the theory for the heterodimer and for the general N-pigment system, and we demonstrate the transition between the strong and weak coupling regimes. The theory is applied to Fenna-Matthews-Olson (FMO) bacteriochlorophyll a protein trimers from the green photosynthetic bacterium Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from the green bacterium Chlorobium tepidum. Images FIGURE 1 FIGURE 7 FIGURE 8 FIGURE 12 PMID:8994590

  9. Detected CFCs: UV Absorption Spectra, Atmospheric Lifetimes, Global Warming and Ozone Depletion Potentials for CFC-112, CFC-112a, CFC-113a and CFC-114a

    NASA Astrophysics Data System (ADS)

    Bernard, F.; Davis, M. E.; McGillen, M.; Fleming, E. L.; Burkholder, J. B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting substances (ODSs) and potent greenhouse gases. Measurements have observed CFC-112 (CFCl2CFCl2), CFC-112a (CF2ClCCl3), and CFC-113a (CCl3CF3) in the atmosphere (Laube et al., 2014). The current atmospheric abundances of CFC-112 and CFC-112a are ~0.4 and ~0.06 ppt, respectively, with decreasing abundance since 1995. In contrast, CFC-113a was found to show continuous growth over the past 50 years with a current atmospheric abundance of ~0.5 ppt. The major atmospheric removal process for these compounds is expected to be UV photolysis in the stratosphere. To date there is, however, no UV absorption spectra for these compounds available in the literature. To better determine the atmospheric lifetimes and environmental impact of these CFCs, laboratory measurements of the UV absorption spectra of CFC-112, CFC-112a, CFC-113a, and CFC-114a (Cl2FCF3) between 195 and 235 nm and over the temperature range 207 to 323 K were performed. Spectrum parametrizations were developed for use in atmospheric models. Atmospheric lifetimes and ozone depletion potentials (ODPs) were calculated using the Goddard Space Flight Center 2-D atmospheric chemistry model. Infrared absorption spectra of these compounds were also measured and used to calculate their global warming potentials. The results of the laboratory measurements and model calculations will be presented. J. C. Laube et al., Newly detected ozone-depleting substances in the atmosphere, Nature Geoscience, 7, 266-269, 2014

  10. Infrared and Raman spectra, ab initio calculations and conformational studies of ethyl iodosilane

    NASA Astrophysics Data System (ADS)

    Aleksa, Valdemaras; Powell, David L.; Gruodis, Alytis; Hassler, Karl; Hummeltenberg, Reinhard; Herzog, Klaus; Salzer, Reiner; Klaeboe, Peter; Nielsen, Claus J.

    2003-01-01

    Ethyl iodosilane (CH 3CH 2-SiH 2I) was synthesized for the first time. Infrared spectra were recorded in the vapour, amorphous and crystalline solid phases in MIR and FIR regions. Additional MIR spectra of the compound isolated in argon and nitrogen matrices were obtained at 5 K. Raman spectra of the liquid, excited by argon and by Nd 3+ YAG lasers, were recorded at room temperature including polarization measurements. The spectra were studied in an extended temperature range 173-353 K and a Δ H value of 1.2±0.3 kJ mol -1 was obtained with gauche being the low energy conformer. Spectra of the amorphous and crystalline solids were obtained at liquid nitrogen temperature. Ethyl iodosilane exists in an equilibrium between anti and gauche conformers, in the vapour, liquid and amorphous states. After careful annealing the amorphous solid on a cold Cu finger (Raman) or on a CsI or Si window (infrared) to 160 K a partly crystalline solid was formed. A number of IR and Raman bands were reduced in intensity after annealing, although they did not vanish completely. From comparison between the observed and calculated vibrational modes it was apparent that the gauche conformer was present in the crystal. The sample was mixed with argon and nitrogen in a ratio 1:1000, deposited on a window at 5 or 10 K and annealed to temperatures between 5 and 36 K (argon) and 5-30 K (nitrogen). IR bands attributed to the anti and gauche conformers were reduced and increased in intensities, respectively. Thus, the gauche conformer was the low energy conformer in the matrices and probably also in the vapour phase. Ab initio calculations were performed at the RHF/3-21 G* and 6-311G* B3LYPs and gave optimized geometries, IR and Raman intensities and vibrational frequencies for the anti and gauche conformers. An enthalpy difference of 0.9 kJ mol -1 was obtained from the calculations with gauche being the low energy conformer. After scaling, a reasonably good agreement between the experimental

  11. A-dependence of the Spectra of the F Isotopes from ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2016-03-01

    Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  12. Radiative Trasnfer Calculation Of Light Curves And Spectra For Type Ia Sne Models

    NASA Astrophysics Data System (ADS)

    De, Soma; Baron, E.; Timmes, F.; Hauschildt, P.

    2011-01-01

    We present calculations of the light curves and spectra from a suite of Type Ia supernovae models, ranging from standard single degenerate scenarios to double degenerate collisions. We use a fully relativistic and time dependent radiative transfer code PHOENIX for our calculations which is time dependent in both radiative transfer and rate equation. Simple hydrodynamic calculation is used to treat conservation of energy of the gas and the radiation together and also allow different time-scales for gas and radiation. Between two time steps for the calculation of the light curve, the correct distribution of total energy change among gas and radiation is obtained by iteratively solving for the radiative transfer equation and hence the new temperature in the new time step. In our work we explore systematic relationships between the mass of 56ni mass produced, the mass of silicon group elements produced, the white dwarf metallicity, and the mass of unburned material

  13. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    PubMed Central

    El-Shishtawy, Reda M.; Elroby, Shaaban A.; Asiri, Abdullah M.; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV) of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  14. Accurate and efficient calculation of discrete correlation functions and power spectra

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Liu, J. M.; Zhu, W. D.

    2015-07-01

    Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate

  15. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  16. Optical spectra, energy levels, and emission intensity calculations of trivalent thulium ions in gadolinium scandium gallium garnet

    NASA Astrophysics Data System (ADS)

    Seltzer, Michael D.; Gruber, John B.; Rosenblatt, Gregg H.; Morrison, Clyde A.; Filer, Elizabeth D.

    1994-01-01

    Absorption spectra of trivalent thulium ions in gadolinium scandium gallium garnet are reported between 1.9 and 0.25 μm at 4 K. Laser-induced fluorescence was observed at 4 K from the 1D2, 1G4, and 3H4 (4 and 300 K) manifolds. Site-selective excitation experiments reveal large fractions of thulium ions in both regular D2 sites and alternate sites. A crystal-field splitting calculation was carried out in which a parameterized Hamiltonian (including Coulombic, spin-orbit, and crystal-field terms in D2 symmetry) was diagonalized for all multiplet manifolds of the Tm3+ (4f12) configuration. The rms deviation between 56 experimental and calculated Stark levels was 10 cm-1. Calculations were carried out to predict branching ratios for emission from the 3H4 manifold to the 3H5, 3F4, and 3H6 manifolds, as well as line-to-line transition probabilities for transitions between the 3H4 manifold and the 3H5 manifold.

  17. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  18. Predicting X-ray absorption spectra of semiconducting polymers for electronic structure and morphology characterization

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Patel, Shrayesh; Pemmaraju, C. Das; Kramer, Edward; Prendergast, David; Chabinyc, Michael

    2015-03-01

    Core-level X-ray absorption spectroscopy (XAS) reveals important information on the electronic structure of materials and plays a key role in morphology characterization. Semiconducting polymers are the active component in many organic electronics. Their electronic properties are critically linked to device performance, and a proper understanding of semiconducting polymer XAS is crucial. Techniques such as resonant X-ray scattering rely on core-level transitions to gain materials contrast and probe orientational order. However, it is difficult to identify these transitions based on experiments alone, and complementary simulations are required. We show that first-principles calculations can capture the essential features of experimental XAS of semiconducting polymers, and provide insight into which molecular model, such as oligomers or periodic boundary conditions, are best suited for XAS calculations. Simulated XAS can reveal contributions from individual atoms and be used to visualize molecular orbitals. This allows for improved characterization of molecular orientation and scattering analysis. These predictions lay the groundwork for understanding how chemical makeup is linked to electronic structure, and to properly utilize experiments to characterize semiconducting polymers.

  19. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  20. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  1. Comparison of x-ray absorption spectra between water and ice: new ice data with low pre-edge absorption cross-section.

    PubMed

    Sellberg, Jonas A; Kaya, Sarp; Segtnan, Vegard H; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G M; Nilsson, Anders

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  2. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    SciTech Connect

    Sellberg, Jonas A.; Nilsson, Anders; Kaya, Sarp; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  3. On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia.

    PubMed

    Wehrle, Marius; Oberli, Solène; Vaníček, Jiří

    2015-06-01

    We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of floppy molecules, whose potential energy surfaces display strong anharmonicity. We show that despite complications due to the presence of large amplitude motion, the main features of the spectra are captured by the OTF-AI-TGA, which—by definition—does not require any a priori knowledge of the potential energy surface. Moreover, the computed spectra are significantly better than those based on the popular global harmonic approximation. Finally, we probe the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required. PMID:25928833

  4. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  5. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  6. Electronic spectra and DFT calculations of some pyrimido[1,2-a]benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Elshakre, Mohamed E.; Moustafa, H.; Hassaneen, Huwaida. M. E.; Moussa, Abdelrahim. Z.

    2015-06-01

    Ground state properties of 2,4-diphenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine, compound 1, and its derivatives are investigated experimentally and theoretically in Dioxane and DMF. The calculations show that all the studied compounds (1-7) are non-planar, resulting in a significant impact on the electronic and structural properties. The ground state properties of compounds 1-7 at B3LYP/6-311G (d, p) show that compound 5 has the lowest EHOMO, ELUMO, and ΔE indicating highest reactivity. Compound 7 is found to have the highest polarity. The observed UV spectra in Dioxane and DMF of compounds 1-4 show 2 bands, while compounds 5-7 show 4 bands in both solvents. Band maxima (λmax) and intensities of the spectra are found to have solvent dependence reflected as blue and red shifts. The theoretical spectra computed at TD-B3LYP/6-311G (d, p) in gas phase, Dioxane and DMF indicate a good agreement with the observed spectra.

  7. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  8. Recording of absorption spectra by a three-beam integral technique with a tunable laser and external cavity

    SciTech Connect

    Korolenko, P V; Nikolaev, I V; Ochkin, V N; Tskhai, S N

    2014-04-28

    An integral method is considered for recording absorption using three laser beams transmitted through and reflected from an external cavity with the absorbing medium (R-ICOS). The method is the elaboration of a known single-beam ICOS method and allows suppression of the influence of radiation phase fluctuations in the resonator on recording weak absorption spectra. First of all, this reduces high-frequency instabilities and gives a possibility to record spectra during short time intervals. In this method, mirrors of the resonator may have moderate reflection coefficients. Capabilities of the method have been demonstrated by the examples of weak absorption spectra of atmospheric methane and natural gas in a spectral range around 1650 nm. With the mirrors having the reflection coefficients of 0.8–0.99, a spectrum can be recorded for 320 μs with the accuracy sufficient for detecting a background concentration of methane in atmosphere. For the acquisition time of 20 s, the absorption coefficients of ∼2×10{sup -8} cm{sup -1} can be measured, which corresponds to a 40 times less molecule concentration than the background value. (laser spectroscopy)

  9. Variability, absorption features, and parent body searches in "spectrally featureless" meteorite reflectance spectra: Case study - Tagish Lake

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Craig, M. A.; Applin, D. M.; Sanchez, J. A.; Reddy, V.; Le Corre, L.; Mann, P.; Cloutis, E. A.

    2015-07-01

    Reflectance spectra of many asteroids and other Solar System bodies are commonly reported as "featureless". Here, we show that weak but consistently detectable absorption bands are observable in 200-2500 nm spectra of the Tagish Lake meteorite, a likely compositional and spectral analogue for low-albedo, "spectrally-featureless" asteroids. Tagish Lake presents a rare opportunity to study multiple lithologies within a single meteorite. Reflectance spectra of Tagish Lake display significant variation between different lithologies. The spectral variations are due in part to mineralogical variations between different Tagish Lake lithologies. Ultraviolet reflectance spectra (200-400 nm), few of which have been reported in the literature to date, reveal albedo and spectral ratio variations as a function of mineralogy. Similarly visible-near infrared reflectance spectra reveal variations in albedo, spectral slope, and the presence of weak absorption features that persist across different lithologies and can be attributed to various phases present in Tagish Lake. These observations demonstrate that significant spectral variability may exist between different lithologies of Tagish Lake, which may affect the interpretation of potential source body spectra. It is also important to consider the spectral variability within the meteorite before excluding compositional links between possible parent bodies in the main belt and Tagish Lake. Tagish Lake materials may also be spectral-compositional analogues for materials on the surfaces of other dark asteroids, including some that are targets of upcoming spacecraft missions. Tagish Lake has been proposed as a spectral match for 'ultra-primitive' D or P-type asteroids, and the variability reported here may be reflected in spatially or rotationally-resolved spectra of possible Tagish Lake parent bodies and source objects in the Near-Earth Asteroid population. A search for objects with spectra similar to Tagish Lake has been carried

  10. Study of the absorption spectra of the 4f electron transitions of the praseodymium complex with ciprofloxacin and its analytical application.

    PubMed

    Wei, J; Naixing, W; Quanjie, M; Zhikun, S; Xiuqin, X; Fuxiang, L

    2001-08-01

    Ciprofloxacin (CPFX) is proposed as a reagent for the derivative spectrophotometric determination of praseodymium in mixed rare earths. The absorption spectra of 4f electron transitions of the praseodymium complex with CPFX was studied by normal and derivative spectrophotometry. The stoichiometry of the praseodymium-CPFX complex was calculated by the molar ratio and continuous variations methods. A ratio of Pr to CPFX of 1:3 was found. The absorption bands of the 4f electron transitions of the complex were enhanced markedly. Using the third derivative spectrum. Beer's law was obeyed up to 35 microg cm(-3) of praseodymium. The relative standard deviation is 0.62% for 14 microg cm(-3) of praseodymium. The detection and quantification limits were 0.17 and 0.56 microg cm(-3) of praseodymium, respectively. A method for the direct determination of praseodymium in mixtures of rare earths with good accuracy and selectivity is described.

  11. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1984-01-01

    Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations.

  12. Local time-correlation approach for calculations of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Lee, A. J.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We present a local time-correlation function method for real-time calculations of core level x-ray spectra (RTXS). The approach is implemented in a local orbital basis using a Crank-Nicolson time-evolution algorithm applied to an extension of the siesta code, together with projector augmented wave (PAW) atomic transition matrix elements. Our RTXS is formally equivalent to ΔSCF (Δ self consistent field) Fermi's golden rule calculations with a screened core-hole and an effective independent particle approximation. Illustrative calculations are presented for several molecular and condensed matter systems and found to be in good agreement with experiment. The method can also be advantageous compared to conventional frequency-space methods.

  13. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays.

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1973-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra in the energy range from about 10 to the minus 8th to about 100,000 MeV at various depths in the atmosphere were calculated by using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron leakage spectrum at the particular latitude considered support the theory that the cosmic ray albedo neutron decay (Crand) mechanism is the source of the protons trapped in the inner radiation belt.

  14. Infrared spectra, vibrational assignment, and ab initio calculations for N-bromo-hexafluoro-2-propanimine

    NASA Astrophysics Data System (ADS)

    Panikar, Savitha S.; Guirgis, Gamil A.; Sheehan, Tracie G.; Durig, Douglas T.; Durig, James R.

    2012-05-01

    The infrared spectra of gaseous and solid N-bromo-hexafluoro-2-propanimine, (CF3)2Cdbnd NBr, have been obtained from 2000 to 50 cm-1. The vibrational assignment for the normal modes is proposed based on infrared band contours, group frequencies and normal coordinate calculations utilizing Cs symmetry. The structural parameters have been obtained from ab initio MP2(full)/6-311 + G(d,p) calculations employing the Gaussian-03 program. Additionally, the frequencies and potential energy distributions for the normal modes have been calculated with the MP2(full)/6-31G(d). All of these results are compared to the corresponding data for some similar molecules.

  15. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  16. NIS, IR and Raman spectra with quantum mechanical calculations for analyzing the force field of hypericin model compounds

    SciTech Connect

    Ulicny, Jozef; Leulliot, Nicolas; Ghomi, Mahmoud; Grajcar, Lydie; Baron, Marie-Helene; Jobic, Herve

    1999-06-15

    Geometry optimization as well as harmonic force field calculations at HF and DFT levels of theory have been performed in order to elucidate the ground state properties of anthrone and emodin, two polycyclic conjugated molecules considered as hypericin model compounds. NIS, IR and FT-Raman spectra of these compounds have been recorded to validate the calculated results (geometry and vibrational modes). Calculated NIS spectra using the lowest energy conformers are in agreement with experiment. In addition, the intramolecular H-bonds in emodin predicted by the calculations can be evidenced using IR spectra as a function of temperature.

  17. Comparison of DFT methods for molecular structure and vibration spectra of ofloxacin calculations

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Gao, Hongwei

    2012-01-01

    Comparison of the performance of different density functional theory (DFT) methods at various basis sets in predicting molecular and vibration spectra of ofloxacin was reported. The methods employed in this study comprise six functionals, namely, mPW1PW91, HCTH, LSDA, PBEPBE, B3PW91 and B3LYP. Different basis sets including LANL2DZ, SDD, LANL2MB, 6-31g, 6-311g and 3-21g were also examined. Comparison between the calculated and experimental data indicates that the mPW1PW91/6-311g level afford the best quality to predict the structure of ofloxacin. The results also indicate that B3LYP/LANL2DZ level show better performance in the vibration spectra prediction of ofloxacin than other DFT methods.

  18. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  19. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  20. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  1. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  2. Infrared and electronic absorption spectra as well as ultrafast spin dynamics in isolated Co3+(EtOH) and Co3+(EtOH,H2O) clusters

    NASA Astrophysics Data System (ADS)

    Jin, Wei; Becherer, Markus; Bellaire, Daniel; Lefkidis, Georgios; Gerhards, Markus; Hübner, Wolfgang

    2014-04-01

    We present a combined theoretical and experimental study of the infrared (IR) and electronic absorption spectra in a molecular beam experiment as well as an analysis of spin dynamics in the clusters Co3+(EtOH) and Co3+(EtOH,H2O). The calculated IR and ground-state absorption spectra show very good agreement with experiment. By using high-level quantum chemistry methods, laser-induced ultrafast spin-flip scenarios in these structures are predicted. For the spin flip in Co3+(EtOH), our investigation indicates a 5 meV tolerance with respect to the laser detuning and a 6.5 meV tolerance with respect to the pulse spectral broadening, which are quite acceptable for the experimental implementation. In addition, we find that with the increase of the laser detuning the fitness of the processes gradually decays to zero on both sides but with different origins. This joint study of the homotrinuclear clusters provides insight into the experimentally observed spectra and optical properties, and steps towards the optical control of molecular magnetism for future spintronics application.

  3. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  4. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  5. Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight into Lorentz invariance violation

    SciTech Connect

    Jacob, Uri; Piran, Tsvi

    2008-12-15

    We examine what the absorbed spectra of extra-galactic TeV gamma-ray sources, such as blazars, would look like in the presence of Lorentz invariance violation. Pair production with the extra-galactic background light modifies the observed spectra of such sources, and we show that a violation of Lorentz invariance would generically have a dramatic effect on this absorption feature. Inspecting this effect, an experimental task likely practical in the near future, can provide unique insight on the possibility of Lorentz invariance violation.

  6. Near-infrared absorption spectra of C{sub 60} radical cations and anions prepared simultaneously in solid argon

    SciTech Connect

    Gasyna, Z.; Andrews, L.; Schatz, P.N.

    1992-02-20

    The codeposition of C{sub 60} vapor with excess argon and argon resonance radiation has produced strong new absorptions at 973 and 1068 nm in solid argon at 11 {+-} 1 K. A similar experiment with CCl{sub 4} added to serve as an electron trap reduced the yield of the 1068-nm band with little effect on the 973-nm absorption. The 973-nm band is assigned to C{sub 60}{sup {sm_bullet}+} produced by photoionization and the 1068-nm band to C{sub 60}{sup {sm_bullet}-} formed by electron capture. These identifications are in excellent agreement with glassy matrix, solution, and photoelectron spectra.

  7. Double photoexcitation involving 2p and 4f electrons in L3 -edge x-ray absorption spectra of protactinium

    NASA Astrophysics Data System (ADS)

    Hennig, Christoph; Le Naour, Claire; Auwer, Christophe Den

    2008-06-01

    The L3 -edge x-ray absorption spectrum of Pa(V) fluoride in aqueous solution show clear evidence for the double photoexcitation involving 2p and 4f electrons. A comparison with the [2p4f] double-electron excitations observed in the L3 -edge x-ray absorption spectra of other actinides (thorium, uranium, neptunium, plutonium, and americium) indicates a monotonic increase in the excitation energy. The sharp edgelike structure of the multielectron excitation reveals the origin of a shake-up channel.

  8. A Study of the Ultraviolet Absorptions in the Spectra of DA White Dwarfs and Ultraviolet Spectra of the Star HR6560

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1986-01-01

    Two projects in conjunction with the International Ultraviolet Explorer Satellite are discussed. These projects were to: (1) study the properties of the H2 and H2+ quasi-molecular absorption features at lambda lambda 1600 and 1400 in the ultraviolet spectra of the hydrogen-rich DA white dwarfs and to search for additional spectroscopic features in the spectra of these stars; and (2) use the ultraviolet portion of the spectrum of the peculiar rare earth-rich late F type star, HR6560 (HD159870), to establish whether or not the element abundance anomalies are produced in conjunction with its having a white dwarf binary companion. The data show that HR6560 is probably not associated with any hot subluminous or degenerate star.

  9. Absorption and Circular Dichroism Spectra of La{sub 3}Ga{sub 5}SiO{sub 14} Crystals Doped with Pr{sup 3+}, Ho{sup 3+}, and Er{sup 3+} Ions

    SciTech Connect

    Burkov, V. I.; Lysenko, O. A.; Mill, B. V.

    2010-11-15

    The absorption and circular dichroism (CD) spectra of La{sub 3}Ga{sub 5}SiO{sub 14} langasite crystals doped with Pr{sup 3+}, Ho{sup 3+}, and Er{sup 3+} ions have been studied in the wavelength range of 350-700 nm. The electronic transitions of these ions, which replace La3+ ions in the 3e position with the symmetry 2, are observed in the spectra. All transitions are active in both the absorption and CD spectra. The dipole strengths D{sub om}, rotational strengths R{sub om}, and anisotropy factors g have been calculated for well-resolved bands. Some features are noted for the spectra that were obtained, and their relationship with the structure disorder is considered.

  10. Calculated x-ray linear dichroism spectra for Gd-doped GaN

    NASA Astrophysics Data System (ADS)

    Cheiwchanchamnangij, Tawinan; Lambrecht, Walter

    2013-03-01

    Gd doped GaN has been claimed to be a dilute magnetic semiconductor with colossal magnetic moments. However, the origin of huge magnetic moments is still controversial. The x-ray linear dichroism (XLD) spectrum of the Gd L3 edge and the multiple scattering calculations from Ney et al. (J. Magn. Magn. Mater. 322, 1162 (2010)) suggested that about 15% of Gd atoms should be on antisites. In contrast, our first principle calculations indicate that once the Gd is put on the N site, it will move to the interstitial site and cause large structure relaxation. The formation energy of the system is, therefore, in the order of 10 eV per Gd atom which is extremely large. We show that XLD spectra for L-edges can be analyzed in terms of suitable linear combinations of the partial densities of states of the Gd d-electrons. Core-hole effects are also included. The XLD spectra extracted from our calculations of Gd on the Ga site is shown to fit the experimental spectrum and no Gd on the N site is needed.

  11. Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations

    NASA Astrophysics Data System (ADS)

    Hu, Shuanglin; Li, S.-Y.; Ahuja, R.; Granqvist, C. G.; Hermansson, K.; Niklasson, G. A.; Scheicher, R. H.

    2012-11-01

    Mg-doped VO2 thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < ħω < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  12. Optical properties of Mg-doped VO{sub 2}: Absorption measurements and hybrid functional calculations

    SciTech Connect

    Hu Shuanglin; Li, S.-Y.; Granqvist, C. G.; Niklasson, G. A.; Ahuja, R.; Scheicher, R. H.; Hermansson, K.

    2012-11-12

    Mg-doped VO{sub 2} thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < h{omega} < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  13. Absorption and Emission Spectra of a Flexible Dye in Solution: a Computational Time-Dependent Approach

    PubMed Central

    Monti, Susanna; Prampolini, Giacomo; Barone, Vincenzo

    2015-01-01

    The spectroscopic properties of the organic chromophore 4-naphthoyloxy-1-methoxy-2,2,6,6-tetramethylpiperidine (NfO-TEMPO-Me) in toluene solution are explored through an integrated computational strategy combining a classical dynamic sampling with a quantum mechanical description within the framework of the time-dependent density functional theory (TDDFT) approach. The atomistic simulations are based on an accurately parametrized force field, specifically designed to represent the conformational behavior of the molecule in its ground and bright excited states, whereas TDDFT calculations are performed through a selected combination of hybrid functionals and basis sets to obtain optical spectra closely matching the experimental findings. Solvent effects, crucial to obtain good accuracy, are taken into account through explicit molecules and polarizable continuum descriptions. Although, in the case of toluene, specific solvation is not fundamental, the detailed conformational sampling in solution has confirmed the importance of a dynamic description of the molecular geometry for a reliable description of the photophysical properties of the dye. The agreement between theoretical and experimental data is established and a robust protocol for the prediction of the optical behaviour of flexible fluorophores in solution is set. PMID:26504457

  14. Near infrared absorption spectra of C{sub 60} radical cations and anions prepared simultaneously in solid argon

    SciTech Connect

    Schatz, P.N.; Gasyna, Z.; Andrews, L.

    1992-12-01

    The codeposition of C{sub 60} vapor with excess argon and concurrent argon resonance radiation has produced strong new absorptions at 973 and 1068 nm in solid argon at 11 {plus_minus} 1 K. A similar experiment with CCl{sub 4}, added to serve as an electron trap, reduced the yield of the 1068 nm band with little effect on the 973 nm absorption. The 973 nm band is assigned to C{sub 60}{sup +} produced by photoionization and the 1068 nm band to C{sub 60}{sup {minus}} formed by electron capture. These identifications are in excellent agreement with glassy matrix, solution and photoelectron spectra. Preliminary magnetic circular dichroism (MCD) spectra of the 973 nm C{sub 60}{sup +} band have also been measured. Both the 1068 and 973 nm bands show a characteristic triplet structure which is tentatively attributed to the combined effects of spin-orbit and Jahn-Teller coupling.

  15. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  16. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  17. The calculation of theoretical chromospheric models and predicted OSO 1 spectra

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1975-01-01

    Theoretical solar chromospheric and photospheric models are computed for use in analyzing OSO 8 spectra. The Vernazza, Avrett, and Loeser (1976) solar model is updated and self-consistent non-LTE number densities for H I, He I, He II, C I, Mg I, Al I, Si I, and H(-) are produced. These number densities are used in the calculation of a theoretical solar spectrum from 90 to 250 nm, including approximately 7000 lines in non-LTE. More than 60,000 lines of other elements are treated with approximate source functions.

  18. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    SciTech Connect

    Lee, Yongbin

    2004-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB14.

  19. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1985-01-01

    Solar chromospheric models are described. The models included are based on the observed spectrum, and on the assumption of hydrostatic equilibrium. The calculations depend on realistic solutions of the radiative transfer and statistical equilibrium equations for optically thick lines and continua, and on including the effects of large numbers of lines throughout the spectrum. Although spectroheliograms show that the structure of the chromosphere is highly complex, one-dimensional models of particular features are reasonably successful in matching observed spectra. Such models were applied to the interpretation of chromospheric observations.

  20. Recalibration of the absorption/photodissociation spectra of CO and its isotopes between 91 and 115 nm

    NASA Technical Reports Server (NTRS)

    Eidelsberg, M.; Benayoun, J. J.; Viala, Y.; Rostas, F.; Smith, P. L.; Yoshino, K.; Stark, G.; Shettle, C. A.

    1992-01-01

    A systematic error has been identified in the wavelengths and wavenumbers presented in two papers concerning the absorption/dissociation spectra of CO and isotopes between 91.2 and 115.2 nm. The published wavelengths are about 10 mA (0.001 nm) too small for lines in the 91-100 nm range. A table of corrected band origins is provided.

  1. Features in optical absorption and photocurrent spectra of organic solar cells due to organic/organic interface

    NASA Astrophysics Data System (ADS)

    Ismail, Yasser A. M.; Soga, Tetsuo; Jimbo, Takashi

    2011-05-01

    We surprisingly found that, organic/organic interface had a direct and pronounced impact on optical absorption and photocurrent spectra of organic solar cell at a favorable wavelength region of the visible solar spectrum. The organic/organic interface was formed as a result of connection between coumarin 6 (C6): [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films and indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) electrode. Optical absorption measurement was carried out for ITO/PEDOT:PSS/C6:PCBM films, while external quantum efficiency measurement was carried out for ITO/PEDOT:PSS/C6:PCBM/Al solar cells, with varying C6:PCBM blend concentration. We found that, the C6:PCBM blend in the ITO/PEDOT:PSS/C6:PCBM films had an additional feature in the absorption spectra at the wavelength range of 520-800 nm, at which the C6 dye, PCBM, PEDOT:PSS, and ITO were transparent. An additional feature, also, appeared in photocurrent spectra of the C6:PCBM films in the ITO/PEDOT:PSS/C6:PCBM/Al solar cells at the same wavelength range. The new features in the optical absorption and photocurrent spectra of the investigated solar cells originated, in all probability, due to optically induced sup-band transitions in the C6:PCBM blend films at the interface with ITO/PEDOT:PSS electrode. Thus, the C6:PCBM blend films produced a charge carrier generation interface due to connection with ITO/PEDOT:PSS electrode. As a result of this charge carrier generation interface, the power conversion efficiency of the corresponding solar cell is improved. Taking into consideration these new findings, the high-band-gap organic materials will take more importance as sensitizers in organic optoelectronic applications.

  2. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  3. CMB spectra and bispectra calculations: making the flat-sky approximation rigorous

    SciTech Connect

    Bernardeau, Francis; Pitrou, Cyril; Uzan, Jean-Philippe E-mail: cyril.pitrou@port.ac.uk

    2011-02-01

    This article constructs flat-sky approximations in a controlled way in the context of the cosmic microwave background observations for the computation of both spectra and bispectra. For angular spectra, it is explicitly shown that there exists a whole family of flat-sky approximations of similar accuracy for which the expression and amplitude of next to leading order terms can be explicitly computed. It is noted that in this context two limiting cases can be encountered for which the expressions can be further simplified. They correspond to cases where either the sources are localized in a narrow region (thin-shell approximation) or are slowly varying over a large distance (which leads to the so-called Limber approximation). Applying this to the calculation of the spectra it is shown that, as long as the late integrated Sachs-Wolfe contribution is neglected, the flat-sky approximation at leading order is accurate at 1% level for any multipole. Generalization of this construction scheme to the bispectra led to the introduction of an alternative description of the bispectra for which the flat-sky approximation is well controlled. This is not the case for the usual description of the bispectrum in terms of reduced bispectrum for which a flat-sky approximation is proposed but the next-to-leading order terms of which remain obscure.

  4. Internal energy distribution of peptides in electrospray ionization : ESI and collision-induced dissociation spectra calculation.

    PubMed

    Pak, Alireza; Lesage, Denis; Gimbert, Yves; Vékey, Károly; Tabet, Jean-Claude

    2008-04-01

    The internal energy of ions and the timescale play fundamental roles in mass spectrometry. The main objective of this study is to estimate and compare the internal energy distributions of different ions (different nature, degree of freedom 'DOF' and fragmentations) produced in an electrospray source (ESI) of a triple-quadrupole instrument (Quattro I Micromass). These measurements were performed using both the Survival Yield method (as proposed by De Pauw) and the MassKinetics software (kinetic model introduced by Vékey). The internal energy calibration is the preliminary step for ESI and collision-induced dissociation (CID) spectra calculation. meta-Methyl-benzylpyridinium ion and four protonated peptides (YGGFL, LDIFSDF, LDIFSDFR and RLDIFSDF) were produced using an electrospray source. These ions were used as thermometer probe compounds. Cone voltages (V(c)) were linearly correlated with the mean internal energy values () carried by desolvated ions. These mean internal energy values seem to be slightly dependent on the size of the studied ion. ESI mass spectra and CID spectra were then simulated using the MassKinetics software to propose an empirical equation for the mean internal energy () versus cone voltage (V(c)) for different source temperatures (T): < E(int) > = [405 x 10(-6) - 480 x 10(-9) (DOF)] V(c)T + E(therm)(T). In this equation, the E(therm)(T) parameter is the mean internal energy due to the source temperature at 0 V(c).

  5. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks. PMID:23601731

  6. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  7. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  8. Predicting the spin state of paramagnetic iron complexes by DFT calculation of proton NMR spectra.

    PubMed

    Borgogno, Andrea; Rastrelli, Federico; Bagno, Alessandro

    2014-07-01

    Many transition-metal complexes easily change their spin state S in response to external perturbations (spin crossover). Determining such states and their dynamics can play a central role in the understanding of useful properties such as molecular magnetism or catalytic behavior, but is often far from straightforward. In this work we demonstrate that, at a moderate computational cost, density functional calculations can predict the correct ground spin state of Fe(ii) and Fe(iii) complexes and can then be used to determine the (1)H NMR spectra of all spin states. Since the spectral features are remarkably different according to the spin state, calculated (1)H NMR resonances can be used to infer the correct spin state, along with supporting the structure elucidation of numerous paramagnetic complexes.

  9. Calculation of conversion coefficients for clinical photon spectra using the MCNP code.

    PubMed

    Lima, M A F; Silva, A X; Crispim, V R

    2004-01-01

    In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1). PMID:15367760

  10. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  11. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  12. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  13. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    NASA Astrophysics Data System (ADS)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  14. Quantum Mechanical Calculations to Interpret Vibrational and NMR Spectra of Organic Compounds Adsorbed onto Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.

    2008-12-01

    Vibrational (e.g., ATR FTIR and Raman) and nuclear magnetic resonance (NMR) spectroscopies provide excellent information on the bonding and atomic environment of adsorbed organic compounds. However, interpretation of observed spectra collected for organic compounds adsorbed onto mineral surfaces can be complicated by the lack of comparable analogs of known structure and uncertainties about the mineral surface structure. Quantum mechanical calculations provide a method for testing interpretations of observed spectra because models can be built to mimic predicted structures, and the results are independent of experimental parameters (i.e., no fitting to data is necessary). In this talk, methodologies for modeling vibrational frequencies and NMR chemical shifts of adsorbed organic compounds are discussed. Examples included salicylic acid (as an analog for important binding functional groups in humic acids) adsorbed onto aluminum oxides, organic phosphoryl compounds that represent herbicides and bacterial extracellular polymeric substances (EPS), and ofloxacin (a common agricultural antibiotic). The combination of the ability of quantum mechanical calculations to predict structures, spectroscopic parameters and energetics of adsorption with experimental data on these same properties allows for more definitive construction of surface complex models.

  15. High-resolution Valence and Core Excitation Spectra via First-Principles Calculations and Experiment

    NASA Astrophysics Data System (ADS)

    Shirley, Eric; Fossard, F.; Gilmore, K.; Hug, G.; Kas, J. J.; Rehr, J. J.; Vila, F.

    We calculate the optical and C K-edge near edge spectra of crystalline and molecular C60 measured with high-resolution electron energy-loss spectroscopy. The calculations are carried out using at least three different methods: Bethe-Salpeter calculations using the NIST Bethe-Salpeter Equation solver (NBSE) in the valence and OCEAN (Obtaining Core Excitation with Ab initio methods and NBSE) suite [Gilmore et al., Comp. Phys. Comm., (2015)]; excited-core-hole calculations using XCH [D. Prendergast and G. Galli, Phys. Rev. Lett. 96, 215502 (2006)]; and constrained occupancy using StoBe (Stockholm-Berlin core-excitation code) [StoBe-deMon version 3.0, K. Hermann et al. (2009)]. They include self-energy effects, lifetime-damping, and Debye-Waller effects. A comparison of spectral features to those observed illustrates the sensitivity of certain features to computation details (e.g., self-energy corrections and core-hole screening). This may point to limitations of various approximations, e.g. in conventional BSE paradigm and/or the incomplete treatment of vibrational effects. Supported in part by DOE BES Grant DE-FG03-97ER45623 (JJR, JJK, FV).

  16. Calculation of the structures, stabilities, and vibrational spectra of arsenites, thioarsenites and thioarsenates in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.; Zimmermann, M. D.

    2008-11-01

    Structures, stabilities and vibrational spectra have been calculated using molecular quantum mechanical methods for As(OH) 3, AsO(OH) 3, As(SH) 3, AsS(SH) 3 and their conjugate bases and for several species with partial substitution of S for O. Properties for the neutral gas-phase molecules are calculated with state-of-the-art methods which yield As sbnd L distances within 0. 01 Å and As sbnd L stretching frequencies within 10 cm -1 of experiment. Similar accuracy is obtained for neutral molecules in solution using a polarizable continuum model (PCM). For monoanions such as AsO(OH)2- and AsS(SH)2-1 frequencies can be calculated to within 20 cm -1 of experiment using the polarizable continuum model. Multiply charged anions remain a challenge for accurate frequency calculations, but we have obtained results within the PCM model which at least semiquantitatively reproduce the available data. This allows us to assign the controversial features D, E and F in the Raman data of (Wood S. A., Tait C. D. and Janecky D. R. (2002) A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 °C. Geochem. Trans. 3, 31-39). To help in the assignment of the arsenic sulfide spectra we have also calculated energetics for the oxidation of As(III) to As(V) compounds by polysulfides, disproportionation of As(III) compounds and for the dissociation of the oxo- and thio-acids. We have determined that As(III) oxyacids can be transformed to thioacids which can in turn be oxidized to As(V) sulfides by polysulfides and that the p Ka1s of the acids involved can be ordered as follows: AsS(SH) 3 < As(SH) 3 < AsO(OH) 3 < As(OH) 3 in order of increasing p Ka1. We have also established from the calculated energies that the most stable form of the As(III) oxyacid in acidic aqueous solution is indeed As(OH) 3, consistent with previous assignments.

  17. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes: I. C60, C59N+ and C48N12

    SciTech Connect

    Xie, R; Bryant, G W; Sun, G; C.Nicklaus, M; Heringer, D; Frauenheim, T; Manaa, M R; Smith, Jr., V H; Araki, Y; Ito, O

    2003-10-02

    Low-energy excitations and optical absorption spectrum of C{sub 60} are computed by using time-dependent (TD) Hartree-Fock (HF), TD-density functional theory (TD-DFT), TD-DFT-based tight-binding (TD-DFT-TB) and a semiempirical ZINDO method. A detailed comparison of experiment and theory for the excitation energies, optical gap and absorption spectrum of C{sub 60} is presented. It is found that electron correlations and collective effects of exciton pairs play important roles in assigning accurately the spectral features of C{sub 60} and the TD-DFT method with non-hybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C{sub 60} justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C{sub 59}N{sup +} exhibits distinguishing spectral features different from C{sub 60}: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C{sub 59}N{sup +} characterize and explain well our measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C{sub 59}N][Ag(CB{sub 11}H{sub 6}Cl{sub 6}){sub 2}]. For the most stable isomer of C{sub 48}N{sub 12}, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C{sub 60}, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314 and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C{sub 48}N{sub 12} isomers is helpful in distinguishing the isomer structures required for applications in molecular electronics. For C{sub 59}N{sup +} and C{sub 48}N

  18. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.

    PubMed

    Xie, Rui-Hua; Bryant, Garnett W; Sun, Guangyu; Nicklaus, Marc C; Heringer, David; Frauenheim, Th; Manaa, M Riad; Smith, Vedene H; Araki, Yasuyuki; Ito, Osamu

    2004-03-15

    Low-energy excitations and optical absorption spectrum of C(60) are computed by using time-dependent (TD) Hartree-Fock, TD-density functional theory (TD-DFT), TD DFT-based tight-binding (TD-DFT-TB), and a semiempirical Zerner intermediate neglect of diatomic differential overlap method. A detailed comparison of experiment and theory for the excitation energies, optical gap, and absorption spectrum of C(60) is presented. It is found that electron correlations and correlation of excitations play important roles in accurately assigning the spectral features of C(60), and that the TD-DFT method with nonhybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C(60) justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C(59)N(+), to serve as a spectroscopy reference for the characterization of carborane anion salts. Although it is an isoelectronic analogue to C(60), C(59)N(+) exhibits distinguishing spectral features different from C(60): (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C(59)N(+) characterize and explain well the measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C(59)N][Ag(CB(11)H(6)Cl(6))(2)] [Kim et al., J. Am. Chem. Soc. 125, 4024 (2003)]. For the most stable isomer of C(48)N(12), we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C(60), and optical absorption maxima occur at 585, 528, 443, 363, 340, 314, and 303 nm. We point out that the characterization of the UV-vis and transient absorption

  19. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Xie, Rui-Hua; Bryant, Garnett W.; Sun, Guangyu; Nicklaus, Marc C.; Heringer, David; Frauenheim, Th.; Manaa, M. Riad; Smith, Vedene H.; Araki, Yasuyuki; Ito, Osamu

    2004-03-01

    Low-energy excitations and optical absorption spectrum of C60 are computed by using time-dependent (TD) Hartree-Fock, TD-density functional theory (TD-DFT), TD DFT-based tight-binding (TD-DFT-TB), and a semiempirical Zerner intermediate neglect of diatomic differential overlap method. A detailed comparison of experiment and theory for the excitation energies, optical gap, and absorption spectrum of C60 is presented. It is found that electron correlations and correlation of excitations play important roles in accurately assigning the spectral features of C60, and that the TD-DFT method with nonhybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C60 justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C59N+, to serve as a spectroscopy reference for the characterization of carborane anion salts. Although it is an isoelectronic analogue to C60, C59N+ exhibits distinguishing spectral features different from C60: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C59N+ characterize and explain well the measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C59N][Ag(CB11H6Cl6)2] [Kim et al., J. Am. Chem. Soc. 125, 4024 (2003)]. For the most stable isomer of C48N12, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C60, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314, and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C48N12 isomers is helpful in

  20. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    SciTech Connect

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia; Christiansen, Ove

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to this

  1. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  2. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  3. Absorption spectra of AgI at pressures to 136 kbar

    SciTech Connect

    Liebenberg, D.H.; Hudson, J.

    1981-01-01

    Spectral absorption measurements in AgI are reported at pressures up to 136 kbar using a diamond anvil cell. In the NaCl phase between 5 and 70 kbar the absorption edge shift is found to be nearly linear with pressure. No indication of a sudden jump into a CsCl phase is found near 100 kbar and the possible influence of larger pressure gradients in earlier measurements is discussed.

  4. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  5. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGES

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  6. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-01-30

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages both in computational efficiency and in gaining an intuitive understanding of the effects of absorption on the diffraction data. A matrix of absorption coefficients calculated for μRproducts between 0 and 20 for diffraction angles θDof 0–90° were used to examine the influence of (1) capillary diameter and (2) sample density on the overall scattered intensity as a function of diffraction angle, where μ is the linear absorption coefficient for the sample andRis the capillary radius. On the basis of this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0–50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used and when the sample density is adjusted to be 3/(4μR) of its original density.

  7. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  8. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  9. A 2A2<--X 2B1 absorption and Raman spectra of the OClO molecule: A three-dimensional time-dependent wave packet study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Lou, Nanquan; Nyman, Gunnar

    2005-02-01

    Time-dependent wave packet calculations of the (A 2A2←X 2B1) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X 2B1 ground state ab initio potential energy surface reported by Peterson [J. Chem. Phys. 109, 8864 (1998)] is used together with his corresponding A 2A2 state surface or the revised surface of the A 2A2 state by Xie and Guo [Chem. Phys. Lett. 307, 109 (1999)]. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A 2A2 potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A 2A2 state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A 2A2 state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

  10. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    SciTech Connect

    Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  11. Efficient on-the-fly interpolation technique for Bethe-Salpeter calculations of optical spectra

    NASA Astrophysics Data System (ADS)

    Gillet, Yannick; Giantomassi, Matteo; Gonze, Xavier

    2016-06-01

    The Bethe-Salpeter formalism represents the most accurate method available nowadays for computing neutral excitation energies and optical spectra of crystalline systems from first principles. Bethe-Salpeter calculations yield very good agreement with experiment but are notoriously difficult to converge with respect to the sampling of the electronic wavevectors. Well-converged spectra therefore require significant computational and memory resources, even by today's standards. These bottlenecks hinder the investigation of systems of great technological interest. They are also barriers to the study of derived quantities like piezoreflectance, thermoreflectance or resonant Raman intensities. We present a new methodology that decreases the workload needed to reach a given accuracy. It is based on a double-grid on-the-fly interpolation within the Brillouin zone, combined with the Lanczos algorithm. It achieves significant speed-up and reduction of memory requirements. The technique is benchmarked in terms of accuracy on silicon, gallium arsenide and lithium fluoride. The scaling of the performance of the method as a function of the Brillouin Zone point density is much better than a conventional implementation. We also compare our method with other similar techniques proposed in the literature.

  12. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2016-08-01

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH4 and H2CO are given, together with a comparison with previous results.

  13. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    SciTech Connect

    Grell, Gilbert; Bokarev, Sergey I. Kühn, Oliver; Winter, Bernd; Seidel, Robert; Aziz, Emad F.; Aziz, Saadullah G.

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  14. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion.

    PubMed

    Yu, Hua-Gen

    2016-08-28

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH4 and H2CO are given, together with a comparison with previous results. PMID:27586906

  15. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Grell, Gilbert; Bokarev, Sergey I.; Winter, Bernd; Seidel, Robert; Aziz, Emad F.; Aziz, Saadullah G.; Kühn, Oliver

    2015-08-01

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6]2+ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  16. Is the Separable Propagator Perturbation Approach Accurate in Calculating Angle Resolved Photoelectron Diffraction Spectra?

    NASA Astrophysics Data System (ADS)

    Ng, C. N.; Chu, T. P.; Wu, Huasheng; Tong, S. Y.; Huang, Hong

    1997-03-01

    We compare multiple scattering results of angle-resolved photoelectron diffraction spectra between the exact slab method and the separable propagator perturbation method. In the slab method,footnote C.H. Li, A.R. Lubinsky and S.Y. Tong, Phys. Rev. B17, 3128 (1978). the source wave and multiple scattering within the strong scattering atomic layers are expanded in spherical waves while interlayer scattering is expressed in plane waves. The transformation between spherical waves and plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single outgoing plane wave in the detector's direction. The separable propagator perturbation approach uses two approximations: (i) A separable representation of the Green's function propagator and (ii) A perturbation expansion of multiple scattering terms. Results of c(2x2) S-Ni(001) show that this approximate method fails to converge due to the very slow convergence of the separable representation for scattering angles less than 90^circ. However, this method is accurate in the backscattering regime and may be applied to XAFS calculations.(J.J. Rehr and R.C. Albers, Phys. Rev. B41, 8139 (1990).) The use of this method for angle-resolved photoelectron diffraction spectra is substantially less reliable.

  17. a Theoretical Model for Wide-Band Infrared-Absorption Molecular Spectra at any Pressure: Fiction or Reality?

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Vander Auwera, Jean

    2014-06-01

    Various atmospheric applications require modeling of infrared absorption by the main atmospheric species in wide ranges of frequencies, pressures and temperatures. For different pressure regimes, different mechanisms are responsible for the observed intensities of vibration-rotation line manifolds, and the structure of the bands changes drastically when going from low to high densities. Therefore, no universal theoretical model exists presently to interpret simultaneously collapsed band-shapes observed at very high pressures and isolated-line shapes recorded in sub-atmospheric regimes. Using CO_2 absorption spectra as an example, we introduce some improvements in the non-Markovian Energy-Corrected Sudden model, developed for high-density spectra of arbitrary tensorial rank and generalized recently to parallel and perpendicular infrared absorption bands, and test the applicability of this approach for the case of nearly Doppler pressure regime via comparisons with recently recorded experimental intensities. J.V. Buldyreva and L. Bonamy, Phys. Rev. A 60(1), 370-376 (1999). J. Buldyreva and L. Daneshvar, J. Chem. Phys. 139, 164107 (2013). L. Daneshvar, T. Földes, J. Buldyreva, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transfer 2014 (to be submitted).

  18. Recent advances at NASA in calculating the electronic spectra of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Paterson, John A.

    1988-01-01

    Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.

  19. Combined treatment of relaxation and fluctuation dynamics in the calculation of two-dimensional electronic spectra

    SciTech Connect

    Seibt, Joachim; Pullerits, Tõnu

    2014-09-21

    While the theoretical description of population transfer subsequent to electronic excitation in combination with a line shape function description of vibrational dynamics in the context of 2D-spectroscopy is well-developed under the assumption of different timescales of population transfer and fluctuation dynamics, the treatment of the interplay between both kinds of processes lacks a comprehensive description. To bridge this gap, we use the cumulant expansion approach to derive response functions, which account for fluctuation dynamics and population transfer simultaneously. We compare 2D-spectra of a model system under different assumptions about correlations between fluctuations and point out under which conditions a simplified treatment is justified. Our study shows that population transfer and dissipative fluctuation dynamics cannot be described independent of each other in general. Advantages and limitations of the proposed calculation method and its compatibility with the modified Redfield description are discussed.

  20. Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2

    NASA Astrophysics Data System (ADS)

    Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry

    Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.

  1. Vibrational spectra, DFT calculations, conformational stabilities and assignments of the fundamentals of the 1-butylpiperazine

    NASA Astrophysics Data System (ADS)

    Bağlayan, Özge; Kaya, Mehmet Fatih; Güneş, Esma; Şenyel, Mustafa

    2016-10-01

    FT-IR and FT-Raman spectra of 1-butylpiperazine (1bpa) were experimentally recorded in the region of 4000-10 cm-1 and 4000-100 cm-1, respectively. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 1bpa (C8H18N2) are theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31++G(d,p) basis set. Also, reliable conformational investigation and vibrational assignments have been performed by the potential energy surface (PES) and potential energy distribution (PED) analysis, respectively. Calculations are made for four possible conformations. According to the experimental and theoretical data, density functional B3LYP method provides reliable results for predicting vibrational wavenumbers and equatorial-equatorial conformer is considered to be the most stable form of 1bpa.

  2. N-Acetyl-L-alanine N'-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Jalkanen, K. J.; Suhai, S.

    1996-07-01

    Ab initio 6-31G ∗ Becke 3LYP DFT optimized geometries, vibrational frequencies, vibrational absorption (VA) intensities and vibrational circular dichroism (VCD) intensities have been calculated for the eight low energy conformers of N-acetyl-L-alanine N'-methylamide (L-AANMA) in the gas phase and one conformer stabilized by the addition of four water molecules. The VA and VCD spectra are calculated with the 6-31G ∗ Becke 3LYP force fields (Hessians) and atomic polar tensors (APT); 6-31G ∗∗ RHF atomic axial tensors (AAT) for the eight gas phase structures and 6-31G ∗/6-31G RHF AAT for the L-AANMA-water complex. The VA and VCD spectra are also calculated using the 6-31G ∗ Becke 3LYP Hessians; 6-31G ∗∗ RHF APT and AAT for the eight gas phase structures and 6-31G ∗/6-31G RHF APT and AAT for the L-AANMA-water complex. The rotational strengths of the amide A, I, II, III, IV, V and VI modes found in proteins as a function of φ and ψ (for various secondary structures) are for the first time reported for an inherently optically active molecule (non-glycine model) using the 6-31G ∗∗ and 6-31G ∗/6-31G RHF DOG AAT and 6-31G ∗ Becke 3LYP Hessians and APT. This is also the first reported VCD calculation of a molecule with the solvent present. The molecule is not completely solvated, but the important hydrogen-bonded interactions are present and the feasibility of the calculation of the Hessian, APT and AAT with solvent molecules present is demonstrated. The VA and VCD spectra are compared to the experimental VA and VCD spectra in the literature and the conformational analysis (CA) and vibrational assignment of L-AANMA are reinvestigated. The rotational strengths of the amide modes for the various conformers are also compared to peptide and protein VCD spectra of molecules with known secondary structures. The agreement between the calculated rotational strengths of the various amide modes for which experimental measurements have been made is very good

  3. Investigation of the electronic absorption spectra and the circular dichroism spectra of binuclear tetra-. mu. -mandelato complexes of Mo/sub 2//sup 4 +/

    SciTech Connect

    Golovaneva, I.F.; Akhmedov, E.L.; Kotel'nikova, A.S.

    1987-05-01

    The IR, electronic absorption, and circular dichroism spectra of the binuclear tetra-..mu..-mandelates of molybdenum(II) (Mo/sub 2//D-(-)-OOCCH(OH)C/sub 6/H/sub 5///sub 4/) and (Mo/sub 2//L-(+)-OOCCH(OH)C/sub 6/H/sub 5///sub 4/) have been studied. It has been established that Cotton effects are induced in all the electronic transitions of the symmetric (Mo/sub 2/O/sub 8/)chromophore under the influence of the asymmetric atom of the optically active mandelato ligand. The observed electronic transitions have been assigned on the basis of an analysis of the spectroscopic data obtained.

  4. Comparative study of the absorption spectrum of Li 2CaSiO 4:Cr 4+: First-principles fully relativistic and crystal field calculations

    NASA Astrophysics Data System (ADS)

    Brik, M. G.; Ogasawara, K.

    2007-11-01

    Systematic analysis of the energy level scheme and ground state absorption of the Cr4+ ion in Li2CaSiO4 crystal was performed using the exchange charge model of the crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33-50] and recently developed first-principles approach to the analysis of the absorption spectra of impurity ions in crystals based on the discrete variational multielectron (DVME) method [K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64 (2001) 115413]. Using the former method, the values of parameters of crystal field acting on the Cr4+ ion valence electrons were calculated using the Li2CaSiO4 crystal structure data. Energy levels of the Cr4+ ion obtained after diagonalizing the crystal field Hamiltonian are in good agreement with those obtained from the experimental spectra. The latter method is based on the numerical solution of the Dirac equation; therefore, all relativistic effects are automatically considered. As a result, energy level scheme of Cr4+ and its absorption spectra in both polarizations were calculated, assigned and compared with experimental data; energy of the lowest charge transfer transition was evaluated and compared with theoretical predictions for the CrO44- complex available in the literature. The main features of the experimental spectra shape are reproduced well by the calculations. By performing analysis of the molecular orbitals (MO) population, it was shown that the covalent effects play an important role in formation of the spectral properties of Cr4+ ion in the considered crystal.

  5. Studies of the molecular geometry, vibrational spectra, frontier molecular orbital, nonlinear optical and thermodynamics properties of aceclofenac by quantum chemical calculations.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-05-01

    The solid phase FT-IR and FT-Raman spectra of 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl] oxyacetic acid (Aceclofenac) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies were scaled and have been compared with experimental by obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method employed to study its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) were also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  6. Studies of the molecular geometry, vibrational spectra, Frontier molecular orbital, nonlinear optical and thermodynamics properties of Aceclofenac by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    The solid phase FT-IR and FT-Raman spectra of 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl] oxyacetic acid (Aceclofenac) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies were scaled and have been compared with experimental by obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method employed to study its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) were also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  7. Multicomponent Analysis of the UV Si IV and C IV Broad Absorption Troughs in BALQSO Spectra: The Examples of J01225 + 1339 and J02287 + 0002

    NASA Astrophysics Data System (ADS)

    Stathopoulos, D.; Danezis, E.; Lyratzi, E.; Antoniou, A.; Tzimeas, D.

    2015-12-01

    Broad Absorption Line QSOs (BALQSOs) are a subtype of radio-quite QSOs that exhibit complex and unusually broad (FWHM ≥ 2,000 km/s) absorption lines. The existence of these lines in BALQSO spectra raises some questions with respect to the properties, the physical conditions and kinematics of the BAL material as well as the morphology of BAL troughs. In this study, taking into consideration the clumpy structure of the AGN outflow winds, we propose a physical model in order to explain the formation of BAL troughs and we give the mathematical description of this model. We also propose a method for analyzing spectroscopically the BAL profiles in the UV region of the electromagnetic spectrum. This method consists of the criteria we set during the fitting process of BAL troughs. The purpose of these criteria is to enable us to determine the exact number of components needed to simulate accurately the BAL troughs and guarantee the uniqueness of the fit. We give an application of the model and the method for Si IV and C IV resonance lines in the case of two BALQSOs. From the analysis, we conclude that the BAL material is in the form of clouds (density enhancements) that move radially and intercept the line-of-sight to the central continuum source. Using our method, we find the number of absorption components needed to simulate the BAL profiles, which means the number of clouds in the line-of-sight. We calculate the velocity shifts, the FWHM and the optical depths of the absorption components of BALs and we propose an internal structure for these clouds. Finally, we give some correlations between the properties of absorption components of Si IV and C IV.

  8. Solvents effect on the absorption and fluorescence spectra of 7-diethylamino-3-thenoylcoumarin: Evaluation and correlation between solvatochromism and solvent polarity parameters

    NASA Astrophysics Data System (ADS)

    Basavaraja, Jana; Inamdar, S. R.; Suresh Kumar, H. M.

    2015-02-01

    Effect of solvents of varying polarities on absorption and fluorescence spectra and dipole moment of laser dye: 7-diethylamino-3-thenoylcoumarin (DETC) has been investigated. A small band shift is obtained in the absorption spectra compared to emission spectra. The spectral shifts were correlated with Catalan's parameters using linear solvation energy relationship. It reveals that non-specific interaction measured by solvent polarity has more influence on absorption and solvent dipolarity contribution is significant in case of fluorescence. A bathochromic shift observed in absorption and emission spectra with increasing solvent polarity, which implied that the transition involved is π → π∗. The solvatochromic correlations were used to estimate the excited state dipole moment using experimentally determined ground state dipole moment. The observed single-state excited state dipole moment is found to be greater than the ground state.

  9. Extraction of pigment information from near-UV vis absorption spectra of extra virgin olive oils.

    PubMed

    Domenici, Valentina; Ancora, Donatella; Cifelli, Mario; Serani, Andrea; Veracini, Carlo Alberto; Zandomeneghi, Maurizio

    2014-09-24

    This work reports a new approach to extract the maximum chemical information from the absorption spectrum of extra virgin olive oils (EVOOs) in the 390-720 nm spectral range, where "oil pigments" dominate the light absorption. Four most important pigments, i.e., two carotenoids (lutein and β-carotene) and two chlorophylls (pheophytin-a and pheophytin-b), are chosen as reference oil pigments, being present in all the reported analytical data regarding pigments of EVOOs. The method allows the quantification of the concentration values of these four pigments directly from the deconvolution of the measured absorption spectrum of EVOOs. Advantages and limits of the method and the reliability of the pigment family quantification are discussed. The main point of this work is the description of a fast and simple method to extract of such information in less than a minute, through the mathematical analysis of the UV-vis spectrum of untreated samples of oil.

  10. Performance of DFT Methods in the Calculation of Optical Spectra of Chromophores

    SciTech Connect

    Andzelm, Jan; Rawlett, Adam M.; Dougherty, Joseph; Govind, Niranjan

    2008-07-17

    Organic chromophores possessing a high degree of π -conjugation are ideal materials for advanced electronic and photonic applications including optical information processing, photovoltaic cells, photodynamic therapy agents, and many other applications. These properties are due to the stable macrocyclic conjugated network of π -electrons leading to high electrical polarizability and rapid nonlinear optical response (NLO) of the charge density to the applied intense electromagnetic fields. Changing the substitutional groups and substitution pattern, conjugation and molecular electronic structure can conveniently modify the optical spectra and NLO properties of chromophores. Due to almost limitless optimization space of chromophore structures computational tools are increasingly being used to assist experimental efforts in designing the optimal chromophores. By far the most often used computational approaches are semi-empirical and DFT methods. The semiempirical computational methods, such as ZINDO/CIS are fast and accurate for chromophores similar to systems for which the method was parameterized. DFT, on the other hand, offers the best compromise between accuracy and computational performance for typical chromophores of about 100 atoms. The accuracy of the methods depends strongly on the type of chromophores. For example, the ZINDO/CIS method is excellent for polyphenylacetylene dyes, but fails for many cyano-based acceptors of chromophores; DFT may be better suited for tricyanofuranyl complexes but leads to large errors in spectra of the polyphenylacetylene dyes. The failure of DFT calculations has been associated with the incorrect asymptotic behavior of the typical exchange-correlation (XC) potential. The approximate XC potential does not posses the correct 1/r asymptotic behavior, which leads to the self-interaction error (SIE). As a result, the excited states of dyes, in particular the charge-transfer (CT) chromophores are poorly described. A variety of

  11. The effect of pathological processes on absorption and scattering spectra of samples of bile and pancreatic juice

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Magomedov, M. A.; Murtazaeva, A. A.; Medzhidov, R. T.

    2015-07-01

    Spectra of optical transmission coefficients and optical reflectance for bile and pancreatic juice samples were measured experimentally for different forms of pathologies of the pancreas within the range of 250-2500 nm. The absorption and scattering spectra, as well as the spectrum of the anisotropy factor of scattering, were determined based on the results obtained using the reverse Monte Carlo method. The surface morphology for the corresponding samples of the biological media was studied employing electron microscopy. The dynamics of the optical properties of the biological media was determined depending on the stage of the pathology. It has been demonstrated that the results of the study presented are in a good agreement with pathophysiological data and could supplement and broaden the results of conventional methods for diagnostics of the pancreas.

  12. Absorption spectra of two-level atoms interacting with a strong polychromatic pump field and an arbitrarily intense probe field

    NASA Astrophysics Data System (ADS)

    Yoon, Tai Hyun; Chung, Myung Sai; Lee, Hai-Woong

    1999-09-01

    A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

  13. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  14. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  15. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-01

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  16. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  17. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-01

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  18. Far-infrared absorption spectra of cobalt(III), rhodium(III), and iridium(III). beta. -diketonates

    SciTech Connect

    Oglezneva, I.M.; Isakova, V.G.; Igumenov, I.K.

    1987-03-01

    The IR absorption spectra of the complexes of Co(II), Rh(III), and Ir(III) with acetylacetone, trifluoroacetylacetone, hexafluoroactylacetone, dipivaloylmethane, and pivaloyltrifluoroacetylacetone in the region from 30 to 700 cm/sup -1/ have been examined for the first time. The frequencies of the intramolecular vibrations associated with in-plane and out-of-plane deformations of the chelate rings and deformations of the radicals in the ligands have been assigned. The frequencies of the predominantly stretching nu(MO) vibrations of the metal-oxygen bonds have been identified. Their variation has been compared with NMR data on the redistribution of the electron density in the chelate rings.

  19. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  20. Molecular structure and vibrational spectra of ibuprofen using density function theory calculations

    NASA Astrophysics Data System (ADS)

    Liu, Lekun; Gao, Hongwei

    2012-04-01

    The molecular geometry and the theoretical harmonic frequencies and infrared intensities of ibuprofen were calculated for all the molecules using five different density functional methods (mPW1PW91, B3PW91, B3LYP, HCTH and LSDA) with five basic sets, including 6-311G, 6-311++G, 6-311+G (d, p), 6-311++G (d, p) and 6-311++G (2d, 2p). The purpose of this research was to compare the performance of different DFT methods at different basis sets in predicting geometry and vibration spectrum of ibuprofen. The optimized geometric band lengths and bond angles obtained by using mPW1PW91 at 6-311++G (d, p) and 6-311++G (2d, 2p) basic sets show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of ibuprofen with calculated results indicates that the B3PW91/6-311++G (2d, 2p) level is superior to all the remaining levels for predicting all the vibration spectra on average for ibuprofen.