Science.gov

Sample records for absorption spectral analysis

  1. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles.

    PubMed

    Ma, Ji; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    Spectral absorption index was proposed to extract the morphological features of the spectral curves in pork meat samples (longissimus dorsi) under the conditions including fresh, frozen-thawed, heated-dehydrated and brined-dehydrated. Savitzky-Golay (SG) smoothing and multiplicative scatter correction (MSC) were used for calibrating both the spectral reflectance and absorbance values. The absorption values were better than the reflectance values and the calibrated spectra by MSC were better than the raw and SG smoothing corrected spectra in building moisture content predictive models. The optimized partial least square regression (PLSR) model attained good results with the MSC calibrated spectral absorption values based on the spectral absorption index features (R(2)P=0.952, RMSEP=1.396) and the optimal wavelengths selected by regression coefficients (R(2)P=0.966, RMSEP=0.855), respectively. The models proved spectral absorption index was promising in spectral analysis to predict moisture content in pork samples using HSI techniques for the first time. PMID:26617026

  2. [Study on exploring for gas based on analysis of spectral absorption features].

    PubMed

    Xu, Da-Qi; Ni, Guo-Qiang; Jiang, Li-Li; Li, Ting; Ge, Shu-Le; Shu, Xian-Biao

    2007-11-01

    Reflectance spectra in the visible and near-infrared wavelength region provide a rapid and inexpensive means for determining the mineralogy of samples and obtaining information on chemical composition. Hydrocarbon microseepage theory establishes a cause-and-effect relation between oil and gas reservoirs and some special surface anomalies. Therefore the authors can explore for oil and gas by determining the reflectance spectra of surface anomalies. This determination can be fulfilled by means of field work and hyperspectral remote sensing. In the present paper, based on the analysis of reflectance spectra determined in the field of Qinghai X X area, firstly, a macroscopic feature of the reflectance spectra of typical observation points in the gas fields is presented. Secondly, absorption-band parameters of spectra such as the position, depth, width, and asymmetry are extracted. Based on the spectral absorption features of the spectra of 144 samples collected from the field, a spectral library for the Qinghai X X area is built to make the detection of the mineral alterations more rapid and reliable. Thirdly, two methods are improved and proposed to detect hydrocarbon microseepage using hydrocarbon absorption bands of reflectance spectra determined from the field. Finally, a linear unmixing model is studied based on the spectra of 144 samples so as to semi-quantitatively determine the abundance fractions of main minerals in the authors' studied area. PMID:18260381

  3. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  4. Sensitivity analysis of oxygen absorption lines in the 1.26-1.27 micron spectral band

    NASA Astrophysics Data System (ADS)

    Edwards, W. C.; Prasad, N.; Browell, E. V.

    2009-12-01

    In the Decadal Survey prepared by the National Research Council (Reference: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond), the ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days and Seasons), requires simultaneous laser remote sensing of CO2 and O2 in order to convert CO2 atmospheric concentrations to mixing ratios. As the mission is envisioned, the CO2 mixing ratio needs to be measured to a precision of 0.5 percent of background or better (slightly less than 2 ppm) at 100-km horizontal length scale overland and at 200-km scale over open oceans. While the O2 measurement could be made at 0.765 µm (the oxygen A band), the absorption cross section is substantially higher and the scattering is lower in the 1.26-1.27 µm wavelength band, and as such it is anticipated that better accuracies could be accomplished. Hence, NASA Langley Research Center is developing oxygen lidar technology in the 1.26-1.27 micron band for surface pressure measurements. One or more wavelengths for differential absorption lidar operation have to be carefully chosen to eliminate ambient influences on them. The model optical depth calculation is very sensitive to knowledge of the transmitted wavelengths and to the choice of Voigt input parameters. Uncertainties in atmospheric profiles of temperature, pressure and relative humidity can cause ~0.5 % errors in model optical depths. In order to select candidate wavelengths in the 1.26 micron spectral band, wavelength uncertainties due to temperature and pressure have to be determined. Uncertainties at line center and offset wavelengths have to be known precisely to reduce uncertainties in oxygen concentration measurements from airborne and space based platforms. In this paper, based on HITRAN database and absorption line measurements, we evaluate systematic relative errors and their sources of pressure shift and atmospheric temperature influences for selected O2 lines suitable for

  5. SPECTRAL RELATIVE ABSORPTION DIFFERENCE METHOD

    SciTech Connect

    Salaymeh, S.

    2010-06-17

    When analyzing field data, the uncertainty in the background continuum emission produces the majority of error in the final gamma-source analysis. The background emission typically dominates an observed spectrum in terms of counts and is highly variable spatially and temporally. The majority of the spectral shape of the background continuum is produced by combinations of cosmic rays, {sup 40}K, {sup 235}U, and {sup 220}Rn, and the continuum is similar in shape to the 15%-20% level for most field observations. However, the goal of spectroscopy analysis is to pick up subtle peaks (<%5) upon this large background. Because the continuum is falling off as energy increases, peak detection algorithms must first define the background surrounding the peak. This definition is difficult when the range of background shapes is considered. The full spectral template matching algorithms are heavily weighted to solving for the background continuum as it produces significant counts over much of the energy range. The most appropriate background mitigation technique is to take a separate background observation without the source of interest. But, it is frequently not possible to record a background observation in the exact location before (or after) a source has been detected. Thus, one uses approximate backgrounds that rely on spatially nearby locations or similar environments. Since the error in many field observations is dominated by the background, a technique that is less sensitive to the background would be quite beneficial. We report the result of an initial investigation into a novel observation scheme for gamma-emission detection in high background environments. Employing low resolution, NaI, detectors, we examine the different between the direct emission and the 'spectral-shadow' that the gamma emission produces when passed through a thin absorber. For this detection scheme to be competitive, it is required to count and analyze individual gamma-events. We describe the

  6. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  7. Absorption spectral analysis of proteins and free amino acids in Pleurotus ostreatus fruiting body extracts

    NASA Astrophysics Data System (ADS)

    Kostyshyn, S.; Gorshynska, I.; Guminetsky, S. G.

    2002-02-01

    The paper deals with the results of spectrophotometric studies of the extracts of Pleurotus ostreatus fruiting bodies, grown in natural conditions in different habitats of Chernivtsy region, in the spectral interval of 215 - 340 nm. It is shown that the samples reveal considerable difference both in free amino acid content and reserved protein content of albumins, globulins, prolamins, glutelins.

  8. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light. PMID:23387142

  9. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  10. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon

    SciTech Connect

    Hadley, Odelle; Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2008-04-14

    Black carbon (BC), a main component of combustion-generated soot, is a strong absorber of sunlight and contributes to climate change. Measurement methods for BC are uncertain, however. This study presents a method for analyzing the BC mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength as the sample is heated. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration based on derived mass attenuation efficiencies (MAE) of BC and char. The fraction of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO{sub 2}) at temperatures higher than 480 C. This method was applied to measure the BC concentration in precipitation samples collected from coastal and mountain sites in Northern California. The uncertainty in measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12 to 100 percent, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 {micro}g BC and uncertainty approached 20 percent for BC mass loading greater than 1.0 {micro}g BC.

  11. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon.

    PubMed

    Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W

    2008-11-15

    This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC. PMID:19068832

  12. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  13. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-04-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The

  14. Molecular structure, NBO analysis, electronic absorption and vibrational spectral analysis of 2-Hydroxy-4-Methoxybenzophenone: reassignment of fundamental modes.

    PubMed

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Suthan, T; Rajesh, N P; Isac, Jayakumary

    2014-01-01

    Vibrational frequencies of 2-Hydroxy-4-Methoxybenzophenone (HMB) have been reassigned with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The conformational analyses were performed and the energies of the different possible conformers were determined. The geometry of different conformers of the compounds were optimized with B3LYP method using 6-311++G(d,p) basis set to characterize all stationary points as minima. The optimized structural parameters of the most stable conformer were used in the vibrational frequency calculations. The force constants obtained from the B3LYP/6-311++G(d,p) method have been utilized in the normal coordinate analysis. The temperature dependence of the thermodynamic properties, heat capacity at constant pressure (Cp), entropy (S) and enthalpy change (ΔH) for the compound was also determined by B3LYP/6-311++G(d,p) method. The total electron density and Molecular electrostatic potential surfaces of the molecules were constructed by Natural Bond Orbital analysis using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution, molecular shape, size, and dipole moments of the molecule. The electronic properties, HOMO and LUMO energies were measured. PMID:24184624

  15. Analysis of simultaneous emission and absorption Ti spectral features observed with the MMI instrument in OMEGA implosions

    NASA Astrophysics Data System (ADS)

    Joshi, Tirtha; Johns, Heather; Mayes, Daniel; Durmaz, Tunay; Mancini, Roberto; Tommasini, Riccardo; Delettrez, Jack; Regan, Sean; Nagayama, Taisuke

    2012-10-01

    We discuss the observation and analysis of spectra from titanium-doped OMEGA direct-drive implosions. The targets were spherical plastic shells with a submicron Ti-doped tracer-layer initially located on the inner surface of the shell and filled with deuterium gas. The x-ray signal from the titanium tracer is observed at the collapse of the implosion and recorded with a streaked spectrometer (SSCA) and three identical gated,multi-monochromatic x-ray imager (MMI) instruments that view the implosion along three quasi-orthogonal lines-of-sight. Both streaked and MMI data show simultaneous emission and absorption features due to titanium K-shell line transitions but only the MMI data permits to diagnose the tracer's spatial properties in the core. To this end, MMI data were processed to obtain narrow-band images and spatially-resolved spectra.footnotetextT. Nagayama et al., J. App. Phys.109, 093303 (2011). Abel inversion of angle-averaged image intensity profiles reveal the spatial distribution of the titanium tracer in the core, while detailed analysis of the space-resolved spectra yields temperature, density and mixing distributions. Results are presented for several shell thicknesses and implosions driven with different laser pulse shapes.

  16. Iron-absorption band analysis for the discrimination of iron-rich zones. [infrared spectral reflectance of Nevada iron deposits

    NASA Technical Reports Server (NTRS)

    Rowan, L. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most major rock units and unaltered and altered areas in the study area can be discriminated on the basis of visible and near-infrared spectral reflectivity differences recorded from satellite altitude. These subtle spectral differences are detectable by digital ratioing of the MSS bands and subsequent stretching to increase the contrast to enhance spectral differences. Hydrothermally altered areas appear as anomalous color patches within the volcanic-rock areas. A map has been prepared which can be regarded as an excellent reconnaissance exploration map, for use in targeting areas for more detailed geological, geochemical, and geophysical studies. Mafic and felsic rock types are easily discriminated on the color stretched-ratio composite. The ratioing process minimizes albedo effects, leaving only the recorded characteristic spectral response. The spectra of unaltered rocks appear different from those of altered rocks, which are typically dominated by limonite and clay minerals. It seems clear that differences in spectral shape can provide a basis for discrimination of geologic material, although the relations between visible and near-infrared spectral reflectivity and mineralogical composition are not yet entirely understood.

  17. Spectral calibration of hyperspectral imagery using atmospheric absorption features.

    PubMed

    Guanter, Luis; Richter, Rudolf; Moreno, José

    2006-04-01

    One of the initial steps in the preprocessing of remote sensing data is the atmospheric correction of the at-sensor radiance images, i.e., radiances recorded at the sensor aperture. Apart from the accuracy in the estimation of the concentrations of the main atmospheric species, the retrieved surface reflectance is also influenced by the spectral calibration of the sensor, especially in those wavelengths mostly affected by gaseous absorptions. In particular, errors in the surface reflectance appear when a systematic shift in the nominal channel positions occurs. A method to assess the spectral calibration of hyperspectral imaging spectrometers from the acquired imagery is presented in this paper. The fundamental basis of the method is the calculation of the value of the spectral shift that minimizes the error in the estimates of surface reflectance. This is performed by an optimization procedure that minimizes the deviation between a surface reflectance spectrum and a smoothed one resulting from the application of a low-pass filter. A sensitivity analysis was performed using synthetic data generated with the MODTRAN4 radiative transfer code for several values of the spectral shift and the water vapor column content. The error detected in the retrieval is less than +/- 0.2 nm for spectral shifts smaller than 2 nm, and less than +/- 1.0 nm for extreme spectral shifts of 5 nm. A low sensitivity to uncertainties in the estimation of water vapor content was found, which reinforces the robustness of the algorithm. The method was successfully applied to data acquired by different hyperspectral sensors. PMID:16608005

  18. Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    1995-01-01

    Spectral calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) as data are acquired in flight is essential to quantitative analysis of the measured upwelling spectral radiance. In each spectrum measured by AVIRIS in flight, there are numerous atmospheric gas absorption bands that drive this requirement for accurate spectral calibration. If the surface and atmospheric properties are measured independently, these atmospheric absorption bands may be used to deduce the in-flight spectral calibration of an imaging spectrometer. Both the surface and atmospheric characteristics were measured for a calibration target during an in-flight calibration experiment held at Lunar Lake, Nevada on April 5, 1994. This paper uses upwelling spectral radiance predicted for the calibration target with the MODTRAN radiative transfer code to validate the spectral calibration of AVIRIS in flight.

  19. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  20. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  1. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  2. A wide spectral range photoacoustic aerosol absorption spectrometer.

    PubMed

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-01

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter. PMID:23035870

  3. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  4. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  5. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  6. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  7. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed Central

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-01-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits. Images FIGURE 3 FIGURE 4 PMID:8889168

  8. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.

    PubMed

    Burt, Jim A; Zhao, Xihua; McHale, Jeanne L

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio kappa = Lambda/Delta is increased, where Lambda and Delta are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of kappa for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy lambdasolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Lambda and Delta are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of beta-carotene in isopentane and CS2. The derived values of lambdasolv using the Gaussian model are found to be in better agreement with the high temperature limit of Delta2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Delta of the solvent-induced frequency fluctuations. PMID:15268604

  9. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of β-carotene in nonpolar solvent

    NASA Astrophysics Data System (ADS)

    Burt, Jim A.; Zhao, Xihua; McHale, Jeanne L.

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio κ=Λ/Δ is increased, where Λ and Δ are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of κ for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy λsolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Λ and Δ are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of β-carotene in isopentane and CS2. The derived values of λsolv using the Gaussian model are found to be in better agreement with the high temperature limit of Δ2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Δ of the solvent-induced frequency fluctuations.

  10. Multivariate Analysis of Solar Spectral Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  11. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  12. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  13. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  14. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  15. Experimental measurements of the spectral absorption coefficient of pure fused silica optical fibers.

    PubMed

    Moore, Travis J; Jones, Matthew R

    2015-02-20

    Knowledge of the spectral absorption coefficient of fused silica optical fibers is important in modeling heat transfer in the processes and applications in which these fibers are used. An experimental method used to measure the spectral absorption coefficient of optical fibers is presented. Radiative energy from a blackbody radiator set at different temperatures is directed through the optical fibers and into an FTIR spectrometer. Spectral instrument response functions are calculated for different fiber lengths. The ratios of the slopes of the instrument response functions for the different lengths of fibers are used to solve for the spectral absorption coefficient of the fibers. The spectral absorption coefficient of low OH pure fused silica optical fibers is measured between the wavelengths 1.5 and 2.5 μm. PMID:25968202

  16. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol

  17. Modeling ocean primary production: Sensitivity to spectral resolution of attenuation and absorption of light

    NASA Astrophysics Data System (ADS)

    Kettle, Helen; Merchant, Chris J.

    2008-08-01

    Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton ( α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ - as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033-31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403-1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands

  18. Anomalous atmospheric spectral features between 300 and 310 nm interpreted in light or new ozone absorption coefficient measurements

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Bass, A. M.

    1982-01-01

    Real structure is revealed, by an analysis of continuous scan data from the solar backscattered UV instrument on Nimbus 7, in the backscattered atmospheric albedo region between 300 and 310 nm where spectral anomalies have been reported in ground-based observation. The spectral anomalies are explainable as structure at the 1-5% level in the ozone absorption coefficient, as measured by Bass and Paur (1981). The new absorption coefficient measurements are judged to approach the 1%-level of accuracy in atmospheric radiation calculation, which should resolve discrepancies between different Dobson wavelength pairs and between different instruments and permit the more accurate analysis of such second-order effects as NO emission, SO2 absorption in polluted atmospheres, and Raman scattering effects.

  19. Method of photon spectral analysis

    DOEpatents

    Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.

    1993-01-01

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.

  20. Method of photon spectral analysis

    DOEpatents

    Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.

    1993-04-27

    A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.

  1. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    NASA Technical Reports Server (NTRS)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  2. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  3. Remote estimation of phytoplankton size fractions using the spectral shape of light absorption.

    PubMed

    Wang, Shengqiang; Ishizaka, Joji; Hirawake, Toru; Watanabe, Yuji; Zhu, Yuanli; Hayashi, Masataka; Yoo, Sinjae

    2015-04-20

    Phytoplankton size structure plays an important role in ocean biogeochemical processes. The light absorption spectra of phytoplankton provide a great potential for retrieving phytoplankton size structure because of the strong dependence on the packaging effect caused by phytoplankton cell size and on different pigment compositions related to phytoplankton taxonomy. In this study, we investigated the variability in light absorption spectra of phytoplankton in relation to the size structure. Based on this, a new approach was proposed for estimating phytoplankton size fractions. Our approach use the spectral shape of the normalized phytoplankton absorption coefficient (a(ph)(λ)) through principal component analysis (PCA). Values of a(ph)(λ) were normalized to remove biomass effects, and PCA was conducted to separate the spectral variance of normalized a(ph)(λ) into uncorrelated principal components (PCs). Spectral variations captured by the first four PC modes were used to build relationships with phytoplankton size fractions. The results showed that PCA had powerful ability to capture spectral variations in normalized a(ph)(λ), which were significantly related to phytoplankton size fractions. For both hyperspectral a(ph)(λ) and multiband a(ph)(λ), our approach is applicable. We evaluated our approach using wide in situ data collected from coastal waters and the global ocean, and the results demonstrated a good and robust performance in estimating phytoplankton size fractions in various regions. The model performance was further evaluated by a(ph)(λ) derived from in situ remote sensing reflectance (R(rs)(λ)) with a quasi-analytical algorithm. Using R(rs)(λ) only at six bands, accurate estimations of phytoplankton size fractions were obtained, with R(2) values of 0.85, 0.61, and 0.76, and root mean-square errors of 0.130, 0.126, and 0.112 for micro-, nano-, and picophytoplankton, respectively. Our approach provides practical basis for remote estimation of

  4. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite

    NASA Astrophysics Data System (ADS)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Frost, Ray L.; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals.

  5. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite.

    PubMed

    Reddy, S Lakshmi; Fayazuddin, Md; Frost, Ray L; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals. PMID:17324611

  6. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  7. Water Body Extraction from Multi Spectral Image by Spectral Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, D. D.

    2012-07-01

    Water is one of the vital components of the Earth environment which needs to be frequently monitored. Satellite multispectral remote sensing image has been used over decades for water body extraction. Methodology of water body extraction can be summarized to three groups: feature extraction, supervised and unsupervised classification and data fusion. These methods, however, are of pure mathematical and statistical approach and little of them explore essential characteristics of multispectral image which is based on ground object radiance absorption behaviour in each sensing spectral bands. The spectral absorption characteristics of water body in visible and infrared bands differ very much from the other ground objects. They depend only on the used spectral bands and can be considered as invariant and sensor independent. In this paper the author proposed an application of spectral pattern analysis for water body extraction using spectral bands green, red, near infrared NIR and short wave infrared SWIR. The proposed algorithm has been used for water body extraction by Spot 5 and Landsat 5 TM images. Ground truth validation was carried out in Hanoi City. The advantage of this algorithm does not base on water body extraction only but it allows to asses also water quality. Different level of turbidity and organic matter contents could be classified by using additional index.

  8. Methane Absorption Coefficients in the 750-940 nm region derived from Intracavity Laser Absorption Spectral Measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.

    2002-09-01

    The absorption spectrum of methane has been recorded in the visible to near-IR region using the intracavity laser spectroscopy technique. Spectra are recorded at high spectral resolution for narrow overlapping intervals in the region for room and 77 K temperature methane samples. After spectra are deconvolved for the instrument function, absorption coefficients are derived. These will be presented (750-940 nm for room temperature methane; 850-920 nm for 77 K methane) and compared with results reported by other workers. Future work in this area also will be indicated. Support from NASA's Planetary Atmospheres Program (NAG5-6091 and a Major Equipment Grant) is gratefully acknowledged.

  9. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  10. Absorption spectral analysis of 4f-4f transitions for the complexation of Pr(III) and Nd(III) with thiosemicarbazide in absence and presence of Zn(II) in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Anita, K.; Rajmuhon Singh, N.

    2011-10-01

    The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.

  11. A review of multitaper spectral analysis.

    PubMed

    Babadi, Behtash; Brown, Emery N

    2014-05-01

    Nonparametric spectral estimation is a widely used technique in many applications ranging from radar and seismic data analysis to electroencephalography (EEG) and speech processing. Among the techniques that are used to estimate the spectral representation of a system based on finite observations, multitaper spectral estimation has many important optimality properties, but is not as widely used as it possibly could be. We give a brief overview of the standard nonparametric spectral estimation theory and the multitaper spectral estimation, and give two examples from EEG analyses of anesthesia and sleep. PMID:24759284

  12. Re-evaluation of pulsed photothermal radiometric profiling in samples with spectrally varied infrared absorption coefficient.

    PubMed

    Majaron, Boris; Milanic, Matija

    2007-02-21

    Spectral variation of the sample absorption coefficient in mid-infrared (muIR) demands caution in photothermal radiometric measurements, because a constant muIR is regularly assumed in inverse analysis of the acquired signals. Adverse effects of such approximation were recently demonstrated in numerical simulations of pulsed photothermal radiometric (PPTR) temperature profiling in soft biological tissues, utilizing a general-purpose optimization code in the reconstruction process. We present here an original reconstruction code, which combines a conjugate gradient minimization algorithm with non-negativity constraint to the sought temperature vector. For the same test examples as in the former report (hyper-Gaussian temperature profiles, InSb detector with 3-5 microm acquisition band, signal-to-noise ratio SNR=300) we obtain markedly improved reconstruction results, both when using a constant value mueff and when the spectral variation muIR(lambda) is accounted for in the analysis. By comparing the results, we find that the former approach introduces observable artefacts, especially in the superficial part of the profile (z<100 microm). However, the artefacts are much less severe than previously reported and are almost absent in the case of a deeper, single-lobed test profile. We demonstrate that the observed artefacts do not result from sub-optimal selection of mueff, and that they vary with specific realizations of white noise added to the simulated signals. The same holds also for a two-lobed test profile. PMID:17264372

  13. Absorption and fluorescent spectral studies of imidazophenazine derivatives.

    PubMed

    Ryazanova, O A; Zozulya, V N; Voloshin, I M; Karachevtsev, V A; Makitruk, V L; Stepanian, S G

    2004-07-01

    Absorption and fluorescent spectra as well as fluorescence polarization degree of imidazo-[4,5-d]-phenazine (F1) and its two modified derivatives, 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F2) and 1,2,3-triazole-[4,5-d]-phenazine (F3), were investigated in organic solvents of various polarities and hydrogen bonding abilities. Extinction coefficients of F2 and F3 are increased, their fluorescence Stokes shifts are reduced in comparison with those for unmodified imidazophenazine. For F3 a red shift of the longwave absorption band is observed by 15-20 nm. Modifications of imidazophenazine have led to a sufficient increase of fluorescence polarization degrees that enables to use F2 and F3 as promising fluorescent probes with polarization method application. The configuration, atomic charge distribution and dipole moments of the isolated dye molecules in the ground state were calculated by the DFT method. The computation has revealed that ground state dipole moments of F1, F2, and F3 differ slightly and are equal to 3.5, 3.2, and 3.7D, respectively. The changes in dipole moments upon the optical excitation for all derivatives estimated using Lippert equation were found to be Deltamu = 9 D. The energies of the electronic S1<--S0 transition in solvents of different proton donor abilities were determined, and energetic diagram illustrating the substituent effect was plotted. For nucleoside analogs of these compounds, covalently incorporated into a nucleotide chain, we have considered a possibility to use them as fluorescent reporters of hybridization of antisense oligonucleotides, as well as molecular anchors for its stabilization. PMID:15248979

  14. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  15. Absorption spectroscopy in the ultraviolet and visible spectral range of hexavalent chromium aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Spadoni, Lorenzo

    1999-09-01

    In order to demonstrate the possibility of performing direct absorption spectroscopy of Hexavalent Chromium aqueous solutions, absorption measurements were performed at the dual- beam spectrophotometer in the 250 - 850 nm spectral range, with 10 mm and 100 mm path lengths. Low concentration (26 - 520 (mu) g/l) (and high concentration (2.6 - 52 mg/l) solutions were analyzed, showing that it is possible to implement a basic instrumentation for risk condition monitoring and a more advanced instrumentation for quantitative measurements.

  16. Spectral effects on direct-insolation absorptance of five collector coatings

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    Absorptances for direct insolation of black chrome, black nickel, copper oxide, and two black zinc conversion selective coatings were calculated for a number of typical solar spectrums. Measured spectral reflectances were used while the effects of atmospheric ozone density, turbidity, and air mass were incorporated in calculated direct solar spectrums. Absorptance variation for direct insolation was found to be of the order of 1 percent for a typical range of clear-sky atmospheric conditions.

  17. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  18. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.

  19. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation.

    PubMed

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15°C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r=0.82nm, disorder of the system D=1500cm(-1) for H-type and r=1.04nm, D=1800cm(-1) for J-type. PMID:27348046

  20. An absorption origin for the X-ray spectral variability of MCG-6-30-15

    NASA Astrophysics Data System (ADS)

    Miller, L.; Turner, T. J.; Reeves, J. N.

    2008-05-01

    Context: The Seyfert I galaxy MCG-6-30-15 shows one of the best examples of a broad “red wing” of emission in its X-ray spectrum at energies 2 < E < 6.4 keV, commonly interpreted as being caused by relativistically-blurred reflection close to the event horizon of the black hole. Aims: We aim to test an alternative model in which absorption creates the observed spectral shape, explains the puzzling lack of variability of the red wing and reduces the high reflection albedo, substantially greater than unity, that is otherwise inferred at energies E > 20 keV. Methods: We compiled all the available long-exposure, high-quality data for MCG-6-30-15: 522 ks of Chandra hetgs, 282 ks of XMM-Newton pn/rgs and 253 ks of Suzaku xis/pin data. This is the first analysis of this full dataset. We investigated the spectral variability on timescales >20 ks using principal components analysis and fitted spectral models to “flux state” and mean spectra over the energy range 0.5-45 keV (depending on detector). The absorber model was based on the zones previously identified in the high-resolution grating data. Joint fits were carried out to any data that were simultaneous. Results: Multiple absorbing zones covering a wide range of ionisation are required by the grating data, including a highly ionised outflowing zone. A variable partial-covering zone plus absorbed low-ionisation reflection, distant from the source, provides a complete description of the variable X-ray spectrum. A single model fits all the data. We conclude that these zones are responsible for the red wing, its apparent lack of variability, the absorption structure around the Fe Kα line, the soft-band “excess” and the high flux seen in the hard X-ray band. A relativistically-blurred Fe line is not required in this model. We suggest the partial covering zone is a clumpy wind from the accretion disk.

  1. Basic elements of power spectral analysis

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1974-01-01

    The basic elements of power spectral analysis with emphasis on the Blackman-Tukey method are presented. Short discussions are included on the topics of pre-whitening, frequency and spectral windows, and statistical reliability. Examples are included whenever possible, and a FORTRAN subroutine for calculating a power spectrum is presented.

  2. Spectral Absorption and Scattering Properties of Normal and Bruised Apple Tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the spectral absorption and scattering properties of apple tissue, especially bruised tissue, can help us develop an effective method for detecting bruises during postharvest sorting and grading. This research was intended to determine the optical properties of normal and bruised apple ...

  3. Assessing multiple quality attributes of peaches using spectral absorption and scattering properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to measure the spectral absorption and reduced scattering coefficients of peaches, using a hyperspectral imaging-based spatially-resolved method, for maturity/quality assessment. A newly developed optical property measuring instrument was used for acquiring hypersp...

  4. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed. PMID:25402909

  5. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-07-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  6. Different approaches of spectral analysis

    NASA Technical Reports Server (NTRS)

    Lacoume, J. L.

    1977-01-01

    Several approaches to the problem of the calculation of spectral power density of a random function from an estimate of the autocorrelation function were studied. A comparative study was presented of these different methods. The principles on which they are based and the hypothesis implied were pointed out. Some indications on the optimization of the length of the estimated correlation function was given. An example of application of the different methods discussed in this paper was included.

  7. Short term X-ray spectral variability of the strong iron-k absorption feature in PDS 456

    NASA Astrophysics Data System (ADS)

    Matzeu, G.; Reeves, J.; Gofford, J.; Nardini, E.; Costa, M.; Braito, V.; O'Brien, P.; Ward, M.; Turner, J.; Miller, L.

    2014-07-01

    We present a recent 500 ks Suzaku and a simultaneous 500 ks XMM-Newton & NuSTAR observations, carried out in 2013, of the nearby (z=0.184) luminous (L_{bol}˜10^{47} erg s^{-1}) quasar PDS 456. Short term X-ray spectral variability, including the presence of a strong and rapidly variable iron-K absorption feature, is observed and subsequently investigated. Here, our attention is focused on the physical interpretation of the short term variability where two models are adopted in the spectral analysis (partial covering vs coronal changes), leading to two valid interpretations. In the partial covering scenario, rapidly varying absorption is due to inhomogeneous dense material and such short timescale changes also entail that that the absorption is due to gas located in the vicinity of the black hole possibly shielding part of the outflow. In the second scenario, the complex spectral variability is due to variations in the intrinsic continuum observed as changes in the soft X-ray spectrum leading subsequent changes in the hard X-ray power-law, possibly induced by Comptonisation in the disc corona. Furthermore it was possible to extrapolate the size and the location of the absorber, its outflowing velocity and a direct estimation of the size of the X-ray emitting region ˜20 R_{g}.

  8. Spectral Signature of Column Solar Radiation Absorption During the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Revision

    SciTech Connect

    O'Hirok, William; Gautier, Catherine; Ricchiazzi, Paul

    1999-11-01

    Spectral and broadband shortwave radiative flux data obtained from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) are compared with 3-D radiative transfer computations for the cloud field of October 30, 1995. Because the absorption of broadband solar radiation in the cloudy atmosphere deduced from observations and modeled differ by 135 Wm{sup -2}, we performed a consistency analysis using spectral observations and the model to integrate for wavelengths between the spectral observations. To match spectral measurements, aerosols need a reduction in both single scattering albedo (from 0.938 to 0.82) and asymmetry factor (from 0.67 to 0.61), and cloud droplets require a three-fold increase in co-albedo. Even after modifying the model inputs and microphysics the difference in total broadband absorption is still of the order of 75Wm{sup -2}. Finally, an unexplained absorber centered around 1.06 {micro}m appears in the comparison that is much too large to be explained by dimers.

  9. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma. PMID:25881446

  10. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  11. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  12. Confirmation of uncontrolled flow dynamics in clinical simulated multi-infusion setups using absorption spectral photometry

    NASA Astrophysics Data System (ADS)

    Timmerman, Anna M.; Riphagen, Brechtje; Klaessens, John H.; Verdaasdonk, Rudolf M.

    2010-02-01

    Multi-infusion systems are used frequently at intensive care units to administer several liquid therapeutic agents to patients simultaneously. By passively combining the separate infusion lines in one central line, the number of punctures needed to access the patient's body, is reduced. So far, the mutual influence between the different infusion lines is unknown. Although the flow properties of single infusion systems have been investigated extensively, only a few research groups have investigated the flow properties of multi-infusion systems. We showed in a previous study that applying multi-infusion can lead to fluctuations in syringe pump infusions, resulting in uncontrolled and inaccurate drug administration. This study presents a performance analysis of multi-infusion systems as used in the Neonatology Intensive Care Unit. The dynamics between multiple infusion lines in multi-infusion systems were investigated by simulation experiments of clinical conditions. A newly developed real-time spectral-photometric method was used for the quantitative determination of concentration and outflow volume using a deconvolution method of absorption spectra of mixed fluids. The effects for common clinical interventions were studied in detail. Results showed mutual influence between the different infusion lines following these interventions. This mutual influence led to significant volume fluctuations up to 50%. These deviations could result in clinically dangerous situations. A complete analysis of the multiinfusion system characteristics is recommended in further research to estimate both the presence and severity of potential risks in clinical use.

  13. Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment

    NASA Astrophysics Data System (ADS)

    Baszanowska, E.; Otremba, Z.

    2014-08-01

    To protect the natural marine ecosystem, it is necessary to continuously enhance knowledge of environmental contamination, including oil pollution. Therefore, to properly track the qualitative and quantitative changes in the natural components of seawater, a description of the essential spectral features describing petroleum products is necessary. This study characterises two optically-different types of crude oils (Petrobaltic and Romashkino) - substances belonging to multi-fluorophoric systems. To obtain the spectral features of crude oils, the excitation-emission spectroscopy technique was applied. The fluorescence and light absorption properties for various concentrations of oils at a stabilised temperature are described. Both excitation-emission spectra (EEMs) and absorption spectra of crude oils are discussed. Based on the EEM spectra, both excitation end emission peaks for the wavelengthindependent fluorescence maximum (Exmax/ Emmax) - characteristic points for each type of oil - were identified and compared with the literature data concerning typical marine chemical structures.

  14. [Measurement of Mole Ratio for Alkali Metal Mixture by Using Spectral Absorption Method].

    PubMed

    Zou, Sheng; Zhang, Hong; Chen, Yao; Chen, Xi-yuan

    2015-08-01

    The ratio of alkali metal mixture is one of the most important parameters in gauge head belonging to the ultra-sensitivity inertial measurement equipment, which is required to detect precisely. According to the feature that ratio of alkali metal is related to alkali metal vapor density, the theory of optical depth is used to detect the ratio of alkali metal in the present article. The result shows that the data got by the theory of optical depth compared with empirical formula differs at three orders of magnitude, which can't ensure the accuracy. By changing the data processing method, model between spectral absorption rate and temperature in cell is established. The temperature in alkali metal cell is calibrated by spectral absorption rate. The ratio of alkali metal atoms in the cell is analyzed by calculating the alkali density with empirical formula. The computational error is less than 10%. PMID:26672309

  15. Effect of differential spectral reflectance on DIAL measurements using topographic targets. [Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1982-01-01

    Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance.

  16. Augmented classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  17. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  18. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  19. Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy

    PubMed Central

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a “molecular fingerprint” that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells. PMID:25950513

  20. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  1. Interference effects in angular and spectral distributions of X-ray Transition Radiation from Relativistic Heavy Ions crossing a radiator: Influence of absorption and slowing-down

    NASA Astrophysics Data System (ADS)

    Fiks, E. I.; Pivovarov, Yu. L.

    2015-07-01

    Theoretical analysis and representative calculations of angular and spectral distributions of X-ray Transition Radiation (XTR) by Relativistic Heavy Ions (RHI) crossing a radiator are presented taking into account both XTR absorption and RHI slowing-down. The calculations are performed for RHI energies of GSI, FAIR, CERN SPS and LHC and demonstrate the influence of XTR photon absorption as well as RHI slowing-down in a radiator on the appearance/disappearance of interference effects in both angular and spectral distributions of XTR.

  2. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  3. Spectral and Instability Analysis of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Dum, C. T.

    2003-12-01

    Despite an abundance of data on plasma turbulence, obtained either by direct space observations or from computer simulation, most of the data are interpreted only in a qualitative way, rather than by a detailed analysis that would allow a quantitative comparison with theory. For such a comparison one needs to obtain, as a key ingredient, reliable wave spectra as a function of wave number and frequency. The free energy sources, linear instability mechanisms and nonlinear coupling mechanisms that generate these wave spectra should also be identified. In the case of micro turbulence these mechanisms depend on details of the particle distribution functions. Even the nature of wave modes, not only wave growth rates, may change as the plasma evolves. A particle simulation in which an electron beam excites a variety of wave modes is used as an example for such an analysis. The model corresponds to proposed mechanisms for ion conic generation on auroral field lines. The rather rapid evolution of plasma and turbulence requires that the spectral analysis is carried out over time intervals that are sufficiently short compared to time scales for spectral changes, whereas for statistical reasons and good frequency resolution long sampling intervals would be desirable. Straightforward periodograms are unsatisfactory under these conditions, even when applying windows (tapers) to the wave trains, in order to reduce spectral leakage. Modern spectral analysis methods which were mostly developed in the geophysics context, such as the maximum entropy method and the multiple taper method, can yield far better results. They are adopted for the analysis of plasma turbulence, in particular in connection with particle simulation codes, although, with other data limitations, the considerations mostly apply also to observations. Particular attention is paid to statistical tests for spectral lines which may correspond to eigenmodes (instabilities) of the plasma. For reliable results it is

  4. Economical Analysis about Ammonia Absorption Refrigeration Plants

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka

    NH3-H2O absorption refrigeration plant is attractive from each standpoint of electric power saving, non-fluorocarbon and energy saving. The plant can be the economic alternative of power compression refrigeration for evaporation temperature range from 0°C to -60°C, using suitable waste heat (co-generation system, waste incinerator), oil and natural gas. In the application of the plant, the equipment cost and the COP must be reasonable from economical standpoint. Therefore, the paper shows the following. 1) Necessary heating temparature analysis for absorption plant 2) Equipment cost analysis for heating temperature 3) Equipment cost analysis for COP 4) Number of trays in the rectifying column for COP 5) Equipment cost analysis and COP in two-stage absorption

  5. Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions.

    PubMed

    Wang, Jie; Xu, Ruisong; Yang, Shilun

    2009-10-01

    Vegetation water content could possibly provide widespread utility in agriculture, forestry and hydrology. In this article, three species leaves were measured radiometrically in order to determine a relationship between leaf water status and the spectral feature centered at 1,450 and 1,940 nm where there are strong water absorptions. The first step of our research is to measure leaf spectra with a FieldSpec-FR. After the spectral analysis using the continuum removal technique, the spectral absorption feature parameters: absorption band depth (D (1450), D (1940)), the normalized band depth of absorption in 1,450 and 1,940 nm (BNA(1450), BNA(1940)), the ratio of the two reflectance of continuum line (R (1450i )/R (1940i )), the ratio of the two band depth (D (1450)/D (1940)) and the ratio of the two absorption areas (A (1450)/A (1940)) in the two wavebands were extracted from each leaf spectrum. The fuel moisture content (FMC), specific leaf weight (SLW), equivalent water thickness (EWT) were measured for each leaf sample. A correlation analysis was conducted between the spectral absorption feature parameters and corresponding FMC, SLW and EWT. In addition, some existing indices for assessing water status such as WI (water index), WI/NDVI (water index/normalized difference vegetation index), MSI (moisture stress index), NDWI (normalized difference water index)were calculated and the correlation between them and water status were analyzed too. The results by comparing the correlations indicated that the spectral absorption feature indices we proposed were better. The indexes BNA(1940), D (1450)/D (1940), and A (1450)/A (1940) were well correlated with FMC, and the correlation between the indexes D (1450,) D (1940), R (1450i )/R (1940i ) and EWT were strong. The index A (1450)/A (1940) was tested to be a good indictor for evaluating plant water content, because there was strongest positive correlation between it and FMC than other indices. PMID:18853268

  6. ISAP: ISO Spectral Analysis Package

    NASA Astrophysics Data System (ADS)

    Ali, Babar; Bauer, Otto; Brauher, Jim; Buckley, Mark; Harwood, Andrew; Hur, Min; Khan, Iffat; Li, Jing; Lord, Steve; Lutz, Dieter; Mazzarella, Joe; Molinari, Sergio; Morris, Pat; Narron, Bob; Seidenschwang, Karla; Sidher, Sunil; Sturm, Eckhard; Swinyard, Bruce; Unger, Sarah; Verstraete, Laurent; Vivares, Florence; Wieprecht, Ecki

    2014-03-01

    ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF, MIDAS) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.

  7. Spectral derivative feature coding for hyperspectral signature analysis

    NASA Astrophysics Data System (ADS)

    Chang, Chein-I.; Chakravarty, Sumit

    2006-08-01

    This paper presents a new approach to hyperspectral signature analysis, called Spectral Derivative Feature Coding (SDFC). It makes use of gradient changes in adjacent bands to characterize spectral variations so as to improve spectral discrimination and identification. In order to evaluate its performance, two binary coding methods, SPectral Analysis Manager (SPAM) and Spectral Feature-based Binary Coding (SFBC) are used to conduct comparative analysis. The experimental results demonstrate the proposed SDFC performs more effectively in capturing spectral characteristics.

  8. [Raman spectral analysis of theanine].

    PubMed

    Chen, Yong-Jian; Chen, Rong; Li, Yong-Zeng; Huang, Zu-Fang; Chen, Jie-Si; Lin, Duo; Xi, Gang-Qin

    2011-11-01

    The L-theanine was tested using confocal Raman microscopy. Obvious Raman bands were showed in the range of 250 -1 700 and 2 800-3 000 cm(-1). The Raman bands were assigned with a preliminary analysis and the characteristic vibrational modes were gained in different range of wave numbers. Eight strong Raman bands were observed in the Raman spectra at 321, 900, 938, 1 153, 1 312, 1 358, 1 454 and 1 647 cm(-1), respectively. They are the characteristic Raman bands of L-theanine. The results showed that Raman spectroscopy might be a new kind of precise, direct and fast detecting method for theanine. PMID:22242495

  9. Interactive Spectral Analysis and Computation (ISAAC)

    NASA Technical Reports Server (NTRS)

    Lytle, D. M.

    1992-01-01

    Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.

  10. Photoadaptation in marine phytoplankton: changes in spectral absorption and excitation of chlorophyll a fluorescence

    SciTech Connect

    Neori, A.; Holm-Hansen, O.; Mitchell, B.G.; Kiefer, D.A.

    1984-10-01

    The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations. 30 references, 6 figures.

  11. Analysis of exploitable spectral features of target and background materials

    NASA Astrophysics Data System (ADS)

    Winkelmann, Max

    2015-10-01

    The spectral behavior of textile camouflage materials in the electro-optical spectral range is analyzed and compared with different backgrounds. It is shown that it will be difficult to develop camouflage materials that match a vegetative background in the NIR and SWIR spectral range. The problem of water absorption spectral features is discussed. In addition the effect of different surface finishing of textiles is shown.

  12. SpecViz: Interactive Spectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael; STScI

    2016-06-01

    The astronomical community is about to enter a new generation of scientific enterprise. With next-generation instrumentation and advanced capabilities, the need has arisen to equip astronomers with the necessary tools to deal with large, multi-faceted data. The Space Telescope Science Institute has initiated a data analysis forum for the creation, development, and maintenance of software tools for the interpretation of these new data sets. SpecViz is a spectral 1-D interactive visualization and analysis application built with Python in an open source development environment. A user-friendly GUI allows for a fast, interactive approach to spectral analysis. SpecViz supports handling of unique and instrument-specific data, incorporation of advanced spectral unit handling and conversions in a flexible, high-performance interactive plotting environment. Active spectral feature analysis is possible through interactive measurement and statistical tools. It can be used to build wide-band SEDs, with the capability of combining or overplotting data products from various instruments. SpecViz sports advanced toolsets for filtering and detrending spectral lines; identifying, isolating, and manipulating spectral features; as well as utilizing spectral templates for renormalizing data in an interactive way. SpecViz also includes a flexible model fitting toolset that allows for multi-component models, as well as custom models, to be used with various fitting and decomposition routines. SpecViz also features robust extension via custom data loaders and connection to the central communication system underneath the interface for more advanced control. Incorporation with Jupyter notebooks via connection with the active iPython kernel allows for SpecViz to be used in addition to a user’s normal workflow without demanding the user drastically alter their method of data analysis. In addition, SpecViz allows the interactive analysis of multi-object spectroscopy in the same straight

  13. Differences in spectral absorption properties between active neovascular macular degeneration and mild age related maculopathy.

    PubMed

    Balaskas, Konstantinos; Nourrit, Vincent; Dinsdale, Michelle; Henson, David B; Aslam, Tariq

    2013-05-01

    This study examines the differences in spectral absorption properties between the maculae of patients with active neovascular macular degeneration and those with early age related maculopathy (ARM). Patients attending for management of neovascular age related macular degeneration (AMD) underwent multispectral imaging with a system comprising of a modified digital fundus camera coupled with a 250-W tungsten-halogen lamp and a liquid crystal fast-tuneable filter. Images were obtained at 8 wavelengths between 496 and 700 nm. Aligned images were used to generate a DLA (differential light absorption, a measure of spectral absorption properties) map of the macular area. DLA maps were generated for both eyes of 10 sequential patients attending for anti-vascular endothelial growth factor injections. Each of these patients had active leaking neovascular AMD in one eye and early ARM or milder disease in the fellow eye. Eyes with neovascular AMD demonstrated lower average levels of DLA compared with their fellow eyes with early ARM (p=0.037, t test). The significant difference in DLA demonstrates the potential of multispectral imaging for differentiating the two pathologies non-invasively. PMID:23137662

  14. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-12-10

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  15. Spectral Analysis and Classification of Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Hernández, Jesús; Calvet, Nuria; Briceño, César; Hartmann, Lee; Berlind, Perry

    2004-03-01

    We present an analysis of the optical spectra of 75 early-type emission-line stars, many of which have been classified previously as Herbig Ae/Be (HAeBe) stars. Accurate spectral types were derived for 58 members of the sample; high continuum veiling, contamination by nonphotospheric absorption features, or a composite binary spectrum prevented accurate spectral typing for the rest. Approximately half of our sample exhibited [O I] λ6300 forbidden-line emission down to our detection limit of 0.1 Å equivalent width; a third of the sample exhibited Fe II emission (multiplet 42). A subset of 11 of the HAeBe sample showed abnormally strong Fe II absorption; 75% of this subset are confirmed UX Ori objects. Combining our spectral typing results with photometry from the literature, we confirm previous findings of high values of total-to-selective extinction (RV~5) in our larger sample, suggesting significant grain growth in the environments of HAeBe stars. With this high value of RV, the vast majority of HAeBe stars appear younger than with the standard RV=3.1 extinction law and are more consistent with being pre-main-sequence objects.

  16. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  17. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  18. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  19. Automated eXpert Spectral Image Analysis

    2003-11-25

    AXSIA performs automated factor analysis of hyperspectral images. In such images, a complete spectrum is collected an each point in a 1-, 2- or 3- dimensional spatial array. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful information. Multivariate factor analysis techniques have proven effective for extracting the essential information from high dimensional data sets into a limtedmore » number of factors that describe the spectral characteristics and spatial distributions of the pure components comprising the sample. AXSIA provides tools to estimate different types of factor models including Singular Value Decomposition (SVD), Principal Component Analysis (PCA), PCA with factor rotation, and Alternating Least Squares-based Multivariate Curve Resolution (MCR-ALS). As part of the analysis process, AXSIA can automatically estimate the number of pure components that comprise the data and can scale the data to account for Poisson noise. The data analysis methods are fundamentally based on eigenanalysis of the data crossproduct matrix coupled with orthogonal eigenvector rotation and constrained alternating least squares refinement. A novel method for automatically determining the number of significant components, which is based on the eigenvalues of the crossproduct matrix, has also been devised and implemented. The data can be compressed spectrally via PCA and spatially through wavelet transforms, and algorithms have been developed that perform factor analysis in the transform domain while retaining full spatial and spectral resolution in the final result. These latter innovations enable the analysis of larger-than core-memory spectrum-images. AXSIA was designed to perform automated chemical phase analysis of spectrum-images acquired by a variety of chemical imaging techniques. Successful applications include Energy Dispersive X-ray Spectroscopy, X

  20. SVD analysis of Aura TES spectral residuals

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Kulawik, Susan S.; Rodgers, Clive D.; Bowman, Kevin W.

    2005-01-01

    Singular Value Decomposition (SVD) analysis is both a powerful diagnostic tool and an effective method of noise filtering. We present the results of an SVD analysis of an ensemble of spectral residuals acquired in September 2004 from a 16-orbit Aura Tropospheric Emission Spectrometer (TES) Global Survey and compare them to alternative methods such as zonal averages. In particular, the technique highlights issues such as the orbital variation of instrument response and incompletely modeled effects of surface emissivity and atmospheric composition.

  1. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.; Sung, K.; Devi, V. M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-06-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 µmol mol-1 and 12 µmol mol-1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  2. Species Discrimination of Mangroves using Derivative Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Prasad, K. Arun; Gnanappazham, L.

    2014-11-01

    Mangroves are salt tolerant trees or shrubs commonly seen in mudflats of intertidal regions of tropical and subtropical coastlines. Recent advances in field spectroscopic techniques enabled the species level discrimination among closely related vegetation types. In this study we have analysed the laboratory spectroscopy data collected from eight species of Rhizophoraceaea family of mangroves. The spectral data ranges between the wavelength of 350 nm and 2500 nm at a very narrow bandwidth of 1 nm. Preprocessing techniques including smoothing were done on the spectra to remove the noise before compiling it to a spectral library. Derivative analysis of the spectra was done and its corresponding first and second derivatives were obtained. Statistical analysis such as parametric and non-parametric tests were implemented on the original processed spectra as well as their respective first and second order derivatives for the identification of significant bands for species discrimination. Results have shown that red edge region (680 nm - 720 nm) and water vapour absorption region around 1150 nm and 1400 nm are optimal as they were consistent in discriminating species in reflectance spectra as well as in its first and second derivative spectra. C. decandra species is found to be discriminable from other species while reflectance and its derivative spectra were used. Non-parametric statistical analysis gave better results than that of parametric statistical analysis especially in SWIR 2 spectral region (1831 nm - 2500 nm).

  3. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  4. Absolute Rovibrational Intensities of C-12O2-16 Absorption Bands in the 3090-3850/ CM Spectral Region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1998-01-01

    A multispectrum nonlinear least-squares fitting technique has been used to determine the absolute intensities for approximately 1500 spectral lines in 36 vibration - rotation bands Of C-12O2-16 between 3090 and 3850/ cm. A total of six absorption spectra of a high- purity (99.995% minimum) natural sample of carbon dioxide were used in the analysis. The spectral data (0.01/cm resolution) were recorded at room temperature and low pressure (1 to 10 Torr) using the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak. The absorption path lengths for these spectra varied between 24.86 and 385.76 m. The first experimental determination of the intensity of the theoretically predicted 2(nu)(sub 2, sup 2) + nu(sub 3) "forbidden" band has been made. The measured line intensities obtained for each band have been analyzed to determine the vibrational band intensity, S(sub nu), in /cm/( molecule/sq cm) at 296 K, square of the rotationless transition dipole moment |R|(exp 2) in Debye, as well as the nonrigid rotor coefficients. The results are compared to the values listed in the 1996 HITRAN database which are obtained using the direct numerical diagonalization (DND) technique as well as to other published values where available.

  5. Spectral analysis and the Riemann hypothesis

    NASA Astrophysics Data System (ADS)

    Lachaud, Gilles

    2003-11-01

    The explicit formulas of Riemann and Guinand-Weil relate the set of prime numbers with the set of nontrivial zeros of the zeta function of Riemann. We recall Alain Connes' spectral interpretation of the critical zeros of the Riemann zeta function as eigenvalues of the absorption spectrum of an unbounded operator in a suitable Hilbert space. We then give a spectral interpretation of the zeros of the Dedekind zeta function of an algebraic number field K of degree n in an automorphic setting. If K is a complex quadratic field, the torical forms are the functions defined on the modular surface X, such that the sum of this function over the "Gauss set" of K is zero, and Eisenstein series provide such torical forms. In the case of a general number field, one can associate to K a maximal torus T of the general linear group G. The torical forms are the functions defined on the modular variety X associated to G, such that the integral over the subvariety induced by T is zero. Alternately, the torical forms are the functions which are orthogonal to orbital series on X. We show here that the Riemann hypothesis is equivalent to certain conditions bearing on spaces of torical forms, constructed from Eisenstein series, the torical wave packets. Furthermore, we define a Hilbert space and a self-adjoint operator on this space, whose spectrum equals the set of critical zeros of the Dedekind zeta function of K.

  6. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    PubMed

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum. PMID:22547234

  7. Spectral variation of the infrared absorption coefficient in pulsed photothermal profiling of biological samples.

    PubMed

    Majaron, Boris; Verkruysse, Wim; Tanenbaum, B Samuel; Milner, Thomas E; Nelson, J Stuart

    2002-06-01

    Pulsed photothermal radiometry can be used for non-invasive depth profiling of optically scattering samples, including biological tissues such as human skin. Computational reconstruction of the laser-induced temperature profile from recorded radiometric signals is sensitive to the value of the tissue absorption coefficient in the infrared detection band (muIR). While assumed constant in reported reconstruction algorithms, muIR of human skin varies by two orders of magnitude in the commonly used 3-5 microm detection band. We analyse the problem of selecting the effective absorption coefficient value to be used with such algorithms. In a numerical simulation of photothermal profiling we demonstrate that results can be markedly impaired, unless the reconstruction algorithm is augmented by accounting for spectral variation muIR(lambda). Alternatively, narrowing the detection band to 4.5-5 microm reduces the spectral variation muIR(lambda) to a level that permits the use of the simpler, unaugmented algorithm. Implementation of the latter approach for depth profiling of port wine stain birthmarks in vivo is presented and discussed. PMID:12108776

  8. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase.

    PubMed

    Gennaro, Sylvain D; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V; Maier, Stefan A; Oulton, Rupert F

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode's scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  9. Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption

    NASA Astrophysics Data System (ADS)

    Costabile, F.; Barnaba, F.; Angelini, F.; Gobbi, G. P.

    2013-03-01

    Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol single scattering albedo (dSSA), and the extinction, scattering and absorption Angstrom exponents (EAE, SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed the investigation of the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show EAE > 1.5, whilst EAE < 2 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. The proposed paradigm agrees with aerosol observations performed during past major field campaigns, this indicating that relations concerning the paradigm have a general validity.

  10. Spectral Analysis in Catchment Hydrology and Geochemistry

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Feng, X.; Renshaw, C. E.; Neal, C.

    2001-12-01

    Spectral analysis of chemical tracer time series can be used to probe the internal workings of catchments. It has recently been shown that catchments act as fractal filters for inert chemical tracers like chloride, converting "white noise" rainfall chemistry inputs into fractal "1/f noise" runoff chemistry time series (Kirchner et al., 2000). This implies that catchments have long-tailed travel time distributions, and thus retain soluble contaminants for unexpectedly long timespans. Long-term monitoring data from North America, Britain, and Scandinavia show that this fractal behavior characterizes a wide array of catchments. How can this fractal scaling arise in such diverse settings? One can show that advection and dispersion of spatially distributed rainfall tracer inputs will generate fractal tracer time series, as long as the flow system is highly dispersive (Kirchner et al., in press). This implies that subsurface flow in small catchments is dominated by large conductivity contrasts, such as arise from macropores, fracture networks, and similar large-scale heterogeneities in subsurface conductivity. One can also use spectral methods to analyze long-term time series of water fluxes in rainfall and streamflow. Spectral analysis of hydrologic time series measures the downslope propagation of the hydraulic potential waves that mobilize runoff, whereas spectral analysis of tracer time series clocks the propagation of water itself through the catchment. Water fluxes in streamflow exhibit non-fractal scaling, instead of the fractal 1/f scaling shown by chemical tracers. These observations imply that hydrologic signals are transmitted downslope more rapidly, and with much less dispersion, than chemical tracer signals are. Thus small upland catchments transmit hydraulic potentials (which drive runoff) much less dispersively than they transport water itself. These observations provide important constraints for theoretical models of subsurface flow and transport in

  11. Rotary absorption heat pump sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Bamberger, J. A.; Zalondek, F. R.

    1990-03-01

    Conserve Resources, Incorporated is currently developing an innovative, patented absorption heat pump. The heat pump uses rotation and thin film technology to enhance the absorption process and to provide a more efficient, compact system. The results are presented of a sensitivity analysis of the rotary absorption heat pump (RAHP) performance conducted to further the development of a 1-ton RAHP. The objective of the uncertainty analysis was to determine the sensitivity of RAHP steady state performance to uncertainties in design parameters. Prior to conducting the uncertainty analysis, a computer model was developed to describe the performance of the RAHP thermodynamic cycle. The RAHP performance is based on many interrelating factors, not all of which could be investigated during the sensitivity analysis. Confirmatory measurements of LiBr/H2O properties during absorber/generator operation will provide experimental verification that the system is operating as it was designed to operate. Quantities to be measured include: flow rate in the absorber and generator, film thickness, recirculation rate, and the effects of rotational speed on these parameters.

  12. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features.

    PubMed

    Cina, Jeffrey A; Kovac, Philip A; Jumper, Chanelle C; Dean, Jacob C; Scholes, Gregory D

    2016-05-01

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to a simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done. PMID:27155654

  13. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features

    NASA Astrophysics Data System (ADS)

    Cina, Jeffrey A.; Kovac, Philip A.; Jumper, Chanelle C.; Dean, Jacob C.; Scholes, Gregory D.

    2016-05-01

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to a simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.

  14. Hydrogen sulfide absorption spectrum in the 5700-6600 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Brown, L. R.; Naumenko, O. V.; Polovtseva, E. R.; Sinitsa, Leonid N.

    2004-01-01

    High resolution FT absorption spectrum of H2S from 5700 to 6600 cm-1 was experimentally recorded and theoretically treated. As a result of the spectrum assignment 1100 precise energy levels were derived for the 2nd hexad interacting states of H232S, H233S, and H234S isotope species including the highly excited (050) state. These energy levels were modeled using Watson-type rotational Hamiltonian and taking into account Coriolis, Darling-Dennison and weak Fermi-resonance interactions inside polyad of interacting states. An average accuracy of the energy levels fitting is of 0.0019 cm-1 for the main isotope species. New evaluation of the band origin of the dark (012) state Ev = 6385.299cm-1 is obtained from the fitting process which agrees well with recent prediction by Naumenko et al. (J. Mol. Spectrosc. 50, 100-110 (2001)). Precise line intensity measurements were performed for more than 1200 absorption lines with accuracy varying from 1 to 7%. These intensities were modeled within 3.3% using wavefunctions derived in the process of the energy levels fitting. The transformed transition moment expansion with 29 terms for 1088 intensities was used. Detailed and accurate H2S absorption line list was generated in the HITRAN format for the analyzed spectral region.

  15. Spectral analysis of ambient weather patterns

    SciTech Connect

    Anderson, J.V.; Subbarao, K.

    1981-01-01

    A Fourier spectral analysis of ambient weather data, consisting of global and direct solar radiation, dry and wet bulb temperatures, and wind speed, is given. By analyzing the heating and cooling seasons independently, seasonal variations are isolated and a cleaner spectrum emerges. This represents an improvement over previous work in this area, in which data for the entire year were analyzed together. As a demonstration of the efficacy of this method, synthetic data constructed with a small number of parameters are used in typical simulations, and the results are compared with those obtained with the original data. A spectral characterization of fluctuations around the moving average is given, and the changes in the fluctuation from season to season are examined.

  16. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  17. A Digital Spectral Library for Planetary and Terrestrial Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Swayze, G. A.; Wise, R.; Livo, K. E.; Hoefen, T. M.; Kokaly, R. F.; Sutley, S. J.

    2003-05-01

    We have assembled a digital reflectance spectral library of over 800 spectra that covers the ultraviolet to near-infrared region of the electromagnetic spectrum along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, vegetation, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from the laboratory, aircraft, and spacecraft requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopic identification of minerals and related materials important to a variety of research programs being conducted on the Earth and other planets. Imaging spectrometers, such as the Airborne Visible/Infra-Red Imaging Spectrometer (AVIRIS), or the Cassini Visual and Infrared Mapping Spectrometer (VIMS) on its way to orbit Saturn in 2004, have narrow band widths in many contiguous spectral channels that permit accurate definition of absorption features from a variety of materials. Identification of materials requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. This new database includes minerals found in hydrothermal alteration zones and weathering products that may be important in the exploration of Mars. This library includes all spectra used in the Clark et al, (JGR in Press 2003) Tetracorder imaging spectroscopy mapping system. Chapters of the library are: Chapter 1: M = Minerals, Chapter 2: S = Soils, Rocks, Mixtures, Chapter 3: C = Coatings, Chapter 4: L = Liquids, Liquid Mixtures, Water and Other Volatiles Including Frozen Volatiles, Chapter 5: A = Artificial (Man-Made) Including Manufactured Chemicals, Chapter 6: V = Vegetation, Mixtures with Vegetation, and Micro-Organisms.

  18. Phase Resolved X-ray Spectral Analysis of Soft IPs

    NASA Astrophysics Data System (ADS)

    Pekon, Yakup

    2016-07-01

    As a subclass of Cataclysmic Variables, Intermediate Polars (IPs) are magnetic systems which mainly show hard X-ray emission. However, there have been an increasing number of systems that also show a soft emission component arising from reprocessed X-rays from the white dwarf limbs. Due to their relatively short periods, they pose as good canditates to perform phase resolved analysis. In this work, X-ray phase resolved spectral analysis of selected IPs with soft X-ray emission components (such as PQ Gem, V2069 Cyg etc.) over the orbital and/or spin periods will be presented. The analyses will help a better understanding of the complex absorption mechanisms and the nature of the soft X-ray emissions in soft IPs.

  19. Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints

    NASA Astrophysics Data System (ADS)

    Fraeman, A. A.; Murchie, S. L.; Arvidson, R. E.; Clark, R. N.; Morris, R. V.; Rivkin, A. S.; Vilas, F.

    2014-02-01

    Absorption features on Phobos and Deimos in the visible/near infrared wavelength region (0.4-3.9 μm) are mapped using observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Fe2+ electronic absorptions diagnostic of olivine and pyroxene are not detected. A broad absorption centered around 0.65 μm within the red spectral units of both moons is detected, and this feature is also evident in telescopic, Pathfinder, and Phobos-2 observations of Phobos. A 2.8 μm metal-OH combination absorption on both moons is also detected in the CRISM data, and this absorption is shallower in the Phobos blue unit than in the Phobos red unit and Deimos. The strength, position, and shape of both of the 0.65 μm and 2.8 μm absorptions are similar to features seen on red-sloped, low-albedo primitive asteroids. Two end-member hypotheses are presented to explain the spectral features on Phobos and Deimos. The first invokes the presence of highly desiccated Fe-phyllosilicate minerals indigenous to the bodies, and the second invokes Rayleigh scattering and absorption of small iron particles formed by exogenic space weathering processing, coupled with implantation of H from solar wind. Both end-member hypotheses may play a role, and in situ exploration will be needed to ultimately determine the underlying causes for the pair of spectral features observed on Phobos and Deimos.

  20. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  1. Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Li, Z.; Nemtchinov, V.; Cherukuri, A.

    1994-01-01

    Spectral absorption-coefficients (cross-sections) kappa(sub nu) (/cm/atm) have been measured in the 7.62, 8.97, and 12.3 micrometer bands of HCFC-22 (CHClF2) and the 10.6 micrometer bands of SF6 employing a high-resolution Fourier-transform spectrometer. Temperature and total pressure have been varied to simulate conditions corresponding to tropospheric and stratospheric layers in the atmosphere. The kappa(sub nu) are compared with values measured by us previously using a tunable diode laser spectrometer and with the appropriate entries in HITRAN and GEISA, two of the databases known to the atmospheric scientist. The measured absolute intensities of the bands are compared with previously published values.

  2. Spectral analysis of ELT signals for SARSAT

    NASA Astrophysics Data System (ADS)

    Dessouky, M. I.; Carter, C. R.

    1987-09-01

    Search and rescue satellite-aided tracking (SARSAT) relays the emergency locator transmitter (ELT) signals of distressed aircraft to an earth station for spectral analysis. Of considerable importance are the characteristics of the spectrum of the ELT signal since the probability of locating the downed aircraft is closely related to the quality of the ELT signal spectrum itself. In this paper, it is shown that the spectrum can be adversely affected by a number of factors including the phase and frequency characteristics of the carrier and their interaction with the amplitude modulation. Two new models are proposed which greatly reduce the self-generated interference produced by ELT units presently being used.

  3. Spectral analysis program. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Hayden, W. L.

    1972-01-01

    The spectral analysis program (SAP) was developed to provide the Manned Spacecraft Center with the capability of computing the power spectrum of a phase or frequency modulated high frequency carrier wave. Previous power spectrum computational techniques were restricted to relatively simple modulating signals because of excessive computational time, even on a high speed digital computer. The present technique uses the recently developed extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals. The present technique is especially convenient for implementation of a variety of low-pass filters for the modulating signal and bandpass filters for the modulated signal.

  4. Spectral studies and thermal analysis of new vanadium complexes of ethanolamine and related compounds

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Ahmed, Hytham M.; Mohamed, Essam A.

    2013-10-01

    The electronic absorption spectral behaviors of newly synthesized complexes of VIII, VIV and VO2+ with Ethanolamine, Diethanolamine and Triethanolamine were described. The complexes have been characterized by elemental analyses, magnetic moment measurements, IR and UV-Vis spectroscopy. Absorption spectra in seven different solvents were recorded. The solvatochromism was examined and discussed. Dipolar interactions between the solvent and the complexes were used to correlate the observed spectral shifts to solvent polarity. Some of the obtained complexes were studied by thermal analysis using DTA and TG techniques.

  5. Power spectral analysis of mammographic parenchymal patterns

    NASA Astrophysics Data System (ADS)

    Li, Hui; Giger, Maryellen L.; Olopade, Olufunmilayo I.

    2006-03-01

    Mammographic density and parenchymal patterns have been shown to be associated with the risk of developing breast cancer. Two groups of women: gene-mutation carriers and low-risk women were included in this study. Power spectral analysis was performed within parenchymal regions of 172 digitized craniocaudal normal mammograms of the BRCA1/BRCA2 gene-mutation carriers and those of women at low-risk of developing breast cancer. The power law spectrum of the form, P(f)=B/f β was evaluated for the mammographic patterns. Receiver Operating Characteristic (ROC) analysis was used to assess the performance of exponent β as a decision variable in the task of distinguishing between high and low-risk subjects. Power spectral analysis of mammograms demonstrated that mammographic parenchymal patterns have a power-law spectrum of the form, P(f)=B/f β where f is radial spatial frequency, with the average β values of 2.92 and 2.47 for the gene-mutation carriers and for the low-risk women, respectively. A z values of 0.90 and 0.89 were achieved in distinguishing between the gene-mutation carriers and the low-risk women with the individual image β value as the decision variable in the entire database and the age-matched group, respectively.

  6. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. PMID:26617032

  7. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  8. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  9. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  10. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  11. A new method to probe the thermal electron content of the Galaxy through spectral analysis of background sources

    NASA Astrophysics Data System (ADS)

    Jones, D. I.; Igoshev, A. P.; Haverkorn, M.

    2016-08-01

    We present a new method for probing the thermal electron content of the Galaxy by spectral analysis of background point sources in the absorption-only limit to the radiative transfer equation. In this limit, calculating the spectral index, $\\alpha$, of these sources using a natural logarithm results in an additive factor, which we denote $\\alpha_\\mathrm{EM}$, resulting from the absorption of radiation due to the Galactic thermal electron population. We find that this effect is important at very low frequencies ($\

  12. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    PubMed

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  13. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  14. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  15. Spectral luminescence analysis of amniotic fluid

    NASA Astrophysics Data System (ADS)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.

    1997-12-01

    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  16. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfa; Zhu, Zhihong; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-08-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges.Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges. Electronic supplementary information (ESI) available: Spectral tuning of absorption by changing the diameter of graphene nanodisks. Perfect light absorption in the whole structure and further enhancement of absorption in the underlying absorptive layer with a back mirror. Light trapping and enhancement of

  17. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  18. Understanding Boswellia papyrifera tree secondary metabolites through bark spectral analysis

    NASA Astrophysics Data System (ADS)

    Girma, Atkilt; Skidmore, Andrew K.; de Bie, C. A. J. M.; Bongers, Frans

    2015-07-01

    Decision makers are concerned whether to tap or rest Boswellia Papyrifera trees. Tapping for the production of frankincense is known to deplete carbon reserves from the tree leading to production of less viable seeds, tree carbon starvation and ultimately tree mortality. Decision makers use traditional experience without considering the amount of metabolites stored or depleted from the stem-bark of the tree. This research was designed to come up with a non-destructive B. papyrifera tree metabolite estimation technique relevant for management using spectroscopy. The concentration of biochemicals (metabolites) found in the tree bark was estimated through spectral analysis. Initially, a random sample of 33 trees was selected, the spectra of bark measured with an Analytical Spectral Device (ASD) spectrometer. Bark samples were air dried and ground. Then, 10 g of sample was soaked in Petroleum ether to extract crude metabolites. Further chemical analysis was conducted to quantify and isolate pure metabolite compounds such as incensole acetate and boswellic acid. The crude metabolites, which relate to frankincense produce, were compared to plant properties (such as diameter and crown area) and reflectance spectra of the bark. Moreover, the extract was compared to the ASD spectra using partial least square regression technique (PLSR) and continuum removed spectral analysis. The continuum removed spectral analysis were performed, on two wavelength regions (1275-1663 and 1836-2217) identified through PLSR, using absorption features such as band depth, area, position, asymmetry and the width to characterize and find relationship with the bark extracts. The results show that tree properties such as diameter at breast height (DBH) and the crown area of untapped and healthy trees were strongly correlated to the amount of stored crude metabolites. In addition, the PLSR technique applied to the first derivative transformation of the reflectance spectrum was found to estimate the

  19. Protein identification by spectral networks analysis.

    PubMed

    Bandeira, Nuno; Tsur, Dekel; Frank, Ari; Pevzner, Pavel A

    2007-04-10

    Advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/MS spectra. As a result, the existing approaches that compare spectra against databases are already facing a bottleneck, particularly when interpreting spectra of modified peptides. Here we explore a concept that allows one to perform an MS/MS database search without ever comparing a spectrum against a database. We propose to take advantage of spectral pairs, which are pairs of spectra obtained from overlapping (often nontryptic) peptides or from unmodified and modified versions of the same peptide. Having a spectrum of a modified peptide paired with a spectrum of an unmodified peptide allows one to separate the prefix and suffix ladders, to greatly reduce the number of noise peaks, and to generate a small number of peptide reconstructions that are likely to contain the correct one. The MS/MS database search is thus reduced to extremely fast pattern-matching (rather than time-consuming matching of spectra against databases). In addition to speed, our approach provides a unique paradigm for identifying posttranslational modifications by means of spectral networks analysis. PMID:17404225

  20. SPECTRAL POLARIZATION OF THE REDSHIFTED 21 cm ABSORPTION LINE TOWARD 3C 286

    SciTech Connect

    Wolfe, Arthur M.; Jorgenson, Regina A.; Robishaw, Timothy; Heiles, Carl; Xavier Prochaska, J. E-mail: raj@ast.cam.ac.uk E-mail: heiles@astro.berkeley.edu

    2011-05-20

    A reanalysis of the Stokes-parameter spectra obtained of the z = 0.692 21 cm absorption line toward 3C 286 shows that our original claimed detection of Zeeman splitting by a line-of-sight magnetic field, B{sub los} = 87 {mu}G, is incorrect. Because of an insidious software error, what we reported as Stokes V is actually Stokes U: the revised Stokes V spectrum indicates a 3{sigma} upper limit of B{sub los}< 17 {mu}G. The correct analysis reveals an absorption feature in fractional polarization that is offset in velocity from the Stokes I spectrum by -1.9 km s{sup -1}. The polarization position-angle spectrum shows a dip that is also significantly offset from the Stokes I feature, but at a velocity that differs slightly from the absorption feature in fractional polarization. We model the absorption feature with three velocity components against the core-jet structure of 3C 286. Our {chi}{sup 2} minimization fitting results in components with differing (1) ratios of H I column density to spin temperature, (2) velocity centroids, and (3) velocity dispersions. The change in polarization position angle with frequency implies incomplete coverage of the background jet source by the absorber. It also implies a spatial variation of the polarization position angle across the jet source, which is observed at frequencies higher than the 839.4 MHz absorption frequency. The multi-component structure of the gas is best understood in terms of components with spatial scales of {approx}100 pc comprised of hundreds of low-temperature (T {<=} 200 K) clouds with linear dimensions of <<100 pc. We conclude that previous attempts to model the foreground gas with a single uniform cloud are incorrect.

  1. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  2. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  3. Variability, absorption features, and parent body searches in "spectrally featureless" meteorite reflectance spectra: Case study - Tagish Lake

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Craig, M. A.; Applin, D. M.; Sanchez, J. A.; Reddy, V.; Le Corre, L.; Mann, P.; Cloutis, E. A.

    2015-07-01

    Reflectance spectra of many asteroids and other Solar System bodies are commonly reported as "featureless". Here, we show that weak but consistently detectable absorption bands are observable in 200-2500 nm spectra of the Tagish Lake meteorite, a likely compositional and spectral analogue for low-albedo, "spectrally-featureless" asteroids. Tagish Lake presents a rare opportunity to study multiple lithologies within a single meteorite. Reflectance spectra of Tagish Lake display significant variation between different lithologies. The spectral variations are due in part to mineralogical variations between different Tagish Lake lithologies. Ultraviolet reflectance spectra (200-400 nm), few of which have been reported in the literature to date, reveal albedo and spectral ratio variations as a function of mineralogy. Similarly visible-near infrared reflectance spectra reveal variations in albedo, spectral slope, and the presence of weak absorption features that persist across different lithologies and can be attributed to various phases present in Tagish Lake. These observations demonstrate that significant spectral variability may exist between different lithologies of Tagish Lake, which may affect the interpretation of potential source body spectra. It is also important to consider the spectral variability within the meteorite before excluding compositional links between possible parent bodies in the main belt and Tagish Lake. Tagish Lake materials may also be spectral-compositional analogues for materials on the surfaces of other dark asteroids, including some that are targets of upcoming spacecraft missions. Tagish Lake has been proposed as a spectral match for 'ultra-primitive' D or P-type asteroids, and the variability reported here may be reflected in spatially or rotationally-resolved spectra of possible Tagish Lake parent bodies and source objects in the Near-Earth Asteroid population. A search for objects with spectra similar to Tagish Lake has been carried

  4. [The linearity analysis of ultrahigh temperature FTIR spectral emissivity measurement system].

    PubMed

    Wang, Zong-wei; Dai, Jing-min; He, Xiao-wa; Yang, Chun-ling

    2012-02-01

    To study thermal radiation properties of special materials at high temperature in aerospace fields, the ultrahigh temperature spectral emissivity measurement system with Fourier spectrometer has been established. The linearity of system is the guarantee of emissivity measurement precision. Through measuring spectral radiation signals of a blackbody source at different temperatures, the function relations between spectral signal values and blackbody spectral radiation luminance of every spectrum points were calculated with the method of multi-temperature and multi-spectrum linear fitting. The spectral radiation signals of blackbody were measured between 1 000 degrees C and 2 000 degrees C in the spectral region from 3 to 20 microm. The linear relations between spectral signal and theory line at wavelength of 4 microm were calculated and introduced. The spectral response is well good between 4 and 18 microm, the spectral linearity are less than 1% except CO2 strong absorption spectrum regions. The results show that when the errors of measured spectrum radiation and linear fitting theory lines are certain, the higher the temperature, the smaller the spectral errors on emissivity. The linearity analysis of spectrum response is good at eliminating errors caused by individual temperature' disturbance to the spectra. PMID:22512159

  5. Spectral characteristic analysis of lung cancer serum

    NASA Astrophysics Data System (ADS)

    Li, Xiao Zhou; Jin, Huiqiang; Liu, Huasheng; Ding, Jianhua; Lin, Junxiu

    2001-10-01

    Spectral changes of lung cancer serum in the process of tumor evolution were investigated in this study. We kept close watch on the tumor progression of a group of patients, and measured their serum spectra using 488.0nm and 514.5nm excitation of an Ar-ion laser once a week. There was no apparent change observed in fluorescence spectrum in different period. However, the relative intensity of three Raman peaks (mode A, B and C) decreased every week later. For quantitative analysis of such changes, a parameter Ir (relative intensity of C Raman peak) was introduced and Ir-value was calculated. Calculation showed that Ir-value was degressive with tumor evolution, but (beta) (Ir5145 /Ir4880) varied irregularly. To the end, no Raman peak was observed. We assumed that three Raman peaks were derived from beta carotene. It indicated that the content of beta carotene decreased with the aggravation of lung cancer.

  6. Spectral analysis of Floating Car Data

    NASA Astrophysics Data System (ADS)

    Gössel, F.; Michler, E.; Wrase, B.

    2003-05-01

    Floating Car Data (FCD) are one important data source in traffic telematic systems. The original variable in these systems is the vehicle velocity. The paper analyses the measured value "vehicle velocity" by methods of information technology. Consequences for processing, transmission and storage of FCD under condition of limited resources are discussed. Starting point of the investigation is the analysis of spectral characteristics of velocity-time-profiles. The spectra are determined by the Discrete Fourier Transform (DFT) from measurement data and simulation data of a microscopic traffic model. One essential property of velocity-time-profiles is their low-pass characteristic. The resulting cut-off-frequency is comparatively small and depends on the traffic scenario. Conclusions concerning the necessary sample rate in FCD systems and the processing of raw data are discussed. Finally the transinformation of velocity-time-profiles is analysed. This results in similar values for an optimal sample rate of FCD systems under condition of limited transmission capacity.

  7. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  8. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  9. Recovery of x-ray absorption spectral profile in etched TiO{sub 2} thin films

    SciTech Connect

    Sano, Keiji; Niibe, Masahito; Kawakami, Retsuo; Nakano, Yoshitaka

    2015-05-15

    Near edge x-ray absorption fine structure (NEXAFS) spectra of plasma-etched TiO{sub 2} thin films were observed using the total fluorescence yield method involving visible emission. The disrupted spectrum recovered its as-grown (nonetched) profile, upon soft x-ray (SX) irradiation. This recovery was investigated by ultraviolet (UV) irradiation, spatial distribution measurements, exposing recovered samples to air, and NEXAFS measurements of ultrafine TiO{sub 2} particles. The spectral profile recovered upon UV irradiation, and at sample positions outside of the SX irradiation site. The recovered spectral profiles were disrupted again, upon exposure to air. Nonetched ultrafine TiO{sub 2} particles also exhibited a disrupted spectral profile, which was recovered upon SX irradiation. The spectral recovery is explained by a model involving electrons trapped in oxygen vacancies generated by etching.

  10. Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study.

    PubMed

    Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Bartkowiak, Wojciech; Samoc, Marek

    2013-10-10

    We present the results of wide spectral range Z-scan measurements of the two-photon absorption (2PA) spectrum of the Hoechst 33342 dye. The strongest 2PA of the dye in aqueous solution is found at 575 nm, and the associated two-photon absorption cross section is 245 GM. A weak but clearly visible 2PA band at ∼850 nm is also observed, a feature that could not be anticipated from the one-photon absorption spectrum. On the basis of the results of hybrid quantum mechanics/molecular mechanics calculations, we put forward a notion that the long-wavelength feature observed in the two-photon absorption spectrum of Hoechst 33342 is due to the formation of dye aggregates. PMID:24016295

  11. Reliability of spectral analysis of fetal heart rate variability.

    PubMed

    Warmerdam, G J J; Vullings, R; Bergmans, J W M; Oei, S G

    2014-01-01

    Spectral analysis of fetal heart rate variability could provide information on fetal wellbeing. Unfortunately, fetal heart rate recordings are often contaminated by artifacts. Correction of these artifacts affects the outcome of spectral analysis, but it is currently unclear what level of artifact correction facilitates reliable spectral analysis. In this study, a method is presented that estimates the error in spectral powers due to artifact correction, based on the properties of the Continuous Wavelet Transformation. The results show that it is possible to estimate the error in spectral powers. The information about this error makes it possible for clinicians to assess the reliability of spectral analysis of fetal heart rate recordings that are contaminated by artifacts. PMID:25570577

  12. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  13. Monitoring sedation levels by EEG spectral analysis.

    PubMed Central

    Griffiths, M. J.; Preece, A. W.; Green, J. L.

    1991-01-01

    Real-time electroencephalographic power spectra were obtained for a group of 37 volunteers undergoing sedation with enflurane at different concentrations in air. In part one, 17 subjects were given 0.5%, 0.75%, and 1.0% for 4 min at each level, and recovery after 5 min was assessed by the Trieger method. There was considerable variation in subject response to the different doses, but adequate sedation was indicated by the presence of a strong alpha rhythm (9-11 Hz) and suppression of frequencies below 5 Hz. Overdose was indicated by an initial shift in the alpha frequency to a lower value (6-7 Hz) followed by the appearance of delta waves (0.5-4 Hz) and loss of alpha waves. In part two, 20 volunteers inhaled enflurane at 0.5% for 10 min to allow adequate absorption, followed by a 10-min recovery period. Equal numbers showed sedation or a failure to respond to enflurane at this concentration. In the responders, sedation was accompanied by a marked shift in the ratio of the power in two frequency bands: 1-4 Hz and 8-12 Hz. Progress of the frequency band power ratio followed closely the state of the subject into sedation, overdose, and recovery. This measure was further improved by the use of multivariate analysis, which showed good discrimination of the alert, sedated, and overdosed states of the subject. PMID:1842161

  14. Characterization of Cirrus Cloud Properties by Airborne Differential Absorption and High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Gross, S.; Schäfler, A.; Wirth, M.; Fix, A.; Kiemle, C.

    2014-12-01

    Despite the large impact of cirrus clouds on the Earth's climate system, their effects are still only poorly understood. Our knowledge of the climate effect of cirrus clouds is mainly based on theoretical simulations using idealized cloud structure and microphysics, as well as radiative transfer approximations. To improve the representation of cirrus clouds in idealized simulations and circulation models, we need a better understanding of the micro- and macrophysical properties of cirrus clouds. Airborne lidar measurements provide two-dimensional information of the atmospheric structure, and are thus a suitable tool to study the fine-structure of cirrus clouds, as well as their macrophysical properties. Aerosol and water vapor was measured with the airborne high spectral resolution lidar (HSRL) and differential absorption lidar (DIAL) system WALES of the German Aerospace Center (DLR), Oberpfaffenhofen. The system was operated onboard the German high altitude and long range research aircraft HALO during the Next-generation remote sensing for validation studies campaign (NARVAL) in December 2013 over the tropical North-Atlantic and in January 2014 out of Iceland, and during the ML-Cirrus campaign in March/April 2014 over Central and Southern Europe. During NARVAL 18 flights with more than 110 flight hours were performed providing a large number of cirrus cloud overpasses with combined lidar and radar instrumentation. In the framework of the ML-Cirrus campaign 17 flights with more than 80 flight hours were performed to characterize cirrus cloud properties in different environmental conditions using a combination of remote sensing (e.g. lidar) and in-situ observations. In our presentation we will give a general overview of the campaigns and of the WALES measurements. We will show first results from the aerosol and water vapor lidar measurements with focus on the structure of cirrus clouds, the humidity distribution within and outside the cloud and on the impact of the

  15. Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM).

    PubMed

    Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile

    2016-01-25

    The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a. PMID:26832563

  16. Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Chou, Nee-Yin; Sachse, Glen W.

    1987-01-01

    A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.

  17. Conditional-likelihood approach to material decomposition in spectral absorption-based or phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Baturin, Pavlo

    2015-03-01

    Material decomposition in absorption-based X-ray CT imaging suffers certain inefficiencies when differentiating among soft tissue materials. To address this problem, decomposition techniques turn to spectral CT, which has gained popularity over the last few years. Although proven to be more effective, such techniques are primarily limited to the identification of contrast agents and soft and bone-like materials. In this work, we introduce a novel conditional likelihood, material-decomposition method capable of identifying any type of material objects scanned by spectral CT. The method takes advantage of the statistical independence of spectral data to assign likelihood values to each of the materials on a pixel-by-pixel basis. It results in likelihood images for each material, which can be further processed by setting certain conditions or thresholds, to yield a final material-diagnostic image. The method can also utilize phase-contrast CT (PCI) data, where measured absorption and phase-shift information can be treated as statistically independent datasets. In this method, the following cases were simulated: (i) single-scan PCI CT, (ii) spectral PCI CT, (iii) absorption-based spectral CT, and (iv) single-scan PCI CT with an added tumor mass. All cases were analyzed using a digital breast phantom; although, any other objects or materials could be used instead. As a result, all materials were identified, as expected, according to their assignment in the digital phantom. Materials with similar attenuation or phase-shift values (e.g., glandular tissue, skin, and tumor masses) were especially successfully when differentiated by the likelihood approach.

  18. Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.

    PubMed

    Murase, K; Tsuda, T; Mochizuki, T; Ikezoe, J

    1999-11-01

    Measuring the hepatic extraction fraction (HEF) of a hepatobiliary radiopharmaceutical helps to differentiate hepatocyte from biliary tract diseases, and it is generally performed using deconvolution analysis. In this study, we measured HEF using spectral analysis. With spectral analysis, HEF was calculated from (the sum of the spectral data obtained by spectral analysis--the highest frequency component of the spectrum) divided by (the sum of the spectral data) x 100 (%). We applied this method to dynamic liver scintigraphic data obtained from six healthy volunteers and from 46 patients with various liver diseases, using 99Tcm-N-pyridoxyl-5-methyltryptophan (PMT). We also measured HEF using deconvolution analysis, in which the modified Fourier transform technique was employed. The HEF values obtained by spectral analysis correlated closely with those obtained by deconvolution analysis (r = 0.925), suggesting our method is valid. The HEF values obtained by spectral analysis decreased as the severity of liver disease progressed. The values were 100.0 +/- 0.0%, 94.7 +/- 13.6%, 76.2 +/- 27.4%, 45.7 +/- 15.6%, 82.7 +/- 24.2% and 95.2 +/- 11.8% (mean +/- S.D.) for the normal controls (n = 6), mild liver cirrhosis (n = 16), moderate liver cirrhosis (n = 11), severe liver cirrhosis (n = 5), acute hepatitis (n = 8) and chronic hepatitis groups (n = 6), respectively. The HEF was obtained more simply and rapidly by spectral analysis than by deconvolution analysis. The results suggest that our method using spectral analysis can be used as an alternative to the conventional procedure using deconvolution analysis for measuring HEF. PMID:10572914

  19. Performance Analysis of Solution Transportation Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  20. Temporal shape analysis via the spectral signature.

    PubMed

    Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M

    2012-01-01

    In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031

  1. Spectral analysis methods for automatic speech recognition applications

    NASA Astrophysics Data System (ADS)

    Parinam, Venkata Neelima Devi

    In this thesis, we evaluate the front-end of Automatic Speech Recognition (ASR) systems, with respect to different types of spectral processing methods that are extensively used. A filter bank approach for front end spectral analysis is one of the common methods used for spectral analysis. In this work we describe and evaluate spectral analysis based on Mel and Gammatone filter banks. These filtering methods are derived from auditory models and are thought to have some advantages for automatic speech recognition work. Experimentally, however, we show that direct use of FFT spectral values is just as effective as using either Mel or Gammatone filter banks, provided that the features extracted from the FFT spectral values take into account a Mel or Mel-like frequency scale. It is also shown that trajectory features based on sliding block of spectral features, computed using either FFT or filter bank spectral analysis are considerably more effective, in terms of ASR accuracy, than are delta and delta-delta terms often used for ASR. Although there is no major performance disadvantage to using a filter bank, simplicity of analysis is a reason to eliminate this step in speech processing. These assertions hold for both clean and noisy speech.

  2. Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy

    1992-01-01

    Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.

  3. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  4. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Etzkorn, Thomas; Klotz, Björn; Sørensen, Søren; Patroescu, Iulia V.; Barnes, Ian; Becker, Karl H.; Platt, Ulrich

    Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm -1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported. The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and ( E,Z)- and ( E,E)-2,4-hexadienedial). The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.

  5. A model for the spectral dependence of optically induced absorption in amorphous silicon

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1990-01-01

    A model based on transitions from localized band tail states to states above the mobility edge is used to explain the broad band induced absorptions observed in recent pump-probe experiments. The model gives the observed decrease of absorption with frequency at subband gap photo energies and high carrier densities (of about 10 to the 20th/cu cm). At lower carrier densities, the absorption has a maximun which is sensitive to the spatial extent of the band tail states.

  6. Spatio-spectral image analysis using classical and neural algorithms

    SciTech Connect

    Roberts, S.; Gisler, G.R.; Theiler, J.

    1996-12-31

    Remote imaging at high spatial resolution has a number of environmental, industrial, and military applications. Analysis of high-resolution multi-spectral images usually involves either spectral analysis of single pixels in a multi- or hyper-spectral image or spatial analysis of multi-pixels in a panchromatic or monochromatic image. Although insufficient for some pattern recognition applications individually, the combination of spatial and spectral analytical techniques may allow the identification of more complex signatures that might not otherwise be manifested in the individual spatial or spectral domains. We report on some preliminary investigation of unsupervised classification methodologies (using both ``classical`` and ``neural`` algorithms) to identify potentially revealing features in these images. We apply dimension-reduction preprocessing to the images, duster, and compare the clusterings obtained by different algorithms. Our classification results are analyzed both visually and with a suite of objective, quantitative measures.

  7. Gamma-ray spectral analysis algorithm library

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  8. Gamma-ray Spectral Analysis Algorithm Library

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  9. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  10. Quantitative Spectral Morphology Analysis of Unusually Red and Blue L Dwarfs

    NASA Astrophysics Data System (ADS)

    Camnasio, Sara; Khalida Alam, Munazza; Rice, Emily L.; Cruz, Kelle L.; Faherty, Jacqueline K.; Mace, Gregory N.; Martin, Emily; Logsdon, Sarah E.; McLean, Ian S.; Brown Dwarfs in New York City (BDNYC)

    2016-01-01

    In an effort to constrain the properties of photometric color outliers, we present a quantitative spectral morphology analysis of medium-resolution NIRSPEC (R~2,000), SpeX cross-dispersed (R~2,000), Palomar TripleSpec (R~2600), and Magellan FIRE (R~6000) J-band spectra for a sample of unusually red and blue L dwarfs. Some red L dwarfs are low surface gravity, young objects whose spectra present weak Na I doublets and FeH absorption bands, but strong VO features (Cruz et al. 2009). Some blue L dwarfs are subdwarfs with low metallicity spectral features such as greater H2 absorption, stronger metal hydride bands, and enhanced TiO absorption (Burgasser et al 2008c). We fit 3rd order polynomials to the pseudo-continuum in order to provide a quantitative comparison of spectral morphology with other peculiar L dwarfs, field standards, young L dwarfs, and L subdwarf. The results indicated that the coefficients of the fit correlate with spectral type, but are independent of color. This newly found trend provides a parameter which can be utilized as an additional tool in characterizing quantifiable differences in the spectra of brown dwarfs. Furthermore, this method can be applied in studying the atmospheric properties of exoplanets, given their similarities with brown dwarfs in mass and photospheric properties.

  11. Spectral Analysis of Rich Network Topology in Social Networks

    ERIC Educational Resources Information Center

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  12. Determination of The Inflight Spectral Calibration of AVIRIS Using Atmospheric Absorption Features

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    1995-01-01

    Both the surface and atmospheric characteistics were measured for a calibration target during an inflight calibration experiment held at Lunar Lake, Nevada on April 5, 1994 (Green, et al., 1995). This paper uses upwelling spectral radiance predicted for the calibration target with the MODTRAN radiative transfer code (Berk, et al., 1986) to validage the spectral calibration of AVIRIS inflight.

  13. Clay composition and swelling potential estimation of soils using depth of absorption bands in the SWIR (1100-2500 nm) spectral domain

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Granjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Presence of clay minerals is traditionally a good estimator of soils swelling and shrinking behavior. Montmorillonite (i.e. smectite group), illite, kaolinite are the most common minerals in soils and are usually associated to high, moderate, and low swelling potential when they are present in significant amount. Characterization of swelling potential and identification of clay minerals of soils using conventional analysis are slow, expensive, and does not permit integrated measurements. SWIR (1100-2500 nm) spectral domain are characterized by significant spectral absorption bands related to clay content that can be used to recognize main clay minerals. Hyperspectral laboratory using an ASD Fieldspec Pro spectrometer provides thus a rapid and less expensive field surface sensing that permits to measure soil spectral properties. This study presents a new laboratory reflectance spectroscopy method that used depth of clay diagnostic absorption bands (1400 nm, 1900 nm, and 2200 nm) to compare natural soils to synthetic montmorillonite-illite-kaolinite mixtures. We observe in mixtures that illite, montmorillonite, and kaolinite content respectively strongly influence the depth of absorption bands at 1400 nm (D1400), 1900 nm (D1900), and 2200 nm (D2200). To attenuate or removed effects of abundance and grain size, depth of absorption bands ratios were thus used to performed (i) 3D (using D1900/D2200, D1400/D1900, and D2200/D1400 as axis), and (ii) 2D (using D1400/D1900 and D1900/D2200 as axis) diagrams of synthetic mixtures. In this case we supposed that the overall reduction or growth of depth absorption bands should be similarly affected by the abundance and grain size of materials in soil. In 3D and 2D diagrams, the mixtures define a triangular shape formed by two clay minerals as external envelop and the three clay minerals mixtures

  14. Methods of Spectral Analysis in C++ (MOSAIC)

    NASA Astrophysics Data System (ADS)

    Engesser, Michael

    2016-06-01

    Stellar spectroscopic classification is most often still done by hand. MOSAIC is a project focused on the collection and classification of astronomical spectra using a computerized algorithm. The code itself attempts to accurately classify stellar spectra according to the broad spectral classes within the Morgan-Keenan system of spectral classification, based on estimated temperature and the relative abundances of certain notable elements (Hydrogen, Helium, etc.) in the stellar atmosphere. The methodology includes calibrating the wavelength for pixels across the image by using the wavelength dispersion of pixels inherent with the spectrograph used. It then calculates the location of the peak in the star's Planck spectrum in order to roughly classify the star. Fitting the graph to a blackbody curve is the final step for a correct classification. Future work will involve taking a closer look at emission lines and luminosity classes.

  15. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  16. Spectral Analysis of Vector Magnetic Field Profiles

    NASA Technical Reports Server (NTRS)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  17. Perturbative analysis of spectral singularities and their optical realizations

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali; Rostamzadeh, Saber

    2012-08-01

    We develop a perturbative method of computing spectral singularities of a Schrödinger operator defined by a general complex potential that vanishes outside a closed interval. These can be realized as zero-width resonances in optical gain media and correspond to a lasing effect that occurs at the threshold gain. Their time-reversed copies yield coherent perfect absorption of light that is also known as antilasing. We use our general results to establish the exactness of the nth-order perturbation theory for an arbitrary complex potential consisting of n delta functions, obtain an exact expression for the transfer matrix of these potentials, and examine spectral singularities of complex barrier potentials of arbitrary shape. In the context of optical spectral singularities, these correspond to inhomogeneous gain media.

  18. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  19. Spectral Analysis in High Radiation Space Backgrounds with Robust Fitting

    NASA Technical Reports Server (NTRS)

    Lasche, G. P.; Coldwell, R. L.; Nobel, L. A.; Rester, A. C.; Trombka, J. I.

    1997-01-01

    Spectral analysis software is tested for its ability to fit spectra from space. The approach, which emphasizes the background shape function, is uniquely suited to the identification of weak-strength nuclides in high-radiation background environments.

  20. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  1. Effect of radiometric errors on accuracy of temperature-profile measurement by spectral scanning using absorption-emission pyrometry

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1972-01-01

    The spectral-scanning method may be used to determine the temperature profile of a jet- or rocket-engine exhaust stream by measurements of gas radiation and transmittance, at two or more wavelengths. A single, fixed line of sight is used, using immobile radiators outside of the gas stream, and there is no interference with the flow. At least two sets of measurements are made, each set consisting of the conventional three radiometric measurements of absorption-emission pyrometry, but each set is taken over a different spectral interval that gives different weight to the radiation from a different portion of the optical path. Thereby, discrimination is obtained with respect to location along the path. A given radiometric error causes an error in computed temperatures. The ratio between temperature error and radiometric error depends on profile shape, path length, temperature level, and strength of line absorption, and the absorption coefficient and its temperature dependency. These influence the choice of wavelengths, for any given gas. Conditions for minimum temperature error are derived. Numerical results are presented for a two-wavelength measurement on a family of profiles that may be expected in a practical case of hydrogen-oxygen combustion. Under favorable conditions, the fractional error in temperature approximates the fractional error in radiant-flux measurement.

  2. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  3. Flame spectral analysis for boiler control

    SciTech Connect

    Metcalfe, C.I.; Cole, W.E.; Batra, S.K.

    1987-09-01

    An instrument has been developed by Tecogen, Inc., to determine the combustion characteristics of individual burners in multiburner installations. The technology is based on measuring the emissions in the ultraviolet (uv) and infrared (ir) spectral range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and a Polaroid facility, and their performance has been evaluated. These instruments provide data relating to the variations in the ir and uv spectrum with a change in the combustion condition in individual burners. This paper describes the instrument's operation and these tests. 2 refs.

  4. Hyper-spectral scanner design and analysis

    SciTech Connect

    Canavan, G.; Moses, J.; Smith, R.

    1996-06-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). An earlier project produced rough designs for key components of a compact hyper-spectral sensor for environmental and ecological measurements. Such sensors could be deployed on unmanned vehicles, aircraft, or satellites for measurements important to agriculture, the environment, and ecologies. This represents an important advance in remote sensing. Motorola invited us to propose an add-on, proof-of-principle sensor for their Comet satellite, whose primary mission is to demonstrate a channel of the IRIDIUM satellite communications system. Our project converted the preliminary designs from the previous effort into final designs for the telescope, camera, computer and interfaces that constitute the hyper-spectral scanning sensor. The work concentrated on design, fabrication, preliminary integration, and testing of the electronic circuit boards for the computer, data compression board, and interface board for the camera-computer and computer-modulator (transmitter) interfaces.

  5. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  6. Multitemporal spectral analysis for cheatgrass (Bromus tectorum) classification.

    SciTech Connect

    Singh, Nagendra; Glenn, Nancy F

    2009-07-01

    Operational satellite remote sensing data can provide the temporal repeatability necessary to capture phenological differences among species. This study develops a multitemporal stacking method coupled with spectral analysis for extracting information from Landsat imagery to provide species-level information. Temporal stacking can, in an approximate mathematical sense, effectively increase the 'spectral' resolution of the system by adding spectral bands of several multitemporal images. As a demonstration, multitemporal linear spectral unmixing is used to successfully delineate cheatgrass (Bromus tectorum) from soil and surrounding vegetation (77% overall accuracy). This invasive plant is an ideal target for exploring multitemporal methods because of its phenological differences with other vegetation in early spring and, to a lesser degree, in late summer. The techniques developed in this work are directly applicable for other targets with temporally unique spectral differences.

  7. Doping evolution of Zhang-Rice singlet spectral weight: A comprehensive examination by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Jiang, M. G.; Luo, C. W.; Lin, J.-Y.; Wu, K. H.; Lee, J. M.; Chen, J. M.; Kuo, Y. K.; Juang, J. Y.; Mou, Chung-Yu

    2013-10-01

    The total spectral weight S of the emergent low-energy quasiparticles in high-temperature superconductors (HTSCs) is explored by x-ray absorption spectroscopy. In order to examine the applicability of the Hubbard model, regimes that cover from zero doping to overdoping are investigated. In contrast to results of mean-field theory, we found that S deviates from linear dependence on the doping level p. The slope of S versus p changes continuously throughout the whole doping range with no sign of saturation up to p=0.23. Therefore, the picture of the Zhang-Rice singlet remains intact within the most prominent doping regimes of HTSCs.

  8. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  9. Multitaper spectral analysis of high-frequency seismograms

    NASA Astrophysics Data System (ADS)

    Park, Jeffrey; Lindberg, Craig R.; Vernon, Frank L., III

    1987-11-01

    Spectral estimation procedures which employ several prolate spheroidal sequences as tapers have been shown to yield better results than standard single-taper spectral analysis when used on a variety of engineering data. We apply the adaptive multitaper spectral estimation method of Thomson (1982) to a number of high-resolution digital seismic records and compare the results to those obtained using standard single-taper spectral estimates. Single-taper smoothed-spectrum estimates are plagued by a trade-off between the variance of the estimate and the bias caused by spectral leakage. Applying a taper to reduce bias discards data, increasing the variance of the estimate. Using a taper also unevenly samples the record. Throwing out data from the ends of the record can result in a spectral estimate which does not adequately represent the character of the spectrum of nonstationary processes like seismic waveforms. For example, a discrete Fourier transform of an untapered record (i.e., using a boxcar taper) produces a reasonable spectral estimate of the large-amplitude portion of the seismic source spectrum but cannot be trusted to provide a good estimate of the high-frequency roll-off. A discrete Fourier transform of the record multiplied by a more severe taper (like the Hann taper) which is resistant to spectral leakage leads to a reliable estimate of high-frequency spectral roll-off, but this estimate weights the analyzed data unequally. Therefore single-taper estimators which are less affected by leakage not only have increased variance but also can misrepresent the spectra of nonstationary data. The adaptive multitaper algorithm automatically adjusts between these extremes. We demonstrate its advantages using 16-bit seismic data recorded by instruments in the Anza Telemetered Seismic Network. We also present an analysis demonstrating the superiority of the multitaper algorithm in providing low-variance spectral estimates with good leakage resistance which do not

  10. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  11. Light absorption efficiencies of photosynthetic pigments: the dependence on spectral types of central stars

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    2015-07-01

    For detecting life from reflection spectra on extrasolar planets, trace of photosynthesis is one of the indicators. However, it is not yet clear what kind of radiation environments is acceptable for photosynthesis. Light absorption in photosystems on the Earth occurs using limited photosynthetic pigments such as chlorophylls (Chls) and bacteriochlorophylls (BChls). Efficiencies of light absorption for the pigments were evaluated by calculating the specific molecular absorption spectra at the high accuracy-quantum mechanical level. We used realistic stellar radiation spectra such as F, G, K and M-type stars to investigate the efficiencies. We found that the efficiencies are increased with the temperature of stars, from M to F star. Photosynthetic pigments have two types of absorption bands, the Q y and Soret. In higher temperature stars like F star, contributions from the Soret region of the pigments are dominant for the efficiency. On the other hand, in lower temperature stars like M stars, the Q y band is crucial. Therefore, differences on the absorption intensity and the wavelength between the Q y and Soret band are the most important to characterize the photosynthetic pigments. Among photosynthetic pigments, Chls tend to be efficient in higher temperature stars, while BChls are efficient for M stars. Blueward of the 4000 Å break, the efficiencies of BChls are smaller than Chls in the higher temperature stars.

  12. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  13. On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays.

    PubMed

    Vedraine, Sylvain; Hou, Renjie; Norton, Peter R; Lagugné-Labarthet, François

    2014-06-01

    The behavior of the electromagnetic field interaction with gold nanotriangles organized in bow-tie arrays is investigated. A side-by-side comparison between the measured absorbance of the array and the modelled integrated electric field resonances confined around the gold structures is presented and discussed to explain the spectral shift between both parameters. Finite difference time domain calculations and Raman measurements of gold triangles of different sizes and periodicity are systematically performed. Numerical calculations show that the spectral maximum of the electric field varies in distinct areas over the metallic structures. PMID:24921524

  14. Analytical algorithm to determine the spherical particle size distribution from spectral absorption measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Qi; Li, Jiangnan

    2015-11-01

    A modified anomalous diffraction theory (MADT) by including the effects of reflection and refraction is proposed. With respect to MADT, an analytical technique for retrieval of spherical particle size distribution (PSD), based on absorption was developed. Also, an MADT transform pair between the size distribution and the absorption spectrum was constructed. This provides a new tool to study the related particle optical properties. By Gaver-Stehfest inversion method, the derived complex-inversion formula is finally converted into the new real-inversion formula so that the measured absorption data can be applied directly. The inversion experiments show that the use of extended precision instead of double precision arithmetic can produce more reliable results at the expense of CPU time. The effects of complex refractive index on retrieval of PSD were examined. Also it was found that an appropriate reduction of the truncation number with the smoothing technique improved the anti-noise ability for the algorithm.

  15. Variability of light absorption by aquatic particles in the near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Tassan, Stelvio; Ferrari, Giovanni M.

    2003-08-01

    We have measured the light absorption of a set of particle suspensions of varying nature (pure minerals, particulate standards, aquatic particles) using a double-beam spectrophotometer with a 15-cm-diameter integrating sphere. The sample was located inside the sphere so as to minimize the effect of light scattering by the particles. The results obtained showed highly variable absorption in the near-IR region of the wavelength spectrum. The same particle samples were deposited on glass-fiber filters, and their absorption was measured by the transmittance-reflectance method, based on a theoretical model that corrects for the effect of light scattering. The good agreement found between the results of the measurements carried out inside the sphere and by the transmittance-reflectance method confirms the validity of the scattering correction included in the above method.

  16. Solar absorption by elemental and brown carbon determined from spectral observations

    PubMed Central

    Bahadur, Ranjit; Praveen, Puppala S.; Xu, Yangyang; Ramanathan, V.

    2012-01-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC. PMID:23045698

  17. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    USGS Publications Warehouse

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, R.N.; Combe, J.-P.; Head, J. W., III; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ???1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 ??m. For each of the studied regions, the 2.82 ??m absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains from

  18. Spectral calibration for infrared hyperspectral imaging Fourier transform spectrometer based on absorption peaks

    NASA Astrophysics Data System (ADS)

    Li, YaSheng; Chen, Yan; Liao, Ningfang; Lyu, Hang; He, Shufang; Wan, Lifang

    2015-08-01

    A new calibration method for infrared hyperspectral imaging Fourier transform spectrometer is presented. Two kinds of common materials as Polypropylene (PP) and Polyethylene Terephthalate (PET) films which have special absorption peaks in the infrared band were used in the calibration experiment. As the wavelengths at the sharp absorption peaks of the films are known, an infrared imaging spectrometer can be calibrated on spectra with two or three peaks. With high precision and stability, this method simplifies the calibration work. It is especially appropriate for the measuring condition with a lack of calibration equipment or with inconvenience to calibrate the multiple light sources outdoors.

  19. Spectral analysis for the mineralogical characterization of planosols in NE Brazil

    NASA Astrophysics Data System (ADS)

    Costa, Diego; Souza, Deorgia; Rocha, Washington

    2016-04-01

    This paper aims to conduct a spectral characterization in two soil profiles located in the northeast of Brazil proposing relations between the pedogenetic evolution and the environmental settings generated from the characteristics of Planosols analyzed and the presence of minerals identified by spectral pattern obtained in a laboratory. The methodological procedures were divided into the characterization of the study area, theoretical framework, field work with sampling, sample preparation, measurement in the laboratory, processing of spectral data, analysis and interpretation of results and a vegetation index calculation for aid in the environmental characterization. It is possible to see that: i) both profiles have similar spectral characterized patterns; ii) the horizons A and E show higher reflectance compared with B and C; iii) Minerals 2: 1 and 1: 1, such as montmorillonite and kaolinite can be identified; iv) Planosols are fragile to erosion. In both profiles, the C horizon less weathered and B horizon iluvial show intense absorption bands at 1400nm, 1900nm and 2200nm. These absorption bands indicate the existence of mineralogy 2: 1 on the horizons of the soils analyzed. In both profiles were found small peaks absorption in 2265nm, corresponding to gibbsite. The occurrence of this type of mineral is more common in highly weathered soils or old surfaces of erosion, which is reflected in small intensities of absorption observed in this analysis since these are of little-weathered soils of the Brazilian semiarid region. Spectral analysis and morphology described in the two profiles show difficulties for the growth of vegetation, which is consistent with NDVI values found, ranging from -0.32 to 0.61with a predominance of 0.19. These factors lead to the intensification of erosion. Erosion is characterized as one of the main indicators of environmental degradation, causing loss of important elements of the soil, which creates consequently a reduction in fertility

  20. Studying soil properties using visible and near infrared spectral analysis

    NASA Astrophysics Data System (ADS)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  1. Internal quality evaluation of apples using spectral absorption and scattering properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to measure the absorption and reduced scattering coefficients of apples via a spatially-resolved hyperspectral imaging technique and relate them to fruit firmness and soluble solids content (SSC). Spatially-resolved hyperspectral images were acquired from 600 ‘Gold...

  2. Prediction of apple internal quality using spectral absorption and scattering properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports on the measurement of the absorption and reduced scattering coefficients of apples via a new spatially-resolved hyperspectral imaging technique and their correlation with fruit firmness and soluble solids content (SSC). Spatially-resolved hyperspectral scattering profiles were acq...

  3. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  4. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  5. Spectral analysis of multichannel MRS data

    NASA Astrophysics Data System (ADS)

    Sandgren, Niclas; Stoica, Petre; Frigo, Frederick J.; Selén, Yngve

    2005-07-01

    The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging studies of, e.g., the human brain. It is common to incorporate proton ( 1H) magnetic resonance spectroscopy (MRS) experiments in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonparametric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T MR scanner.

  6. Spectral analysis of multichannel MRS data.

    PubMed

    Sandgren, Niclas; Stoica, Petre; Frigo, Frederick J; Selén, Yngve

    2005-07-01

    The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging studies of, e.g., the human brain. It is common to incorporate proton (1H) magnetic resonance spectroscopy (MRS) experiments in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonparametric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T MR scanner. PMID:15949751

  7. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  8. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  9. Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor

    SciTech Connect

    Nakkach, Mohamed; Lecaruyer, Pierre; Bardin, Fabrice; Sakly, Jaouhar; Lakhdar, Zohra Ben; Canva, Michael

    2008-11-20

    Surface plasmon resonance (SPR) sensing is an optical technique that allows real time detection of small changes in the physical properties, in particular in the refractive index, of a dielectric medium near a metal film surface. One way to increase the SPR signal shift is then to incorporate a substance possessing a strong dispersive refractive index in the range of the plasmon resonance band. In this paper, we investigate the impact of materials possessing a strong dispersive index integrated to the dielectric medium on the SPR reflectivity profile. We present theoretical results based on chromophore absorption spectra and on their associated refractive index obtained from the Lorentz approach and Kramers-Kroenig equations. As predicted by the theory, the experimental results show an enhancement of the SPR response, maximized when the chromophore absorption band coincides with the plasmon resonant wavelength. This shows that chromophores labeling can provide a potential way for SPR response enhancement.

  10. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  11. Spectral Analysis of X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Fridriksson, Joel K.

    2011-09-01

    In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), with a particular source, XTE J1701-462, playing a central role. First, I construct and study color-color and hardness-intensity diagrams (CDs and HIDs) for a large sample of NS-LMXBs using Rossi X-ray Timing Explorer (RXTE) data spanning ~15 years. I study in particular detail three sources whose complicated CDs/HIDs are strongly affected by secular motion -- Cyg X-2, Cir X-1, and GX 13+1 -- and show that Cyg X-2 and Cir X-1 display CD/HID evolution with strong similarities to the transient Z source XTE J1701-462, which was previously shown to have evolved through all subclasses of NS-LMXBs as a result of changes in mass accretion rate. I build on the results for XTE J1701-462, Cyg X-2, and Cir X-1 and rank all the sources in the sample based only on their CD/HID morphology. I speculate that this represents a rough ranking in terms of the relative ranges in mass accretion rate experienced by the sources. Next, I use data from RXTE, Swift, Chandra, and XMM-Newton to study the transition to quiescence and the first ~1200 days of the quiescent phase of XTE J1701-462 following the end of its extraordinarily luminous 19 month outburst in 2006-2007. I find that the crust of the neutron star cooled rapidly during the first ~200 days of quiescence, after having been heated out of thermal equilibrium with the core during the outburst; the source has subsequently shown slower cooling along with sporadic low-level accretion activity. I discuss the implications of the observed cooling behavior and low-level accretion, the former of which yields information on the internal properties of the neutron star. Finally, I use multiple Chandra observations to study the X-ray source populations in the late-type galaxies NGC 6946 and NGC 4485/4490. A particular

  12. Spectral analysis of lunar analogue samples

    NASA Astrophysics Data System (ADS)

    Offringa, Marloes; Foing, Bernard

    2016-04-01

    source. Together with taking an average over ±600 measurements per sample this leads to the best spectral signals that can be acquired with this set-up. Obtained spectra can be tested for accuracy by comparing them with stationary laboratory spectrometers such as the FTIR spectrometer. Future campaigns involving the employment of the spectrometers on the ExoGeoLab lander would prove the applicability of the equipment in the field.

  13. Detection of arterial disorders by spectral analysis techniques.

    PubMed

    Ubeyli, Elif Derya

    2007-01-01

    This paper intends to an integrated view of the spectral analysis techniques in the detection of arterial disorders. The paper includes illustrative information about feature extraction from signals recorded from arteries. Short-time Fourier transform (STFT) and wavelet transform (WT) were used for spectral analysis of ophthalmic arterial (OA) Doppler signals. Using these spectral analysis methods, the variations in the shape of the Doppler spectra as a function of time were presented in the form of sonograms in order to obtain medical information. These sonograms were then used to compare the applied methods in terms of their frequency resolution and the effects in determination of OA stenosis. The author suggest that the content of the paper will assist to the people in gaining a better understanding of the STFT and WT in the detection of arterial disorders. PMID:17502695

  14. [Immune resonance scattering spectral analysis of fenvalerate].

    PubMed

    Ma, Wen-Sheng; Wang, Su-Mei; Jiang, Zhi-Liang

    2009-01-01

    , 80 microg x mL(-1) HSA, 80 microg x mL(-1) Fe3+, 80 microg x mL(-1) Mg2+, 160 microg x mL(-1) Ca2+, and 160 microg x mL(-1) glucose. The results indicated that this RSS assay has good selectivity. This immune resonance scattering spectral assay was applied to the determination of Fen in waste water samples with satisfactory results. The recovery was in the range of 92.91%-101.25%, and the relative standard deviation was in the range of 1.71%-4.80%. PMID:19385242

  15. Spectral Analysis of B Stars: An Application of Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Mugnes, J.-M.; Robert, C.

    2012-12-01

    To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.

  16. Progress in Advanced Spectral Analysis of Radioxenon

    SciTech Connect

    Haas, Derek A.; Schrom, Brian T.; Cooper, Matthew W.; Ely, James H.; Flory, Adam E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Saunders, Danielle L.; Suckow, Thomas J.

    2010-09-21

    Improvements to a Java based software package developed at Pacific Northwest National Laboratory (PNNL) for display and analysis of radioxenon spectra acquired by the International Monitoring System (IMS) are described here. The current version of the Radioxenon JavaViewer implements the region of interest (ROI) method for analysis of beta-gamma coincidence data. Upgrades to the Radioxenon JavaViewer will include routines to analyze high-purity germanium detector (HPGe) data, Standard Spectrum Method to analyze beta-gamma coincidence data and calibration routines to characterize beta-gamma coincidence detectors. These upgrades are currently under development; the status and initial results will be presented. Implementation of these routines into the JavaViewer and subsequent release is planned for FY 2011-2012.

  17. Band analysis by spectral curve fitting

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Shaw, J. H.; Calvert, J. G.

    1980-01-01

    A method of estimating the values of the parameters in the models describing the positions, widths, and intensities of the lines in rotation-vibration bands of gases, without the need for line by line analysis, is described. To illustrate the technique, portions of the 1-0 bands of HCl and CO have been analyzed. The values of up to 27 parameters, their standard deviations, and the correlations between the parameters required to describe the spectra have been obtained.

  18. Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral

    NASA Astrophysics Data System (ADS)

    Udayabhaskar Reddy, G.; Seshamaheswaramma, K.; Nakamura, Yoshinobu; Lakshmi Reddy, S.; Frost, Ray L.; Endo, Tamio

    2012-10-01

    Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.

  19. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, R.F.; Despain, D.G.; Clark, R.N.; Livo, K.E.

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 ??m chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 ??m, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic = 0.62).

  20. Comparison of spectral analysis methods for characterizing brain oscillations

    PubMed Central

    van Vugt, Marieke K.; Sederberg, Per B.; Kahana, Michael J.

    2007-01-01

    Spectral analysis methods are now routinely used in electrophysiological studies of human and animal cognition. Although a wide variety of spectral methods has been used, the ways in which these methods differ are not generally understood. Here we use simulation methods to characterize the similarities and differences between three spectral analysis methods: wavelets, multitapers and Pepisode. Pepisode is a novel method that quantifies the fraction of time that oscillations exceed amplitude and duration thresholds. We show that wavelets and Pepisode used side-by-side helps to disentangle length and amplitude of a signal. Pepisode is especially sensitive to fluctuations around its thresholds, puts frequencies on a more equal footing, and is sensitive to long but low-amplitude signals. In contrast, multitaper methods are less sensitive to weak signals, but are very frequency-specific. If frequency-specificity is not essential, then wavelets and Pepisode are recommended. PMID:17292478

  1. Spectral and polarization analysis of micropulsations observed at ATS-1

    NASA Technical Reports Server (NTRS)

    Morris, W.; Cummings, W. D.; Mcpherron, R. L.

    1972-01-01

    Results are reported for an analysis of low frequency oscillations in the earth's magnetic field as observed at the synchronous orbit by the magnetometer experiment on board ATS 1. Oscillations in the range .002 f .02 H3 for the period Dec. 1966 through Dec. 1967 were studied. The analysis combines a detailed, computer-processed, spectral analysis of selected events with a less detailed manual analysis of all events in the two year time interval from Dec. 1966 to Dec. 1968. The computer analysis revealed that a given event is often characterized by a dominat, narrow, spectral peak whose associated oscillations are almost entirely limited to a plane, together with several minor peaks. Dynamic spectral analyses revealed that minor spectral peaks appear as short isolated bursts. The sense of rotation of the perturbation vector tends to change from right-handed elliptical at the beginning of a burst to left-handed elliptical at the end. The major axis of the polarization ellipse is inclined by typically 30 deg east of radial.

  2. Spectral Synthesis via Mean Field approach to Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ning; Su, Shan-Shan; Kong, Xu

    2016-03-01

    We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis (MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral library into a few Independent Components (ICs), and the galaxy spectrum can be reconstructed by these ICs. Compared to other algorithms which decompose a galaxy spectrum into a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in efficiency. To check the reliability of this spectral analysis method, three different methods are used: (1) parameter recovery for simulated galaxies, (2) comparison with parameters estimated by other methods, and (3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the physical parameters of galaxies. We also apply our spectral analysis method to the DEEP2 spectroscopic data, and find it can provide excellent fitting results for low signal-to-noise spectra.

  3. On the Application of Hilbert Spectral Analysis for Climate Studies

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The Hilbert spectral analysis (Huang et al, 1998, Proceedings of the Royal Society of London, A 454, pp 903-995) consisted of two steps: First, the data has to be reduced into a finite number of Intrinsic Mode Function by the Empirical Mode Decomposition method, then the resulting Intrinsic Mode Functions are converted to time-frequency-energy distribution through Hilbert transform. In this approach, the Empirical Mode Functions served as the basis functions with which the data is expanded. This basis function is adaptive, and the decomposition is nonlinear. Furthermore, as the Hilbert transform is a singular transform, it retains a high degree of local information. The instantaneous frequency is determined by differentiation of the phase function; therefore, there is no restriction of the 'uncertainty principle' for all the time-frequency analysis resulting from a priori basis approach. With the adaptive basis and the instantaneous frequency, the Hilbert Spectral analysis can represent data from nonlinear and nonstationary processes without resorting to the harmonics. Another advantage of using instantaneous frequency is the ability to find out frequency from limited length of data, which is a critical problem in climate studies. As the processes driving the climate changes could be both nonlinear and nonstationary, the Hilbert Spectral Analysis could be of great use in examining the underlying mechanisms. A preliminary study based on the length of day data will be presented as example for the application of the Hilbert Spectral Analysis for climate study.

  4. Spectral Analysis of a Protein Conformational Switch

    NASA Astrophysics Data System (ADS)

    Rackovsky, S.

    2011-06-01

    The existence of conformational switching in proteins, induced by single amino acid mutations, presents an important challenge to our understanding of the physics of protein folding. Sequence-local methods, commonly used to detect structural homology, are incapable of accounting for this phenomenon. We examine a set of proteins, derived from the GA and GB domains of Streptococcus protein G, which are known to show a dramatic conformational change as a result of single-residue replacement. It is shown that these sequences, which are almost identical locally, can have very different global patterns of physical properties. These differences are consistent with the observed complete change in conformation. These results suggest that sequence-local methods for identifying structural homology can be misleading. They point to the importance of global sequence analysis in understanding sequence-structure relationships.

  5. Spectral analysis of groove spacing on Ganymede

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Squyres, S. W.

    1985-02-01

    A quantitative analysis of groove spacing on Ganymede is described. Fourier transforms of a large number of photometric profiles across groove sets are calculated and the resulting power spectra are examined for the position and strength of peaks representing topographic periodicities. The geographic and global statistical distribution of groove wavelengths are examined, and these data are related to models of groove tectonism. It is found that groove spacing on Ganymede shows an approximately long-normal distribution with a minimum of about 3.5 km, a maximum of about 17 km, and a mean of 8.4 km. Groove spacing tends to be quite regular within a single groove set but can vary substantially from one groove set to another within a single geographic region.

  6. Spectral x-ray phase contrast imaging for single-shot retrieval of absorption, phase, and differential-phase imagery.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-11-01

    In this Letter, we propose the first single-shot, noninterferometric x-ray imaging method for simultaneous retrieval of absorption, phase, and differential-phase imagery with quantitative accuracy. Our method utilizes a photon-counting spectral x-ray detector in conjunction with a simplified transport-of-intensity equation for coded-aperture phase-contrast imaging to efficiently solve the retrieval problem. This method can utilize an incoherent and polychromatic (clinical or laboratory) x-ray tube and can enable retrieval for a wide range and composition of material properties. The proposed method has been validated via computer simulations and is expected to significantly benefit applications that are sensitive to complexity of measurement, radiation dose and imaging time. PMID:25361350

  7. Systematic spectral analysis of GX 339-4: evolution of the reflection component

    NASA Astrophysics Data System (ADS)

    Clavel, M.; Rodriguez, J.; Corbel, S.; Coriat, M.

    2015-12-01

    Black hole X-ray binaries display large outbursts, during which their properties are strongly variable. We develop a systematic spectral analysis of the 3-40 keV RXTE/PCA data in order to study the evolution of these systems and apply it to GX 339-4. Using a phenomenological model to account for the reflection process we provide a first overview of the evolution of the fluorescent iron line at 6.4 keV and of the associated smeared absorption edge at 7.1 keV, for all GX339-4's outbursts monitored by the RXTE mission during its 16-year lifetime.

  8. Separation and spectral analysis of oscillations of the Earth's pole

    NASA Astrophysics Data System (ADS)

    Klimov, D. M.; Akulenko, L. D.; Shmatkov, A. M.

    2015-09-01

    The motions of the complex process of oscillations of the Earth's pole are separated. On the basis of the precise measurement data of the International Earth's Rotation Service (since 1962) by means of the least squares technique and spectral analysis, the major components of the motion in the principal approximation are determined. It is established that they are the slow trend and the sum of motions along the circles with annual and Chandler periods. For a difference process, the spectral and integral characteristics are found.

  9. Spectral mixture analysis of multispectral thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Remote spectral measurements of light reflected or emitted from terrestrial scenes is commonly integrated over areas sufficiently large that the surface comprises more than one component. Techniques have been developed to analyze multispectral or imaging spectrometer data in terms of a wide range of mixtures of a limited number of components. Spectral mixture analysis has been used primarily for visible and near-infrared images, but it may also be applied to thermal infrared data. Two approaches are reviewed: binary mixing and a more general treatment for isothermal mixtures of a greater number of components.

  10. Spectral Moments of Collision-Induced Absorption of CO2 Pairs: The Role of the Intermolecular Potential

    NASA Technical Reports Server (NTRS)

    Gruszka, Marcin; Borysow, Aleksandra

    1994-01-01

    In this paper we examine the role of the anisotropy of the intermolecular potential in the rototranslational collision-induced absorption of the CO2 pairs. Using newly developed formulas that include the effects of anisotropy of the potential to all orders, we calculate the two lowest spectral moments gamma(prime), and alpha(prime), for four different classes of C02 pair potentials and compare the results with the experimental values. We assumed only multipolar induction in the process of forming the induced dipole, with the second-order contributions included. Using a site-site LJ and a site-site semi-ab initio intermolecular potentials we were able to reproduce the experimental values of gamma(prime), and alpha(prime) moments over entire temperature range from 230 to 330 K. Also, the role of an electrostatic interaction between two C02 molecules and its impact on the spectral moments is thoroughly investigated. An isotropic core with a point quadrupole centered at each molecule is shown to be an inadequate representation of the C02-CO2 potential. Additionally, we show the results obtained with the first- and second-order perturbation theory to be more than twice too small.

  11. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  12. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  13. Spectral characteristics analysis of red tide water in mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Cui, Tingwei; Zhang, Jie; Zhang, Hongliang; Ma, Yi; Gao, Xuemin

    2003-05-01

    Mesocosm ecosystem experiment with seawater enclosed of the red tide was carried out from July to September 2001. We got four species of biology whose quantities of bion are dominant in the red tide. During the whole process from the beginning to their dying out for every specie, in situ spectral measurements were carried out. After data processing, characteristic spectra of red tide of different dominant species are got. Via comparison and analysis of characteristics of different spectra, we find that in the band region between 685 and 735 nanometers, spectral characteristics of red tide is apparently different from that of normal water. Compared to spectra of normal water, spectra of red tide have a strong reflectance peak in the above band region. As to spectra of red tide dominated by different species, the situations of reflectance peaks are also different: the second peak of Mesodinium rubrum spectrum lies between 726~732 nm, which is more than 21nm away from the other dominant species spectra"s Leptocylindrus danicus"s second spectral peak covers 686~694nm; that of Skeletonema costatum lies between 691~693 nm. Chattonella marina"s second spectral peak lies about 703~705 nm. Thus we can try to determine whether red tide has occurred according to its spectral data. In order to monitor the event of red tide and identify the dominant species by the application of the technology of hyperspectral remote sensing, acquiring spectral data of different dominant species of red tide as much as possible becomes a basic work to be achieved for spectral matching, information extraction and so on based on hyperspectral data.

  14. Relationships between Visual Field Sensitivity and Spectral Absorption Properties of the Neuroretinal Rim in Glaucoma by Multispectral Imaging

    PubMed Central

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H.; Gautam, Ramesh; Henson, David B.

    2011-01-01

    Purpose. To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Methods. Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570–610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. Results. The decibel VF sensitivity scale showed significant relationships between superior–inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior–inferior–nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Conclusions. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG. PMID:21980002

  15. Spectral calibration analysis of the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Rousey, Carlton E.

    1989-01-01

    Efforts were concentrated on the spectral resolution of the Airborne Oceanographic Lidar (AOL). This year's work was targeted towards the analysis of calibration techniques to enable the AOL to measure absolute radiances of both passive and active modes of operation. Absolute spectral calibration of the AOL is necessary in order to fully understand and monitor the sensitivity and stability of the total system. Calibration is also needed to obtain valid surface truth data, with which to improve the accuracy of satellite-borne oceanic color scanners. In particular, accurate measurements of oceanic chlorophyll concentrations rests upon reliable irradiance calibrations of both laser induced and solar induced chlorophyll fluoresence. An analysis was performed on the spectral calibration methods used by the AOL. The optical path of the instrumentation was examined to study how the radiance from a calibration sphere was influenced. Ray tracing analysis was performed, including the Cassegrain-telescope optics. It was determined that the calibration radiance was significantly effected by optical-defocusing, due to close positioning of the calibration sphere with respect to the telescope. Since the multi-mode usages of the AOL require varying altitudes and trajectories, a computational algorithm was developed to compensate for image distortions of the telescope optics. Secondary mirror blockage, secondary vignetting, and beam divergence was determined, in order to account for the actual amount of calibrated flux received at the spectral sensors.

  16. Time frequency analysis of Jovian and Saturnian radio spectral patterns

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Al-Haddad, Emad; Lammer, Helmut

    2016-04-01

    Prominent radio spectral patterns were observed by the Cassini Radio and Plasma Wave Science experiment (RPWS) principally at Jupiter and Saturn. The spectral shapes are displayed in the usual dynamic spectra showing the flux density versus the time and the frequency. Those patterns exhibit well-organized shapes in the time-frequency plane connected with the rotation of the planet. We consider in this analysis the auroral emissions which occurred in the frequency range between 10 kHz and approximately 3 MHz. It concerns the Jovian hectometric emission (HOM) and the Saturnian kilometric radiation (SKR). We show in the case of Jupiter's HOM that the spectral patterns are well-arranged arc structures with curvatures depending on the Jovian rotation. Regarding the SKR emission, the spectral shapes exhibit generally complex patterns, and only sometimes arc structures are observed. We emphasize the curve alterations from vertex-early to vertex-late arcs (and vice versa) and we study their dependences, or not, on the planetary rotations. We also discuss the common physical process at the origin of the HOM and SKR emissions, specifically the spectral patterns created by the interaction between planetary satellites (e.g. Io or Dione) and the Jovian and Saturnian magnetospheres.

  17. Effects of prosodic factors on spectral dynamics. I. Analysis

    NASA Astrophysics Data System (ADS)

    Wouters, Johan; Macon, Michael W.

    2002-01-01

    The effects of prosodic factors on the spectral rate of change of vowel transitions are investigated. Thirty two-syllable English words are placed in carrier phrases and read by a single speaker. Liquid-vowel, diphthong, and vowel-liquid transitions are extracted from different prosodic contexts, corresponding to different levels of stress, pitch accent, word position, and speaking style, following a balanced experimental design. The spectral rate of change in these transitions is measured by fitting linear regression lines to the first three formants and computing the root-mean-square of the slopes. Analysis shows that the spectral rate of change increases with linguistic prominence, i.e., in stressed syllables, in accented words, in sentence-medial words, and in hyperarticulated speech. The results are consistent with a contextual view of vowel reduction, where the extent of reduction depends both on the spectral rate of change and on vowel duration. A numerical model of spectral rate of change is proposed, which can be integrated in a system for concatenative speech synthesis, as discussed in Paper II [J. Wouters and M. Macon, J. Acoust. Soc. Am. 111, 428-438 (2002)].

  18. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    NASA Astrophysics Data System (ADS)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  19. PCA of PCA: principal component analysis of partial covering absorption in NGC 1365

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Walton, D. J.; Fabian, A. C.; Risaliti, G.

    2014-06-01

    We analyse 400 ks of XMM-Newton data on the active galactic nucleus NGC 1365 using principal component analysis (PCA) to identify model-independent spectral components. We find two significant components and demonstrate that they are qualitatively different from those found in MCG-6-30-15 using the same method. As the variability in NGC 1365 is known to be due to changes in the parameters of a partial covering neutral absorber, this shows that the same mechanism cannot be the driver of variability in MCG-6-30-15. By examining intervals where the spectrum shows relatively low absorption we separate the effects of intrinsic source variability, including signatures of relativistic reflection, from variations in the intervening absorption. We simulate the principal components produced by different physical variations, and show that PCA provides a clear distinction between absorption and reflection as the drivers of variability in AGN spectra. The simulations are shown to reproduce the PCA spectra of both NGC 1365 and MCG-6-30-15, and further demonstrate that the dominant cause of spectral variability in these two sources requires a qualitatively different mechanism.

  20. [Effect of different distribution of components concentration on the accuracy of quantitative spectral analysis].

    PubMed

    Li, Gang; Zhao, Zhe; Wang, Hui-Quan; Lin, Ling; Zhang, Bao-Ju; Wu, Xiao-Rong

    2012-07-01

    In order to discuss the effect of different distribution of components concentration on the accuracy of quantitative spectral analysis, according to the Lambert-Beer law, ideal absorption spectra of samples with three components were established. Gaussian noise was added to the spectra. Correction and prediction models were built by partial least squares regression to reflect the unequal modeling and prediction results between different distributions of components. Results show that, in the case of pure linear absorption, the accuracy of model is related to the distribution of components concentration. Not only to the component we focus on, but also to the non-tested components, the larger covered and more uniform distribution is a significant point of calibration set samples to establish a universal model and provide a satisfactory accuracy. This research supplies a theoretic guidance for reasonable choice of samples with suitable concentration distribution, which enhances the quality of model and reduces the prediction error of the predict set. PMID:23016350

  1. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  2. Correlation of Coal Calorific Value and Sulphur Content with 57Fe Mössbauer Spectral Absorption

    NASA Astrophysics Data System (ADS)

    Wynter, C. I.; May, L.; Oliver, F. W.; Hall, J. A.; Hoffman, E. J.; Kumar, A.; Christopher, L.

    Coal is the most abundant, most economical and widely distributed fossil fuel in the world today. It is also the principal form of reductant in the iron and steel industry. This study was undertaken to not only add to the growing use of Mössbauer spectroscopy application in industry but also to increase the chemistry and physics knowledge base of coal. Coal is 40 to 80 percent carbon with small amounts of sulphur and iron as pyrite and ferrous sulphate. The environmental concern associated with mining and burning of coal has long been a subject of investigation with emphasis on the sulphur content. We examined five ranks of coal: anthracite, Eastern bituminous, bituminous, sub-bituminous, and lignite. Relationships were investigated between the Calorific Value (CV) of coal and inorganic sulphur content, 57Fe Mössbauer absorption, and ratio of pyrite (FeS2) to FeSO4. Twenty-eight samples of the five different types of coal had CVs ranging from 32,403 to 16,100 kJ/kg and sulphur concentrations ranging from 0.28 to 2.5 percent. CV appeared to be positively correlated with concentrations of sulphur and of iron-sulphur salts, although there appears to be little connection with the distribution of their oxidation states.

  3. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    SciTech Connect

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-15

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of {+-}14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 {mu}m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within {+-}25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  4. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma.

    PubMed

    Knapp, P F; Hansen, S B; Pikuz, S A; Shelkovenko, T A; Hammer, D A

    2012-07-01

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 μm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma. PMID:22852690

  5. Spectral karyotyping analysis of human and mouse chromosomes

    PubMed Central

    Padilla-Nash, Hesed M; Barenboim-Stapleton, Linda; Difilippantonio, Michael J; Ried, Thomas

    2016-01-01

    Classical banding methods provide basic information about the identities and structures of chromosomes on the basis of their unique banding patterns. Spectral karyotyping (SKY), and the related multiplex fluorescence in situ hybridization (M-FISH), are chromosome-specific multicolor FISH techniques that augment cytogenetic evaluations of malignant disease by providing additional information and improved characterization of aberrant chromosomes that contain DNA sequences not identifiable using conventional banding methods. SKY is based on cohybridization of combinatorially labeled chromosome-painting probes with unique fluorochrome signatures onto human or mouse metaphase chromosome preparations. Image acquisition and analysis use a specialized imaging system, combining Sagnac interferometer and CCD camera images to reconstruct spectral information at each pixel. Here we present a protocol for SKY analysis using commercially available SkyPaint probes, including procedures for metaphase chromosome preparation, slide pretreatment and probe hybridization and detection. SKY analysis requires approximately 6 d. PMID:17406576

  6. Spectral analysis of wave propagation in connected waveguides

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gopalakrishnan

    1992-01-01

    The spectral element method combined with the Fast Fourier Transform (FFT) is a powerful and versatile tool for analysis of wave propagation problems in connected structures. They are formulated entirely in the frequency domain and use matrix assembly procedures analogous to the finite element method. This thesis extends the approach to connected structures involving non-uniformities and discontinuities. To handle situations involving deep waveguides, spectral elements are formulated based on the higher order waveguide theories of Timoshenko beam and Mindlin-Herrmann rod. Approximate tapered elements (derived using a frequency domain Ritz method) are formulated to handle situations involving member cross-section variations. For waveguides with embedded discontinuities like cracks and holes, the irregular behavior near the discontinuity is isolated by performing Local/Global analysis via the super spectral element concept. Efficient computation of the super element stiffness is the key to the success of the method and it is addressed directly. The formulated element is verified by comparison with the conventional finite element solution. Some interesting problems involving joints, cracks and holes are solved. One of the distinct advantages of the spectral approach is the capability to perform inverse problems. The concept is demonstrated with some illustrative examples involving multiple boundaries.

  7. Validation of H2O Continuum Absorption Models in the Wave Number Range 180-600 cm-1 with Atmospheric Emitted Spectral Radiance Measured at the Antarctica Dome-C Site

    NASA Astrophysics Data System (ADS)

    Liuzzi, Giuliano; Masiello, Guido; Serio, Carmine; Venafra, Sara; Blasi, Maria Grazia; Palchetti, Luca; Bianchini, Giovanni

    2014-06-01

    We present the results concerning the analysis of a set of atmospheric emitted (down welling) spectral radiance observations in the spectral range 180 to 1100 cm-1 acquired at the Dome-C site in Antarctica during an extensive field campaign in 2011-2012. The work has been mainly focused on retrieving and validating the coefficients of the foreign contribution to the water vapour continuum absorption, within a spectral range overlapping the water vapour rotational band. Retrievals have been performed by using a simultaneous physical retrieval procedure for atmospheric and spectroscopic parameters. Both day (summer) and night (winter) spectra have been used in our analysis. This new set of observations in the far infrared range has allowed us to extend validation and verification of state-of-the-art water vapour continuum absorption models down to 180 cm-1. The results show that discrepancies between measurements and models are less than 10% in the interval 350-590 cm-1, while they are slightly larger at wave numbers below 350 cm-1. Overall, our study shows a good consistency between observations and state-of-the-art models and gives evidence for the need of also adjusting line absorption as done in Delamere et al. (2010). Finally, it has been found that there is a good agreement between the coefficients retrieved using either summer or winter spectra, which are acquired in far different meteorological conditions.

  8. A Spectral Variability Survey of X-ray Reflection and Absorption in Seyfert AGN using the Rossi X-ray Timing Explorer Database

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex

    The Rossi X-ray Timing Explorer (RXTE) is the current longest-running X-ray mission. It has collected data on over 130 Active Galactic Nuclei (AGN) over its 15-year lifetime. We plan to systematically analyze the broad X-ray spectra of all AGN observed with RXTE to produce the ultimate and complete spectral sample with which to solidify the legacy of RXTE towards AGN science and towards understanding the nature of reprocessing and reflection processes in Seyferts. In many cases, RXTE conducted sustained monitoring spanning a baseline of many years, so our proposed time-averaged spectral analysis reduces the ambiguity inherent in individual snapshots due to source variability, thereby providing the community with long-term average X-ray spectral properties as well as identifying any state changes in sources. We will also perform time- and flux-resolved spectroscopy to search for variability in the Fe K alpha emission line in response to X-ray continuum flux variations to constrain its location via reverberation mapping, e.g., material commensurate with the optical Broad Line Region or a parsec- scale torus. Our proposed work will place important constraints on the location and homogeneity of the Compton-thick circumnuclear accreting gas. We will also search for variations in the line-of-sight column density of absorbing material in Seyferts to test classical Seyfert 1/2 unification schemes against newer models which rely on distributions of clumps of gas and for which X-ray absorption is a viewing-angle dependent probability, and provide observational constraints for these latter models. This research supports NASA Strategic Goal 2 by expanding scientific understanding of the universe in which we live, how the universe works, and how the observable universe came to be.

  9. Spectral analysis algorithm for material detection from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Racine, Joseph K.

    2011-06-01

    Material detection from multi-spectral imagery is critical to numerous geospatial applications. However, given the limited number of channels from various air and space-borne imaging sensors, coupled with varying illumination conditions, material-specific detection rules tend to generate large numbers of false positives. This paper will describe a novel approach that uses various band ratios (for example, [Blue + Green]/Red) to identify targets-of-interest, regardless of the illumination conditions and position of the sensor relative to the target. The approach uses a physics-based spectral model to estimate the observed channel-weighted radiance based on solar irradiance, atmospheric transmission, reflectivity of the target-of-interest and the spectral weighting functions of the sensor's channels. The observed channelweighted radiance is then converted to the expected channel pixel value by the channel-specific conversion factor. With each channel's pixel values estimated, the algorithm goes through a process to find which band ratio values show the least amount of variance, despite varying irradiance spectra and atmospheric absorption. The band ratios with the least amount of variance are then used to identify the target-of-interest in an image file. To determine the expected false alarm rate, the same band ratios are evaluated against a library of background materials using the same calculation method for determining the target-of-interest's channel pixel values. Testing of this approach against ground-truth imagery, with as few as four channels, has shown a high rate of success in identifying targets-of-interest, while maintaining low false alarm rates.

  10. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  11. A comparison of spectral and chaotic analysis of electrochemical noise

    SciTech Connect

    Legat, A.; Govekar, E.

    1996-12-31

    Potential and current fluctuations spontaneously generated by corrosion reactions are known as electrochemical noise. In certain cases, good correlation can be obtained between the results of the spectral analysis of electrochemical noise and corrosion rate and type. However, because of the chaotic nature of corrosion processes, a special mathematical treatment may be needed. In the present study, the electrochemical noise measured on various metals was treated by methods known from the theory of chaos, and the results were compared with the results of spectral analysis. It has been shown that the chaotic characteristics of electrochemical noise are related to corrosion type, whereas the rate of corrosion has no influence on the fractal dimensions of the noise.

  12. Shortgrass prairie spectral measurements. [for terrain analysis and photomapping

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Miller, L. D.; Pearson, R. L.

    1975-01-01

    The spectral methods of vegetation analysis not only measure herbage biomass on a nondestructive basis but also can be adapted to aircraft and satellite devices to map the spatial distribution over an area in an efficient and economical fashion. This study reviews the ground-based in situ field spectrometry in the 0.350-0.800 micron region of the spectrum. A statistical analysis of in situ spectroreflectance data from sample plots of the shortgrass prairie shows that green biomass, chlorophyll concentration, and leaf water content are directly interrelated to that composite property of the plot which is called functioning green biomass. Spectrocorrelation data indicate the spectral regions of optimum sensitivity for a remote estimation of the green biomass, chlorophyll, and leaf water content. The near-infrared region of the spectrum shows a high positive spectrocorrelation to these three sample parameters, regardless of the amount of standing dead vegetation.

  13. Bayesian Model Selection in 'Big Data' Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Fischer, Travis C.; Crenshaw, D. Michael; Baron, Fabien; Kloppenborg, Brian K.; Pope, Crystal L.

    2015-01-01

    As IFU observations and large spectral surveys continue to become more prevalent, the handling of thousands of spectra has become common place. Astronomers look at objects with increasingly complex emission-linestructures, so establishing a method that will easily allow for multiple-component analysis of these features in an automated fashion would be of great use to the community. Already used in exoplanet detection and interferometric image reconstruction, we present a new application of Bayesian model selection in `big data' spectral analysis. With this technique, the fitting of multiple emission-line components in an automated fashion while simultaneously determining the correct number of components in each spectrum streamlines the line measurements for a large number of spectra into a single process.

  14. Spectral analysis of sinus arrhythmia - A measure of mental effort

    NASA Technical Reports Server (NTRS)

    Vicente, Kim J.; Craig Thornton, D.; Moray, Neville

    1987-01-01

    The validity of the spectral analysis of sinus arrhythmia as a measure of mental effort was investigated using a computer simulation of a hovercraft piloted along a river as the experimental task. Strong correlation was observed between the subjective effort-ratings and the heart-rate variability (HRV) power spectrum between 0.06 and 0.14 Hz. Significant correlations were observed not only between subjects but, more importantly, within subjects as well, indicating that the spectral analysis of HRV is an accurate measure of the amount of effort being invested by a subject. Results also indicate that the intensity of effort invested by subjects cannot be inferred from the objective ratings of task difficulty or from performance.

  15. Spectral Analysis of Timing Noise in NANOGrav Pulsars

    NASA Astrophysics Data System (ADS)

    Perrodin, Delphine; Jenet, F. A.; Lommen, A. N.; Finn, L. S.; Demorest, P. B.

    2012-01-01

    The NANOGrav collaboration seeks to detect gravitational waves from distant supermassive black hole sources using a pulsar timing array. In order to search for gravitational waves, it is necessary to have a good characterization of the timing noise for each pulsar of the pulsar timing array. Red noise is common in millisecond pulsars, and we need to quantify how much red noise is present for each pulsar. This can be done by looking at the power spectra of the pulsar timing residuals. However because the pulsar data are non-uniformly sampled, one cannot simply do a Fourier analysis. Also, commonly used least-square fitting methods such as the Lomb-Scargle analysis are not adequate for steep red spectra. Instead, we compute the power spectra of NANOGrav pulsar timing residuals using the Cholesky transformation, which eliminates spectral leakage. This is done with the help of the TEMPO2 ``SpectralModel" plugin developed by William Coles and George Hobbs.

  16. Spectral Analysis of Timing Noise in NANOGrav Pulsars

    NASA Astrophysics Data System (ADS)

    Perrodin, Delphine

    2011-07-01

    The NANOGrav collaboration seeks to detect gravitational waves from distant supermassive black hole sources using a pulsar timing array. In order to search for gravitational waves, it is necessary to have a good characterization of the timing noise for each pulsar of the pulsar timing array. Red noise is common in millisecond pulsars, and we need to quantify how much red noise is present for each pulsar. This can be done by looking at the power spectra of the pulsar timing residuals. However because the pulsar data are non-uniformly sampled, one cannot simply do a Fourier analysis. Also, commonly used least-square fitting methods such as the Lomb-Scargle analysis are not adequate for steep red spectra. Instead, we compute the power spectra of NANOGrav pulsar timing residuals using the Cholesky transformation, which eliminates spectral leakage. This is done with the help of the TEMPO2 "SpectralModel" plugin developed by William Coles and George Hobbs.

  17. Caries imaging by teeth (auto)luminescence spectral analysis

    NASA Astrophysics Data System (ADS)

    Jonusauskas, Gediminas; Abraham, Emmanuel; Oberle, Jean; Rulliere, Claude; Peli, Jean-Francoic; Dorignac, Georges

    2003-10-01

    We propose a new technique for caries imaging by the spectral analysis of teeth luminescence excited by the near UV light. This diagnostic/control method can be applied for the all optically accessible teeth surfaces. The photo-physical studies suggest that hydroxylapatite luminescence, excited in the near UV, comes from de-excitation of crystalline structure defects in interaction with charge donating/accepting en ironment.

  18. SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Castro-Neves, Margarida; Draper, Peter W.

    2014-02-01

    SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

  19. An analysis of spectral transformation techniques on graphs

    NASA Astrophysics Data System (ADS)

    Djurović, Igor; Sejdić, Ervin; Bulatović, Nikola; Simeunović, Marko

    2015-05-01

    Emerging methods for the spectral analysis of graphs are analyzed in this paper, as graphs are currently used to study interactions in many fields from neuroscience to social networks. There are two main approaches related to the spectral transformation of graphs. The first approach is based on the Laplacian matrix. The graph Fourier transform is defined as an expansion of a graph signal in terms of eigenfunctions of the graph Laplacian. The calculated eigenvalues carry the notion of frequency of graph signals. The second approach is based on the graph weighted adjacency matrix, as it expands the graph signal into a basis of eigenvectors of the adjacency matrix instead of the graph Laplacian. Here, the notion of frequency is then obtained from the eigenvalues of the adjacency matrix or its Jordan decomposition. In this paper, advantages and drawbacks of both approaches are examined. Potential challenges and improvements to graph spectral processing methods are considered as well as the generalization of graph processing techniques in the spectral domain. Its generalization to the time-frequency domain and other potential extensions of classical signal processing concepts to graph datasets are also considered. Lastly, it is given an overview of the compressive sensing on graphs concepts.

  20. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  1. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  2. TURBULENCE SPECTRA FROM DOPPLER-BROADENED SPECTRAL LINES: TESTS OF THE VELOCITY CHANNEL ANALYSIS AND VELOCITY COORDINATE SPECTRUM TECHNIQUES

    SciTech Connect

    Chepurnov, A.; Lazarian, A.

    2009-03-10

    Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide numerical testing of the two most promising techniques, velocity channel analysis and velocity coordinate spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low-resolution testing misleading. We demonstrate numerically that, when dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.

  3. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  4. Measurements of mesospheric water vapour, aerosols and temperatures with the Spectral Absorption Line Imager (SALI-AT)

    NASA Astrophysics Data System (ADS)

    Shepherd, M. G.; Mullins, M.; Brown, S.; Sargoytchev, S. I.

    2001-08-01

    Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, mesospheric clouds (MC). The processes of formation and occurrence parameters of MC constitute an interesting problem in their own right, but recently evidence has been provided which suggests that they are a critical indicator of atmospheric change. The aim of the SALI-AT experiment is to make simultaneous (although not strictly collocated) measurements of water vapour, aerosols and temperature in the mesosphere and the mesopause region under twilight condition in the presence of mesospheric clouds. The water vapour will be measured in the regime of solar occultation utilizing a water vapour absorption band at 936 nm wavelength employing the SALI (Spectral Absorption Line Imager) instrument concept. A three-channel zenith photometer, AT-3, with wavelengths of 385 nm, 525 nm, and 1040 nm will measure Mie and Rayleigh scattering giving both mesospheric temperature profiles and the particle size distribution. Both instruments are small, low cost and low mass. It is envisioned that the SALI-AT experiment be flown on a small rocket - the Improved Orion/Hotel payload configuration, from the Andoya Rocket range, Norway. Alternatively the instrument can be flown as a "passenger" on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height.

  5. Spectral Envelopes and Additive + Residual Analysis/Synthesis

    NASA Astrophysics Data System (ADS)

    Rodet, Xavier; Schwarz, Diemo

    The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

  6. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  7. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  8. Airborne Differential Absorption and High Spectral Resolution Lidar Measurements for Cirrus Cloud Studies

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Schaefler, Andreas; Wirth, Martin; Fix, Andreas

    2016-06-01

    Aerosol and water vapor measurements were performed with the lidar system WALES of the German Aerospace Center (DLR) onboard the German research aircraft G550-HALO during the HALO Techno-Mission in October and November 2010 and during the ML-Cirrus mission in March and April 2014 over Central Europe and the North Atlantic region. Curtains composed of lidar profiles beneath the aircraft show the water vapor mixing ratio and the backscatter ratio. Temperature data from ECMWF model analysis are used to calculate the relative humidity above ice (RHi) in the 2-D field along the flight track to study the RHi distribution inside and outside of cirrus clouds at different stages of cloud evolution.

  9. Jupiter Systems Data Analysis Program Galileo Multi-Spectral Analysis of the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda; Carlson, Robert; Smythe, William

    2002-01-01

    Progress was made on this project at the University of Colorado, particularly concerning analysis of data of the galilean moons Io and Europa. The goal of the Io portion of this study is to incorporate Near Infrared Mapping Spectrometer (NIMS) measured sulfur dioxide (SO2) frost amounts into models used with Ultraviolet spectrometer (UVS) spectra, in order to better constrain SO2 gas amounts determined by the UVS. The overall goal of this portion of the study is to better understand the thickness and distribution of Io's SO2 atmosphere. The goal of the analysis of the Europa data is to better understand the source of the UV absorption feature centered near 280 rim which has been noted in disk-integrated spectra primarily on the trailing hemisphere. The NIMS data indicate asymmetric water ice bands on Europa, particularly over the trailing hemisphere, and especially concentrated in the visibly dark regions associated with chaotic terrain and lines. The UPS data, the first-ever disk-resolved UV spectra of Europa, shown that the UV absorber is likely concentrated in regions where the NIMS data show asymmetric water ice bands. The material that produces both spectral features is likely the same, and we use data from both wavelength regions to better understand this material, and whether it is endogenically or exogenically produced. This work is still in progress at JPL.

  10. Absorption and emission spectral shapes of a prototype dye in water by combining classical/dynamical and quantum/static approaches.

    PubMed

    Petrone, Alessio; Cerezo, Javier; Ferrer, Francisco J Avila; Donati, Greta; Improta, Roberto; Rega, Nadia; Santoro, Fabrizio

    2015-05-28

    We study the absorption and emission electronic spectra in an aqueous solution of N-methyl-6-oxyquinolinium betaine (MQ), an interesting dye characterized by a large change of polarity and H-bond ability between the ground (S0) and the excited (S1) states. To that end we compare alternative approaches based either on explicit solvent models and density functional theory (DFT)/molecular-mechanics (MM) calculations or on DFT calculations on clusters models embedded in a polarizable continuum (PCM). In the first approach (ClMD), the spectrum is computed according to the classical Franck-Condon principle, from the dispersion of the time-dependent (TD)-DFT vertical transitions at selected snapshots of molecular dynamics (MD) on the initial state. In the cluster model (Qst) the spectrum is simulated by computing the quantum vibronic structure, estimating the inhomogeneous broadening from state-specific TD-DFT/PCM solvent reorganization energies. While both approaches provide absorption and emission spectral shapes in nice agreement with experiment, the Stokes shift is perfectly reproduced by Qst calculations if S0 and S1 clusters are selected on the grounds of the MD trajectory. Furthermore, Qst spectra better fit the experimental line shape, mostly in absorption. Comparison of the predictions of the two approaches is very instructive: the positions of Qst and ClMD spectra are shifted due to the different solvent models and the ClMD spectra are narrower than the Qst ones, because MD underestimates the width of the vibrational density of states of the high-frequency modes coupled to the electronic transition. On the other hand, both Qst and ClMD approaches highlight that the solvent has multiple and potentially opposite effects on the spectral width, so that the broadening due to solute-solvent vibrations and electrostatic interaction with bulk solvent is (partially) counterbalanced by a narrowing of the contribution due to the solute vibrational modes. Qst analysis

  11. Titan's Surface Composition Investigated by Spectral Mixture Analysis of VIMS/Cassini Data

    NASA Astrophysics Data System (ADS)

    Combe, Jean-Philippe; McCord, T. B.; Hayne, P.; Hansen, G. B.

    2007-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini and ground-based telescopic observations revealed the diversity of Titan's surface composition. The atmosphere is transparent only in seven narrow ranges of wavelength between 1 and 5 µm, and mixtures of materials certainly occur and distort their absorption bands, even in high spectral resolution measurements. As a consequence, some investigations for specific materials are not fully certain or even failed. In addition, aerosol scattering dominates the signal, especially towards short wavelengths. H2O ice has been reported first by Griffith et al. (2003). Other components are only suggested: CH4 (Coustenis et al. (2005), bitumens and tholins (Lellouch et al., 2004) and CO2 ice (Barnes et al., 2006; Rodriguez et al., 2006) but detection attempt failed for CO2 ice (Hartung et al., 2006). The global spectral shape also contains useful information to derive the surface composition. Thus, we focused on the analysis of VIMS spectra after averaging the signal within each atmospheric window. Data are selected between 70 degrees emergence angle and incidence angles less than 45 degrees for more homogeneity. We apply a linear spectral unmixing model to fit VIMS data with similarly windowed laboratory spectra of known materials and a model of aerosol scattering. Image fraction maps suggest a major role of CO2 in bright regions like the 5-µm bright spot at Tui Regio (Barnes et al., 2005). Results are consistent with the 5-µm window analysis reported in the companion abstracts (Hayne et al., 2007 and in McCord et al., 2007, this meeting). This analysis is also in agreement with H2O ice at locations previously reported by Soderblom et al. (2007) . Atmospheric scattering is ubiquitous and quite homogenous. This analysis revealed a spectral component bright at 2 µm that may be used to identify other surface components.

  12. Variation in spectral irradiance of the SES solar simulator

    NASA Technical Reports Server (NTRS)

    Mcnutt, A. E.

    1971-01-01

    A test to determine the spectral characteristics of the solar simulation produced by the solar environment simulator (SES) comprised a statistical analysis to determine the spectral variance, and its effect on the average absorptivity of surface coatings.

  13. Spectral analysis and modeling of solar flares chromospheric condensation

    NASA Astrophysics Data System (ADS)

    Cauzzi, Gianna; Graham, David; Kowalski, Adam; Zangrilli, Luca; Simoes, Paulo; Allred, Joel C.

    2016-05-01

    We follow up on our recent analysis of the X1.1 flare SOL2014-09-10T17:45, where we studied the impulsive phase dynamics of tens of individual flaring "kernels", in both coronal (Fe XXI) and chromospheric (MgII) lines observed at high cadence with IRIS.We concentrate here on the chromospheric aspect of the phenomenon, extending the analysis to multiple spectral lines of Mg II, Fe II, Si I, C II. We show that many flaring kernels display high velocity downflows in the spectra of all these chromospheric lines, exhibiting distinct, transient and strongly redshifted spectral components.From modeling using RADYN with the thick-target interpretation, the presence of two spectral components appears to be consistent with a high flux beam of accelerated electrons, characterized by a hard spectrum. In particular the highest energy electrons heat the denser, lower layers of the atmosphere, while the bulk of the beam energy, deposited higher in the atmosphere, is sufficient to produce chromospheric evaporation with a corresponding condensation.

  14. Multi - Wavelength Analysis of Intermediate Class Absorption Line Galaxies in CFHTLS Field

    NASA Astrophysics Data System (ADS)

    Baburao Pandge, Mahadev

    2015-08-01

    We present optical and X-ray analysis of a sample of some absorption line galaxies (ALGs). These galaxies are lie in the redshift range 0.14 < z < 0.34 and have X-ray luminosities L{0.5-10keV} = 1041-1043 erg s-1. The distribution of log (fX/fO) imply that these objects are intermediate class objects, i.e. lie between normal and classical active galaxies. From X-ray analysis of two of the intermediate class galaxies, namely ALG2 and ALG3, exhibit extended nature, perhaps linked with their cluster environment. Thus, from the X-ray spectral and optical imaging analysis, it is likely that all the targeted ALGs studied here can be the group/cluster candidates. Hardness ratio of these 5 candidates is found to be -0.42 \\pm 0.10, consistent with that reported for galaxies.

  15. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  16. Spectral analysis of SMC X-2 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    La Palombara, N.; Sidoli, L.; Pintore, F.; Esposito, P.; Mereghetti, S.; Tiengo, A.

    2016-05-01

    We report on the results of XMM-Newton and Swift observations of SMC X-2 during its last outburst in 2015 October, the first one since 2000. The source reached a very high luminosity (L ˜ 1038 erg s-1), which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period Pspin = 2.372267(5) s and a characterization of the pulse profile also at low energies. The main spectral component is a hard (Γ ≃ 0) power-law model with an exponential cut-off, but at low energies we detected also a soft (with kT ≃ 0.15 keV) thermal component. Several emission lines are present in the spectrum. Their identification with the transition lines of highly ionized N, O, Ne, Si, and Fe suggests the presence of photoionized matter around the accreting source.

  17. Comparative analysis of spectral coherence in microresonator frequency combs.

    PubMed

    Torres-Company, Victor; Castelló-Lurbe, David; Silvestre, Enrique

    2014-02-24

    Microresonator combs exploit parametric oscillation and nonlinear mixing in an ultrahigh-Q cavity. This new comb generator offers unique potential for chip integration and access to high repetition rates. However, time-domain studies reveal an intricate spectral coherence behavior in this type of platform. In particular, coherent, partially coherent or incoherent combs have been observed using the same microresonator under different pumping conditions. In this work, we provide a numerical analysis of the coherence dynamics that supports the above experimental findings and verify particular design rules to achieve spectrally coherent microresonator combs. A particular emphasis is placed in understanding the differences between so-called Type I and Type II combs. PMID:24663786

  18. Spectral Signature Analysis - BIST for RF Front-Ends

    NASA Astrophysics Data System (ADS)

    Lupea, D.; Pursche, U.; Jentschel, H.-J.

    2003-05-01

    In this paper, the Spectral Signature Analysis is presented as a concept for an integrable self-test system (Built-In Self-Test - BIST) for RF front-ends is presented. It is based on modelling the whole RF front-end (transmitter and receiver) on system level, on generating of a Spectral Signature and of evaluating of the Signature Response. Because of using multi-carrier signal as the test signature, the concept is especially useful for tests of linearity and frequency response of front-ends. Due to the presented method of signature response evaluation, this concept can be used for Built-In Self-Correction (BISC) at critical building blocks.

  19. [Research on the spectral analysis and stability of copper green].

    PubMed

    Li, Man; Wang, Li-Qin; Xia, Yin; Yang, Qiu-Ying

    2013-12-01

    In the history of Chinese pigment, copper green, a pigment, was used in vast territory and for a long time. In the present paper, the nature, spectral characteristics, thermodynamic stability of the four isomers of the basic copper chlorides and also their application in the polychrome relics were discussed. The four isomers can be identified quickly by Raman spectral analysis which is a micro-damage or even a nondestructive technique. The order of their thermodynamic stability is as follows: clinoatacamite>paratacamite>atacamite>botallackite. It was showed that in the relics samples copper green was mostly botallackite and atacamite which were less stable isomers. According to the Ostwald step rule, the environmental monitoring should be strengthened to prevent the change in their physical and chemical structures. PMID:24611389

  20. Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.

    2011-01-01

    The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z < 0.1) Type Ia supernovae (SNe Ia) both photometrically and spectroscopically for over two decades. Using telescopes at both Lick and Keck Observatories, we have amassed an extensive collection of well-sampled optical light curves with complementary spectra covering, on average, 3400-10,000 Å. In total, we have obtained nearly 600 spectra of over 200 SNe Ia with densely sampled multi-color light curves. The initial analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.

  1. Spectral characteristics and predictability of the NAO assessed through Singular Spectral Analysis

    NASA Astrophysics Data System (ADS)

    GáMiz-Fortis, S. R.; Pozo-VáZquez, D.; Esteban-Parra, M. J.; Castro-DíEz, Y.

    2002-12-01

    For the period 1826-2000, we analyze the spectral characteristics of the winter North Atlantic Oscillation (NAO) index and its predictability based on Singular Spectral Analysis (SSA) and Autoregressive Moving Average (ARMA) models. In the first part, SSA is applied to the winter NAO index to isolate its main spectral characteristics. Based on the SSA, a reconstruction (filtering) of the winter NAO index series was carried out. Results of the SSA indicate that the winter NAO index can be broken down into some modulated amplitude oscillations with periods around 7.7 and 4.8 years, some oscillations associated with a broadband peak of period around 2.4 years along with nonlinear trends. The sum of these components, the SSA-filtered series, explains 56% of the variance of the raw winter NAO index. The SSA-filtered series is particularly reliable, reproducing the NAO phase during extreme events (winter NAO index ≥ 1 or ≤ -1); for this subset of events, the phase of the actual and SSA-filtered series shows to be the same in 91% of the cases. The high positive values observed in the winter NAO index in the last eighties and nineties appear to be associated with the simultaneous presence of a positive trend, starting in the early eighties and of unprecedented steepness, and an oscillation with period around 7.7 years, having very high amplitude. In the second part, an ARMA model has been fitted to the filtered winter NAO index and a forecasting experiment was conducted; results are tested against the raw winter NAO index. Results show that the ARMA modeling has useful 1-year-ahead forecasting abilities. Particularly, over the period 1986-2000, not used to fit the model, the model skill is 27.8% better than climatology and 43.3% better than persistence (38.5% and 47.6%, respectively, when taking into account only extreme NAO events). Additionally, percentage of cases in which the NAO phase was accurately predicted proved to be 80% (88% for extreme NAO events). For 2001

  2. Coefficient of variation spectral analysis: An application to underwater acoustics

    NASA Astrophysics Data System (ADS)

    Herstein, P. D.; Laplante, R. F.

    1983-05-01

    Acoustic noise in the ocean is often described in terms of its power spectral density. Just as in other media, this noise consists of both narrowband and broadband frequency components. A major problem in the analysis of power spectral density measurements is distinguishing between narrowband spectral components of interest and contaminating narrowband components. In this paper, the use of coefficient of variation (Cv) spectrum is examined as an adjunct to the conventional power spectrum to distinguish narrowband components of interest from contaminating components. The theory of the Cv is presented. Coefficients for several classical input distributions are developed. It is shown that Cv spectra can be easily implemented as an adjunct procedure during the computation of the ensemble of averaged power spectra. Power and Cv spectra derived from actual at-sea sonobuoy measurements of deep ocean ambient noise separate narrowband components from narrowband lines of interest in the ensemble of averaged power spectra, these acoustic components of interest can be distinguished in the Cv spectra.

  3. Spectral analysis of impulse noise for hearing conservation purposes

    SciTech Connect

    Stevin, G.O.

    1982-12-01

    Damage-risk criteria for impulse noise does not presently take the spectrum of the impulse into account; however, it is known that the human auditory system is spectrally tuned. The present paper advocates the extension to impulse noise of the noise dose concept which is widely used for continuous noise. This approach is based upon sound exposure instead of sound pressure. An A-weighting filter or an octave band analysis can then be used to take the spectral content of the impulses into account. The equipment needed for applying these procedures for impulse noise is an integrating sound level meter or a digital Fourier processor. Generalized spectral methods have been evaluated by means of an impulse simulation applied to a mathematical model of the human hearing mechanism. The results of this simulation agree with the most recent experiments on impulse noise and fully support the proposed rating methods. This conclusion must be emphasized as it leads the derivation of a uniform procedure for predicting loudness and damage risk for hearing which is applicable for continuous noise as well as for impulse noise.

  4. Improvements to a Grating-Based Spectral Imaging Microscope and Its Application to Reflectance Analysis of Blue Pen Inks.

    PubMed

    McMillan, Leilani C; Miller, Kathleen P; Webb, Michael R

    2015-08-01

    A modified design of a chromatically resolved optical microscope (CROMoscope), a grating-based spectral imaging microscope, is described. By altering the geometry and adding a beam splitter, a twisting aberration that was present in the first version of the CROMoscope has been removed. Wavelength adjustment has been automated to decrease analysis time. Performance of the new design in transmission-absorption spectroscopy has been evaluated and found to be generally similar to the performance of the previous design. Spectral bandpass was found to be dependent on the sizes of apertures, and the smallest measured spectral bandpass was 1.8 nm with 1.0 mm diameter apertures. Wavelength was found to be very linear with the sine of the grating angle (R(2) = 0.9999995), and wavelength repeatability was found to be much better than the spectral bandpass. Reflectance spectral imaging with a CROMoscope is reported for the first time, and this reflectance spectral imaging was applied to blue ink samples on white paper. As a proof of concept, linear discriminant analysis was used to classify the inks by brand. In a leave-one-out cross-validation, 97.6% of samples were correctly classified. PMID:26162719

  5. Monitoring Urban Greenness Dynamics Using Multiple Endmember Spectral Mixture Analysis

    PubMed Central

    Gan, Muye; Deng, Jinsong; Zheng, Xinyu; Hong, Yang; Wang, Ke

    2014-01-01

    Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents’ quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development. PMID:25375176

  6. Incorporating Endmember Variability into Spectral Mixture Analysis Through Endmember Bundles

    NASA Technical Reports Server (NTRS)

    Bateson, C. Ann; Asner, Gregory P.; Wessman, Carol A.

    1998-01-01

    Variation in canopy structure and biochemistry induces a concomitant variation in the top-of-canopy spectral reflectance of a vegetation type. Hence, the use of a single endmember spectrum to track the fractional abundance of a given vegetation cover in a hyperspectral image may result in fractions with considerable error. One solution to the problem of endmember variability is to increase the number of endmembers used in a spectral mixture analysis of the image. For example, there could be several tree endmembers in the analysis because of differences in leaf area index (LAI) and multiple scatterings between leaves and stems. However, it is often difficult in terms of computer or human interaction time to select more than six or seven endmembers and any non-removable noise, as well as the number of uncorrelated bands in the image, limits the number of endmembers that can be discriminated. Moreover, as endmembers proliferate, their interpretation becomes increasingly difficult and often applications simply need the aerial fractions of a few land cover components which comprise most of the scene. In order to incorporate endmember variability into spectral mixture analysis, we propose representing a landscape component type not with one endmember spectrum but with a set or bundle of spectra, each of which is feasible as the spectrum of an instance of the component (e.g., in the case of a tree component, each spectrum could reasonably be the spectral reflectance of a tree canopy). These endmember bundles can be used with nonlinear optimization algorithms to find upper and lower bounds on endmember fractions. This approach to endmember variability naturally evolved from previous work in deriving endmembers from the data itself by fitting a triangle, tetrahedron or, more generally, a simplex to the data cloud reduced in dimension by a principal component analysis. Conceptually, endmember variability could make it difficult to find a simplex that both surrounds the data

  7. Spectral analysis of coal-mine roof vibrations

    SciTech Connect

    Palmer, E.P.; Czirr, J.B.

    1982-10-01

    A spectrum analyser was used to make a detailed examination of the vibration frequencies produced by tapping a mine roof. It is shown that spectral analysis can be used to distinguish between 'solid' and 'drummy' roofs to a degree approaching that of the human ear, but it can reveal little about roof-slab thickness or attachment. The authors recommend that research should be carried out into the usefulness of augmenting human hearing in roof testing and into utilising microseismic emissions to help in assessing roof integrity.

  8. High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method

    SciTech Connect

    Shimomura, Kenta; Muramatsu, Yasuji; Denlinger, Jonathan D.; Gullikson, Eric M.

    2008-10-31

    We used the DV-X alpha method to analyze the high-resolution soft X-ray emission and absorption spectra in the CK region of titanium carbide (TiC). The spectral profiles of the X-ray emission and absorption can be ssuscfucelly reproduced by the occupied and unoccupied density of states (DOS ), respectively, in the C2p orbitals of the center carbon atoms in a Ti62C63 cluster model, suggesting that the center carbon atom in a large cluster model expanded to the cubic-structured 53 (= 125) atoms provides sufficient DOS for the X-ray spectral analysis of rock-salt structured metal carbides.

  9. Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A

    NASA Astrophysics Data System (ADS)

    Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E.

    2001-06-01

    We have designed an experiment in which students isolate and characterize thiarubrine A, a pseudo-antiaromatic 1,2-dithia-3,5-cyclohexadiene derivative. Thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications. They possess a distinctive red color and structure features that are particularly useful for demonstrating UV-vis, NMR, and IR spectral analyses. A crude mixture containing thiarubrine A is obtained by methanol (liquid-solid) extraction of the roots of short ragweed, Ambrosia artemisiifolia. Alternatively, these compounds can be isolated from numerous taxa within the family Asteraceae. Thiarubrine A possesses alkyl, alkenyl, and alkynyl functionality, which is useful in illustrating the utility of IR and NMR in the characterization of natural products. The long wavelength UV-vis absorption band of thiarubrine is indication of the nonplanarity of dithiin ring and provides an excellent opportunity to discuss the concepts of aromaticity, conjugation, and molecular orbital theory.

  10. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  11. Groupwise shape analysis of the hippocampus using spectral matching

    NASA Astrophysics Data System (ADS)

    Shakeri, Mahsa; Lombaert, Hervé; Lippé, Sarah; Kadoury, Samuel

    2014-03-01

    The hippocampus is a prominent subcortical feature of interest in many neuroscience studies. Its subtle morphological changes often predicate illnesses, including Alzheimer's, schizophrenia or epilepsy. The precise location of structural differences requires a reliable correspondence between shapes across a population. In this paper, we propose an automated method for groupwise hippocampal shape analysis based on a spectral decomposition of a group of shapes to solve the correspondence problem between sets of meshes. The framework generates diffeomorphic correspondence maps across a population, which enables us to create a mean shape. Morphological changes are then located between two groups of subjects. The performance of the proposed method was evaluated on a dataset of 42 hippocampus shapes and compared with a state-of-the-art structural shape analysis approach, using spherical harmonics. Difference maps between mean shapes of two test groups demonstrates that the two approaches showed results with insignificant differences, while Gaussian curvature measures calculated between matched vertices showed a better fit and reduced variability with spectral matching.

  12. Spectral analysis for automated exploration and sample acquisition

    NASA Astrophysics Data System (ADS)

    Eberlein, Susan; Yates, Gigi

    1992-05-01

    Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.

  13. Spectral analysis for automated exploration and sample acquisition

    NASA Technical Reports Server (NTRS)

    Eberlein, Susan; Yates, Gigi

    1992-01-01

    Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.

  14. Energy analysis of an ammonia-water absorption refrigeration system

    SciTech Connect

    Dincer, I.; Dost, S.

    1996-09-01

    Absorption refrigeration systems (ARSs) are run on heat-operated cycles. In these systems a secondary fluid (i.e., absorbent) is used to absorb the primary fluid (i.e., refrigerant) vaporized in the evaporator. ARSs for industrial and domestic applications have been attracting increasing interest throughout the world. A simple energy analysis technique for ammonia-water refrigeration systems is presented and verified with actual experimental data taken from the literature. Comparison was made in terms of the coefficient of performance, and very good agreement was found.

  15. Chlorine analysis by diode laser atomic absorption spectrometry.

    PubMed

    Koch, J; Zybin, A; Niemax, K

    2000-04-01

    The general characteristics of Diode Laser Absorption Spectrometry (DLAAS) in low pressure plasmas particularly with respect to the detection of non-metals are comprehensively recapitulated and discussed. Furthermore, a detector, which is based on DLAAS in a microwave-induced low pressure plasma as an alternative technique for halogene-specific analysis of volatile compounds and polymeric matrices is described. The analytical capability of the technique is demonstrated on the chlorine-specific analysis of ablated polymer fragments as well as gas chromatographically separated hydrocarbons. Since the measurements were carried out by means of a balanced-heterodyne detection scheme, different technical noise contributions, such as laser excess and RAM noise could efficiently be suppressed and the registered absorption was limited only by the principal shot noise. Thus, in the case of the polymer analysis a chlorine-specific absolute detection limit of 10 pg could be achieved. Furthermore, fundamental investigations concerning the influence of hydrocarbons on the dissociation capability of the microwave induced plasma were performed. For this purpose, the carbon-, chlorine- and hydrogen-specific stoichiometry of the compounds were empirically determined. Deviations from the expected proportions were found to be insignificant, implying the possibility of internal standardization relative to the response of a reference sample. PMID:12953476

  16. EXSAA: Environmentally-Induced X-ray Spectral Analysis Automation

    NASA Astrophysics Data System (ADS)

    Fallon, F. W.; Clark, P. E.; Rilee, M. L.; Truszkowski, W.

    2005-05-01

    X-ray fluorescence (XRF) spectrometry is one of the principal means of compositional analysis in the lab and in the field: it will be a central tool in NASA's Exploration Initiative (EI) missions. No currently available XRF software has the generic functionality to provide the basis for XRF experiment design, instrument development, and data interpretation for the suite of prospective EI missions. In response to this need, we have developed EXSAA (Environmentally-induced X-ray Spectral Analysis Automation), a generic, fast, interactive spectral simulation tool which can be used in assessing broadband continuous spectra being generated and detected during reconnaissance missions and field campaigns involving planetary surfaces. The software produces model spectra of detectable environmentally-induced X-ray spectra from fundamental principles for target characteristics and conditions likely to be experienced in remote or in situ planetary missions. Fluorescence is modeled following Jenkins and DeVries (1967); coherent and Compton scattering following Hubbell (1969). The modeling provided is extensible, and a user interface provides for selection of source, detector characteristics, compositional components, and geometry for known targets. An immediate application of the tool is the prediction for mission planning purposes of X-ray flux to be expected for a range of targets and instrumentation. A longer-term application is the model basis for the recovery of surface composition from actual missions, where some parameters (e.g. source flux) will be known, and others obtained from a Bayesian analysis of the observations. Ultimately, EXSAA could function as part of the agent-based SAA Toolkit being developed by a group of physical scientists, systems engineers, and AI practitioners to automate portions of the spectral analysis process. EXSAA could be called on by human or machine agents to provide an understanding of XRF phenomena for tasks including specifically (1

  17. Improved spectral analysis for the motional Stark effect diagnostica)

    NASA Astrophysics Data System (ADS)

    Ko, J.; Klabacha, J.

    2012-10-01

    The magnetic pitch angle and the magnitude from reversed field pinch plasmas in the Madison symmetric torus (MST) have been routinely obtained from fully resolved motional Stark effect (MSE) spectrum analyses. Recently, the spectrum fit procedure has been improved by initializing and constraining the fit parameters based on the MSE model in the atomic data and analysis structure. A collisional-radiative model with level populations nlm-resolved up to n = 4 and a simple Born approximation for ion-impact cross sections is used for this analysis. Measurement uncertainty is quantified by making MSE measurements with multiple views of a single spatial location, ranging 5%-15% for typical MST operation conditions. A multi-view fit improves the goodness of fit of MSE spectral features and background.

  18. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.

    PubMed

    Lin, Junfang; Cao, Wenxi; Wang, Guifeng; Hu, Shuibo

    2013-06-20

    Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data. PMID:23842167

  19. Spectral Analysis by XANES Reveals that GPNMB Influences the Chemical Composition of Intact Melanosomes

    SciTech Connect

    T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson

    2011-12-31

    GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.

  20. Spectral analysis of mammographic images using a multitaper method

    SciTech Connect

    Wu Gang; Mainprize, James G.; Yaffe, Martin J.

    2012-02-15

    Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.

  1. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  2. Microscopic fluorescence spectral analysis of basal cell carcinomas

    NASA Astrophysics Data System (ADS)

    He, Qingli; Lui, Harvey; Zloty, David; Cowan, Bryce; Warshawski, Larry; McLean, David I.; Zeng, Haishan

    2007-05-01

    Background and Objectives. Laser-induced autofluorescence (LIAF) is a promising tool for cancer diagnosis. This method is based on the differences in autofluorescence spectra between normal and cancerous tissues, but the underlined mechanisms are not well understood. The objective of this research is to study the microscopic origins and intrinsic fluorescence properties of basal cell carcinoma (BCC) for better understanding of the mechanism of in vivo fluorescence detection and margin delineation of BCCs on skin patients. A home-made micro- spectrophotometer (MSP) system was used to image the fluorophore distribution and to measure the fluorescence spectra of various microscopic structures and regions on frozen tissue sections. Materials and Methods. BCC tissue samples were obtained from 14 patients undergoing surgical resections. After surgical removal, each tissue sample was immediately embedded in OCT medium and snap-frozen in liquid nitrogen. The frozen tissue block was then cut into 16-μm thickness sections using a cryostat microtome and placed on microscopic glass slides. The sections for fluorescence study were kept unstained and unfixed, and then analyzed by the MSP system. The adjacent tissue sections were H&E stained for histopathological examination and also served to help identify various microstructures on the adjacent unstained sections. The MSP system has all the functions of a conventional microscope, plus the ability of performing spectral analysis on selected micro-areas of a microscopic sample. For tissue fluorescence analysis, 442nm He-Cd laser light is used to illuminate and excite the unstained tissue sections. A 473-nm long pass filter was inserted behind the microscope objective to block the transmitted laser light while passing longer wavelength fluorescence signal. The fluorescence image of the sample can be viewed through the eyepieces and also recorded by a CCD camera. An optical fiber is mounted onto the image plane of the photograph

  3. Clinical measurements analysis of multi-spectral photoplethysmograph biosensors

    NASA Astrophysics Data System (ADS)

    Asare, Lasma; Kviesis-Kipge, Edgars; Spigulis, Janis

    2014-05-01

    The developed portable multi-spectral photoplethysmograph (MS-PPG) optical biosensor device, intended for analysis of peripheral blood volume pulsations at different vascular depths, has been clinically verified. Multi-spectral monitoring was performed by means of a four - wavelengths (454 nm, 519 nm, 632 nm and 888 nm) light emitted diodes and photodiode with multi-channel signal output processing. Two such sensors can be operated in parallel and imposed on the patient's skin. The clinical measurements confirmed ability to detect PPG signals at four wavelengths simultaneously and to record temporal differences in the signal shapes (corresponding to different penetration depths) in normal and pathological skin. This study analyzed wavelengths relations between systole and diastole peak difference at various tissue depths in normal and pathological skin. The difference between parameters of healthy and pathological skin at various skin depths could be explain by oxy- and deoxyhemoglobin dominance at different wavelengths operated in sensor. The proposed methodology and potential clinical applications in dermatology for skin assessment are discussed.

  4. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  5. Spatially explicit spectral analysis of point clouds and geospatial data

    NASA Astrophysics Data System (ADS)

    Buscombe, Daniel

    2016-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described

  6. Spatially explicit spectral analysis of point clouds and geospatial data

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is

  7. Performance analysis of solar powered absorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Abu-Ein, Suleiman Qaseem; Fayyad, Sayel M.; Momani, Waleed; Al-Bousoul, Mamdouh

    2009-12-01

    The present work provides a detailed thermodynamic analysis of a 10 kW solar absorption refrigeration system using ammonia-water mixtures as a working medium. This analysis includes both first law and second law of thermodynamics. The coefficient of performance (COP), exergetic coefficient of performance (ECOP) and the exergy losses (Δ E) through each component of the system at different operating conditions are obtained. The minimum and maximum values of COP and ECOP were found to be at 110 and 200°C generator temperatures respectively. About 40% of the system exergy losses were found to be in the generator. The maximum exergy losses in the absorber occur at generator temperature of 130°C for all evaporator temperatures. A computer simulation model is developed to carry out the calculations and to obtain the results of the present study.

  8. Modeling of gas absorption cross sections by use of principal-component-analysis model parameters.

    PubMed

    Bak, Jimmy

    2002-05-20

    Monitoring the amount of gaseous species in the atmosphere and exhaust gases by remote infrared spectroscopic methods calls for the use of a compilation of spectral data, which can be used to match spectra measured in a practical application. Model spectra are based on time-consuming line-by-line calculations of absorption cross sections in databases by use of temperature as input combined with path length and partial and total pressure. It is demonstrated that principal component analysis (PCA) can be used to compress the spectrum of absorption cross sections, which depend strongly on temperature, into a reduced representation of score values and loading vectors. The temperature range from 300 to 1000 K is studied. This range is divided into two subranges (300-650 K and 650-1000K), and separate PCA models are constructed for each. The relationship between the scores and the temperature values is highly nonlinear. It is shown, however, that because the score-temperature relationships are smooth and continuous, they can be modeled by polynomials of varying degrees. The accuracy of the data compression method is validated with line-by-line-calculated absorption data of carbon monoxide and water vapor. Relative deviations between the absorption cross sections reconstructed from the PCA model parameters and the line-by-line-calculated values are found to be smaller than 0.15% for cross sections exceeding 1.27 x 10(-21) cm(-1) atm(-1) (CO) and 0.20% for cross sections exceeding 4.03 x 10(-21) cm(-1) atm(-1) (H2O). The computing time is reduced by a factor of 10(4). PMID:12027171

  9. Structural, spectral and thermal analysis of some metallocephradines

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Ghareeb, Doaa A.; Nasr, Nessma M.

    2015-11-01

    A series of cephradine metal complexes were prepared and investigated by elemental analysis, IR, electronic spectra, magnetic susceptibility, ESR spectra, 1HNMR spectral studies and mass spectra. EDX patterns were carried out to emphasis the nature of the particles and the purity of products, while SEM is a sensitive tool used to justify on the microstructure and surface morphology. Thermal behavior of the synthesized complexes was illustrated by different techniques (TGA, DTA and DSC). The thermal decomposition of all the complexes ended with the formation of metal oxides and carbon residue as a final product. Also, the thermodynamic parameters and thermal transitions, such as glass transitions, crystallization and melting temperatures for cephradine and its metal complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes.

  10. Spectral reflectance of surface soils - A statistical analysis

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Henninger, D. L.; Thompson, D. R.

    1983-01-01

    The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.

  11. Photoacoustic simulation of microvessel bleeding: spectral analysis and its implication for monitoring vascular-targeted treatments

    NASA Astrophysics Data System (ADS)

    Fadhel, Muhannad N.; Hysi, Eno; Zalev, Jason; Kolios, Michael C.

    2016-03-01

    The destruction of blood vessels is a commonly used cancer therapeutic strategy. Bleeding consequently follows and leads to the accumulation of blood in the interstitium. Photoacoustic (PA) imaging is well positioned to detect bleeding due to its sensitivity to hemoglobin. After treatment vascular disruption can occur within just a few hours, which leads to bleeding which might be detected using PA to assess therapeutic effectiveness. Deep micro-vessels cannot typically be resolved using acoustic-resolution PA. However, spectral analysis of PA signals may still permit assessment of bleeding. This paper introduces a theoretical model to simulate the PA signals from disrupted vessels using a fractal model. The fractal model uses bifurcated-cylinder bases to represent vascular trees. Vessels have circular absorption cross-sections. To mimic bleeding from blood vessels, the diffusion of hemoglobin from micro-vessels was simulated. The PA signals were computed and in the simulations were detected using a linear array transducer (30 MHz center frequency) for four different vascular trees (at 256 axial spatial locations/tree). The Fourier Transform of each beam-formed PA signal was computed and the power spectra were fitted to a straight line within the -6 dB bandwidth of the receiving transducer. When comparing the power spectra before and after simulated bleeding, the spectral slope and mid-band fit (MBF) parameters decreased by 0.12 dB/MHz and 2.12 dB, while the y-intercept did not change after 1 hour of simulated bleeding. The results suggest that spectral PA analysis is sensitive to changes in the concentration and spatial distribution of hemoglobin in tissue, and changes due to bleeding can be detected without the need to resolve individual vessels. The simulations support the applicability of PA imaging in cancer treatment monitoring by detecting micro-vessel disruption.

  12. Spectral analysis methods for vehicle interior vibro-acoustics identification

    NASA Astrophysics Data System (ADS)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  13. Spectral data analysis approaches for improved provenance classification

    NASA Astrophysics Data System (ADS)

    Sorauf, Kellen J.; Bauer, Amy J. R.; Miziolek, Andrzej W.; De Lucia, Frank C.

    2015-06-01

    In the last 10 years various chemometric methods have been developed and used for the analysis of spectra generated by Laser Induced Breakdown Spectroscopy (LIBS). One of the more successful and proven methods is Partial Least Squares Discriminant Analysis (PLS-DA). Recently PLS-DA was utilized for purposes of provenance of spent brass cartridges and achieved correct classification at around 93% with a false alarm rate of around 5%. The LIBS spectra from the cartridge samples are rich in emission lines from numerous mostly metallic elements comprising the brass and the cited results were based on the analysis of the full broadband high resolution spectra. It was observed that some of the lines were clearly saturated in all spectra, while others were sometimes saturated due to pulse-to-pulse variation. The pulse-to-pulse variation was also evident in the intensity variations of the spectra within cartridges and between cartridges. In order to improve on the accuracy of the classification we have developed some preprocessing strategies including the removal of spectral wavelength ranges susceptible to saturation and normalization techniques to diminish the effects of intensity variations in the spectra. The results indicate incremental improvements when applying additional preprocessing steps to the limit of 100% True Positives and 0% False Positives when utilizing selected wavelengths that are normalized and averaged.

  14. Spectral analysis for evaluation of myocardial tracers for medical imaging

    SciTech Connect

    Huesman, Ronald H.; Reutter, Bryan W.; Marshall, Robert C.

    2000-10-11

    Kinetic analysis of dynamic tracer data is performed with the goal of evaluating myocardial radiotracers for cardiac nuclear medicine imaging. Data from experiments utilizing the isolated rabbit heart model are acquired by sampling the venous blood after introduction of a tracer of interest and a reference tracer. We have taken the approach that the kinetics are properly characterized by an impulse response function which describes the difference between the reference molecule (which does not leave the vasculature) and the molecule of interest which is transported across the capillary boundary and is made available to the cell. Using this formalism we can model the appearance of the tracer of interest in the venous output of the heart as a convolution of the appearance of the reference tracer with the impulse response. In this work we parameterize the impulse response function as the sum of a large number of exponential functions whose predetermined decay constants form a spectrum, and each is required only to have a nonnegative coefficient. This approach, called spectral analysis, has the advantage that it allows conventional compartmental analysis without prior knowledge of the number of compartments which the physiology may require or which the data will support.

  15. Spectral analysis by XANES reveals that GPNMB influences the chemical composition of intact melanosomes

    PubMed Central

    Haraszti, Tamas; Trantow, Colleen M.; Hedberg-Buenz, Adam; Grunze, Michael; Anderson, Michael G.

    2010-01-01

    Summary GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes to melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes, and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology. Significance Of the large number of proteins known to be present in melanosomes, the majority are not known to visibly influence melanosome appearance. It remains largely unknown what role, if any, most of these proteins may have in pigment cell biology. This work demonstrates an approach for discovering previously undetectable melanosomal phenotypes through a combined use of synchrotron-based spectromicroscopy and genetics. Specifically, we demonstrate that GPNMB influences the carbon absorption spectra of melanosomes. A similar strategy might also be applied to discover new features of a wide range of additional organelles important to human health and disease. PMID:21029394

  16. Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra.

    PubMed

    Curiel, Fernando; Vargas, William E; Barrera, Rubén G

    2002-10-01

    A spectral-projected gradient method and an extension of the Kubelka-Munk theory are applied to obtain the relevant parameters of the theory from measured diffuse reflectance spectra of pigmented samples illuminated with visible diffuse radiation. The initial estimate of the spectral dependence of the parameters, required by a recursive spectral-projected gradient method, was obtained by use of direct measurements and up-to-date theoretical estimates. We then tested the consistency of the Kubelka-Munk theory by repeating the procedure with samples of different thicknesses. PMID:12371558

  17. Spectral analysis of heart rate variability in bronchial asthma patients.

    PubMed

    Gupta, Jitendra; Dube, Amitabh; Singh, Virendra; Gupta, R C

    2012-01-01

    The study was carried in the Departments of Physiology and Medicine at S.M.S. Medical College, Jaipur. Thirty patients of bronchial asthma, aged 20-30 years attending outpatient clinics of S.M.S. Hospital and thirty healthy volunteers were recruited in the present study for spectral analysis of Heart Rate Variability (HRV) using impedance peripheral pulse in the right forearm. Two spectral components were recorded namely high frequency (HF) component (0.15-0.4 Hz), an indicator of vagal efferent activity and low frequency (LF) component (0.04-0.15 Hz), replicator of composite sympatho-vagal interplay. These components were analyzed as LF nu (Low Frequency normalized unit), HF nu (High Frequency normalized unit) and LF/HF ratio. Low frequency component in absolute units of the asthmatic patients differed insignificantly (P > 0.05) from LF of the subjects, whereas the same calculated as normalized units was found to be significantly low in the patient group (P < 0.01), as compared to that of the control group. The High Frequency (in absolute units) index of HRV was significantly high in asthmatics (P < 0.01) as compared to the HF (absolute units) of controls. Similar trend was observed in the normalized units of HF (P<0.01). LF/HF ratio was not significantly different in patient and control groups (P > 0.05). It was concluded that a significantly raised central vagal outflow and a concomitant significantly low central sympathetic efferent could be appreciated in asymptomatic asthmatic patients as compared to that in the control group. This deranged sympathovagal interplay with parasympathetic dominance could be a plausible pathophysiological mechanism leading to airway obstruction, the hallmark of bronchial asthma. PMID:23781652

  18. Analysis of cirrus cloud spectral signatures in the far infrared

    NASA Astrophysics Data System (ADS)

    Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.

    2014-07-01

    This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820-960 cm-1 interval. The retrieved cloud parameters are the input data for simulations covering the 250-1100 cm-1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced.

  19. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    NASA Technical Reports Server (NTRS)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  20. IR spectral analysis for the diagnostics of crust earthquake precursors

    NASA Astrophysics Data System (ADS)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  1. Solar activity forecast: Spectral analysis and neurofuzzy prediction

    NASA Astrophysics Data System (ADS)

    Gholipour, Ali; Lucas, Caro; Araabi, Babak N.; Shafiee, Masoud

    2005-04-01

    Active research in the last two decades indicates that the physical precursor and solar dynamo techniques are preferred as practical tools for long-term prediction of solar activity. But why should we omit more than 23 cycles of solar activity history, and just use empirical methods or simple autoregressive methods on the basis of observations for the latest eight cycles? In this article, a method based on spectral analysis and neurofuzzy modeling is proposed that is capable of issuing very accurate long-term prediction of sunspot number time series. A locally linear neurofuzzy model is optimized for each of the principal components obtained from singular spectrum analysis, and the multi-step predicted values are recombined to make the sunspot number time series. The proposed method is used for solar cycles 22 and 23 and the results are remarkably good in comparison to the predictions made by solar dynamo and precursor methods. An early prediction of the maximum smoothed international sunspot number for cycle 24 is 145 in 2011 2012.

  2. Spectral Analysis Software for the Compact Toroid Injection Experiment

    NASA Astrophysics Data System (ADS)

    Belknap, Donald

    2009-11-01

    The Compact Toroid Injection Experiment (CTIX) operated by UC Davis functions by producing a spheromak-like plasma which is accelerated via a coaxial railgun. In order to examine features of the plasma such as impurities and temperature, the spectrum of the plasma is measured during a shot. Because of the number of shots that may be taken in a single day, a computer analysis program is an expedient method of analyzing the spectra. A graphic user interface (GUI) was designed to allow the user to easily read the spectral images from an archived data file and interactively perform functions such as CCD camera tilt correction, background subtraction, and wavelength calibration. The code for the GUI, background subtraction, wavelength calibration, and tilt correction algorithms are written in a high-level programming language, Igor, to allow for easy extension by CTIX scientists. The code can be extended to add features that can perform analysis on large numbers of spectra. Results of CTIX shots and calibration spectra will be presented.

  3. Spectral Analysis Tool 6.2 for Windows

    NASA Technical Reports Server (NTRS)

    Morgan, Feiming; Sue, Miles; Peng, Ted; Tan, Harry; Liang, Robert; Kinman, Peter

    2006-01-01

    Spectral Analysis Tool 6.2 is the latest version of a computer program that assists in analysis of interference between radio signals of the types most commonly used in Earth/spacecraft radio communications. [An earlier version was reported in Software for Analyzing Earth/Spacecraft Radio Interference (NPO-20422), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 52.] SAT 6.2 calculates signal spectra, bandwidths, and interference effects for several families of modulation schemes. Several types of filters can be modeled, and the program calculates and displays signal spectra after filtering by any of the modeled filters. The program accommodates two simultaneous signals: a desired signal and an interferer. The interference-to-signal power ratio can be calculated for the filtered desired and interfering signals. Bandwidth-occupancy and link-budget calculators are included for the user s convenience. SAT 6.2 has a new software structure and provides a new user interface that is both intuitive and convenient. SAT 6.2 incorporates multi-tasking, multi-threaded execution, virtual memory management, and a dynamic link library. SAT 6.2 is designed for use on 32- bit computers employing Microsoft Windows operating systems.

  4. Informed spectral analysis: audio signal parameter estimation using side information

    NASA Astrophysics Data System (ADS)

    Fourer, Dominique; Marchand, Sylvain

    2013-12-01

    Parametric models are of great interest for representing and manipulating sounds. However, the quality of the resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding applications. These limitations can be overcome by using the coding approach which consists in directly transmitting the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility with existing file formats. The purpose of this article is to propose a compromised approach, called the 'informed approach,' which combines analysis with (coded) side information in order to increase the precision of parameter estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis problem is presented in a coder/decoder configuration where the side information is computed and inaudibly embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling which is a well-known model with practical applications and where theoretical bounds have been calculated. This work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging problems like active listening of music, source separation, and realistic sound transformations.

  5. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  6. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    PubMed Central

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  7. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  8. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  9. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  10. Growth, molecular structure, NBO analysis and vibrational spectral analysis of l-tartaric acid single crystal.

    PubMed

    Sasikala, V; Sajan, D; Vijayan, N; Chaitanya, K; Babu Raj, M S; Selin Joy, B H

    2014-04-01

    Single crystal of l-tartaric acid (LTA) has been grown by slow evaporation technique. The experimental and theoretical studies on molecular structure, vibrational spectra, electronic absorption spectra and non-linear optical property of the crystal are studied. The FT-IR, FT-Raman and UV-Vis-NIR experimental spectra of LTA crystal have been recorded in the range 400-4000cm(-1), 100-3700cm(-1) and 190-1100nm, respectively. Density functional theory calculations with B3LYP/6-311++G(d,p) basis sets was used to determine ground state molecular geometries, vibrational frequencies, ICT interactions, Mulliken population analysis on atomic charge, HOMO-LUMO analysis, non-linear optical response properties and thermodynamic properties for LTA and the results were discussed. Vibrational analysis confirms the formation of intramolecular OH⋯O hydrogen bonding. The stability of the molecule has been analyzed using NBO analysis. The results of electronic absorptions in gas phase and water phase LTA were calculated using TD-DFT method. The third-order nonlinear absorption behaviour of LTA was studied using open aperture Z-scan technique, with 5ns laser pulses at 532nm and the nonlinear absorption coefficient of the grown crystal was measured. The predicted NLO properties, UV absorption and Z-scan studies indicate that LTA is an attractive material for laser frequency doubling and optical limiting applications. PMID:24394529

  11. Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters

    NASA Astrophysics Data System (ADS)

    Fan, Fenglei; Deng, Yingbin

    2014-12-01

    Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).

  12. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  13. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  14. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    PubMed

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated. PMID:20962406

  15. Detection of hidden mineral deposits by airborne spectral analysis of forest canopies. [Spirit Lake, Washington; Catheart Mountain, Maine; Blacktail Mountain, Montana; and Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1984-01-01

    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys.

  16. Using a Matlab Implemented Algorithm for UV-vis Spectral Resolution for pKa Determination and Multicomponent Analysis

    PubMed Central

    Gonen, Yotam; Rytwo, Giora

    2009-01-01

    A Matlab implemented computer code for spectral resolution is presented. The code enables the user to resolve the UV-visible absorption spectrum of a mixture of up to 3 previously known components, to the individual components, thus, evaluating their quantities. The resolving procedure is based on searching the combination of the components which yields the spectrum which is the most similar (minimal RMSE) to the measured spectrum of the mixture. Examples of using the software for pKa value estimation and multicomponent analysis are presented and other implementations are suggested. PMID:20072668

  17. [A New HAC Unsupervised Classifier Based on Spectral Harmonic Analysis].

    PubMed

    Yang, Ke-ming; Wei, Hua-feng; Shi, Gang-qiang; Sun, Yang-yang; Liu, Fei

    2015-07-01

    Hyperspectral images classification is one of the important methods to identify image information, which has great significance for feature identification, dynamic monitoring and thematic information extraction, etc. Unsupervised classification without prior knowledge is widely used in hyperspectral image classification. This article proposes a new hyperspectral images unsupervised classification algorithm based on harmonic analysis(HA), which is called the harmonic analysis classifer (HAC). First, the HAC algorithm counts the first harmonic component and draws the histogram, so it can determine the initial feature categories and the pixel of cluster centers according to the number and location of the peak. Then, the algorithm is to map the waveform information of pixels to be classified spectrum into the feature space made up of harmonic decomposition times, amplitude and phase, and the similar features can be gotten together in the feature space, these pixels will be classified according to the principle of minimum distance. Finally, the algorithm computes the Euclidean distance of these pixels between cluster center, and merges the initial classification by setting the distance threshold. so the HAC can achieve the purpose of hyperspectral images classification. The paper collects spectral curves of two feature categories, and obtains harmonic decomposition times, amplitude and phase after harmonic analysis, the distribution of HA components in the feature space verified the correctness of the HAC. While the HAC algorithm is applied to EO-1 satellite Hyperion hyperspectral image and obtains the results of classification. Comparing with the hyperspectral image classifying results of K-MEANS, ISODATA and HAC classifiers, the HAC, as a unsupervised classification method, is confirmed to have better application on hyperspectral image classification. PMID:26717767

  18. Evaluation of intensity and energy interaction parameters for the complexation of Pr(III) with selected nucleoside and nucleotide through absorption spectral studies.

    PubMed

    Bendangsenla, N; Moaienla, T; David Singh, Th; Sumitra, Ch; Rajmuhon Singh, N; Indira Devi, M

    2013-02-15

    The interactions of Pr(III) with nucleosides and nucleotides have been studied in different organic solvents employing absorption difference and comparative absorption spectrophotometry. The magnitudes of the variations in both energy and intensity interaction parameters were used to explore the degree of outer and inner sphere co-ordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Various electronic spectral parameters like Slater-Condon (F(k)), Racah (E(k)), Lande parameter (ξ(4f)), Nephelauxatic ratio (β), bonding (b(1/2)), percentage covalency (δ) and intensity parameters like oscillator strength (P) and Judd Ofelt electronic dipole intensity parameter (T(λ), λ=2,4,6) have been evaluated. The variation of these evaluated parameters were employed to interpret the nature of binding of Pr(III) with different ligands i.e. Adenosine/ATP in presence and absence of Ca(2+). PMID:23257345

  19. Derivative component analysis for mass spectral serum proteomic profiles

    PubMed Central

    2014-01-01

    Background As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. Methods In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Results Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based

  20. Nonlinear Laplacian spectral analysis of Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Brenowitz, N. D.; Giannakis, D.; Majda, A. J.

    2016-06-01

    The analysis of physical datasets using modern methods developed in machine learning presents unique challenges and opportunities. These datasets typically feature many degrees of freedom, which tends to increase the computational cost of statistical methods and complicate interpretation. In addition, physical systems frequently exhibit a high degree of symmetry that should be exploited by any data analysis technique. The classic problem of Rayleigh Benárd convection in a periodic domain is an example of such a physical system with trivial symmetries. This article presents a technique for analyzing the time variability of numerical simulations of two-dimensional Rayleigh-Bénard convection at large aspect ratio and intermediate Rayleigh number. The simulated dynamics are highly unsteady and consist of several convective rolls that are distributed across the domain and oscillate with a preferred frequency. Intermittent extreme events in the net heat transfer, as quantified by the time-weighted probability distribution function of the Nusselt number, are a hallmark of these simulations. Nonlinear Laplacian Spectral Analysis (NLSA) is a data-driven method which is ideally suited for the study of such highly nonlinear and intermittent dynamics, but the trivial symmetries of the Rayleigh-Bénard problem such as horizontal shift-invariance can mask the interesting dynamics. To overcome this issue, the vertical velocity is averaged over parcels of similar temperature and height, which substantially compresses the size of the dataset and removes trivial horizontal symmetries. This isothermally averaged dataset, which is shown to preserve the net convective heat-flux across horizontal surfaces, is then used as an input to NLSA. The analysis generates a small number of orthogonal modes which describe the spatiotemporal variability of the heat transfer. A regression analysis shows that the extreme events of the net heat transfer are primarily associated with a family of

  1. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; François, Luciane L.; de Jesus, Alexandre; Vale, Maria Goreti R.; Welz, Bernhard; Dessuy, Morgana B.; de Andrade, Jailson B.

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH4H2PO4 at 217.001 nm, and a mixture of H2SO4 + Ca and HNO3 + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part.

  2. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  3. Isotopomer Spectral Analysis: Utilizing Nonlinear Models in Isotopic Flux Studies.

    PubMed

    Kelleher, Joanne K; Nickol, Gary B

    2015-01-01

    We present the principles underlying the isotopomer spectral analysis (ISA) method for evaluating biosynthesis using stable isotopes. ISA addresses a classic conundrum encountered in the use of radioisotopes to estimate biosynthesis rates whereby the information available is insufficient to estimate biosynthesis. ISA overcomes this difficulty capitalizing on the additional information available from the mass isotopomer labeling profile of a polymer. ISA utilizes nonlinear regression to estimate the two unknown parameters of the model. A key parameter estimated by ISA represents the fractional contribution of the tracer to the precursor pool for the biosynthesis, D. By estimating D in cells synthesizing lipids, ISA quantifies the relative importance of two distinct pathways for flux of glutamine to lipid, reductive carboxylation, and glutaminolysis. ISA can also evaluate the competition between different metabolites, such as glucose and acetoacetate, as precursors for lipogenesis and thereby reveal regulatory properties of the biosynthesis pathway. The model is flexible and may be expanded to quantify sterol biosynthesis allowing tracer to enter the pathway at three different positions, acetyl CoA, acetoacetyl CoA, and mevalonate. The nonlinear properties of ISA provide a method of testing for the presence of gradients of precursor enrichment illustrated by in vivo sterol synthesis. A second ISA parameter provides the fraction of the polymer that is newly synthesized over the time course of the experiment. In summary, ISA is a flexible framework for developing models of polymerization biosynthesis providing insight into pools and pathway that are not easily quantified by other techniques. PMID:26358909

  4. Spectral analysis of the gravity and topography of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  5. Statistical shape analysis of subcortical structures using spectral matching.

    PubMed

    Shakeri, Mahsa; Lombaert, Herve; Datta, Alexandre N; Oser, Nadine; Létourneau-Guillon, Laurent; Lapointe, Laurence Vincent; Martin, Florence; Malfait, Domitille; Tucholka, Alan; Lippé, Sarah; Kadoury, Samuel

    2016-09-01

    Studying morphological changes of subcortical structures often predicate neurodevelopmental and neurodegenerative diseases, such as Alzheimer's disease and schizophrenia. Hence, methods for quantifying morphological variations in the brain anatomy, including groupwise shape analyses, are becoming increasingly important for studying neurological disorders. In this paper, a novel groupwise shape analysis approach is proposed to detect regional morphological alterations in subcortical structures between two study groups, e.g., healthy and pathological subjects. The proposed scheme extracts smoothed triangulated surface meshes from segmented binary maps, and establishes reliable point-to-point correspondences among the population of surfaces using a spectral matching method. Mean curvature features are incorporated in the matching process, in order to increase the accuracy of the established surface correspondence. The mean shapes are created as the geometric mean of all surfaces in each group, and a distance map between these shapes is used to characterize the morphological changes between the two study groups. The resulting distance map is further analyzed to check for statistically significant differences between two populations. The performance of the proposed framework is evaluated on two separate subcortical structures (hippocampus and putamen). Furthermore, the proposed methodology is validated in a clinical application for detecting abnormal subcortical shape variations in Alzheimer's disease. Experimental results show that the proposed method is comparable to state-of-the-art algorithms, has less computational cost, and is more sensitive to small morphological variations in patients with neuropathologies. PMID:27025904

  6. SATMC: Spectral energy distribution Analysis Through Markov Chains

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wilson, G. W.; Tang, Y.; Scott, K. S.

    2013-12-01

    We present the general purpose spectral energy distribution (SED) fitting tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models of the user's choice to infer intrinsic parameters, generate confidence levels and produce the posterior parameter distribution. Here, we describe the key features of SATMC from the underlying MCMC engine to specific features for handling SED fitting. We detail several test cases of SATMC, comparing results obtained from traditional least-squares methods, which highlight its accuracy, robustness and wide range of possible applications. We also present a sample of submillimetre galaxies (SMGs) that have been fitted using the SED synthesis routine GRASIL as input. In general, these SMGs are shown to occupy a large volume of parameter space, particularly in regards to their star formation rates which range from ˜30 to 3000 M⊙ yr-1 and stellar masses which range from ˜1010 to 1012 M⊙. Taking advantage of the Bayesian formalism inherent to SATMC, we also show how the fitting results may change under different parametrizations (i.e. different initial mass functions) and through additional or improved photometry, the latter being crucial to the study of high-redshift galaxies.

  7. (F)UV spectral analysis of 15 extremely hot, hydrogen-rich central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ziegler, Marc; Rauch, Thomas; Werner, Klaus; Kruk, Jeffrey W.

    2012-08-01

    We present results of a (F)UV spectral analysis of 15 hot, hydrogen-rich central stars of planetary nebulae (CSPNe) of DAO-type (A 7, A 31, A 35, A 39, NGC 3587, NGC 6720, NGC 6853, NGC 7293, PuWe 1, Sh 2-174) and O(H)-type (A 36, Lo 1, LSS 1362, NGC 1360, NGC 4361). The sample covers a wide range of parameters (T eff ~ 70-130 kK, log g = 5.4-7.4). It represents different stages of post-AGB evolution. The derived stellar parameters are crucial constraints for AGB nucleosynthesis and stellar evolutionary calculations. Detailed spectral analyses using fully line-blanketed NLTE model atmospheres including 23 elements from hydrogen to nickel are performed. Additional modeling of the ISM line absorption enables to unambigiously identify nearly all observed lines and to improve both, the photospheric as well as the ISM model.

  8. Generalized five-dimensional dynamic and spectral factor analysis

    SciTech Connect

    El Fakhri, Georges; Sitek, Arkadiusz; Zimmerman, Robert E.; Ouyang Jinsong

    2006-04-15

    We have generalized the spectral factor analysis and the factor analysis of dynamic sequences (FADS) in SPECT imaging to a five-dimensional general factor analysis model (5D-GFA), where the five dimensions are the three spatial dimensions, photon energy, and time. The generalized model yields a significant advantage in terms of the ratio of the number of equations to that of unknowns in the factor analysis problem in dynamic SPECT studies. We solved the 5D model using a least-squares approach. In addition to the traditional non-negativity constraints, we constrained the solution using a priori knowledge of both time and energy, assuming that primary factors (spectra) are Gaussian-shaped with full-width at half-maximum equal to gamma camera energy resolution. 5D-GFA was validated in a simultaneous pre-/post-synaptic dual isotope dynamic phantom study where {sup 99m}Tc and {sup 123}I activities were used to model early Parkinson disease studies. 5D-GFA was also applied to simultaneous perfusion/dopamine transporter (DAT) dynamic SPECT in rhesus monkeys. In the striatal phantom, 5D-GFA yielded significantly more accurate and precise estimates of both primary {sup 99m}Tc (bias=6.4%{+-}4.3%) and {sup 123}I (-1.7%{+-}6.9%) time activity curves (TAC) compared to conventional FADS (biases=15.5%{+-}10.6% in {sup 99m}Tc and 8.3%{+-}12.7% in {sup 123}I, p<0.05). Our technique was also validated in two primate dynamic dual isotope perfusion/DAT transporter studies. Biases of {sup 99m}Tc-HMPAO and {sup 123}I-DAT activity estimates with respect to estimates obtained in the presence of only one radionuclide (sequential imaging) were significantly lower with 5D-GFA (9.4%{+-}4.3% for {sup 99m}Tc-HMPAO and 8.7%{+-}4.1% for {sup 123}I-DAT) compared to biases greater than 15% for volumes of interest (VOI) over the reconstructed volumes (p<0.05). 5D-GFA is a novel and promising approach in dynamic SPECT imaging that can also be used in other modalities. It allows accurate and precise

  9. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-05-01

    Recent observations of the photosphere using high spatial and temporal resolutions show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A new pixel dynamics method uses spectrographic images to characterize photospheric absorption line profiles by variations in line displacement, width, asymmetry, and peakedness and is applied to quiet-sun regions, active regions with no eruption, and an active region with an ongoing eruption. Using Stokes I images from SOLIS/VSM on 2012 March 13, variations in line width and peakedness of Fe I 6301.5 Å are shown to have a strong spatial and temporal relationship with an M7.9 X-ray flare originating from NOAA 11429. This relationship is observed as a flattening in the line profile as the X-ray flare approaches peak intensity and was not present in area scans of a non-eruptive active region on 2011 April 14. These results are used to estimate dynamic plasma properties on sub-pixel scales and provide both spatial and temporal information of sub-pixel activity at the photosphere. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties.

  10. Spectral analysis of two-dimensional Bose-Hubbard models

    NASA Astrophysics Data System (ADS)

    Fischer, David; Hoffmann, Darius; Wimberger, Sandro

    2016-04-01

    One-dimensional Bose-Hubbard models are well known to obey a transition from regular to quantum-chaotic spectral statistics. We are extending this concept to relatively simple two-dimensional many-body models. Also in two dimensions a transition from regular to chaotic spectral statistics is found and discussed. In particular, we analyze the dependence of the spectral properties on the bond number of the two-dimensional lattices and the applied boundary conditions. For maximal connectivity, the systems behave most regularly in agreement with the applicability of mean-field approaches in the limit of many nearest-neighbor couplings at each site.

  11. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  12. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data.

    PubMed

    Huang, Norden E; Hu, Kun; Yang, Albert C C; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H; Wang, Yung-Hung; Long, Steven R; Wu, Zhauhua

    2016-04-13

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time-frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  13. Use of new spectral analysis methods in gamma spectra deconvolution

    NASA Astrophysics Data System (ADS)

    Pinault, Jean Louis

    1991-07-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252Cf source; the detector is a BGO 3 in. × 8 in. scintillator. The principle of the method rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given.

  14. Variation of spectral properties of dielectric ionic crystal in the terahertz range due to the polariton absorption.

    PubMed

    Dzedolik, Igor V; Pereskokov, Vladislav

    2014-05-20

    The dispersion equations for polariton waves in dielectric ionic crystal with the absorption are obtained. The self-consistent solutions of the system of Maxwell electromagnetic field equations and the equations of motion of ions have been used. The elastic and absorption properties of the crystal are taken into account in the ion equations of motion. It is shown that the separated equations of motion for positive and negative ions allow obtaining all branches of phonon and polariton spectrum by the example of the ionic crystal of cubic symmetry at the terahertz range. It has been shown that the variation of absorption in the crystal leads to changing of the character of spectrum branch and the polariton velocities. PMID:24922221

  15. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  16. Comparing passive and active hearing: spectral analysis of transient sounds in bats.

    PubMed

    Goerlitz, Holger R; Hübner, Mathias; Wiegrebe, Lutz

    2008-06-01

    In vision, colour constancy allows the evaluation of the colour of objects independent of the spectral composition of a light source. In the auditory system, comparable mechanisms have been described that allows the evaluation of the spectral shape of sounds independent of the spectral composition of ambient background sounds. For echolocating bats, the evaluation of spectral shape is vitally important both for the analysis of external sounds and the analysis of the echoes of self-generated sonar emissions. Here, we investigated how the echolocating bat Phyllostomus discolor evaluates the spectral shape of transient sounds both in passive hearing and in echolocation as a specialized mode of active hearing. Bats were trained to classify transients of different spectral shape as low- or highpass. We then assessed how the spectral shape of an ambient background noise influenced the spontaneous classification of the transients. In the passive-hearing condition, the bats spontaneously changed their classification boundary depending on the spectral shape of the background. In the echo-acoustic condition, the classification boundary did not change although the background- and spectral-shape manipulations were identical in the two conditions. These data show that auditory processing differs between passive and active hearing: echolocation represents an independent mode of active hearing with its own rules of auditory spectral analysis. PMID:18515714

  17. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    NASA Astrophysics Data System (ADS)

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  18. Hurricane coastal flood analysis using multispectral spectral images

    NASA Astrophysics Data System (ADS)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  19. Multitaper Spectral Analysis and Wavelet Denoising Applied to Helioseismic Data

    NASA Technical Reports Server (NTRS)

    Komm, R. W.; Gu, Y.; Hill, F.; Stark, P. B.; Fodor, I. K.

    1999-01-01

    Estimates of solar normal mode frequencies from helioseismic observations can be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra from the time series, then using wavelet denoising of the log spectra. MTSA leads to a power spectrum estimate with reduced variance and better leakage properties than the conventional periodogram. Under the assumption of stationarity and mild regularity conditions, the log multitaper spectrum has a statistical distribution that is approximately Gaussian, so wavelet denoising is asymptotically an optimal method to reduce the noise in the estimated spectra. We find that a single m-upsilon spectrum benefits greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself can be used to improve m-averaged spectra. We compare estimates using two different 5-taper estimates (Stepian and sine tapers) and the periodogram estimate, for GONG time series at selected angular degrees l. We compare those three spectra with and without wavelet-denoising, both visually, and in terms of the mode parameters estimated from the pre-processed spectra using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger (depending on l and the temporal frequency) when applied to the multitaper estimates than when applied to the periodogram. The estimated mode parameters (frequency, amplitude and width) are comparable for the three power spectrum estimates, except for modes with very small mode widths (a few frequency bins), where the multitaper spectra broadened the modest compared with the periodogram. We tested the influence of the number of tapers used and found that narrow modes at low n values are broadened to the extent that they can no longer be fit if the number of tapers is too large. For helioseismic time series of this length and temporal resolution, the optimal number of tapers is less than 10.

  20. Pulmonary mechanics by spectral analysis of forced random noise.

    PubMed Central

    Michaelson, E D; Grassman, E D; Peters, W R

    1975-01-01

    The magnitude (Zrs) and phase angle (thetars) of the total respiratory impedance (Zrs), from 3 to 45 Hz, were rapidly obtained by a modification of the forced oscillation method, in which a random noise pressure wave is imposed on the respiratory system at the mouth and compared to the induced random flow using Fourier and spectral analysis. No significant amplitude or phase errors were introduced by the instrumentation. 10 normals, 5 smokers, and 5 patients with chronic obstructive lung disease (COPD) were studied. Measurements of Zrs were corrected for the parallel shunt impedance of the mouth, which was independently measured during a Valsalva maneuver, and from which the mechanical properties of the mouth were derived. There were small differences in Zrs between normals and smokers but both behaved approximately like a second-order system with thetars = 0 degree in the range of 5--9 Hz, and thetars in the range of +40 degrees at 20 Hz and +60 degrees at 40 Hz. In COPD, thetars remained more negative (compared to normals and smokers) at all frequencies and crossed 0 between 15 and 29 Hz. Changes in Zrs, similar in those in COPD, were also observed at low lung volumes in normals. These changes, the effects of a bronchodilator in COPD, and deviations of Zrs from second-order behavior in normals, can best be explained by a two-compartment parallel model, in which time-constant discrepancies between the lung parenchyma and compliant airway keep compliant greater than inertial reactance, resulting in a more negative phase angle as frequency is increased. PMID:1184746

  1. Dosimetry Based on EPR Spectral Analysis of Fingernail Clippings

    PubMed Central

    Wilcox, Dean E.; He, Xiaoming; Gui, Jiang; Ruuge, Andres E.; Li, Hongbin; Williams, Benjamin B.; Swartz, Harold M.

    2009-01-01

    Exposure of fingernails and toenails to ionizing radiation creates radicals that are stable over a relatively long period (days to weeks) and characterized by an isotropic EPR signal at g = 2.003 (so-called radiation-induced signal, RIS). This signal in readily obtained fingernail parings has the potential to be used in screening a population for exposure to radiation and determining individual dose to guide medical treatment. However, the mechanical harvesting of fingernail parings also creates radicals and their EPR signals (so-called mechanically-induced signals, MIS) overlap the g ~ 2.0 region, interfering with efforts to quantify the RIS and, therefore, the radiation dose. Careful analysis of the time evolution and power-dependence of the EPR spectra of freshly cut fingernail parings has now resolved the MIS into three major components, including one that is described for the first time. It dominates the MIS soon after cutting, but decays within the first hour, and consists of a unique doublet that can be resolved from the RIS. The MIS obtained within the first few minutes after cutting is consistent among fingernail samples and provides an opportunity to achieve the two important dosimetry objectives. First, perturbation of the initial MIS by the presence of RIS in fingernails that have received a threshold dose of radiation leads to spectral signatures that can be used for rapid screening. Second, decomposition of the EPR spectra from irradiated fingernails into MIS and RIS components can be used to isolate and thus quantify the RIS for determining individual exposure dose. PMID:20065699

  2. Spectral analysis of hot helium-rich white dwarfs.

    NASA Astrophysics Data System (ADS)

    Dreizler, S.; Werner, K.

    1996-10-01

    We present a model atmosphere analysis of most known hot helium-rich white dwarfs of spectral type DO. The stars represent the non-DA white dwarf cooling sequence from the hot end (T_eff_=~120000K) down to the DB gap (T_eff_=~45000K). From medium resolution optical spectra, effective temperatures, surface gravities, and element abundances are determined by means of non-LTE model atmospheres. Compared to previous LTE analyses available for some of the program stars, higher effective temperatures are derived. The existence of the DB gap is confirmed. For the first time reliable surface gravities for a large sample of DO white dwarfs are determined. With the help of theoretical evolutionary tracks the DO masses are determined. We find a mean value of 0.59+/-0.08Msun_ which virtually coincides with the mean masses of the DA and DB white dwarfs. Hydrogen cannot be identified in any optical DO spectrum, which includes the former DOA prototype HZ21. Hence HD149499B remains the only DO white dwarf with a positive (FUV) detection of trace hydrogen in the photosphere. The number ratio of DA/non-DA white dwarfs significantly increases along the cooling sequence and thus corroborates the hydrogen float-up hypothesis as an explanation for the DB gap. From optical, IUE, and HST spectra metal abundances or upper limits could be derived for most DOs, allowing a comprehensive comparison with predictions from diffusion/radiative levitation calculations. A large scatter in metallicities is found, even among objects with similar parameters and no clear trend along the cooling sequence is detectable. This is severely at odds with theoretical predictions. The evolutionary link between DO white dwarfs, the PG1159 stars and DB white dwarfs is discussed, in particular considering the overlapping positions of DO and PG1159 stars in the HR diagram.

  3. Synthesis, spectral, computational and thermal analysis studies of metallocefotaxime antibiotics.

    PubMed

    Masoud, Mamdouh S; Ali, Alaa E; Elasala, Gehan S

    2015-10-01

    Cefotaxime metal complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and two mixed metals complexes of (Fe,Cu) and (Fe,Ni) were synthesized and characterized by elemental analysis, IR, electronic spectra, magnetic susceptibility and ESR spectra. The studies proved that cefotaxime may act as mono, bi, tri and tetra-dentate ligand through oxygen atoms of lactam carbonyl, carboxylic or amide carbonyl groups and nitrogen atom of thiazole ring. From the magnetic measurements and electronic spectral data, octahedral structures were proposed for all complexes. Quantum chemical methods have been performed for cefotaxime to calculate charges, bond lengths, bond angles, dihedral angles, electronegativity (χ), chemical potential (μ), global hardness (η), softness (σ) and the electrophilicity index (ω). The thermal decomposition of the prepared metals complexes was studied by TGA, DTA and DSC techniques. Thermogravimetric studies revealed the presence of lattice or coordinated water molecules in all the prepared complexes. The decomposition mechanisms were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides and carbon residue as a final product except in case of Hg complex, sublimation occur at the temperature range 376.5-575.0 °C so, only carbon residue was produced during thermal decomposition. The orders of chemical reactions (n) were calculated via the peak symmetry method and the activation parameters were computed from the thermal decomposition data. The geometries of complexes may be converted from Oh to Td during the thermal decomposition steps. PMID:25974669

  4. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    USGS Publications Warehouse

    Mars, J.C.; Rowan, L.C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 ??m and 2.31-2.33 ??m, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 ??m caused mainly by quartz and Al-OH absorption near 2.20 ??m due to muscovite and illite. Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 ??m (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a pre existing geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 ??m, respectively, which suggest that the contact aureole rocks contain musco vite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator. A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that

  5. Spectral image analysis of mutual illumination between florescent objects.

    PubMed

    Tominaga, Shoji; Kato, Keiji; Hirai, Keita; Horiuchi, Takahiko

    2016-08-01

    This paper proposes a method for modeling and component estimation of the spectral images of the mutual illumination phenomenon between two fluorescent objects. First, we briefly describe the bispectral characteristics of a single fluorescent object, which are summarized as a Donaldson matrix. We suppose that two fluorescent objects with different bispectral characteristics are located close together under a uniform illumination. Second, we model the mutual illumination between two objects. It is shown that the spectral composition of the mutual illumination is summarized with four components: (1) diffuse reflection, (2) diffuse-diffuse interreflection, (3) fluorescent self-luminescence, and (4) interreflection by mutual fluorescent illumination. Third, we develop algorithms for estimating the spectral image components from the observed images influenced by the mutual illumination. When the exact Donaldson matrices caused by the mutual illumination influence are unknown, we have to solve a non-linear estimation problem to estimate both the spectral functions and the location weights. An iterative algorithm is then proposed to solve the problem based on the alternate estimation of the spectral functions and the location weights. In our experiments, the feasibility of the proposed method is shown in three cases: the known Donaldson matrices, weak interreflection, and strong interreflection. PMID:27505645

  6. Temperature dependence of the water vapor continuum absorption in the 3-5 μm spectral region

    NASA Astrophysics Data System (ADS)

    Klimeshina, T. E.; Rodimova, O. B.

    2013-04-01

    Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3-5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ˜675 K and pressures of ˜10 atm.

  7. Optical absorption analysis and optimization of gold nanoshells.

    PubMed

    Tuersun, Paerhatijiang; Han, Xiang'e

    2013-02-20

    Gold nanoshells, consisting of a nanoscale dielectric core coated with an ultrathin gold shell, have wide biomedical applications due to their strong optical absorption properties. Gold nanoshells with high absorption efficiencies can help to improve these applications. We investigate the effects of the core material, surrounding medium, core radius, and shell thickness on the absorption spectra of gold nanoshells by using the light-scattering theory of a coated sphere. Our results show that the position and intensity of the absorption peak can be tuned over a wide range by manipulating the above-mentioned parameters. We also obtain the optimal absorption efficiencies and structures of hollow gold nanoshells and gold-coated SiO(2) nanoshells embedded in water at wavelengths of 800, 820, and 1064 nm. The results show that hollow gold nanoshells possess the maximum absorption efficiency (5.42) at a wavelength of 800 nm; the corresponding shell thickness and core radius are 4.8 and 38.9 nm, respectively. They can be used as the ideal photothermal conversation particles for biomedical applications. PMID:23435006

  8. Spectral analysis of GRB 080810 detected by Fermi GBM and Swift BAT

    SciTech Connect

    Bissaldi, E.; Page, K.; McBreen, S.; Briggs, M. S.; Chaplin, V.; Connaughton, V.

    2009-05-25

    We present the spectral analysis of GRB 080810 which triggered both the Fermi Gamma-Ray Burst Monitor (GBM) and the Swift Burst Alert Telescope (BAT). The time-integrated and time-resolved spectral characteristics of this burst are investigated by combining the precise localisation from Swift and its low energy response with the broader spectral coverage provided by the NaI and BGO detectors of GBM.

  9. Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers.

    PubMed

    Tumbleston, John R; Ko, Doo-Hyun; Samulski, Edward T; Lopez, Rene

    2009-04-27

    We analyze optical absorption enhancements and quasiguided mode properties of organic solar cells with highly ordered nanostructured photoactive layers comprised of the bulk heterojunction blend, poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and a low index of refraction conducting material (LICM). This photonic crystal geometry is capable of enhancing spectral absorption by approximately 17% in part due to the excitation of quasiguided modes near the band edge of P3HT:PCBM. A nanostructure thickness between 200 nm and 300 nm is determined to be optimal, while the LICM must have an index of refraction approximately 0.3 lower than P3HT:PCBM to produce absorption enhancements. Quasiguided modes that differ in lifetime by an order of magnitude are also identified and yield absorption that is concentrated in the P3HT:PCBM flash layer. PMID:19399146

  10. Source-domain spectral EEG analysis of sports-related concussion via Measure Projection Analysis.

    PubMed

    Balkan, Ozgur; Virji-Babul, Naznin; Miyakoshi, Makoto; Makeig, Scott; Garudadri, Harinath

    2015-01-01

    Here, we investigated EEG-based source-level spectral differences between adolescents with sports-related concussions and healthy age matched controls. We transformed resting state EEG collected in both groups to the source domain using Independent Component Analysis (ICA) and computed the component process power spectra. For group-level analysis in the source domain, we used a probabilistic framework, Measure Projection Analysis (MPA), that has advantages over parametric k-means clustering of brain sources. MPA revealed that some frontal brain sources in the concussed group had significantly more power in the beta band (p<;0.005) and significantly less delta (p<;0.01) and theta band power (p<;0.05) than the healthy control group. These results suggest that a shift in spectral profile toward higher frequencies in some frontal brain regions might distinguish individuals with concussion from healthy controls. PMID:26737184

  11. An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data

    NASA Technical Reports Server (NTRS)

    Rast, Michael; Hook, Simon J.; Alley, Ronald E.; Elvidge, Christopher D.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer data covering the wavelength range between 2000 and 2400 nm are examined for their ability to display the diagnostic mineral absorption features of certain alteration minerals, employing various data processing techniques. The techniques may be separated into two broad categories: scene based techniques that use parameters derived from the data themselves, and correction techniques utilizing external information such as solar/atmospheric models. Results indicate that the data corrected utilizing the LOWTRAN 7 atmospheric transfer code constrained with local weather station data are the most effective at showing the diagnostic absorption features of the regions of known mineralogy and introduce the least number of artifacts into the data.

  12. A new method to probe the thermal electron content of the Galaxy through spectral analysis of background sources

    NASA Astrophysics Data System (ADS)

    Jones, D. I.; Igoshev, A. P.; Haverkorn, M.

    2016-08-01

    We present a new method for probing the thermal electron content of the Galaxy by spectral analysis of background point sources in the absorption-only limit to the radiative transfer equation. In this limit, calculating the spectral index, α, of these sources using a natural logarithm results in an additive factor, which we denote {α _EM}, resulting from the absorption of radiation due to the Galactic thermal electron population. We find that this effect is important at very low frequencies (ν ≲ 200 MHz), and that the frequency spacing is critical. We model this effect by calculating the emission measure across the sky. A (smooth) thermal electron model for the Galaxy does not fit the observed emission measure distribution, but a simple, cloud-based model to represent the clumpy nature of the warm interstellar medium does. This model statistically reproduces the Galactic emission measure distribution as obtained independently from Hα data well. We find that at the lowest frequencies (˜10-50 MHz), the observed spectral index for a large segment of the Galaxy below Galactic latitudes of ≲15° could be changed significantly (i.e. {α _EM}≳ 0.1). This method therefore provides a correction to low-frequency spectral index measurements of extragalactic sources, and provides a sensitive probe of the thermal electron distribution of the Galaxy using current and next-generation low-frequency radio telescopes. We show that this effect should be robustly detectable individually in the strongest sources, and statistically in source samples at a level of {α _EM}≳ 0.18,0.06, and 0.02 for source densities of 10, 100, and 1000 sources per square degree.

  13. A new method to probe the thermal electron content of the Galaxy through spectral analysis of background sources

    NASA Astrophysics Data System (ADS)

    Jones, D. I.; Igoshev, A. P.; Haverkorn, M.

    2016-05-01

    We present a new method for probing the thermal electron content of the Galaxy by spectral analysis of background point sources in the absorption-only limit to the radiative transfer equation. In this limit, calculating the spectral index, α, of these sources using a natural logarithm results in an additive factor, which we denote αEM, resulting from the absorption of radiation due to the Galactic thermal electron population. We find that this effect is important at very low frequencies (ν ≲ 200 MHz), and that the frequency spacing is critical. We model this effect by calculating the emission measure across the sky. A (smooth) thermal electron model for the Galaxy does not fit the observed emission measure distribution, but a simple, cloud-based model to represent the clumpy nature of the warm interstellar medium does. This model statistically reproduces the Galactic emission measure distribution as obtained independently from Hα data well. We find that at the lowest frequencies (˜10 - 50 MHz), the observed spectral index for a large segment of the Galaxy below Galactic latitudes of ≲ 15° could be changed significantly (i.e., αEM ≳ 0.1). This method therefore provides a correction to low-frequency spectral index measurements of extragalactic sources, and provides a sensitive probe of the thermal electron distribution of the Galaxy using current and next-generation low-frequency radio telescopes. We show that this effect should be robustly detectable individually in the strongest sources, and statistically in source samples at a level of αEM ≳ 0.18, 0.06, and 0.02 for source densities of 10, 100 and 1,000 sources per square degree.

  14. An absorption spectral study of Nd (III) with glutathione (reduced), GSH in aqueous and aquated organic solvent in presence and absence of Zn (II)

    NASA Astrophysics Data System (ADS)

    Mehta, Jignasu P.; Bhatt, Prashant N.; Misra, Sudhindra N.

    2003-02-01

    The coordination chemistry of glutathione (reduced) GSH is of great importance as it acts as an excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. We have studied two chemically dissimilar metal ions viz. Nd (III) being hard metal ion, which will prefer hard donor sites like carboxylic groups, and Zn (II) the soft metal ion more suited to peptide—NH and sulfhydryl groups. The absorption difference and comparative absorption spectroscopy involving 4 f-4 f transitions of the heterobimetallic complexation of GSH with Nd (III) and Zn (II) has been explored in aqueous and aquated organic solvents. The changes in the oscillator strengths of different 4 f-4 f bands and Judd-Ofelt intensity ( Tλ) parameters determined experimentally is being used to investigate the complexation of GSH. The in vivo intracellular complexation of GSH with Ca (II) in presence of Zn (II) ion has been mimicked through Nd (III)-GSH-Zn (II) absorption spectral studies in vitro.

  15. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  16. Redox State of Iron in Lunar Glasses using X-ray Absorption Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; McCanta, M. C.; Lanzirotti, A.; Sutton, S. R.; Carey, C. J.; Mahadevan, S.; Rutherford, M. J.

    2014-12-01

    The oxidation state of igneous materials on a planet is a critically-important variable in understanding magma evolution on bodies in our solar system. However, direct and indirect methods for quantifying redox states are challenging, especially across the broad spectrum of silicate glass compositions found on airless bodies. On the Moon, early Mössbauer studies of bulk samples suggested the presence of significant Fe3+ (>10%) in lunar glasses (green, orange, brown); lunar analog glasses synthesized at fO2 <10-11 have similar Fe3+. All these Mössbauer spectra are challenging to interpret due to the presence of multiple coordination environments in the glasses. X-ray absorption spectroscopy (XAS) allows pico- and nano-scale interrogation of primitive planetary materials using the pre-edge, main edge, and EXAFS regions of absorption edge spectra. Current uses of XAS require availability of standards with compositions similar to those of unknowns and complex procedures for curve-fitting of pre-edge features that produce results with poorly constrained accuracy. A new approach to accurate and quantitative redox measurements with XAS is to couple use of spectra from synthetic glass standards covering a broad compositional range with multivariate analysis (MVA) techniques. Mössbauer and XAS spectra from a suite of 33 synthetic glass standards covering a wide range of compositions and fO2(Dyar et al., this meeting) were used to develop a MVA model that utilizes valuable predictive information not only in the major spectral peaks/features, but in all channels of the XAS region. Algorithms for multivariate analysis t were used to "learn" the characteristics of a data set as a function of varying spectral characteristics. These models were applied to the study of lunar glasses, which provide a challenging test case for these newly-developed techniques due to their very low fO2. Application of the new XAS calibration model to Apollo 15 green (15426, 15427 and 15425

  17. Spectral analysis of the turbulent mixing of two fluids

    SciTech Connect

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  18. Spectral analysis of the turbulent mixing of two fluids

    SciTech Connect

    Steinkamp, M.J.

    1995-09-01

    We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The Technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  19. Rotating shadowband radiometer development and analysis of spectral shortwave data

    SciTech Connect

    Michalsky, J.; Harrison, L.; Min, Q.

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  20. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  1. Eta Carinae across the 2003.5 Minimum: Analysis in the Visible and Near Infrared Spectral Region

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Weis, K.; Gull, T.; Stahl, O.; Bomans, D. J.

    2008-01-01

    We present analysis of the visible through near infrared spectrum of eta Car and its ejecta obtained during the 'eta Car Campaign with the Ultraviolet Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)'. This is a part of larger effort to present a complete eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments apertures. This paper provide a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.

  2. Eta Carinae across the 2003.5 Minimum: Analysis in the Visible and Near Infrared Spectral Region

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Kober, G. Vieira; Weis, K.; Gull, T. R.; Stahl, O.; Bomans, D. J.

    2009-01-01

    We present an analysis of the visible through near infrared spectrum of Eta Car and its ejecta obtained during the "Eta Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)". This is a part of the larger effort to present a complete Eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 Angstrom) to 10,430 Angstrom. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 Angstroms, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 Angstroms.

  3. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  4. Spectral analysis of chemisorbed CO2 on Mars analog materials

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Roush, T. L.

    1993-01-01

    The goal of this work is to estimate the mass of CO2 that may have been removed to a quasi-stable reservoir on the Martian surface by chemisorption and to estimate the spectral effects of chemisorbed CO2 in remotely-sensed Martian spectra. Our approach is to characterize the conditions most favorable for the formation of carbonate on common terrestrial oxide minerals and to search for infrared spectral bands that result from chemisorption of CO2 molecules onto oxide and other Mars analog materials.

  5. High-resolution continuum source electrothermal atomic absorption spectrometry — An analytical and diagnostic tool for trace analysis

    NASA Astrophysics Data System (ADS)

    Welz, Bernhard; Borges, Daniel L. G.; Lepri, Fábio G.; Vale, Maria Goreti R.; Heitmann, Uwe

    2007-09-01

    The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the 'visibility' of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.

  6. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  7. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  8. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  9. Spectral and Temporal Laser Fluorescence Analysis Such as for Natural Aquatic Environments

    NASA Technical Reports Server (NTRS)

    Chekalyuk, Alexander (Inventor)

    2015-01-01

    An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements. Quantitative assessments of PBP pigments, CDOM, and other fluorescent constituents, as well as basic structural characterizations of photosynthesizing populations, can be performed using SDC analysis of LSE spectral measurements.

  10. Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Yu; Suhalim, Jeffrey L.; Nien, Chyong Ly; Miljković, Miloš D.; Diem, Max; Jester, James V.; Potma, Eric. O.

    2011-02-01

    The lipid distribution in the mouse meibomian gland was examined with picosecond spectral anti-Stokes Raman scattering (CARS) imaging. Spectral CARS data sets were generated by imaging specific localized regions of the gland within tissue sections at consecutive Raman shifts in the CH2 stretching vibrational range. Spectral differences between the location specific CARS spectra obtained in the lipid-rich regions of the acinus and the central duct were observed, which were confirmed with a Raman microspectroscopic analysis, and attributed to meibum lipid modifications within the gland. A principal component analysis of the spectral data set reveals changes in the CARS spectrum when transitioning from the acini to the central duct. These results demonstrate the utility of picosecond spectral CARS imaging combined with multivariate analysis for assessing differences in the distribution and composition of lipids in tissues.

  11. Test and analysis of spectral response for UV image intensifier

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Liu, Jian; Feng, Cheng; Lv, Yang; Zhang, Yijun

    2015-10-01

    The UV image intensifier is one kind of electric vacuum imaging device based on principle of photoelectronic imaging. To achieve solar-blind detection, its spectral response characteristic is extremely desirable. A broad spectrum response measurement system is developed. This instrument uses EQ-99 laser-driven light source to get broad spectrum in the range of 200 nm to 1700 nm. A special preamplifier as well as a test software is work out. The spectral response of the image intensifier can be tested in the range of 200~1700 nm. Using this spectrum response measuring instrument, the UV image intensifiers are tested. The spectral response at the spectral range of 200 nm to 600 nm are obtained. Because of the quantum efficiency of Te-Cs photocathode used in image intens ifier above 280nm wavelength still exists, especially at 280 nm to 320nm.Therefore, high-performance UV filters is required for solar blind UV detection. Based on two sets of UV filters, the influence of solar radiation on solar blind detection is calculated and analyzed.

  12. Calibration and data analysis for Chinese Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Wang, W.; Yan, Y. H.; Liu, D. H.; Chen, Z. J.; Liu, F.; Geng, L. H.; Chen, L. J.; Su, C.

    2013-07-01

    The Chinese Spectral Radioheliograph (CSRH) is under construction in Mingantu station of NAOC in China. Now, CSRH-I which includes antenna, receiver and correlator in decimetric wave range has been established. This paper introduced calibration on CSRH and present some results of data processing.

  13. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers

    NASA Astrophysics Data System (ADS)

    Diaw, A. K. D.; Gningue-Sall, D.; Yassar, A.; Brochon, J.-C.; Henry, E.; Aaron, J.-J.

    2015-01-01

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension.

  14. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. PMID:25173528

  15. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  16. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  17. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  18. Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region.

    PubMed

    Yang, Ping; Wei, Heli; Huang, Hung-Lung; Baum, Bryan A; Hu, Yong X; Kattawar, George W; Mishchenko, Michael I; Fu, Qiang

    2005-09-10

    The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns. PMID:16161667

  19. Parametric analysis of a double-effect steam absorption chiller

    NASA Astrophysics Data System (ADS)

    Mohammed Salih Ahmed, Mojahid Sid Ahmed; Gilani, Syed Ihtsham Ul-Haq

    2012-06-01

    The development in the field of refrigeration and cooling systems based on absorption cycles has attained its own internal dynamic in the last decade. A major obstacle for developing model is the lack of available component specifications. These specifications are commonly proprietary of the chiller's manufacturers and normally the available information is not sufficient. This work presented a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations. The chiller studied is 1250 RT (Refrigeration Tons) using lithium bromide -water as working pair. The mathematical equations that govern the operation of the steam absorption chiller are developed, and from the available design data the values of the overall heat transfer coefficient multiplied by the heat exchanger surface area and the characteristics of each component of the absorption chiller at the design point are calculated. For thermo physical and thermodynamic properties for lithium bromide-water solution, set of computationally efficient formulations are used. The model gives the required information about temperature, concentration, and flow rate at each state point of the system. The model calculates the heat load at each component as well as the performance of the system.

  20. Preformance Analysis of NH3-H2O Absorption Cycle

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi

    Different from H2O-LiBr absorption cycle, it is necessary to have rectifier between generator and condenser in NH3-H2O absorption cycle, because there mixes some steam in refrigerant vapor in the process of regenerating refrigerant from the ammonia strong aqueous solution. And in some case ex. partial load or heating, the efficiency of rectifier might decrease, if the flow rate of refrigerant vapor and ammonia aqueous solution decrease. As a result, steam flow into condenser with ammonia refrigerant vapor, which reduces cycle COPs of cooling and heating. Accordingly in order to evaluate the effect of ammonia concentration in refrigerant for the performance of NH3-H2O absorption heat pump, the simple design approach of modeling condenser and evaporator is introduced in this paper. In the model, the calculation of heat rate in condenser and evaporator was simplified considering the characteristic of NH3-H2O liquid-vapor equilibrium. Then the simulation for cycle perforance based on GAX absorption cycle was made using the efficiency of rectifier that established the ammonia concentration in refrigerant and it was derived that 3 [%] decrease of ammonia concentration in refrigerant induced 15 [%] decrcase of cooling COP and 7 [%] decrease of heating COP and that there existed the most suitable circulation ratio for each ammonia concentration in refrigerant.

  1. Water-lithium bromide double-effect absorption cooling analysis

    NASA Astrophysics Data System (ADS)

    Vliet, G. C.; Lawson, M. B.; Lithgow, R. A.

    1980-12-01

    A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine and was used to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The variables considered include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicates that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

  2. COMPUTER-ASSISTED FURNACE ATOMIC ABSORPTION SPECTROMETRIC ANALYSIS

    EPA Science Inventory

    The use of furnace atomic absorption instrumentation with a turnkey chromatography data system is described. A simple addition of relays to the furnace power supply allows for automatic start-up of A/D conversion and spectrophotometer zeroing at the proper time. Manipulations inv...

  3. Comprehensive spectral approach for community structure analysis on complex networks

    NASA Astrophysics Data System (ADS)

    Danila, Bogdan

    2016-02-01

    A simple but efficient spectral approach for analyzing the community structure of complex networks is introduced. It works the same way for all types of networks, by spectrally splitting the adjacency matrix into a "unipartite" and a "multipartite" component. These two matrices reveal the structure of the network from different perspectives and can be analyzed at different levels of detail. Their entries, or the entries of their lower-rank approximations, provide measures of the affinity or antagonism between the nodes that highlight the communities and the "gateway" links that connect them together. An algorithm is then proposed to achieve the automatic assignment of the nodes to communities based on the information provided by either matrix. This algorithm naturally generates overlapping communities but can also be tuned to eliminate the overlaps.

  4. Spectral lineshapes of collision-induced absorption (CIA) and collision-induced light scattering (CILS) for molecular nitrogen using isotropic intermolecular potential. New insights and perspectives

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Mostafa, S. I.; Bancewicz, T.; Maroulis, G.

    2014-08-01

    The rototranslational collision-induced absorption (CIA) at different temperatures and collision-induced light scattering (CILS) at room temperature of nitrogen gas are analyzed in terms of new isotropic intermolecular potential, multipole-induced dipole functions and interaction-induced pair polarizability models, using quantum spectral lineshape computations. The irreducible spherical form for the induced operator of light scattering mechanisms was determined. The high frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability E4, is obtained and checked with the ab initio theoretical value. The quality of the present potential has been checked by comparing between calculated and experimental thermo-physical and transport properties over a wide temperature range, which are found to be in good agreement.

  5. Spectral analysis of dike-induced earthquakes in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tepp, Gabrielle; Ebinger, Cynthia J.; Yun, Sang-Ho

    2016-04-01

    Shallow dike intrusions may be accompanied by fault slip above the dikes, a superposition which complicates seismic and geodetic data analyses. The diverse volcano-tectonic and low-frequency local earthquakes accompanying the 2005-2010 large-volume dike intrusions in the Dabbahu-Manda Hararo rift (Afar), some with fault displacements of up to 3 m at the surface, provide an opportunity to examine the relations among the earthquakes, dike intrusions, and surface ruptures. We apply the frequency index (FI) method to characterize the spectra of swarm earthquakes from six of the dikes. These earthquakes often have broad spectra with multiple peaks, making the usual peak frequency classification method unreliable. Our results show a general bimodal character with high FI earthquakes associated with deeper dikes (top > 3 km subsurface) and low FI earthquakes associated with shallow dikes, indicating that shallow dikes result in earthquakes with more low-frequency content and larger-amplitude surface waves. Low FI earthquakes are more common during dike emplacement, suggesting that interactions between the dike and faults may lead to lower FI. Taken together, likely source processes for low FI earthquakes are shallow hypocenters (<3 km) possibly with surface rupture, slow rupture velocities, and interactions with dike fluids. Strong site effects also heavily influence the earthquake spectral content. Additionally, our results suggest a continuum of spectral responses, implying either that impulsive volcano-tectonic earthquakes and the unusual, emergent earthquakes have similar source processes or that simple spectral analyses, such as FI, cannot distinguish different source processes.

  6. Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis.

    PubMed

    Böckmann, Marcus; Schemme, Thomas; de Jong, Djurre H; Denz, Cornelia; Heuer, Andreas; Doltsinis, Nikos L

    2015-11-21

    Optical absorption spectra of poly(3-hexylthiophene) (P3HT) are calculated in solution, spin-coated thin films, and the bulk crystal using a multiscale simulation approach. The structure of the amorphous thin film is obtained from coarse grained molecular dynamics (MD) simulations and subsequent back-mapping onto an atomistic force field representation. The absorption spectra are computed using TDDFT by statistically averaging over an ensemble of molecules taken from the MD simulations. Experimental UV/Vis spectra of spin-coated thin films and solutions are recorded with varying ratios of 'good' versus 'poor' solvent. The theoretical approach is able to faithfully predict the spectral position in the various phases and offers fundamental insight into the cause of any spectral shifts. The position of the main absorption peak is found to be chiefly determined by the level of torsion between the thiophene rings inside each molecule, while intermolecular effects are less important. Hence, optical absorption spectra hold valuable clues about the microscopic structure of disordered P3HT phases. PMID:26443229

  7. Reverse micelles in supercritical fluids. (2) Fluorescence and absorption spectral probes of adjustable aggregation in the two-phase region

    SciTech Connect

    Yazdi, P.; McFann, G.J.; Fox, M.A.; Johnston, K.P. )

    1990-09-06

    The properties of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelles and microemulsions in supercritical fluid (SCF) ethane, liquid propane, and other alkanes are reported. The microscopic environment inside the reverse micelles was investigated with the absorption probe pyridine N-oxide and the fluorescence probe 8-anilino-1-naphthalenesulfonic acid (ANS). The microscopic behavior is related directly to a macroscopic property, the water-to-surfactant ratio W{sub o}. In the one-phase region, a reverse micelle in a SCF is much like that in a liquid solvent. However, in the two-phase region, both the microscopic and macroscopic properties may be adjusted with pressure in ethane and propane, because of changes in the partitioning of the components between the phases.

  8. Prediction of the furnace heat absorption by utilizing thermomechanical analysis for various kinds of coal firing

    SciTech Connect

    Ishinomori, T.; Watanabe, S.; Kiga, T.; Wall, T.F.; Gupta, R.P.; Gupta, S.K.

    1999-07-01

    In order to predict the furnace heat absorption, which is sensitive to coal properties, an attempt to make a model universally applicable for any kind of pulverized coal fired boiler is in progress. First of all, the heat absorption rates on to furnace wall were surveyed for 600MWe pulverized coal fired boiler, and they were ranked into four levels by indicating a furnace heat absorption index (FHAI). Some ash composition is relatively well related to the FHAI, while a new index from thermomechanical analysis (TMA) offers a good prediction of the furnace heat absorption.

  9. Field Spectroscopy And Spectral Analysis Of Caribbean Scleractinian Reef Corals And Related Benthic Biota

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Guild, L. S.; Armstrong, R.; Corredor, J. E.; Polanco, R.; Zuluaga-Montero, A. B.

    2013-05-01

    Coral reefs are highly heterogenic ecosystems with a plethora of photosynthetic organisms forming most of the benthic communities. Usually coral reef benthos is a composite of reef corals, different groups of algae, seagrasses, sandy bottoms, dead rubble, and even mangrove forests living in a relatively small area. The remote characterization of these important tropical ecosystems represents a challenge to scientists, particularly due to the similarity of the spectral signatures among some of these components. As such, we examined the similarities and differences between nine Scleractinian Caribbean shallow-water reef corals' spectral reflectance curves. Samples were also collected from each species for pigment analysis using High Performance Liquid Chromatography (HPLC). Reflectance curves were obtained with the aid of a GER-1500 hand-held field spectroradiometer enclosed in an underwater housing. Our findings showed that even though most of the pigmentation was directly related to the relationship of corals with their symbiotic dinoflagellates (zooxanthellae), the presence of other endolithic photosynthetic organisms can also contribute to the light absorption of corals and, hence, the reflectance spectra of each species. Also, the relative contribution of chlorophylls vs. carotenes or xanthophylls depends on the coral species with some species relying more on Chlorophyll a and other species relying on Chlorophyl c2 and Peridinin with a small Chlorophyll a component. Pigments associated with the xanthophyll cycle of dinoflagellates (Diadinoxanthin and Diatoxanthin) were detected in most species. Pigments typical of endolithic organisms such as Zeaxanthin, Fucoxanthin, Violaxanthin and Siphonaxanthin were also detected in some coral species. The influence of major pigments on the reflectance curve was evidenced with a 2nd derivative analysis. This could be used to discriminate among most species. Further, an analysis of the integration of the area under the

  10. Spectral and correlation analysis with applications to middle-atmosphere radars

    NASA Technical Reports Server (NTRS)

    Rastogi, Prabhat K.

    1989-01-01

    The correlation and spectral analysis methods for uniformly sampled stationary random signals, estimation of their spectral moments, and problems arising due to nonstationary are reviewed. Some of these methods are already in routine use in atmospheric radar experiments. Other methods based on the maximum entropy principle and time series models have been used in analyzing data, but are just beginning to receive attention in the analysis of radar signals. These methods are also briefly discussed.

  11. [The measurement and analysis of visible-absorption spectrum and fluorescence spectrum of lycopene].

    PubMed

    Yang, Xiao-zhan; Li, Ping; Dai, Song-hui; Wu, Da-cheng; Li, Rui-xia; Yang, Jian-hui; Xiao, Hai-bo

    2005-11-01

    Using ICCD spectral detection system, the absorbency of lycopene-carbon bisulfide solution with different concentration was measured, and the result shows that in a specified range the absorption rule of lycopene solution agrees with Lambert-Beer Law. Absorption spectral wavelength shifts were measured respectively when lycopene was dissolved in acetone, normal hexane, petroleum ether, benzene, ethyl acetate, and carbon bisulfide, and comparing to acetone, different red-shift appeared when lycopene was dissolved in benzene, ethyl acetate, and carbon bisulfide when water was added in lycopene-acetone solution, t he absorbency of lycopene dropped, the fine structure of absorption spectrum became indistinct, and a new absorption peak appeared in UV. The reason for these phenomena is that the solvent molecule had different effect on lycopene molecule when lycopene was dissolved in different solvent. Using fluorecence spectrophotometer, fluorescence spectra of lycopene in different concentrations were collected, and the results show that the fluorescence spectra of lycopene were mainly in 500-680 nm. When concentration was lower than 50 microg x mL(-1), the fluorescence intensity linearly increased with increasing concentration, and when concentration was higher than 60 microg x mL(-1), the fluorescence intensity dropped because of the interaction between lycopene molecules. PMID:16499057

  12. Spectral analysis of induced fluorescence in thyroid tissue

    NASA Astrophysics Data System (ADS)

    Giubileo, Gianfranco; Colao, Francesco; Rocchini, Paolo; Panzironi, Giuseppe

    2001-05-01

    In this paper thyroid samples have been analyzed by fluorescent technique and characterization of the spectral response has been performed by studying both emission and excitation fluorescence spectra. The measurements have been performed by using a double monochromator spectrofluorometer. The nature of the medium containing the tissue sample has resulted to be of great importance in eliminating spurious effects not related to the sample itself. Observations fulfilled on a number of samples will be reported and comparison between healthy tissue and tumor tissue will be discussed.

  13. Efficiency analysis of voluntary control of human's EEG spectral characteristics.

    PubMed

    Kiroy, Valery N; Aslanyan, Elena V; Lazurenko, Dmitry M; Minyaeva, Nadezhda R; Bakhtin, Oleg M

    2016-03-01

    Spectral power (SP) of EEG alpha and beta-2 frequencies in different cortical areas has been used for neurofeedback training to control a graphic interface in different scenarios. The results show that frequency range and brain cortical areas are associated with high or low efficiency of voluntary control. Overall, EEG phenomena observed in the course of training are largely general changes involving extensive brain areas and frequency bands. Finally, we have demonstrated EEG patterns that dynamically switch with a specific feature in different tasks within one training, after a relatively short period of training. PMID:26912214

  14. An analytical approach for treating background in spectral analysis measurements

    NASA Astrophysics Data System (ADS)

    Miller, Ian; Holmes, Thomas W.; Gardner, Robin P.

    2015-11-01

    A method of determining the spectral shape of background radiation present in experimental spectra via a mathematical approach is presented. Elements of interest will be subtracted from an experimental spectrum using the linear correlation coefficient across a characteristic peak to determine their contribution. Once all elements of interest are removed, the remainder of the experimental spectrum should represent an approximation of the background. This approximation can then be used in conjunction with library least-squares to determine the background and elemental contributions to the unknown spectrum.

  15. Contribution to Modal and Spectral Interval Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sága, Milan; Bednár, R.; Vaško, M.

    Our paper deals with a non-probabilistic computational approach for mechanical systems with structural uncertainties. Uncertainties are considered as bounded possible values - intervals. The main goal is to propose algorithms for modal and spectral interval computations on FE models. An application of the chosen approaches is presented, i.e. the first one a simple combination of only inf-values or only sup-values; the second one presents full combination of all inf-sup values; the third one uses the optimization process as a tool for finding out a inf-sup solution and last one is Monte Carlo technique as a comparison tool.

  16. Analysis of finite dose dermal absorption data: Implications for dermal exposure assessment

    PubMed Central

    Frasch, H Frederick; Dotson, G Scott; Bunge, Annette L; Chen, Chen-Peng; Cherrie, John W; Kasting, Gerald B; Kissel, John C; Sahmel, Jennifer; Semple, Sean; Wilkinson, Simon

    2014-01-01

    A common dermal exposure assessment strategy estimates the systemic uptake of chemical in contact with skin using the fixed fractional absorption approach: the dermal absorbed dose is estimated as the product of exposure and the fraction of applied chemical that is absorbed, assumed constant for a given chemical. Despite the prominence of this approach there is little guidance regarding the evaluation of experiments from which fractional absorption data are measured. An analysis of these experiments is presented herein, and limitations to the fixed fractional absorption approach are discussed. The analysis provides a set of simple algebraic expressions that may be used in the evaluation of finite dose dermal absorption experiments, affording a more data-driven approach to dermal exposure assessment. Case studies are presented that demonstrate the application of these tools to the assessment of dermal absorption data. PMID:23715085

  17. Spectral Analysis of Biodiversity Cycles and Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Lieberman, Bruce; Melott, Adrian

    2007-04-01

    We have analyzed the power spectral and phase relationships of fluctuations in biodiversity, species origination, extinction rate, and motion of the solar system normal to the galactic plane over the last ˜500 My. The period of the dominant spectral component is the same 62 My for all these except extinction. It is also the same as the rate of gene duplication events (as determined by Ding et al.), suggesting some sort of causal relationship. The spectra suggest that the biodiversity cycle is more closely related to origination rates than extinction rates. Biodiversity and solar motion are offset by π, with gene duplication and origination lagging and leading biodiversity by ˜2 radians. A picture emerges consistent with a rising rate of mutation and stress on the biosphere as the solar system moves to galactic north, possibly exposed to higher cosmic rays from a galactic bow shock, as proposed elsewhere, and increasing species origination as it returns to the magnetic shielding of the galactic disk.

  18. The spectral analysis of cyclo-non-stationary signals

    NASA Astrophysics Data System (ADS)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  19. Spectral Analysis of Chinese Medicinal Herbs Based on Delayed Luminescence.

    PubMed

    Pang, Jingxiang; Zhu, Xiaoyan; Liu, Yanli; Fu, Jialei; Zhao, Xiaolei; Yang, Meina; van Wijk, Eduard; Wang, Mei; Nie, Xiaoyan; Han, Jinxiang

    2016-01-01

    Traditional Chinese medicine (TCM) plays a critical role in healthcare; however, it lacks scientific evidence to support the multidimensional therapeutic effects. These effects are based on experience, and, to date, there is no advanced tool to evaluate these experience based effects. In the current study, Chinese herbal materials classified with different cold and heat therapeutic properties, based on Chinese medicine principles, were investigated using spectral distribution, as well as the decay probability distribution based on delayed luminescence (DL). A detection system based on ultraweak biophoton emission was developed to determine the DL decay kinetics of the cold and heat properties of Chinese herbal materials. We constructed a mathematical model to fit the experimental data and characterize the properties of Chinese medicinal herbs with different parameters. The results demonstrated that this method has good reproducibility. Moreover, there is a significant difference (p < 0.05) in the spectral distribution and the decay probability distribution of Chinese herbal materials with cold and heat properties. This approach takes advantage of the comprehensive nature of DL compared with more reductionist approaches and is more consistent with TCM principles, in which the core comprises holistic views. PMID:27478482

  20. Spectral Analysis of Chinese Medicinal Herbs Based on Delayed Luminescence

    PubMed Central

    Zhu, Xiaoyan; Liu, Yanli; Fu, Jialei; Zhao, Xiaolei; van Wijk, Eduard; Wang, Mei; Nie, Xiaoyan

    2016-01-01

    Traditional Chinese medicine (TCM) plays a critical role in healthcare; however, it lacks scientific evidence to support the multidimensional therapeutic effects. These effects are based on experience, and, to date, there is no advanced tool to evaluate these experience based effects. In the current study, Chinese herbal materials classified with different cold and heat therapeutic properties, based on Chinese medicine principles, were investigated using spectral distribution, as well as the decay probability distribution based on delayed luminescence (DL). A detection system based on ultraweak biophoton emission was developed to determine the DL decay kinetics of the cold and heat properties of Chinese herbal materials. We constructed a mathematical model to fit the experimental data and characterize the properties of Chinese medicinal herbs with different parameters. The results demonstrated that this method has good reproducibility. Moreover, there is a significant difference (p < 0.05) in the spectral distribution and the decay probability distribution of Chinese herbal materials with cold and heat properties. This approach takes advantage of the comprehensive nature of DL compared with more reductionist approaches and is more consistent with TCM principles, in which the core comprises holistic views. PMID:27478482

  1. Tomographic Spectral Imaging with Multivariate Statistical Analysis: Comprehensive 3D Microanalysis.

    PubMed

    Kotula, Paul G; Keenan, Michael R; Michael, Joseph R

    2006-02-01

    A comprehensive three-dimensional (3D) microanalysis procedure using a combined scanning electron microscope (SEM)/focused ion beam (FIB) system equipped with an energy-dispersive X-ray spectrometer (EDS) has been developed. The FIB system was used first to prepare a site-specific region for X-ray microanalysis followed by the acquisition of an electron-beam generated X-ray spectral image. A small section of material was then removed by the FIB, followed by the acquisition of another X-ray spectral image. This serial sectioning procedure was repeated 10-12 times to sample a volume of material. The series of two-spatial-dimension spectral images were then concatenated into a single data set consisting of a series of volume elements or voxels each with an entire X-ray spectrum. This four-dimensional (three real space and one spectral dimension) spectral image was then comprehensively analyzed with Sandia's automated X-ray spectral image analysis software. This technique was applied to a simple Cu-Ag eutectic and a more complicated localized corrosion study where the powerful site-specific comprehensive analysis capability of tomographic spectral imaging (TSI) combined with multivariate statistical analysis is demonstrated. PMID:17481340

  2. Determination of awareness in patients with severe brain injury using EEG power spectral analysis

    PubMed Central

    Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.

    2011-01-01

    Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214

  3. Automated spectral zones selection methodology for diffusion theory data preparation for pebble bed reactor analysis

    NASA Astrophysics Data System (ADS)

    Mphahlele, Ramatsemela

    A methodology is developed for the determination of the optimum spectral zones in Pebble Bed Reactors (PBR). In this work a spectral zone is defined as a zone made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. In other words the spectral zones are the regions over which the few-group diffusion parameters are generated. The identification of spectral boundaries is treated as an optimization problem. It is solved by systematically and simultaneously repositioning all zone boundaries to achieve the global minimum error between the reference transport solution (MCNP) and the diffusion code solution (NEM). The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates error in each zone. An iterative determination of group-dependent bucklings is incorporated into the methodology to properly account for spectral effects of neighboring zones. A preferred energy group structure has also been chosen. This optimization approach with the reference transport solution has proved to be accurate and consistent, however the computational effort required to complete the optimization process is significant. Thus a more practical methodology is also developed for the determination of the spectral zones in PBRs. The reactor physics characteristics of the spectral zones have been studied to understand the nature of the spectral zone boundaries. The practical tool involves the use of spectral indices based on few-group diffusion theory whole core calculations. With this methodology, there is no need to first have a reference transport solution. It is shown that the diffusion-theory coarse group fluxes and the effective multiplication factor computed using zones based on the practical index agrees within a narrow tolerance with those of the reference approach. Therefore the "practical" index

  4. Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: Insights into spectral vanishing viscosity

    NASA Astrophysics Data System (ADS)

    Moura, R. C.; Sherwin, S. J.; Peiró, J.

    2016-02-01

    This study addresses linear dispersion-diffusion analysis for the spectral/hp continuous Galerkin (CG) formulation in one dimension. First, numerical dispersion and diffusion curves are obtained for the advection-diffusion problem and the role of multiple eigencurves peculiar to spectral/hp methods is discussed. From the eigencurves' behaviour, we observe that CG might feature potentially undesirable non-smooth dispersion/diffusion characteristics for under-resolved simulations of problems strongly dominated by either convection or diffusion. Subsequently, the linear advection equation augmented with spectral vanishing viscosity (SVV) is analysed. Dispersion and diffusion characteristics of CG with SVV-based stabilization are verified to display similar non-smooth features in flow regions where convection is much stronger than dissipation or vice-versa, owing to a dependency of the standard SVV operator on a local Péclet number. First a modification is proposed to the traditional SVV scaling that enforces a globally constant Péclet number so as to avoid the previous issues. In addition, a new SVV kernel function is suggested and shown to provide a more regular behaviour for the eigencurves along with a consistent increase in resolution power for higher-order discretizations, as measured by the extent of the wavenumber range where numerical errors are negligible. The dissipation characteristics of CG with the SVV modifications suggested are then verified to be broadly equivalent to those obtained through upwinding in the discontinuous Galerkin (DG) scheme. Nevertheless, for the kernel function proposed, the full upwind DG scheme is found to have a slightly higher resolution power for the same dissipation levels. These results show that improved CG-SVV characteristics can be pursued via different kernel functions with the aid of optimization algorithms.

  5. Continental Spatio-Temporal Data Analysis with Linear Spectral Mixture Model Using FOSS

    NASA Technical Reports Server (NTRS)

    Kumar, Uttam; Nemani, Ramakrishna; Ganguly, Sangram; Milesi, Cristina; Raja, Kumar; Wang, Weile; Votava, Petr; Michaelis, Andrew

    2015-01-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global end members of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  6. Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS

    NASA Astrophysics Data System (ADS)

    Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.

    2015-12-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  7. Autocatalytic Oxidization of Nanosilver and Its Application to Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Wen, Guiqing; Luo, Yanghe; Liang, Aihui; Jiang, Zhiliang

    2014-02-01

    The stable yellow nanosilver (AgNP) and blue nanosilver (AgNPB) sols were prepared by the NaBH4 procedure. The new nanocatalytic reaction of AgNP-NaCl-H2O2 was investigated by surface plasmon resonance (SPR) absorption, resonance Rayleigh scattering (RRS), surface-enhanced Raman scattering (SERS) and scanning electron microscope (SEM) techniques. The autocatalytic oxidization of Ag on AgNP surface by H2O2 was observed firstly and the AgNP/AgCl nanoparticles were characterized. The [Ag+] from AgNP is different to the Ag+ from AgNO3 that adsorb on the AgNP surface. An autocatalytic oxidization mechanism was proposed to explain experimental phenomena. The relationship between the SPR absorption peaks and the RRS peaks of AgNPB was studied, and three characteristic RRS peaks called as out-of-plane quadrupole, out-of-plane dipole and in-plane dipole RRS peaks were observed firstly. Using AgNP as nanoprobe, a simple, sensitive and selective RRS method was developed for assay of H2O2 in the range of 2.0 × 10-8-8.0 × 10-5 mol/L.

  8. Autocatalytic Oxidization of Nanosilver and Its Application to Spectral Analysis

    PubMed Central

    Wen, Guiqing; Luo, Yanghe; Liang, Aihui; Jiang, Zhiliang

    2014-01-01

    The stable yellow nanosilver (AgNP) and blue nanosilver (AgNPB) sols were prepared by the NaBH4 procedure. The new nanocatalytic reaction of AgNP-NaCl-H2O2 was investigated by surface plasmon resonance (SPR) absorption, resonance Rayleigh scattering (RRS), surface-enhanced Raman scattering (SERS) and scanning electron microscope (SEM) techniques. The autocatalytic oxidization of Ag on AgNP surface by H2O2 was observed firstly and the AgNP/AgCl nanoparticles were characterized. The [Ag+] from AgNP is different to the Ag+ from AgNO3 that adsorb on the AgNP surface. An autocatalytic oxidization mechanism was proposed to explain experimental phenomena. The relationship between the SPR absorption peaks and the RRS peaks of AgNPB was studied, and three characteristic RRS peaks called as out-of-plane quadrupole, out-of-plane dipole and in-plane dipole RRS peaks were observed firstly. Using AgNP as nanoprobe, a simple, sensitive and selective RRS method was developed for assay of H2O2 in the range of 2.0 × 10−8-8.0 × 10−5 mol/L. PMID:24496486

  9. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  10. Spectral analysis of the Namarunu volcanic complex in the Northern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Trauth, M. H.

    2009-04-01

    The Namarunu volcanic complex, situated on the western side of Suguta Valley in the northern part of the Kenya Rift, is dominated by trachytic and basaltic volcanics with a Pliocene to Holocene age range. The analysis of ASTER satellite imagery with special focus on the VNIR and SWIR bands covering a wavelength from 0.5µm to 2.4µm provides the possibility to distinguish these different volcanic rock types by means of spectral characteristics. The visualisation of calculated ratio bands also shows a distinct gradient within alluvial fans and scree surrounding Namarunu, indicating varying source areas. Based on this satellite information, samples both from in-place volcanics and from the enclosing fans were taken for additional spectral analysis. With hyperspectral lab measurements, high resolution spectra of the rock samples were acquired. These spectral signals allow establishing a basic provenance analysis of the fans. Due to limitations of the spectral characteristics of volcanics, the spectral rock classification additionally depends on alteration patterns. As Namarunu itself is active since at least 0.87Ma, its volcanic rocks comprise the latest history of the Rift Valley, including rift tectonics and the influence of lacustrine environment, thus the superimposed climate fluctuations; the analysis of the fans delivers an further insight into the volcanic evolution in Suguta Valley. Presented are the possibilities and limitations of the technique that uses the connection of remote sensing data and field samples, as well as the approach to comprehend the volcanic history of Namarunu with the help of spectral analysis.

  11. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance

    NASA Astrophysics Data System (ADS)

    Judycka-Proma, U.; Bober, L.; Gajewicz, A.; Puzyn, T.; Błażejowski, J.

    2015-03-01

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH = 2.5 and pH = 7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds).

  12. Energy and Exergy Analysis of Vapour Absorption Refrigeration Cycle—A Review

    NASA Astrophysics Data System (ADS)

    Kanabar, Bhaveshkumar Kantilal; Ramani, Bharatkumar Maganbhai

    2016-07-01

    In recent years, an energy crisis and the energy consumption have become global problems which restrict the sustainable growth. In these scenarios the scientific energy recovery and the utilization of various kinds of waste heat become very important. The waste heat can be utilized in many ways and one of the best practices is to use it for vapour absorption refrigeration system. To ensure efficient working of absorption cycle and utilization of optimum heat, exergy is the best tool for analysis. This paper provides the comprehensive picture of research and development of absorption refrigeration technology, practical and theoretical analysis with different arrangements of the cycle.

  13. Energy and Exergy Analysis of Vapour Absorption Refrigeration Cycle—A Review

    NASA Astrophysics Data System (ADS)

    Kanabar, Bhaveshkumar Kantilal; Ramani, Bharatkumar Maganbhai

    2016-02-01

    In recent years, an energy crisis and the energy consumption have become global problems which restrict the sustainable growth. In these scenarios the scientific energy recovery and the utilization of various kinds of waste heat become very important. The waste heat can be utilized in many ways and one of the best practices is to use it for vapour absorption refrigeration system. To ensure efficient working of absorption cycle and utilization of optimum heat, exergy is the best tool for analysis. This paper provides the comprehensive picture of research and development of absorption refrigeration technology, practical and theoretical analysis with different arrangements of the cycle.

  14. Low abundance materials at the mars pathfinder landing site: An investigation using spectral mixture analysis and related techniques

    USGS Publications Warehouse

    Bell, J.F., III; Farrand, W. H.; Johnson, J. R.; Morris, R.V.

    2002-01-01

    Recalibrated and geometrically registered multispectral images from the Imager for Mars Pathfinder (IMP) were analyzed using Spectral Mixture Analysis (SMA) and related techniques. SMA models a multispectral image scene as a linear combination of end-member spectra, and anomalous materials which do not fit the model are detected as model residuals. While most of the IMP data studied here are modeled generally well using "Bright Dust," "Gray Rock," and "Shade" image endmembers, additional anomalous materials were detected through careful analysis of root mean square (RMS) error images resulting from SMA. For example, analysis of SMA fraction and RMS images indicates spectral differences within a previously monolithologic Dark Soil class. A type of Dark Soil that has high fractional abundances in rock fraction images (Gray Rock Soil) was identified. Other anomalous materials identified included a previously noted "Black Rock" lithology, a class of possibly indurated, compacted, or partially cemented soils ("Intermediate Soil"), and a unit referred to as "Anomalous Patches" on at least one rock. The Black Rock lithology has a strong 900-1000-nm absorption, and modeling of the derived image endmembers using a laboratory reference endmember modeling (REM) approach produced best-fit model spectra that are most consistent with the presence of high-Ca pyroxenes and/or olivine, crystalline ferric oxide minerals, or mixtures of these materials as important components of the Black Rock endmember. More unique mineralogic identifications could not be obtained using our initial REM analyses. Both Intermediate Soil and Anomalous Patches units exhibit a relatively narrow 860-950-nm absorption that is consistent with the presence of either low-Ca pyroxenes or a cementing crystalline ferric oxide mineral. ?? 2002 Elsevier Science (USA).

  15. Feasibility analysis of a vortex generator for absorption heat pumps

    SciTech Connect

    Fineblum, S.S.

    1996-12-31

    Significant thermal resources in the form of low temperature industrial waste heat, between 211 to 528 trillion kJ (200 and 500 trillion BTU`s) per annum, have the potential to drive absorption heat pumps. The proposed vortex generator permits a practical heat pump to operate efficiently with as much as 20 to 30 C below the boiling temperature of water (70--80 C (158--176 F)). Energy flows and auxiliary power requirements are computed. The system is shown to operate with relatively low temperature waste heat with higher specific capacity than conventional systems.

  16. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India

    NASA Astrophysics Data System (ADS)

    Magendran, T.; Sanjeevi, S.

    2014-02-01

    This paper reports the results of a study to differentiate iron ores in terms of their grades, using the hyperspectral (EO-1 Hyperion) image data, covering a mineralized belt in the Noamundi area, eastern India. The study involves hyperspectral data collection, pre-processing (reduction of atmospheric and solar flux effects), generation of spectral curves from the image for the iron ore deposits, extraction of key spectral parameters and linear spectral unmixing for mapping iron ore abundance. Spectral curves for iron ore deposits extracted from the Hyperion image pixels exhibit strong absorption at 850-900 nm and 2150-2250 nm wavelengths, which is typical of iron ores. The strength of the absorption features in the continuum removed spectra varies spatially in the image around the mining areas, indicating differences in composition/grade of the iron ores. Spectral parameters such as the depth, width, area and wavelength position of the absorption features, derived from image spectra in the 850-900 nm and 2150-2250 nm regions, correlate well with the concentration of iron-oxide and alumina (gangue) in the ore samples obtained from the mine face. Well defined correlations are evident between the concentration of iron oxide and (i) the depth of NIR absorption feature (R2 = 0.883); (ii) the width of NIR absorption feature (R2 = 0.912); and (iii) the area of the NIR absorption feature and (R2 = 0.882). Further, the linear spectral unmixing resulted in an iron ore abundance map which, in conjunction with the image- and laboratory-spectra, helped in assessing the grades of iron ores in the study area. Thus, this study demonstrates the feasibility of discriminating grades of iron ores based on spectral information derived from spaceborne hyperspectral imagery.

  17. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level. PMID:26915200

  18. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  19. Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data

    NASA Technical Reports Server (NTRS)

    Sree, David

    1992-01-01

    Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.

  20. Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data

    NASA Astrophysics Data System (ADS)

    Sree, David

    1992-09-01

    Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.

  1. REM sleep EEG spectral analysis in patients with first-episode schizophrenia.

    PubMed

    Poulin, Julie; Stip, Emmanuel; Godbout, Roger

    2008-10-01

    The pathophysiology of schizophrenia includes abnormalities in subcortical-cortical transfer of information that can be studied using REM sleep EEG spectral analysis, a measure that reflects spontaneous and endogenous thalamocortical activity. We recorded 10 patients with first-episode schizophrenia and 30 healthy controls for two consecutive nights in a sleep laboratory, using a 10-electrode EEG montage. Sixty seconds of REM sleep EEG without artifact were analyzed using FFT spectral analysis. Absolute and relative spectral amplitudes of five frequency bands (delta, theta, alpha, beta1 and beta2) were extracted and compared between the two groups. Frequency bands with significant differences were correlated with BPRS positive and negative symptoms scores. Patients with schizophrenia showed lower relative alpha and higher relative beta2 spectral amplitudes compared to healthy controls over the averaged total scalp. Analysis using cortical regions showed lower relative alpha over frontal, central and temporal regions and higher relative beta2 over the occipital region. Absolute spectral amplitude was not different between groups for any given EEG band. However, absolute alpha activity correlated negatively with BPRS positive symptoms scores and correlated positively with negative symptoms scores. Since similar results have been reported following EEG spectral analysis during the waking state, we conclude that abnormalities of subcortical-cortical transfer of information in schizophrenia could be generated by mechanisms common to REM sleep and waking. PMID:18280502

  2. Geological Mapping by Combining Spectral Unmixing and Cluster Analysis for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Ishidoshiro, N.; Yamaguchi, Y.; Noda, S.; Asano, Y.; Kondo, T.; Kawakami, Y.; Mitsuishi, M.; Nakamura, H.

    2016-06-01

    Spectral unmixing of hyperspectral data often fails to select some minerals and rocks having flat spectra but no diagnostic absorption features as endmembers, even if they are actually important endmembers. To avoid this problem, we propose a novel approach that combined two methods: spectral unmixing and full-pixel classification. First, all pixels were divided into two categories, hydrothermally altered areas and unaltered rocks based on the absorption depth of 2.0 to 2.5 μm. For the hydrothermally altered areas, endmembers were extracted by the Improved Causal Random Pixel Purity Index (ICRPPI) method, which was improved from the existing Pixel Purity Index (PPI) and Causal Random Pixel Purity Index (CRPPI) methods. Endmember abundance in each pixel was calculated by linear spectral unmixing. In a separate operation, k-means clustering was applied to the unaltered rock areas. Finally, the results of these two methods were combined to generate a single distribution map of rocks and minerals. This approach was applied to the airborne hyperspectral HyMap data of Cuprite, Nevada, U.S.A. We confirmed that our mapping result was consistent with the existing geological map as well as our field survey result.

  3. Spectral stratigraphy and clay minerals analysis in parts of Hellas Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Das, I. C.; Joseph, J.; Subramanian, S. K.; Dadhwal, V. K.

    2014-11-01

    Absorption features that occur in reflectance spectra are a sensitive indicator of mineralogy and chemical composition for a wide variety of materials. The investigation of the mineralogy and chemical composition of surfaces give information about the origin and evolution of planetary bodies. On Mars, the processes of formation of different types of clay minerals result from different types of wet conditions viz. hydrothermalism, subsurface/groundwater weathering, surface alteration etc. The image analyzed in the present study was frt000947f- 164-trr3 (-27.87N-65.06E). Through the spectral stratigraphic characterization along a crater wall, eight (8) different layers were identified considering the spectral variability and their position. In Hellas Planitia, the alteration minerals identified by CRISM based on distinctive absorptions from 0.4 to3.9 μm include Al-rich smectite, montmorillonite, phyllosilicate mineral at 2.2 μm and 2.35 μm, including strong absorption feature noticed at 1.9 μm. We conclude that the layers exposed in the crater wall help characterize the compositional stratigraphy for confirming the presence of hydrated minerals in this region as an outcome of geohydrological weathering process.

  4. Periodicity Analysis of the Spectral Index in 3c 273 and 3c 446

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Hai; Fan, Jun-Hui

    In this work, we used the preliminary data of University of Michigan Radio Astronomy Observatory (UMRAO) for the spectral index calculation for two blazars, 3C 273 (1226+023) and 3C 446 (2223-052), and found that the spectral indices are variable. Therefore, we used three methods (Jurkevich method (J), the discrete correlation analysis (D), and the Periodogram method (P)) to investigate the period in the spectral index variation curves. The results show that 3C 273 has a quasi-period of 8.8 ± 1.3 yr, and 3C 446 has a period of 5.8 ± 1.2 yr.

  5. Principal Components Analysis of Martian NIR Image Cubes to Retrieve Surface Spectral Endmembers

    NASA Astrophysics Data System (ADS)

    Klassen, David R.

    2016-07-01

    Presented here is a discussion of the complete principal components analysis (PCA) performed on all photometric NASA Infrared Telescope Facility (IRTF) NSFCAM spectral image sets from 1995–2001 and Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral image sets from 2006–2008, detailing the similarities and differences and overall interpretation of the PC dimensional spaces. The purpose of the analysis is to use the PCA to recover surface spectral endmembers to be used in a full radiative transfer modeling program to recover ice cloud optical depths (and thus water content) over diurnal, seasonal, and interannual timescales. The PCA results show considerable consistency across all seasons, and can be optimized to increase the consistency through both spectral and geographic restrictions on the data.

  6. Spectral Analysis of Transition Operators, Automata Groups and Translation in BBS

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tsujimoto, Satoshi; Zuk, Andrzej

    2016-06-01

    We give the automata that describe time evolution rules of the box-ball system with a carrier. It can be shown by use of tropical geometry that such systems are ultradiscrete analogues of KdV equation. We discuss their relation with the lamplighter group generated by an automaton. We present spectral analysis of the stochastic matrices induced by these automata and verify their spectral coincidence.

  7. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  8. Turbulent Fluid Motion 5: Fourier Analysis, the Spectral Form of the Continuum Equations, and Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients. Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included in the analyses.

  9. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    NASA Technical Reports Server (NTRS)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  10. Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku

    NASA Technical Reports Server (NTRS)

    Brenneman, L. W.; Weaver, K. A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus,A.; Kovalev, Y. Y.; Aller, M.; Aller, H.; Irwin, J.; Kerp, J.; Kaufmann, S.

    2008-01-01

    We present an analysis of the 101 ks, 2007 Suzaku spectrum of the LINER galaxy NGC 1052. The 0:3..10 keV continuum is well-modeled by a power-law continuum modified by Galactic and intrinsic absorption, and exhibits a soft, thermal emission component below 1 keV. Both a narrow core and a broader component of Fe-Ka emission are robustly detected at 6:4 keV. While the narrow line is consistent with an origin in material distant from the black hole, the broad line is best fit empirically by a model that describes fluorescent emission from the inner accretion disk around a rapidly rotating black hole. We find no direct evidence for Comptonized reflection of the hard X-ray source by the disk above 10 keV, however, which casts doubt on the hypothesis that the broad iron line is produced in a standard accretion disk. We explore other possible scenarios for producing this spectral feature and conclude that the high equivalent width and full width half maximum velocity of the broad iron line (v greater than or equals 0:37c) necessitate an origin within d approx. 8r(sub g) of the hard X-ray source. Based on the confirmed presence of a strong radio jet in this source, the broad iron line may be produced in dense plasma at the base of the jet, implying that emission mechanisms in the central-most portions of active galactic nuclei are more complex than previously thought.

  11. Surface plasmon resonance sensor based on spectral interferometry: numerical analysis.

    PubMed

    Zhang, Yunfang; Li, Hui; Duan, Jingyuan; Shi, Ancun; Liu, Yuliang

    2013-05-10

    In this paper, we introduce a numerical simulation of a phase detecting surface plasmon resonance (SPR) scheme based on spectral interference. Based on the simulation, we propose a method to optimize various aspects of SPR sensors, which enables better performance in both measurement range (MR) and sensitivity. In the simulation, four parameters including the spectrum of the broadband light source, incident angle, Au film thickness, and refractive index of the prism coupler are analyzed. The results show that it is a good solution for better performance to use a warm white broadband (625-800 nm) light source, a divergence angle of the collimated incident light less than 0.02°, and an optimized 48 nm thick Au film when a visible broadband light source is used. If a near-IR light source is used, however, the Au film thickness should be somewhat thinner according the specific spectrum. In addition, a wider MR could be obtained if a prism coupler with higher refractive index is used. With all the parameters appropriately set, the SPR MR could be extended to 0.55 refractive index units while keeping the sensitivity at a level of 10(-8). PMID:23669838

  12. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  13. Systematic wavelength selection for improved multivariate spectral analysis

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  14. Spectral analysis and structure preserving preconditioners for fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Donatelli, Marco; Mazza, Mariarosa; Serra-Capizzano, Stefano

    2016-02-01

    Fractional partial order diffusion equations are a generalization of classical partial differential equations, used to model anomalous diffusion phenomena. When using the implicit Euler formula and the shifted Grünwald formula, it has been shown that the related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-like structure. In this paper we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, we show that the sequence of the coefficient matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We employ the spectral information for analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results and with a look forward to the multidimensional setting. We also propose two new tridiagonal structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as CGNR and GMRES. A number of numerical examples show that our proposal is more effective than recently used circulant preconditioners.

  15. LUNAR SURFACE COMPOSITIONAL UNITS DETERMINED BY SPECTRAL MIXING ANALYSIS OF IMAGES FROM THE MOON MINERALOGY MAPPER (M3)

    NASA Astrophysics Data System (ADS)

    Combe, J.; Kramer, G. Y.; McCord, T. B.; Taylor, L. A.; Petro, N. E.; Pieters, C. M.; Boardman, J. W.; Mustard, J. F.; Sunshine, J. M.; Tompkins, S.

    2009-12-01

    Mapping-surface compositional units on large areas of the Moon is a key step for interpretating its geology. In addition, the spatial distribution and relative abundances of minerals and glasses are essential for the study of mixing processes and maturation of the soil. We are using data from the M3 imaging spectrometer [1], which was in lunar orbit onboard Chandrayaan-1 for 10 months starting in November 2008. In global observation mode [1], the spectral range is 460-2976 nm at 20 and 40 nm spectral resolution, and the spatial resolution is 140 m/pixel or 280 m/pixel. Spectral Mixing Analysis (SMA) is one method for calculating abundances of spectral components (endmembers) mixed within a surface-projected pixel [2-8]. Spectra are modeled by linear combinations of the spectral endmembers, which correspond to adjacent areas of different compositions present within the same pixel. The inversion (unmixing) of this simple physical model is convenient for an initial assessment of large data sets prior to using more sophisticated methods for compositional analysis [7-9]. In the present study, the spectral endmembers are collected from the image that will be unmixed using two ways of selection in order to arrive at the most effective ones: 1) Among the representative nearside mare compositions defined by [10], we chose the most-extreme spectra, based on their absorption bands and on the titanium content of the corresponding lunar samples. 2) Using our own iterative approach, we start with the two most-representative spectra of mature highlands and mature mare soils as input for the SMA. Then, we analyze the residuals of the SMA to define more endmembers. We perform SMA using the Multiple-Endmember Linear Spectral-Unmixing Model (MELSUM, [8, 11]) that allows limiting the number of components used in a model and guarantees positive mixing coefficients. Shade is assumed to have a neutral (flat) spectral contribution. The sum of the mixing coefficients is constrained to

  16. Spectral analysis comparisons of Fourier-theory-based methods and minimum variance (Capon) methods

    NASA Astrophysics Data System (ADS)

    Garbanzo-Salas, Marcial; Hocking, Wayne. K.

    2015-09-01

    In recent years, adaptive (data dependent) methods have been introduced into many areas where Fourier spectral analysis has traditionally been used. Although the data-dependent methods are often advanced as being superior to Fourier methods, they do require some finesse in choosing the order of the relevant filters. In performing comparisons, we have found some concerns about the mappings, particularly when related to cases involving many spectral lines or even continuous spectral signals. Using numerical simulations, several comparisons between Fourier transform procedures and minimum variance method (MVM) have been performed. For multiple frequency signals, the MVM resolves most of the frequency content only for filters that have more degrees of freedom than the number of distinct spectral lines in the signal. In the case of Gaussian spectral approximation, MVM will always underestimate the width, and can misappropriate the location of spectral line in some circumstances. Large filters can be used to improve results with multiple frequency signals, but are computationally inefficient. Significant biases can occur when using MVM to study spectral information or echo power from the atmosphere. Artifacts and artificial narrowing of turbulent layers is one such impact.

  17. Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.; Ishihara, M.; Tsujita, K.; Hirota, K.; Irisawa, K.; Kitagaki, M.; Fujita, M.; Kikuchi, M.

    2012-02-01

    In photo-acoustic (PA) imaging, valuable medical applications based on optical absorption spectrum such as contrast agent imaging and blood oxygen saturation measurement have been investigated. In these applications, there is an essential requirement to determine optical absorption coefficients accurately. In present, PA signal intensities have been commonly used to determine optical absorption coefficients. This method achieves practical accuracy by combining with radiative transfer analysis. However, time consumption of radiative transfer analysis and effects of signal generation efficiencies were problems of this method. In this research, we propose a new method to determine optical absorption coefficients using continuous wavelet transform (CWT). We used CWT to estimate instantaneous frequencies of PA signals which reflects optical absorption distribution. We validated the effectiveness of CWT in determination of optical absorption coefficients through an experiment. In the experiment, planar shaped samples were illuminated to generate PA signal. The PA signal was measured by our fabricated PA probe in which an optical fiber and a ring shaped P(VDFTrFE) ultrasound sensor were coaxially aligned. Optical properties of samples were adjusted by changing the concentration of dye solution. Tunable Ti:Sapphire laser (690 - 1000 nm) was used as illumination source. As a result, we confirmed strong correlation between optical absorption coefficients of samples and the instantaneous frequency of PA signal obtained by CWT. Advantages of this method were less interference of light transfer and signal generation efficiency.

  18. Broadband radio-frequency spectrum analysis in spectral-hole-burning media.

    PubMed

    Colice, Max; Schlottau, Friso; Wagner, Kelvin H

    2006-09-01

    We demonstrate a 20 GHz spectrum analyzer with 1 MHz resolution and >40 dB dynamic range using spectral-hole-burning (SHB) crystals, which are cryogenically cooled crystal hosts lightly doped with rare-earth ions. We modulate a rf signal onto an optical carrier using an electro-optic intensity modulator to produce a signal beam modulated with upper and lower rf sidebands. Illuminating SHB crystals with modulated beams excites only those ions resonant with corresponding modulation frequencies, leaving holes in the crystal's absorption profile that mimic the modulation power spectrum and persist for up to 10 ms. We determine the spectral hole locations by probing the crystal with a chirped laser and detecting the transmitted intensity. The transmitted intensity is a blurred-out copy of the power spectrum of the original illumination as mapped into a time-varying signal. Scaling the time series associated with the transmitted intensity by the instantaneous chirp rate yields the modulated beam's rf power spectrum. The homogeneous linewidth of the rare-earth ions, which can be <100 kHz at cryogenic temperatures, limits the fundamental spectral resolution, while the medium's inhomogeneous linewidth, which can be >20 GHz, determines the spectral bandwidth. PMID:16912776

  19. Methods of calibration in the direct analysis of solid samples by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Berglund, M.; Baxter, D. C.

    1992-12-01

    One of the major problems involved in the direct analysis of solid samples by electrothermal atomic absorption spectrometry (ETAAS) lies in the calibration step because non-spectral interference effects are often pronounced. Three standardization techniques have been described and used in solid sampling-ETAAS: (i) standard additions method; (ii) calibration relative to a certified reference material; and (iii) calibration curve technique. However, an adequate statistical evaluation of the uncertainty in the analyte concentration in the solid sample is most frequently neglected, and reported errors may be seriously underestimated. This can be attributed directly to the complexity of the statistical expressions required to accurately account for errors in each of the calibration techniques mentioned above, and the general lack of relevant reference literature. The object of this work has been to develop a computer package which will perform the necessary statistical analyses of solid sampling-ETAAS data; the result is the program "SOLIDS" described here in the form of an electronic publication in Spectrochimica Acta Electronica, the electronic section of Spectrochimica Acta Part B. The program could also be useful in other analytical fields where similar calibration methods are used. The hard copy text, outlining the calibration models and their associated errors, is accompanied by a diskette containing the program, some data files, and a manual. Use of the program is exemplified in the text, with some of the data files discussed included on the diskette which, together with the manual, should enable the reader to become familiarized with the operation of the program, and the results generated.

  20. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGESBeta

    Hakel, Peter

    2016-06-16

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  1. Spectral analysis of the fifth spectrum of indium: In V

    NASA Astrophysics Data System (ADS)

    Swapnil; Tauheed, A.

    2016-01-01

    The fifth spectrum of indium (In V) has been investigated in the grazing and normal incidence wavelength regions. In4+ is a Rh-like ion with the ground configuration 4p64d9 and first excited configurations of the type 4p64d8nℓ (n≥4). The theoretical predications for this ion were made by Cowan's quasi-relativistic Hartree-Fock code with superposition of configurations involving 4p64d8(5p+6p+7p+4f+5f+6f), 4p54d10, 4p64d75s(5p+4f) for the odd parity matrix and 4p64d8 (5s+6s+7s+5d+6d), 4p64d7(5s2+5p2) for the even parity system. The spectra used for this work were recorded on 10.7 m grazing and normal incidence spectrographs at the National Institute of Standards and Technology, Gaithersburg, Maryland (USA) and also on a 3-m normal incidence vacuum spectrograph at Antigonish (Canada). The sources used were a sliding spark and a triggered spark respectively. Two hundred and thirty two energy levels based on the identification of 873 spectral lines have been established, forty six being new. Least squares fitted parametric calculations were used to interpret the observed level structure. The energy levels were optimized using a level optimization computer program (LOPT). Our wavelength accuracy for sharp and unblended lines is estimated to be within ±0.005 Å for λ below 400 Å and ±0.006 Å up to 1200 Å.

  2. Spectral characterization as a tool for parchment analysis

    NASA Astrophysics Data System (ADS)

    Radis, Michela; Iacomussi, Paola; Rossi, Giuseppe

    2015-06-01

    The paper presents an investigation on the correlation between spectral characteristics and conservation conditions of parchment to define a NON invasive methodology able to detect and monitor deterioration process in historical parchment without the need of taking small samples. To verify the feasibility and define the most appropriate measurement method, several samples of contemporary parchments, produced following ancient recipes and coming from different animal species, with different degrees of artificially induced damage, were analyzed. The SRF and STF of each sample were measured in the same point, before and after each step of the artificial ageing treatment. Having at disposal a parchment coming from a whole lamb leather, allowed also the study of the correlations between the variations of SRF - STF and the intrinsic factors of a parchment like the variability of animal skin anatomy and of manufacturing. Analyzing different samples allowed also the definition of the measuring method sensitivity and of reference spectrum for the different animal species parchments with accuracy limits. The definition of a reference spectrum of not damaged parchment with acceptability limits is a necessary step for understanding, through SRF - STF measurements, historical parchments conservation conditions: indeed it is necessary to know if deviations from the reference spectrum are ascribable to damage or only to parchment anatomic/production variability. As a case study, the method has been applied to two historical parchment scrolls stored at the Archivio di Stato di Torino (Italy). The SRF - STF of both scrolls was acquired in several points of the scroll, the average spectrum of each scroll was compared with the reference spectra with the relative tolerance limits, recognizing the animal species and damage alterations and demonstrating the feasibility of the method.

  3. Laboratory verification of on-line lithium analysis using ultraviolet absorption spectrometry

    SciTech Connect

    Beemster, B.J.; Schlager, K.J.; Schloegel, K.M.; Kahle, S.J.; Fredrichs, T.L.

    1992-12-31

    Several laboratory experiments were performed to evaluate the capability of absorption spectrometry in the ultraviolet-visible wavelength range with the objective of developing methods for on-line analysis of lithium directly in the primary coolant of Pressurized Water Reactors using optical probes. Although initial laboratory tests seemed to indicate that lithium could be detected using primary absorption (detection of natural spectra unassisted by reagents), subsequent field tests demonstrated that no primary absorption spectra existed for lithium in the ultraviolet-visible wavelength range. A second series of tests that were recently conducted did, however, confirm results reported in the literature to the effect that reagents were available that will react with lithium to form chelates that possess detectable absorption and fluorescent signatures. These results point to the possible use of secondary techniques for on-line analysis of lithium.

  4. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  5. Two-dimensional correlation analysis of near-infrared spectral intensity variations of ground wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized two-dimensional (2D) correlation analysis was applied to characterize the NIR spectral intensity fluctuations among many spectra of ground wheat with multi-variable variations. Prior to 2D analysis, the spectra having neighboring protein / SDSS reference values were averaged and then new...

  6. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis

    NASA Astrophysics Data System (ADS)

    Huang, Y. X.; Schmitt, F. G.; Lu, Z. M.; Liu, Y. L.

    2009-04-01

    In this work, we present the analysis of two long time series of daily river flow data, 32 years recorded in the Seine river (France), and 25 years recorded in the Wimereux river (Wimereux, France). We apply a scale based decomposition method, namely Empirical Mode Decomposition (EMD), on these time series. The data are decomposed into several Intrinsic Mode Function (IMF). The mean frequency of each mode indicates that the EMD method acts as a filter bank. Furthermore, the cross-correlation between these IMF modes from the Seine river and the Wimereux river demonstrates strong correlation among the large scale IMF modes, which indicates that both rivers are influenced by the same events. We also find that the large scale parts have the same evolution trend. We finally apply arbitrary order Hilbert spectral analysis (Huang et al. EPL, 2008), a new technique coming from turbulence studies and time series analysis, on the flow of the Seine river. This new method provides on amplitude-frequency representation of the original time series, giving a joint pdf p(ω,A). When marginal moments of the amplitude are computed, one obtains an intermittency study in the frequency space. Applied to river flow discharge data from the Seine river, this shows the scaling range and characterizes the intermittent fluctuations over the range of scales from 4.5 day to 60 days. Reference Huang Y.X., Schmitt F. G., Lu Z.M. And Liu Y.L. An amplitude-frequency study of turbulent scaling intermittency using Hilbert spectral analysis Europhys. Lett. 2008, 84: 40010

  7. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis

    PubMed Central

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-01-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%. PMID:26504638

  8. Radiation flux and spectral analysis of the multi-temperature Z dynamic hohlraum.

    PubMed

    Lockard, T E; Idzorek, G C; Tierney, T E; Watt, R G

    2008-10-01

    Experiments performed at the Sandia National Laboratories (SNL) Z-machine, located in Albuquerque, New Mexico produce hot (approximately 220 eV) plasmas. X-ray emission from the plasma is used to drive radiation flow experiments. Our standard plasma diagnostic suite consists of x-ray diodes (XRDs), silicon photodiodes, and nickel thin film bolometers. Small diagnostic holes allow us to view the hot plasma from the side, top axial anode side, and bottom axial cathode side. Computer software has been written to process the raw data to calculate data quality, fold in detector spectral response and experiment geometry for emitted flux, calculate a multidetector spectral unfold, and yield an equivalent time-dependent Planckian temperature profile. Spectral unfolds of our XRD data generally yield a Planckian-like spectrum. In our presentation we will compare our diagnostic techniques, analysis, and results to more accurately characterize spectral unfolds in order to establish better drive conditions for our experiments. PMID:19044635

  9. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.

    PubMed

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-10-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%. PMID:26504638

  10. Analysis of absorption performances of anechoic layers with steel plate backing.

    PubMed

    Meng, Hao; Wen, Jihong; Zhao, Honggang; Lv, Linmei; Wen, Xisen

    2012-07-01

    Rubber layers with air-filled cavities or local resonance scatters can be used as anechoic coatings. A lot of researches have focused on the absorption mechanism of the anechoic coatings. As the anechoic coatings are bonded to the hull of submarine, the vibration of the hull should not be neglected when the analysis of the absorption characters is carried out. Therefore, it is more reasonable to treat the anechoic coating and the backing as a whole when the acoustic performance is analyzed. Considering the effects of the steel plate backing, the sound absorption performances on different models of anechoic coatings are investigated in this paper. The Finite Element Method is used to illustrate the vibrational behaviors of the anechoic coatings under the steel backings by which the displacement contours is obtained for analysis. The theoretical results show that an absorption peak is induced by the resonance of the steel slab and rubber layer. At the frequency of this absorption peak, the steel plate and the coating vibrates longitudinally like a mass-spring system in which the steel slab serves for mass and the coating layer is the spring. To illuminate the effects of the steel slab backing on the acoustic absorption, the thicknesses of the steel slab and the anechoic layer are discussed. Finally, an experiment is performed and the results show a good agreement with the theoretical analysis. PMID:22779456

  11. Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell

    SciTech Connect

    Tamaki, Ryo Shoji, Yasushi; Okada, Yoshitaka; Miyano, Kenjiro

    2014-08-18

    Two-step photon absorption processes in a self-organized In{sub 0.4}Ga{sub 0.6}As/GaAs quantum dot (QD) solar cell have been investigated by monitoring the mid-infrared (IR) photoinduced modulation of the external quantum efficiency (ΔEQE) at low temperature. The first step interband and the second step intraband transitions were both spectrally resolved by scanning photon energies of visible to near-IR CW light and mid-IR pulse lasers, respectively. A peak centered at 0.20 eV corresponding to the transition to virtual bound states and a band above 0.42 eV probably due to photoexcitation to GaAs continuum states were observed in ΔEQE spectra, when the interband transition was above 1.4 eV, directly exciting wetting layers or GaAs spacer layers. On the other hand, resonant excitation of the ground state of QDs at 1.35 eV resulted in a reduction of EQE. The sign of ΔEQE below 1.40 eV changed from negative to positive by increasing the excitation intensity of the interband transition. We ascribe this to the filling of higher energy trap states.

  12. Objective determination of image end-members in spectral mixture analysis

    NASA Technical Reports Server (NTRS)

    Tompkins, Stefanie; Mustard, John F.; Pieters, Carle M.; Forsyth, Donald W.

    1993-01-01

    Spectral mixture analysis was shown to be a powerful, multifaceted tool for analysis of multi- and hyper-spectral data. The essence of the first phase of the approach is to determine a set of image end-members that best account for the spectral variance in an image cube within a constrained, linear least squares mixing model. The selection of the image end-member is usually achieved using a priori knowledge and successive trial and error solutions to refine the total number and physical location of the end-members. However, in many situations a more objective method of determining these essential components is desired. The problem of image end-member determination was approached objectively by using the inherent variance of the data. Unlike purely statistical methods such as factor analysis, this approach derives solutions that conform to a physically realistic model.

  13. Objective determination of image end-members in spectral mixture analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Tompkins, Stefanie; Mustard, John F.; Pieters, Carle M.; Forsyth, Donald W.

    1993-01-01

    Spectral mixture analysis has been shown to be a powerful, multifaceted tool for analysis of multi- and hyper-spectral data. Applications of AVIRIS data have ranged from mapping soils and bedrock to ecosystem studies. During the first phase of the approach, a set of end-members are selected from an image cube (image end-members) that best account for its spectral variance within a constrained, linear least squares mixing model. These image end-members are usually selected using a priori knowledge and successive trial and error solutions to refine the total number and physical location of the end-members. However, in many situations a more objective method of determining these essential components is desired. We approach the problem of image end-member determination objectively by using the inherent variance of the data. Unlike purely statistical methods such as factor analysis, this approach derives solutions that conform to a physically realistic model.

  14. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  15. Determination of the habitable zone through planetary atmospheric absorption analysis

    NASA Astrophysics Data System (ADS)

    Poffo, D. A.; Caranti, G. M.; Comes, R. A.

    2014-03-01

    The so-called Habitable Zone (HZ) is a region around a star where a planet without atmosphere and considered as a black body, is subjected to a radiative flux appropriate to maintain liquid water on its surface. The location of this region is closely related to the physical properties of the star and in particular with its luminosity. It is important to note that being a planet within the HZ region is a necessary condition but may not be a sufficient one to be habitable. The concept of Planetary Habitability means that not only orbital conditions must be satisfied, but also that the planet itself must be able to develop and maintain a biosphere (Porto de Mello et al. 2006). This paper aims to determine the planetary HZ for a planet with similar conditions than the Earth, i.e. having an atmosphere, using a simple model based on the interactions between the star radiation and the radiation emitted by the planet with the atmosphere. The absorption spectrum for the proposed atmospheric chemical composition is calculated as a function of temperature by means of the HITRAN database. Another important factor taken into account in this model is cloud cover. Clouds act as "traps" to the long wave radiation emitted by the surface of the planet, resulting in an additional warming contributing to the greenhouse effect, but at the same time, reflect solar radiation back into space (albedo), producing surface cooling (Porto de Mello 2010). Taken these effects into account on a global level, we find a relationship between the orbital location of the planet and the average surface temperature that allows us to extend the habitable limits proposed by Kasting et al (1993).

  16. A Molecular Iodine Spectral Data Set for Rovibronic Analysis

    ERIC Educational Resources Information Center

    Williamson, J. Charles; Kuntzleman, Thomas S.; Kafader, Rachael A.

    2013-01-01

    A data set of 7,381 molecular iodine vapor rovibronic transitions between the X and B electronic states has been prepared for an advanced undergraduate spectroscopic analysis project. Students apply standard theoretical techniques to these data and determine the values of three X-state constants (image omitted) and four B-state constants (image…

  17. An experiment with spectral analysis of emotional speech affected by orthodontic appliances

    NASA Astrophysics Data System (ADS)

    Přibil, Jiří; Přibilová, Anna; Ďuračková, Daniela

    2012-11-01

    The contribution describes the effect of the fixed and removable orthodontic appliances on spectral properties of emotional speech. Spectral changes were analyzed and evaluated by spectrograms and mean Welch’s periodograms. This alternative approach to the standard listening test enables to obtain objective comparison based on statistical analysis by ANOVA and hypothesis tests. Obtained results of analysis performed on short sentences of a female speaker in four emotional states (joyous, sad, angry, and neutral) show that, first of all, the removable orthodontic appliance affects the spectrograms of produced speech.

  18. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    SciTech Connect

    Rinsland, C.P.; Boughner, R.E.; Larsen, J.C.; Goldman, A.

    1984-08-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  19. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  20. Spectral Cytometry Has Unique Properties Allowing Multicolor Analysis of Cell Suspensions Isolated from Solid Tissues

    PubMed Central

    Schmutz, Sandrine; Valente, Mariana

    2016-01-01

    Flow cytometry, initially developed to analyze surface protein expression in hematopoietic cells, has increased in analytical complexity and is now widely used to identify cells from different tissues and organisms. As a consequence, data analysis became increasingly difficult due the need of large multi-parametric compensation matrices and to the eventual auto-fluorescence frequently found in cell suspensions obtained from solid organs. In contrast with conventional flow cytometry that detects the emission peak of fluorochromes, spectral flow cytometry distinguishes the shapes of emission spectra along a large range of continuous wave lengths. The data is analyzed with an algorithm that replaces compensation matrices and treats auto-fluorescence as an independent parameter. Thus, spectral flow cytometry should be capable to discriminate fluorochromes with similar emission peaks and provide multi-parametric analysis without compensation requirements. Here we show that spectral flow cytometry achieves a 21-parametric (19 fluorescent probes) characterization and deals with auto-fluorescent cells, providing high resolution of specifically fluorescence-labeled populations. Our results showed that spectral flow cytometry has advantages in the analysis of cell populations of tissues difficult to characterize in conventional flow cytometry, such as heart and intestine. Spectral flow cytometry thus combines the multi-parametric analytical capacity of the highest performing conventional flow cytometry without the requirement for compensation and enabling auto-fluorescence management. PMID:27500930

  1. Statistical analysis of spectral data for vegetation detection

    NASA Astrophysics Data System (ADS)

    Love, Rafael; Cathcart, J. Michael

    2006-05-01

    Identification and reduction of false alarms provide a critical component in the detection of landmines. Research at Georgia Tech over the past several years has focused on this problem through an examination of the signature characteristics of various background materials. These efforts seek to understand the physical basis and features of these signatures as an aid to the development of false target identification techniques. The investigation presented in this paper deal concentrated on the detection of foliage in long wave infrared imagery. Data collected by a hyperspectral long-wave infrared sensor provided the background signatures used in this study. These studies focused on an analysis of the statistical characteristics of both the intensity signature and derived emissivity data. Results from these studies indicate foliage signatures possess unique characteristics that can be exploited to enable detection of vegetation in LWIR images. This paper will present review of the approach and results of the statistical analysis.

  2. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  3. Mapping tropical dry forest succession using multiple criteria spectral mixture analysis

    NASA Astrophysics Data System (ADS)

    Cao, Sen; Yu, Qiuyan; Sanchez-Azofeifa, Arturo; Feng, Jilu; Rivard, Benoit; Gu, Zhujun

    2015-11-01

    Tropical dry forests (TDFs) in the Americas are considered the first frontier of economic development with less than 1% of their total original coverage under protection. Accordingly, accurate estimates of their spatial extent, fragmentation, and degree of regeneration are critical in evaluating the success of current conservation policies. This study focused on a well-protected secondary TDF in Santa Rosa National Park (SRNP) Environmental Monitoring Super Site, Guanacaste, Costa Rica. We used spectral signature analysis of TDF ecosystem succession (early, intermediate, and late successional stages), and its intrinsic variability, to propose a new multiple criteria spectral mixture analysis (MCSMA) method on the shortwave infrared (SWIR) of HyMap image. Unlike most existing iterative mixture analysis (IMA) techniques, MCSMA tries to extract and make use of representative endmembers with spectral and spatial information. MCSMA then considers three criteria that influence the comparative importance of different endmember combinations (endmember models): root mean square error (RMSE); spatial distance (SD); and fraction consistency (FC), to create an evaluation framework to select a best-fit model. The spectral analysis demonstrated that TDFs have a high spectral variability as a result of biomass variability. By adopting two search strategies, the unmixing results showed that our new MCSMA approach had a better performance in root mean square error (early: 0.160/0.159; intermediate: 0.322/0.321; and late: 0.239/0.235); mean absolute error (early: 0.132/0.128; intermediate: 0.254/0.251; and late: 0.191/0.188); and systematic error (early: 0.045/0.055; intermediate: -0.211/-0.214; and late: 0.161/0.160), compared to the multiple endmember spectral mixture analysis (MESMA). This study highlights the importance of SWIR in differentiating successional stages in TDFs. The proposed MCSMA provides a more flexible and generalized means for the best-fit model determination

  4. Improved compensation of liquid water spectral effects in the DOAS analysis (410-500 nm)

    NASA Astrophysics Data System (ADS)

    Peters, Enno; Wittrock, Folkard; Richter, Andreas; Burrows, John P.

    2014-05-01

    It is well known that spectral effects of liquid water are present in DOAS measurements above the ocean. Usually, the effects of surface reflectance are successfully compensated by a broadband polynomial. In addition, the absorption of liquid water and Vibrational Raman Scattering (VRS) in the water body can be considered in the DOAS fit by including the respective (literature) cross-sections. Here, ship-based MAX-DOAS measurements collected during the TransBrom campaign across the Western Pacific in October 2009 are presented. For these observations, the telescope of the instrument was pointing directly into very clear natural sea-water. These measurements were performed in a way minimizing atmospheric contributions to the resulting optical depth while at the same time maximizing the liquid water influence. Average light paths of up to 50 m under water were achieved. Systematic structures were found to remain in DOAS fit residuals in the visible wavelength range even if liquid water spectral effects are included in the fit. It can therefore be concluded that currently available cross-sections compensate liquid water effects only insufficiently in DOAS applications. Thus, empirical correction spectra for uncertainties of currently available liquid water absorption and VRS cross-sections were determined from the MAX-DOAS measurements. The influence of the retrieved correction spectra on fit quality and NO2 slant columns is estimated in MAX-DOAS measurements, both towards the water surface and at small elevation angles above the horizon.

  5. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  6. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  7. Thickness Optimization for Petroleum Coke in Microwave Dehydrating Based on the Analysis of Dynamic Absorption Efficiency

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobiao; Chen, Junruo; Peng, Jinhui; Chen, Hua; Zhang, Weifeng; Guo, Shenghui; Chen, Guo

    2015-07-01

    An analytical approach is proposed to optimize the thickness of petroleum coke for achieving maximum microwave power absorption in microwave heating based on analysis of reflection loss (RL). The microwave RL of the petroleum coke layer was studied over the moisture content range of 1%-5% at 20 °C and the petroleum coke (10% moisture content) in the temperature range of 20 to 100 °C at 2.45 GHz. The results show that RL depends sensitively on the thickness of the petroleum coke and the absorption peak shifts towards a larger thickness as the moisture content of the petroleum coke increases. There exists a matching thickness corresponding to the maximum microwave absorption, the maximum absorbing peak decreases when the thickness of petroleum coke exceeds the matching thickness. We also show that the absorption peak is found to move towards a smaller thickness region with increasing petroleum coke temperature.

  8. Non Destructive Defect Detection by Spectral Density Analysis

    PubMed Central

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can’t produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD). PMID:22163742

  9. Spectral variability of plagioclase-mafic mixtures (3): Quantitative analysis applying the MGM algorithm

    NASA Astrophysics Data System (ADS)

    Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria

    2015-07-01

    Among the techniques to detect planet's mineralogical composition remote sensing, visible and near-infrared (VNIR) reflectance spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine (OL) or pyroxene (PX). Although OL, PX and their mixtures have been widely studied, plagioclase (PL), considered a spectroscopically transparent mineral, has been poorly analyzed. In this work we quantitatively investigate the influence of plagioclase absorption band on the absorption bands of Fe, Mg minerals using the Modified Gaussian Model - MGM (Sunshine, J.M. et al. [1990]. J. Geophys. Res. 95, 6955-6966). We consider three plagioclase compositions of varying FeO wt.% contents and five mafic end-members (1) 56% orthopyroxene and 44% clinopyroxene, (2) 28% olivine and 72% orthopyroxene, (3) 30% orthopyroxene and 70% olivine, (4) 100% olivine and (5) 100% orthopyroxene, at two different particle sizes. The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). In particular, we show the variation of the plagioclase and composite (plagioclase-olivine) band spectral parameters versus the volumetric iron content related to the plagioclase abundance in mixtures. Generally, increasing the vol. FeO% due to the PL: (1) 1250 nm band deepens with linear trend in mixtures with pyroxenes, while it decreases in mixtures with olivine, with trend shifting from parabolic to linear increasing the olivine content in end-member; (2) 1250 nm band center moves towards longer wavelengths with linear trend in pyroxene-rich mixtures and parabolic trend in olivine-rich mixtures; and (3) 1250 nm band clearly widens with linear trend in olivine-free mixtures, while the widening is only slight in olivine-rich mixtures. We also outline how spectral parameters can be ambiguous leading to an

  10. Stochastic analysis of spectral broadening by a free turbulent shear layer

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Preisser, J. S.

    1981-01-01

    The effect of the time-varying shear layer between a harmonic acoustic source and an observer on the frequency content of the observed sound is considered. Experimental data show that the spectral content of the acoustic signal is considerably broadened upon passing through such a shear layer. Theoretical analysis is presented which shows that such spectral broadening is entirely consistent with amplitude modulation of the acoustic signal by the time-varying shear layer. Thus, no actual frequency shift need be hypothesized to explain the spectral phenomenon. Experimental tests were conducted at 2, 4, and 6 kHz and at free jet flow velocities of 10, 20, and 30 m/s. Analysis of acoustic pressure time histories obtained from these tests confirms the above conclusion, at least for the low Mach numbers considered.

  11. Graph spectral analysis of protein interaction network evolution.

    PubMed

    Thorne, Thomas; Stumpf, Michael P H

    2012-10-01

    We present an analysis of protein interaction network data via the comparison of models of network evolution to the observed data. We take a bayesian approach and perform posterior density estimation using an approximate bayesian computation with sequential Monte Carlo method. Our approach allows us to perform model selection over a selection of potential network growth models. The methodology we apply uses a distance defined in terms of graph spectra which captures the network data more naturally than previously used summary statistics such as the degree distribution. Furthermore, we include the effects of sampling into the analysis, to properly correct for the incompleteness of existing datasets, and have analysed the performance of our method under various degrees of sampling. We consider a number of models focusing not only on the biologically relevant class of duplication models, but also including models of scale-free network growth that have previously been claimed to describe such data. We find a preference for a duplication-divergence with linear preferential attachment model in the majority of the interaction datasets considered. We also illustrate how our method can be used to perform multi-model inference of network parameters to estimate properties of the full network from sampled data. PMID:22552917

  12. Spectral saliency via automatic adaptive amplitude spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  13. Evaluating spectral indices and spectral mixture analysis for assessing fire severity and adjusting burning efficiency using Landsat data

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Hook, S.

    2012-04-01

    Fire severity data are of paramount importance to (i) organize post-fire rehabilitation plans and (ii) reduce uncertainties in wildfire emission estimates by allowing spatio-temporal variability in burning efficiency values. We have used a Landsat Thematic Mapper (TM) image to assess fire severity of the large 2011 Wallow fire in Arizona, USA. The Normalized Burn Ratio (NBR), differenced NBR (dNBR), Relative dNBR (RdNBR) and the char fraction estimated by Spectral Mixture Analysis (SMA) were evaluated. Geo Composite Burn Index (GeoCBI) and vegetation mortality data were used as ground truth. Of all remotely sensed measures tested the dNBR had the highest performance (GeoCBI-dNBR R2 = 0.84 and % black trees-dNBR R2 = 0.91), which supports the operational use of the dNBR for post-fire management. Without initial calibration with field data, however, dNBR values lack biophysical meaning. The SMA-derived char fraction also had moderate-high correlations with the field data (GeoCBI-char fraction R2 = 0.66 and % black trees-char fraction R2 = 0.82). The char fractions provide a direct mechanistic link with the fire processes that occurred on the ground. Such data have big potential to adjust burning efficiency values. This is of great importance to reduce uncertainties in wildfire emission estimates.

  14. Imagination in harmony with science: Spectral analysis as a practical pedagogic tool in the voice studio

    NASA Astrophysics Data System (ADS)

    Rundus, Katharin Elaine

    Traditionally, voice teachers have relied on intuition and imagination to impart technical information to their students. Spectral analysis, generated on a personal computer, is now available, affordable and accessible to the twenty-first century voice teacher. These programs provide several acoustical functions using frequency, intensity and time to provide technical information about the human singing voice. This paper advocates the use of this technology as a supplemental and supporting strategy in addition to the traditional pedagogic modes of metaphor and intuition. To begin, the paper examines the acoustical principles that reflect beautiful singing and are necessary to an understanding of spectral analysis. Several figures are used that graphically explain the source-filter theory of vowels and how it is affected by the constant manipulation of a closed-open tube like the human vocal tract. Nine functions of Real Analysis (a spectral analysis program in real time manufactured by Tiger DRS, Inc.) are then examined and explained in relation to the singing voice. The paper goes on to outline a systematic vocal pedagogy in eight parts that can be used in harmony with spectral analysis, portrayed in an octagonal spiral figure. In the fourth chapter, this systematic vocal pedagogy is then integrated with spectral analysis to suggest a holistic and artistic method to use this technology. In a table format, several singing behaviors are identified, both negative and positive; training solutions using Real Analysis functions are outlined for each behavior. The paper concludes by pointing out that this technology is valuable because it teaches teachers about their own voice in a scientific manner and allows them to share this quantifiable information with their students. Furthermore, twenty-first century students are accepting of and eager for new technologies as they learn about their voices. This new technology does not change the traditional goals of voice training

  15. SearchLight: a freely available web-based quantitative spectral analysis tool (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prabhat, Prashant; Peet, Michael; Erdogan, Turan

    2016-03-01

    In order to design a fluorescence experiment, typically the spectra of a fluorophore and of a filter set are overlaid on a single graph and the spectral overlap is evaluated intuitively. However, in a typical fluorescence imaging system the fluorophores and optical filters are not the only wavelength dependent variables - even the excitation light sources have been changing. For example, LED Light Engines may have a significantly different spectral response compared to the traditional metal-halide lamps. Therefore, for a more accurate assessment of fluorophore-to-filter-set compatibility, all sources of spectral variation should be taken into account simultaneously. Additionally, intuitive or qualitative evaluation of many spectra does not necessarily provide a realistic assessment of the system performance. "SearchLight" is a freely available web-based spectral plotting and analysis tool that can be used to address the need for accurate, quantitative spectral evaluation of fluorescence measurement systems. This tool is available at: http://searchlight.semrock.com/. Based on a detailed mathematical framework [1], SearchLight calculates signal, noise, and signal-to-noise ratio for multiple combinations of fluorophores, filter sets, light sources and detectors. SearchLight allows for qualitative and quantitative evaluation of the compatibility of filter sets with fluorophores, analysis of bleed-through, identification of optimized spectral edge locations for a set of filters under specific experimental conditions, and guidance regarding labeling protocols in multiplexing imaging assays. Entire SearchLight sessions can be shared with colleagues and collaborators and saved for future reference. [1] Anderson, N., Prabhat, P. and Erdogan, T., Spectral Modeling in Fluorescence Microscopy, http://www.semrock.com (2010).

  16. SVD + factor rotation : a powerful alternative to PCA in spectral image analysis.

    SciTech Connect

    Keenan, Michael Robert

    2008-10-01

    Factor analysis has proven an effective approach for distilling high dimensional spectral-image data into a limited number of components that describe the spatial and spectral characteristics of the imaged sample. Principal Component Analysis (PCA) is the most commonly used factor analysis tool; however, PCA constrains both the spectral and abundance factors to be orthogonal, and forces the components to serially maximize the variance that each accounts for. Neither constraint has any basis in physical reality; thus, principal components are abstract and not easily interpreted. The mathematical properties of PCA scores and loadings also differ subtly, which has implications for how they can be used in abstract factor 'rotation' procedures such as Varimax. The Singular Value Decomposition (SVD) is a mathematical technique that is frequently used to compute PCA. In this talk, we will argue that SVD itself provides a more flexible framework for spectral image analysis since spatial-domain and spectral-domain singular vectors are treated in a symmetrical fashion. We will also show that applying an abstract rotation in our choice of either the spatial or spectral domain relaxes the orthogonality requirement in the complementary domain. For instance, samples are often approximately orthogonal in a spatial sense, that is, they consist of relatively discrete chemical phases. In such cases, rotating the singular vectors in a way designed to maximize the simplicity of the spatial representation yields physically acceptable and readily interpretable estimates of the pure-component spectra. This talk will demonstrate that this approach can achieve excellent results for difficult-to-analyze data sets obtained by a variety of spectroscopic imaging techniques.

  17. Spectral analysis of walking improvement utilizing AR modeling.

    PubMed

    Tsuruoka, Masako; Tsuruoka, Yuriko

    2008-01-01

    This study analyzes the walking improvement based on 1/f fluctuations and impulse responses utilizing Auto-Regressive (AR) modeling. Once subjects were aware of the correct posture, the fluctuation of subject's both sides of the hip while walking was improved more rhythmic. The analysis of impulse response utilizing AR modeling provided clear results for the evaluation of improvement to walking stability. After the subjects understood their own walking condition, based on 1/f fluctuation, and had received suitable rehabilitation and shoes, their walking stability improved satisfactorily. This study provides a useful method of medical evaluation in rehabilitation and physical fitness, and a means for subjects to maintain a state of well being. PMID:19163860

  18. A spectral analysis of the earth's angular momentum budget

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Dickey, J. O.; Callahan, P. S.

    1985-01-01

    The exchange of angular momentum between the solid earth and the atmosphere from January 1976 through March 1982 is investigated using estimates of the earth's rotation from optical astrometry and lunar laser ranging and meteorological estimates of the atmospheric angular momentum M(atm). The physics of the earth's angular momentum budget is described, and earth rotation measurements are related to changes in the angular momentum of the fluid parts of the earth. The availability and reliability of earth rotation and M(atm) data are reported, and the possibility of estimating the exchange of angular momentum with the oceans and with the core is examined. Estimates of the power spectrum, cospectral coherence, and linear transfer functions and an analysis of the unmodeled part of the angular momentum budget are presented and discussed. The amplitude and phase of the semiannual, monthly, and fortnightly tidal variations in the length of day are estimated after removing observed atmospheric excitation.

  19. Examining Interindividual Differences in Cyclicity of Pleasant and Unpleasant Affects Using Spectral Analysis and Item Response Modeling

    ERIC Educational Resources Information Center

    Ram, Nilam; Chow, Sy-Miin; Bowles, Ryan P.; Wang, Lijuan; Grimm, Kevin; Fujita, Frank; Nesselroade, John R.

    2005-01-01

    Weekly cycles in emotion were examined by combining item response modeling and spectral analysis approaches in an analysis of 179 college students' reports of daily emotions experienced over 7 weeks. We addressed the measurement of emotion using an item response model. Spectral analysis and multilevel sinusoidal models were used to identify…

  20. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    SciTech Connect

    Stamatikos, Michael; Sakamoto, Takanori; Band, David L.

    2008-05-22

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E{sub peak}) values, for a conservative annual estimate of {approx}30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the {approx}20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.