Science.gov

Sample records for absorption spectral characteristics

  1. Spectral absorption characteristics of the major components of dust clouds.

    PubMed

    Flanigan, D F; Delong, H P

    1971-01-01

    It is well known that dust clouds selectively absorb radiation in the 700-1300 cm(-1) atmospheric window region. Studies have shown that dust clouds are composed of the same minerals as surface soils, although in different proportion. We have examined seventy soil samples from a number of locations around the world to determine their compositions and spectral characteristics. The results indicate that there are five major components which selectively absorb radiation in the 700-1300 cm(-1) region. These are three clay minerals, silica, and calcium carbonate. Absorptivity coefficient spectra of representative soil samples are given.

  2. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  3. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. PMID:26617032

  4. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors.

  5. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light.

  6. SPECTRAL RELATIVE ABSORPTION DIFFERENCE METHOD

    SciTech Connect

    Salaymeh, S.

    2010-06-17

    When analyzing field data, the uncertainty in the background continuum emission produces the majority of error in the final gamma-source analysis. The background emission typically dominates an observed spectrum in terms of counts and is highly variable spatially and temporally. The majority of the spectral shape of the background continuum is produced by combinations of cosmic rays, {sup 40}K, {sup 235}U, and {sup 220}Rn, and the continuum is similar in shape to the 15%-20% level for most field observations. However, the goal of spectroscopy analysis is to pick up subtle peaks (<%5) upon this large background. Because the continuum is falling off as energy increases, peak detection algorithms must first define the background surrounding the peak. This definition is difficult when the range of background shapes is considered. The full spectral template matching algorithms are heavily weighted to solving for the background continuum as it produces significant counts over much of the energy range. The most appropriate background mitigation technique is to take a separate background observation without the source of interest. But, it is frequently not possible to record a background observation in the exact location before (or after) a source has been detected. Thus, one uses approximate backgrounds that rely on spatially nearby locations or similar environments. Since the error in many field observations is dominated by the background, a technique that is less sensitive to the background would be quite beneficial. We report the result of an initial investigation into a novel observation scheme for gamma-emission detection in high background environments. Employing low resolution, NaI, detectors, we examine the different between the direct emission and the 'spectral-shadow' that the gamma emission produces when passed through a thin absorber. For this detection scheme to be competitive, it is required to count and analyze individual gamma-events. We describe the

  7. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  8. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-04-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The

  9. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  10. Probability and shape of the spectral line of a single bulk characteristic energy loss of a fast electron in a medium with electron absorption and strong spatial dispersion

    SciTech Connect

    Libenson, B. N.

    2011-10-15

    The probability of single characteristic energy loss of a fast electron in a reflection experiment has been calculated. Unlike many works concerning this subject, the bremsstrahlung of bulk plasmons in the non- Cherenkov ranges of frequencies and wavevectors of a plasmon has been taken into account. The contributions to the probability of single loss and to the shape of the spectral line from a quantum correction that is due to the interference of elastic and inelastic electron scattering events have been determined. The probability has been calculated in the kinetic approximation for the relative permittivity, where the short-wavelength range of the plasmon spectrum is correctly taken into account. In view of these circumstances, the expression for the mean free path of the electron with respect to the emission of a bulk plasmon that was obtained by Pines [D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1963)] has been refined. The coherence length of the fast electron in the medium-energy range under consideration has been estimated. The shape of the spectral line of energy losses in the non-Cherenkov frequency range has been determined. It has been shown that the probability of the single emission of the bulk plasmon incompletely corresponds to the Poisson statistics.

  11. Spectral absorption and backscatter measurements of suspended particles

    SciTech Connect

    Wouts, R.; Warnock, R.; Baker, S.; Kromkamp, J.

    1997-06-01

    Three different methods for determining light attenuation by suspended particles under laboratory conditions are compared. One method, a direct application of Gershun`s equation, by measuring scalar irradiance and the gradient of the net-vector irradiance, allows one to determine the spectral absorption by the particles. Another method, measuring radiance attenuation in an isotropic light field, measures the sum of absorption and backscatter by the particles. The difference gives an estimate for the backscatter. The results were compared with an estimate based on an adaptation of the filterpad method that measures absorption by particles. We found that the filterpad measurements depend heavily on the filter load and the scattering characteristics of the particles involved. Increasing backscatter makes the measurements less reliable. It is argued that the filterpad method should not be used to obtain sea truth data for remote sensing measurements in coastal areas. These measurements were performed in a laboratory scale enclosure (volume 250 liters) on samples of natural silt and/or algal cultures grown in the tank. In our laboratory setup we have put special emphasis on measuring inherent optical properties of natural ({open_quotes}Wester Scheldt{close_quotes} estuary, The Netherlands) silt. Together with available (non-spectral) measurements of the volume scattering function of silt, this information can be used to test models for radiative transfer.

  12. Spectral Characteristics of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.

    2014-11-01

    Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of

  13. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  14. Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    1995-01-01

    Spectral calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) as data are acquired in flight is essential to quantitative analysis of the measured upwelling spectral radiance. In each spectrum measured by AVIRIS in flight, there are numerous atmospheric gas absorption bands that drive this requirement for accurate spectral calibration. If the surface and atmospheric properties are measured independently, these atmospheric absorption bands may be used to deduce the in-flight spectral calibration of an imaging spectrometer. Both the surface and atmospheric characteristics were measured for a calibration target during an in-flight calibration experiment held at Lunar Lake, Nevada on April 5, 1994. This paper uses upwelling spectral radiance predicted for the calibration target with the MODTRAN radiative transfer code to validate the spectral calibration of AVIRIS in flight.

  15. Liquid optical phantoms mimicking spectral characteristics of laboratory mouse biotissues

    NASA Astrophysics Data System (ADS)

    Loginova, D. A.; Sergeeva, E. A.; Krainov, A. D.; Agrba, P. D.; Kirillin, M. Yu

    2016-06-01

    Optical phantoms mimicking optical properties of real biotissues in the visible and IR spectral regions are developed based on measurements of the spectral characteristics of ex vivo samples of laboratory mouse biotissues. The phantoms are composed of aqueous solutions of Lipofundin, Indian ink and red ink with different spectral characteristics. The deviations of the measured absorption and scattering coefficients of phantoms in the wavelength range 480 – 580 nm from the corresponding values for real biotissues do not exceed 25% and 2%, respectively. For phantoms in the wavelength region 580 – 880 nm, the deviations of the absorption coefficient do not exceed 40% and the deviations of the scattering coefficient do not exceed 25%. These values, in general, fall within the range of variations for different individual mice of one strain.

  16. Spectral characteristics of Shuttle glow

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Mende, S. B.; Murad, E.; Swenson, G. R.; Pike, C. P.; Culbertson, F. L.; Springer, R. C.

    1992-01-01

    The glowing cloud near the ram surfaces of the Space Shuttle was observed with a hand-held, intensified spectrograph operated by the astronauts from the aft-flight-deck of the Space Shuttle. The spectral measurements were made between 400 and 800 nm with a resolution of 3 nm. Analysis of the spectral response of the instrument and the transmission of the Shuttle window was performed on orbit using earth-airglow OH Meinel bands. This analysis resulted in a correction of the Shuttle glow intensity in the spectral region between 700 and 800 nm. The data presented in this report is in better agreement with laboratory measurements of the NO2 continuum.

  17. Soil classification basing on the spectral characteristics of topsoil samples

    NASA Astrophysics Data System (ADS)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  18. Spectral and spectral-polarization characteristics of potato leaves

    NASA Astrophysics Data System (ADS)

    Belyaev, B. I.; Belyaev, Yu. V.; Chumakov, A. V.; Nekrasov, V. P.; Shuplyak, V. I.

    2000-07-01

    The results of laboratory investigations of the spectral and spectral-polarization characteristics of radiation reflected from the leaves of potato (Solanum tuberosum) of different varieties are discussed. During the vegetation season of 1997, the angular dependence of the degree and azimuth of polarization of radiation reflected from potato leaves as well as the scattering indicatrices in the range 380 1080 nm were determined by a specially developed method with the use of a laboratory goniometric setup. The relationship between the spectral polarization characteristics of radiation and biological parameters of the potato has been obtained with the help of different methods of statistical analysis and explained on the basis of the known physical mechanisms.

  19. O2 on ganymede: Spectral characteristics and plasma formation mechanisms

    USGS Publications Warehouse

    Calvin, W.M.; Johnson, R.E.; Spencer, J.R.

    1996-01-01

    Weak absorption features in the visible reflectance spectrum of Jupiter's satellite Ganymede have been correlated to those observed in the spectrum of molecular oxygen. We examine the spectral characteristics of these absorption features in all phases of O2 and conclude that the molecular oxygen is most likely present at densities similar to the liquid or solid ??-phase. The contribution of O2 to spectral features observed on Ganymede in the near-infrared wavelength region affects the previous estimates of photon pathlength in ice. The concentration of the visible absorption features on the trailing hemisphere of Ganymede suggests an origin due to bombardment by magneto-spheric ions. We derive an approximate O2 formation rate from this mechanism and consider the state of O2 within the surface.

  20. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  1. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  2. A wide spectral range photoacoustic aerosol absorption spectrometer.

    PubMed

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-01

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter. PMID:23035870

  3. A wide spectral range photoacoustic aerosol absorption spectrometer.

    PubMed

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-01

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter.

  4. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application. PMID:27228784

  5. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application.

  6. [Analysis of typical mangrove spectral reflectance characteristics].

    PubMed

    Yu, Xiang; Zhang, Feng-Shou; Liu, Qing; Li, De-Yi; Zhao, Dong-Zhi

    2013-02-01

    Acquisition of mangrove spectrum properties and detecting the sensitive bands provide technology basis for inverse modeling and estimation by remote sensing for various indexes of mangrove. The typical mangroves of Guangxi Shankou Mangrove Reserve were taken for study objects, the standard spectrum curves of Bruguiera gymnorrhiza (Linn.) Savigny, Rhizophora stylosa, Kandelia candel, Avicennia marina, Aegiceras corniculatum, Spartina anglica and mudflat were gained by denoising analysis of field-measured spectrum curves acquired by ASD FieldSpec 2. Analyzing the spectral characteristics and their differences, the authors found that the spectrum curves for various kinds of mangrove are coincident, the bands that appeared with reflection peaks and reflection valleys are basically identical, the within-class differentiated characteristics are comparatively small, the spectrum characteristics of mangroves are obviously different with Spartina anglica and mudflat. In order to gain the quantitative description for within-class differentiated characteristics of mangrove, space distance method, correlation coefficient method and spectral angle mapping method were used to calculate the within-class differentiated characteristics. The division accuracy of correlation coefficient method is higher than spectral angle mapping method which is higher than space distance method, and the result indicates that the spectrum differences of within-class mangrove and Spartina anglica are relatively small with correlation coefficients more than 0.995, and spectrum curve angle cosine values more than 0.95.

  7. Spectral calibration of hyperspectral imagery using atmospheric absorption features.

    PubMed

    Guanter, Luis; Richter, Rudolf; Moreno, José

    2006-04-01

    One of the initial steps in the preprocessing of remote sensing data is the atmospheric correction of the at-sensor radiance images, i.e., radiances recorded at the sensor aperture. Apart from the accuracy in the estimation of the concentrations of the main atmospheric species, the retrieved surface reflectance is also influenced by the spectral calibration of the sensor, especially in those wavelengths mostly affected by gaseous absorptions. In particular, errors in the surface reflectance appear when a systematic shift in the nominal channel positions occurs. A method to assess the spectral calibration of hyperspectral imaging spectrometers from the acquired imagery is presented in this paper. The fundamental basis of the method is the calculation of the value of the spectral shift that minimizes the error in the estimates of surface reflectance. This is performed by an optimization procedure that minimizes the deviation between a surface reflectance spectrum and a smoothed one resulting from the application of a low-pass filter. A sensitivity analysis was performed using synthetic data generated with the MODTRAN4 radiative transfer code for several values of the spectral shift and the water vapor column content. The error detected in the retrieval is less than +/- 0.2 nm for spectral shifts smaller than 2 nm, and less than +/- 1.0 nm for extreme spectral shifts of 5 nm. A low sensitivity to uncertainties in the estimation of water vapor content was found, which reinforces the robustness of the algorithm. The method was successfully applied to data acquired by different hyperspectral sensors. PMID:16608005

  8. Spectral characteristics and nonlinear studies of crystal violet dye.

    PubMed

    Sukumaran, V Sindhu; Ramalingam, A

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  9. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  10. Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment

    NASA Astrophysics Data System (ADS)

    Baszanowska, E.; Otremba, Z.

    2014-08-01

    To protect the natural marine ecosystem, it is necessary to continuously enhance knowledge of environmental contamination, including oil pollution. Therefore, to properly track the qualitative and quantitative changes in the natural components of seawater, a description of the essential spectral features describing petroleum products is necessary. This study characterises two optically-different types of crude oils (Petrobaltic and Romashkino) - substances belonging to multi-fluorophoric systems. To obtain the spectral features of crude oils, the excitation-emission spectroscopy technique was applied. The fluorescence and light absorption properties for various concentrations of oils at a stabilised temperature are described. Both excitation-emission spectra (EEMs) and absorption spectra of crude oils are discussed. Based on the EEM spectra, both excitation end emission peaks for the wavelengthindependent fluorescence maximum (Exmax/ Emmax) - characteristic points for each type of oil - were identified and compared with the literature data concerning typical marine chemical structures.

  11. Retrieval of absorptive gas columnar amounts using atmospheric hyper-spectral irradiance measurements within visible spectrum

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Zhengqiang; Li, Donghui; Xie, Yisong; Li, Kaitao; Qie, Lili; Zhang, Ying; Chen, Xingfeng; Zheng, Xiaobin; Li, Xin; Zhang, Yanna

    2015-10-01

    A hyper spectral ground-based instrument named Atmosphere-Surface Radiation Automatic Instrument (ASRAI) has been developed for the purpose of in-situ calibration of satellites. The apparatus has both upward and downward looking views, and thus can observe both the atmosphere and land surface. The solar transmitted irradiance can be derived from the measured full spectral irradiance and diffused spectral irradiance of atmosphere within visible spectrum (0.4-1.0μm). A method similar to that of King et al. which originally intended to apply to multi-wavelength measurements, is adopted to determine absorptive gaseous columnar amount from hyper spectrum. The solar irradiance at top of atmosphere and absorption coefficients of water vapor (H2O), ozone (O3), oxygen (O2) and nitrogen dioxide (NO2) are recalculated at an instrumental spectral resolution by convolution method. Based on the gaseous characteristics of absorption, the total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength of 0.934μm and 0.763μm respectively. The total columnar amounts of ozone and nitrogen dioxide, together with aerosol optical depth, are determined by a nonlinear least distance fitting method which minimizes a χ2 statistic to obtain optimal solutions. ASRAI was deployed for observation in Dunhuang site in China in August of 2014. Our results demonstrate that the algorithm is reasonable. Although the validation is preliminary, the hyper spectrum measured by ASRAI exhibits good ability to retrieve the abundance of absorptive gases and aerosols.

  12. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3.

    PubMed

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  13. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  14. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  15. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  16. Origins of optical absorption characteristics of Cu(2+) complexes in aqueous solutions.

    PubMed

    Qiu, S Roger; Wood, Brandon C; Ehrmann, Paul R; Demos, Stavros G; Miller, Philip E; Schaffers, Kathleen I; Suratwala, Tayyab I; Brow, Richard K

    2015-07-15

    Many transition metal complexes exhibit infrared or visible optical absorption arising from d-d transitions that are the key to functionality in technological applications and biological processes. The observed spectral characteristics of the absorption spectra depend on several underlying physical parameters whose relative contributions are still not fully understood. Although conventional arguments based on ligand-field theory can be invoked to rationalize the peak absorption energy, they cannot describe the detailed features of the observed spectral profile such as the spectral width and shape, or unexpected correlations between the oscillator strength and absorption peak position. Here, we combine experimental observations with first-principles simulations to investigate origins of the absorption spectral profile in model systems of aqueous Cu(2+) ions with Cl(-), Br(-), NO2(-) and CH3CO2(-) ligands. The ligand identity and concentration, fine structure in the electronic d-orbitals of Cu(2+), complex geometry, and solvation environment are all found to play key roles in determining the spectral profile. Moreover, similar physiochemical origins of these factors lead to interesting and unexpected correlations in spectral features. The results provide important insights into the underlying mechanisms of the observed spectral features and offer a framework for advancing the ability of theoretical models to predict and interpret the behavior of such systems. PMID:26059193

  17. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  18. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2015-04-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~ 1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 µm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.

  19. Spectral and Luminescent Characteristics of a Hexaphenyltetraazachlorin Zinc Complex

    NASA Astrophysics Data System (ADS)

    Belkov, M. V.; Makarov, E. A.; Pershukevich, P. P.; Solovyov, K. N.

    2015-05-01

    In continuation of previous studies on the photophysics of phenyl-substituted tetraazachlorins, we determined the spectral and luminescent characteristics of a tetramethylhexaphenyltetraazachlorin zinc complex at 293 and 77 K. Absorption, fluorescence, and fluorescence excitation spectra; the fluorescence quantum yield and lifetime; and the quantum yield for singlet oxygen generation were measured at room temperature. Fluorescence, fluorescence excitation, and fluorescence polarization spectra were measured at liquid nitrogen temperature. Fluorescence spectra indicated that the zinc complex rearranged in the excited electronic state S1 at both temperatures. A high quantum yield for singlet oxygen generation (0.91) was obtained for a toluene solution. Zn-tetramethylhexaphenyl tetraazachlorin was proposed as a photosensitizer for photodynamic therapy because the long-wavelength band at 707 nm was located in the transparent region of biological tissues.

  20. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  1. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  2. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  3. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  4. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  5. [Decomposing total suspended particle absorption based on the spectral correlation relationship].

    PubMed

    Wang, Gui-Fen; Cao, Wen-Xi; Yang, Ding-Tian; Zhao, Jun

    2009-01-01

    A model for estimating the contributions of phytoplankton and nonalgal particles to the total particulate absorption coefficient was developed based on their separate spectral relationships, and a constrained nonlinear optimization code was used to realize the spectral decomposition. The spectral absorption of total particulate matter including phytoplankton and nonalgal particles was measured using the filter-pad method during two cruises in autumn in Northern South China Sea. Using the dataset collected in 2004, the spectral relationships of particle absorption coefficients were examined and the results showed that the phytoplankton absorption coefficients at various wavebands could be well expressed by aph (443) as the second-order quadratic equations; and the nonalgal particle absorption (aNAP(lambda)) could be successfully modeled with the simple exponential function. Based on these spectral relationships, we developed this partition model. The model was tested using the independently measured absorption by phytoplankton and nonalgal materials which were obtained in 2005 from the same area. The test results showed that the computed spectral absorption coefficients of phytoplankton and nonalgal particles were consistent with in situ measurement. Good correlations were fo und between the comput ed phytoplankton absorption coefficient and the measured value,with the determination coefficients (r2) being higher than 0.97 and slopes being around 1.0; and the RMSE values could be controlled within 17% over the main absorption wavebands such as 443, 490 and 683 nm. Compared with the other two existing models from Bricaud et al. and Oubelkheir et al., this method shows many advantages for local applications. Moreover, this model does not need any information about pigment concentrations and the selected spectral bands are consistent with the ocean color satellite sensor. This method could also be used in the total absorption coefficient decomposition which provides

  6. Spectral properties of microwave graphs with local absorption.

    PubMed

    Allgaier, Markus; Gehler, Stefan; Barkhofen, Sonja; Stöckmann, H-J; Kuhl, Ulrich

    2014-02-01

    The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50Ω load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.

  7. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles.

    PubMed

    Ma, Ji; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    Spectral absorption index was proposed to extract the morphological features of the spectral curves in pork meat samples (longissimus dorsi) under the conditions including fresh, frozen-thawed, heated-dehydrated and brined-dehydrated. Savitzky-Golay (SG) smoothing and multiplicative scatter correction (MSC) were used for calibrating both the spectral reflectance and absorbance values. The absorption values were better than the reflectance values and the calibrated spectra by MSC were better than the raw and SG smoothing corrected spectra in building moisture content predictive models. The optimized partial least square regression (PLSR) model attained good results with the MSC calibrated spectral absorption values based on the spectral absorption index features (R(2)P=0.952, RMSEP=1.396) and the optimal wavelengths selected by regression coefficients (R(2)P=0.966, RMSEP=0.855), respectively. The models proved spectral absorption index was promising in spectral analysis to predict moisture content in pork samples using HSI techniques for the first time.

  8. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    NASA Technical Reports Server (NTRS)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  9. Structural and Spectral Characteristics of Amorphous Iron Sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E.; Jensen, H. B.; Rogers, D.; Reeder, R. J.

    2014-12-01

    Substantial evidence points to the existence of hydrated sulfate phases on the Martian surface1-3. In addition, the discovery of recurring slope lineae could point to an active brine hydrologic cycle on the surface4,5. The rapid dehydration of both hydrated sulfates and sulfate-rich brines can lead to the formation of amorphous sulfates. Evidence suggests that the Rocknest soil target and the Sheepbed mudstone interrogated by the Mars Science Laboratory at Gale crater contain ~30 wt.% XRD amorphous material that is rich in both sulfur and iron6. These factors have led us to consider hydrated amorphous iron sulfates as possible components in Martian surface materials. Amorphous iron sulfates were created through multiple synthesis routes, and then characterized with total x-ray scattering, TGA, SEM, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3•~5-8H2O) from sulfate-saturated fluids via two pathways: vacuum dehydration and exposure to low relative humidity (<11%) using a LiCl buffer. Amorphous ferrous sulfate (Fe(II)SO4•~1H2O) was synthesized via vacuum dehydration of melanterite (Fe(II) SO4•7H2O). We find that both the ferric and ferrous sulfates synthesized from these methods lack long-range (>10Å) order, and thus are truly amorphous. VNIR and TIR spectral data for the amorphous sulfates display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from all crystalline phase spectra available for comparison. The amorphous sulfates should be distinguishable based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, which is the spectral range that has primarily been used to detect sulfates on Mars, the bands associated with hydration at ~1.4 and 1.9 μm are significantly

  10. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  11. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  12. Comparison between different spectral models of the diffuse attenuation and absorption coefficients of seawater

    NASA Astrophysics Data System (ADS)

    Kopelevich, Oleg V.; Filippov, Yuri V.

    1994-10-01

    The goal of this work is to verify different spectral models of the diffuse attenuation and absorption coefficients of sea water and to work out a recommendation for their use. It is shown that the spectral models of the diffuse attenuation coefficient Kd((lambda) ) developed by Austin, Petzold, 1984 and by Volynsky, Sud'bin, 1992 correspond with each other, as well the models of Ivanov, Shemshura, 1973 and of Kopelevich, Shemshura, 1988 for calculation of the spectral absorption coefficient a((lambda) ) on the values of Kd((lambda) ). Theoretical foundation of the relation between a((lambda) ) and Kd((lambda) ) is given. The up-to-date physical model of the sea water light absorption is considered and checked by means of comparison with measured values of the attenuation coefficient at the ultraviolet and visible spectral ranges.

  13. Mixing state and spectral absorption of atmospheric aerosols observed at a marine background site

    NASA Astrophysics Data System (ADS)

    Cayetano, M. G.; Lee, K. Y.; Kim, Y. J.

    2011-12-01

    Mineral dust and sea salt particles are portions of atmospheric aerosols in Korea due to the periodic transport of loess dust particles from Gobi and Taklimakan deserts in west China, as well as the sea salt enrichment of atmospheric particles from the seas surrounding the Korean peninsula [Kim et al., 2009; Sahu et al., 2009]. Carbonaceous particles and secondary inorganic aerosols (sulphates and nitrates) are ubiquitous due to the proliferating biomass burning [Ryu et al., 2004], as well as the increasing use of fossil fuels locally and by regional transport from neighbouring countries. Collectively, when these aerosols are transported, their compositions are further modified due to the aging process, impacting their physico-chemical properties including spectral absorption. In order to investigate the spectral response of the absorption under different ambient aerosol conditions, measurements have been conducted at a marine background site in Korea (Deokjeok Island. 37° 13' 33" N, 126° 8' 51" E) during the spring (13 days) and fall (8 days) seasons of 2009 using an aethalometer (Magee AE31), a nephelometer (Optec NGN2a) and other supporting instruments (PILS-IC, PM2.5 cyclone samplers for off-line OC/EC measurements). It has been found that spring aerosols were dominated by sulphate-rich and carbonaceous-rich fractions (21.4%±8.0% and 28.8%±7.9%, respectively), with an Angström exponent of absorption, αabs = 1.3±0.1 at 370-950 nm. The fall season aerosols were grouped based on their chemical composition as acidic aerosols, dust-enriched, and seasalt-enriched aerosols. Angström exponent of absorption, αabs for acidic aerosols was obtained to be 1.3±0.2 at 370-950 nm. However, dust enriched aerosols showed increased absorption in the short UV-Vis range (370-590 nm), which can be attributed to their mixing with light absorbing aerosols. Different types of aerosols exhibit different spectral absorption characteristics depending on their composition and

  14. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite

    NASA Astrophysics Data System (ADS)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Frost, Ray L.; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals.

  15. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite.

    PubMed

    Reddy, S Lakshmi; Fayazuddin, Md; Frost, Ray L; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals. PMID:17324611

  16. CO2 laser light absorption characteristics of metal powders

    NASA Astrophysics Data System (ADS)

    Haag, M.; Hügel, H.; Albright, C. E.; Ramasamy, S.

    1996-04-01

    Absorption characteristics of metal powders for 10.6 μm CO2 laser radiation were examined. Using a calorimetric method, absorptance measurements were performed on four different powder materials, including aluminum, copper, iron, and titanium aluminide. The experimental results showed that laser absorptance depends on powder porosity and material. The measured absorptance values at low laser intensities ranged between 28% and 43%. The titanium aluminide powders showed the highest absorptance values, and aluminum powders the lowest. As laser intensity was increased, the copper and iron powders showed strong signs of oxidation when irradiated in air, resulting in an increase in absorptance. Neither oxidation nor increased absorptance were observed when helium or argon were used as shielding gas.

  17. Spectral characteristic analysis of lung cancer serum

    NASA Astrophysics Data System (ADS)

    Li, Xiao Zhou; Jin, Huiqiang; Liu, Huasheng; Ding, Jianhua; Lin, Junxiu

    2001-10-01

    Spectral changes of lung cancer serum in the process of tumor evolution were investigated in this study. We kept close watch on the tumor progression of a group of patients, and measured their serum spectra using 488.0nm and 514.5nm excitation of an Ar-ion laser once a week. There was no apparent change observed in fluorescence spectrum in different period. However, the relative intensity of three Raman peaks (mode A, B and C) decreased every week later. For quantitative analysis of such changes, a parameter Ir (relative intensity of C Raman peak) was introduced and Ir-value was calculated. Calculation showed that Ir-value was degressive with tumor evolution, but (beta) (Ir5145 /Ir4880) varied irregularly. To the end, no Raman peak was observed. We assumed that three Raman peaks were derived from beta carotene. It indicated that the content of beta carotene decreased with the aggravation of lung cancer.

  18. Scintillation detectors in gamma spectral logging; geometry, absorption and calibration

    USGS Publications Warehouse

    Schimschal, Ulrich

    1980-01-01

    The theory for the evaluation of the effects of geometry in gamma ray absorption is developed for cylindrical scintillation detectors as applicable to borehole gamma spectrometry. The results of a laboratory experiment are shown for comparison. A calibration procedure to determine detector efficiency is given for application to borehole probes. It is shown that the response of a crystal can be separated in terms of geometric effects and instrumentation effects. It is also shown that approximating crystal detectors with point detectors in mathematical theory is grossly oversimplified. (USGS)

  19. Spectral variation of scattering and absorption by cirrus

    NASA Technical Reports Server (NTRS)

    Hein, Paul F.; Davis, John M.; Cox, Stephen K.

    1993-01-01

    The impact of cirrus clouds on the radiative budget of the earth depends on the microphysics and scattering properties of the clouds. Cirrus clouds have been especially difficult to observe because of their high altitude and complex tenuous structure. Observations by Abakumova et. al. (1991) show that the near infrared wavelengths are more sensitive to the cirrus cloud properties than the shorter ultraviolet wavelengths. Anikin (1991) was able to show that collimated spectral measurements can be used to determine an effective particle size of the cirrus clouds. Anikin (1991) also showed that the effect of scattering through cloud causes the apparent optical depth of a 10 degrees field of view pyrheliometer to be roughly half the actual optical depth. Stackhouse and Stephens (1991) have shown that the existence of small ice crystals do dramatically affect the radiative properties of the cirrus, though observations taken during the 1986 FIRE were not totally explained by their presence.

  20. Absorption and fluorescent spectral studies of imidazophenazine derivatives.

    PubMed

    Ryazanova, O A; Zozulya, V N; Voloshin, I M; Karachevtsev, V A; Makitruk, V L; Stepanian, S G

    2004-07-01

    Absorption and fluorescent spectra as well as fluorescence polarization degree of imidazo-[4,5-d]-phenazine (F1) and its two modified derivatives, 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F2) and 1,2,3-triazole-[4,5-d]-phenazine (F3), were investigated in organic solvents of various polarities and hydrogen bonding abilities. Extinction coefficients of F2 and F3 are increased, their fluorescence Stokes shifts are reduced in comparison with those for unmodified imidazophenazine. For F3 a red shift of the longwave absorption band is observed by 15-20 nm. Modifications of imidazophenazine have led to a sufficient increase of fluorescence polarization degrees that enables to use F2 and F3 as promising fluorescent probes with polarization method application. The configuration, atomic charge distribution and dipole moments of the isolated dye molecules in the ground state were calculated by the DFT method. The computation has revealed that ground state dipole moments of F1, F2, and F3 differ slightly and are equal to 3.5, 3.2, and 3.7D, respectively. The changes in dipole moments upon the optical excitation for all derivatives estimated using Lippert equation were found to be Deltamu = 9 D. The energies of the electronic S1<--S0 transition in solvents of different proton donor abilities were determined, and energetic diagram illustrating the substituent effect was plotted. For nucleoside analogs of these compounds, covalently incorporated into a nucleotide chain, we have considered a possibility to use them as fluorescent reporters of hybridization of antisense oligonucleotides, as well as molecular anchors for its stabilization. PMID:15248979

  1. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles.

    PubMed

    Wang, Shaohua; Tao, Chao; Yang, Yiqun; Wang, Xueding; Liu, Xiaojun

    2015-07-01

    Photoacoustic imaging is an emerging technique which inherits the merits of optical imaging and ultrasonic imaging. However, classical photoacoustic imaging mainly makes use of the time-domain parameters of signals. In contrast to previous studies, we theoretically investigate the spectral characteristics of the photoacoustic signal from stochastic distributed particles. The spectral slope is extracted and used for describing the spectral characteristics of the photoacoustic signal. Both Gaussian and spherical distributions of optical absorption in particles are considered. For both situations, the spectral slope is monotonically decreased with the increase of particle size. In addition, the quantitative relationship between the spectral slope and the imaging system factors, including the laser pulse envelope, directivity of ultrasound transducer, and signal bandwidth, are theoretically analyzed. Finally, an idealized phantom experiment is performed to validate the analyses and examine the instrument independent of the spectral slope. This work provides a theoretical framework and new experimental evidence for spectrum analysis of the photoacoustic signal. This could be helpful for quantitative tissue evaluation and imaging based on the spectral parameters of the photoacoustic signal.

  2. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  3. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    PubMed

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific

  4. Dynamics of CO(2) laser pulse filamentation in air influenced by spectrally selective molecular absorption.

    PubMed

    Geints, Yuri E; Zemlyanov, Alexander A

    2014-09-01

    The theoretical aspects of self-focusing and filamentation of high-power pulsed CO(2) laser radiation with carrier wavelength 10.6 μm in air are considered. The spectrally selective molecular absorption of realistic atmospheric air is included in the theoretical model. In the conditions of strong pulse self-phase modulation and pulse spectral broadening, the supercontinual radiation spectrum is substantially influenced by the selective atmospheric absorption that destabilizes the filamentation process and results in considerable shortening of the filamentation length. PMID:25321358

  5. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  6. Spectral characteristics of europium-doped lead iodide

    NASA Astrophysics Data System (ADS)

    Novosad, I. S.; Novosad, S. S.

    2013-05-01

    Optical absorption and x-ray luminescence spectra and thermally stimulated luminescence curves of a PbI2:EuCl3 crystal grown by the Stockbarger method were investigated in the temperature range 85-295 K. It was presumed based on results of EPR spectral studies that the europium ions in this material existed in the divalent state and replaced matrix cations. An intense broad non-elementary band at 780 nm in addition to a weak band with a maximum in the range 512-520 nm were observed in the PbI2:Eu2+ x-ray luminescence spectrum at 85 K. The intensity of the long-wavelength emission increased slightly upon increasing the crystal temperature from 85 to 130 K and was quenched in several stages upon increasing the temperature further to 220 K. The maximum shifted to 740 nm. It was proposed based on an analysis of the obtained data and results of a study of the luminescence properties of PbI2 and PbI2:Mn2+ crystals that the non-elementary emission band of the PbI2:Eu2+ crystal at 780 nm could be represented as a superposition of three individual Gaussian bands with maxima near 715, 740, and 800 nm that were due to centers characteristic of the matrix and additional centers that were formed by Eu ions through association with intrinsic and dopant oxygen-containing defects, respectively. Doping PbI2 with Eu2+ ions did not affect the spectrum of matrix trapping levels. The nature of emission and trapping centers and luminescence excitation mechanisms of PbI2:Eu2+ were discussed.

  7. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    PubMed

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  8. [Research on the spectral characteristics of grassland in arid regions based on hyperspectral image].

    PubMed

    Zhang, Chun-mei; Zhang, Jian-ming

    2012-02-01

    The grassland spectrum was got from Hyperion images of Shiyang River Basin using PPI, after FLAASH atmosphere correction, to understand the spectral characteristics quantitatively. The results show that red edge moves left, slope reduced, blue and yellow edge feature is abated, reflectance is higher in visible bands, and lower near-infrared bands when grassland is at decline stage relative to the spectrum characteristics of grassland at well growth. The red edge, green peaks, absorption valley location of blue and red light keep consistent for different coverage grassland, and spectrum absorption characteristics (band depth, width, area, symmetry) in visual bands change regularly as coverage increases, so it can be a basis for extraction or judgment of vegetation coverage. PMID:22512187

  9. [Research on the spectral characteristics of grassland in arid regions based on hyperspectral image].

    PubMed

    Zhang, Chun-mei; Zhang, Jian-ming

    2012-02-01

    The grassland spectrum was got from Hyperion images of Shiyang River Basin using PPI, after FLAASH atmosphere correction, to understand the spectral characteristics quantitatively. The results show that red edge moves left, slope reduced, blue and yellow edge feature is abated, reflectance is higher in visible bands, and lower near-infrared bands when grassland is at decline stage relative to the spectrum characteristics of grassland at well growth. The red edge, green peaks, absorption valley location of blue and red light keep consistent for different coverage grassland, and spectrum absorption characteristics (band depth, width, area, symmetry) in visual bands change regularly as coverage increases, so it can be a basis for extraction or judgment of vegetation coverage.

  10. Spectral characteristics analysis of red tide water in mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Cui, Tingwei; Zhang, Jie; Zhang, Hongliang; Ma, Yi; Gao, Xuemin

    2003-05-01

    Mesocosm ecosystem experiment with seawater enclosed of the red tide was carried out from July to September 2001. We got four species of biology whose quantities of bion are dominant in the red tide. During the whole process from the beginning to their dying out for every specie, in situ spectral measurements were carried out. After data processing, characteristic spectra of red tide of different dominant species are got. Via comparison and analysis of characteristics of different spectra, we find that in the band region between 685 and 735 nanometers, spectral characteristics of red tide is apparently different from that of normal water. Compared to spectra of normal water, spectra of red tide have a strong reflectance peak in the above band region. As to spectra of red tide dominated by different species, the situations of reflectance peaks are also different: the second peak of Mesodinium rubrum spectrum lies between 726~732 nm, which is more than 21nm away from the other dominant species spectra"s Leptocylindrus danicus"s second spectral peak covers 686~694nm; that of Skeletonema costatum lies between 691~693 nm. Chattonella marina"s second spectral peak lies about 703~705 nm. Thus we can try to determine whether red tide has occurred according to its spectral data. In order to monitor the event of red tide and identify the dominant species by the application of the technology of hyperspectral remote sensing, acquiring spectral data of different dominant species of red tide as much as possible becomes a basic work to be achieved for spectral matching, information extraction and so on based on hyperspectral data.

  11. [Study of red tide spectral characteristics and its mechanism].

    PubMed

    Cui, Ting-Wei; Zhang, Jie; Ma, Yi; Sun, Ling

    2006-05-01

    In situ spectral data of different red tide, whose dominant species are leptocylindrus danicus, chattonella marina, skeletonema costatum, and mesodinium rubrum, were acquired by above water method utilizing spectrometer manufactured by FieldSpec Dual VNIR (USA). It is emphasized that the characteristic reflectance peak lying between 687 and 728 nm can be used to distinguish between red tide and normal sea water. Also the spectral discrepancy between different dominant species of red tide is pointed out, which could be utilized to identify certain red tide species by remote sensing technique. Mechanisms of phytoplankton red tide spectra peaks and vales are given. Spectral characteristics of mesodinium rubrum, a kind of protozoan, may be related to its symbiotic alga in its body and phytoplankton pigment crumb. So, research on ingestion preference, symbiotic property with algae, and fluorescence emission character of such symbiotic algae under normal temperature may be helpful for the deep understanding of mechanism of mesodinium rubrum spectra.

  12. Study on backscattering spectral polarization characteristics of turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Wang, Qinghua; Lai, Jiancheng; Li, Zhenhua

    2015-10-01

    Noninvasive monitoring of blood glucose is the current international academic research focus. Near-infrared (NIR) spectroscopy is the most prospective method of the present study, however, with the flaw of insufficient specificity to glucose. Tissue polarimetry has recently received considerable attention due to its specificity to glucose. Thus the glucose predicting accuracy would be improved by combining spectral intensity and polarization characteristics. However the backscattering spectral polarization characteristics of turbid media have not been reported within the wavelength range from visible to near-infrared light. In this paper, we simulated the backscattering spectral Mueller matrix of turbid medium by vector Monte Carlo. And the polarization characteristics, which are linear/circular degree of polarization (DOP) and linear/circular diattenuation, can be extracted from the simulated Mueller matrix by polar decomposition. Circular diattenuation is not discussed because it remains almost zero on the backscattering plane. While reduced scattering coefficient increases linearly with increasing wavelength, the spectral curves show distinct wavelength dependencies. Interestingly, the wavelength dependencies at center position are different from those at off-center position for linear/circular DOP and linear diattenuation. As expected, it is shown that both linear DOP and linear diattenuation increase with the increasing wavelength. However it is not the case for linear DOP in the central area around the incident point. In this area linear DOP decays approximately exponentially with increasing wavelength. As for circular DOP, it varies with wavelength non-monotonically. These results should be meaningful when spectral polarization characteristics are used to combine with spectral intensity to extract glucose concentration by chemometrics.

  13. Spectral Constraints on the Internal Characteristics of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Murchie, S. L.; Fraeman, A. A.; Arvidson, R. E.; Rivkin, A.; Choo, T. H.; Humm, D. C.; Morris, R. V.

    2012-12-01

    The origin of the two Martian moons Phobos and Deimos is controversial. Leading hypotheses include capture and accretion in Martian orbit during planet formation or from ejecta from one or more large impact basins. Until landed measurements or returned samples provide definitive evidence, key observational constraints on the moons' composition and origin will be derived from remote spectral measurements and bulk density. The highest spatial resolution spectral measurements were acquired in 2007 by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO). CRISM data cover the spectral range 0.4-3.9 μm at 6.55 nm/channel, and sample the surface of Phobos at 350 m/pixel and Deimos at 1.4 km/pixel. Other key constraints also come from the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) spectrometer and radio science investigation Mars Express, the Thermal Emission Spectrometer on Mars Global Surveyor, Viking Orbiter imaging, and several investigations on Phobos 2. Both moons have red-sloped, smooth spectra lacking strong mineralogic absorptions, with reflectances at 0.55 microns (corrected to i=30, e=0, and g=30 degrees) near 0.03. Two distinct materials are identified. The "bluer unit" excavated by Phobos' large crater Stickney is brighter at visible wavelengths, and has a lesser spectral slope than does the areally dominant "redder unit". The "bluer unit" is only observed on Phobos and may represent large parts of the moon's interior. The "redder unit" exhibits a weak absorption near 0.65 microns consistent with the presence of graphite or phyllosilicate. The "redder unit" dominates Deimos and is exposed in craters that excavate shallower depths on Phobos than Stickney does. Neither unit exhibits spectral signatures of molecular water, hydroxyl, organics, or mafic minerals. These properties are inconsistent with even the most space-weathered mafic mineral assemblages that may originate from

  14. Spectral reflectance and radiance characteristics of water pollutants

    NASA Technical Reports Server (NTRS)

    Wezernak, C. T.; Turner, R. E.; Lyzenga, D. R.

    1976-01-01

    Spectral reflectance characteristics of water pollutants and water bodies were compiled using the existing literature. Radiance calculations were performed at satellite altitude for selected illumination angles and atmospheric conditions. The work described in this report was limited to the reflective portion of the spectrum between 0.40 micrometer to 1.0 micrometer.

  15. Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method.

    PubMed

    Niu, Jun; Luo, Ma; Zhu, Jinfeng; Liu, Qing Huo

    2015-02-23

    Graphene's relatively poor absorption is an essential obstacle for designing graphene-based photonic devices with satisfying photo-responsivity. To enhance the tunable light absorption of graphene, appropriate excitation of localized surface plasmon resonance is considered as a promising approach. In this work, the strategy of incorporating periodic cuboid gold nanoparticle (NP) cluster arrays and cylindrical gold NP arrays with Bragg reflectors into graphene-based photodetectors are theoretically studied by the boundary-integral spectral element method (BI-SEM). With the BI-SEM, the models can be numerically analyzed with excellent accuracy and efficiency. Numerical simulation shows that the proposed structures can effectively engineer the light absorption in graphene by tuning plasmon resonance. In the spectra of 300 nm to 1000 nm, a maximum light absorption of 67.54% is observed for the graphene layer with optimal parameters of the photodetector model.

  16. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  17. Spectral characteristics of ventricular response to atrial fibrillation.

    PubMed

    Hayano, J; Yamasaki, F; Sakata, S; Okada, A; Mukai, S; Fujinami, T

    1997-12-01

    To investigate the spectral characteristics of the fluctuation in ventricular response during atrial fibrillation (AF), R-R interval time series obtained from ambulatory electrocardiograms were analyzed in 45 patients with chronic AF and in 30 age-matched healthy subjects with normal sinus rhythm (SR). Although the 24-h R-R interval spectrum during SR showed a 1/f noise-like downsloping linear pattern when plotted as log power against log frequency, the spectrum during AF showed an angular shape with a breakpoint at a frequency of 0.005 +/- 0.002 Hz, by which the spectrum was separated into long-term and short-term components with different spectral characteristics. The short-term component showed a white noise-like flat spectrum with a spectral exponent (absolute value of the regression slope) of 0.05 +/- 0.08 and an intercept at 10(-2) Hz of 4.9 +/- 0.3 log(ms2/Hz). The long-term component had a 1/f noise-like spectrum with a spectral exponent of 1.26 +/- 0.40 and an intercept at 10(-4) Hz of 7.0 +/- 0.3 log(ms2/Hz), which did not differ significantly from those for the spectrum during SR in the same frequency range [spectral exponent, 1.36 +/- 0.06; intercept at 10(-4) Hz, 7.1 +/- 0.3 log(ms2/Hz)]. The R-R intervals during AF may be a sequence of uncorrelated values over the short term (within several minutes). Over the longer term, however, the R-R interval fluctuation shows the long-range negative correlation suggestive of underlying regulatory processes, and spectral characteristics indistinguishable from those for SR suggest that the long-term fluctuations during AF and SR may originate from similar dynamics of the cardiovascular regulatory systems. PMID:9435618

  18. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  19. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  20. [Mineralogical and spectral characteristics of "Gaozhou stone" from Jiangxi Province].

    PubMed

    Yuan, Ye; Shi, Guang-hai; Lou, Fa-sheng; Wu, Shi-jin; Shi, Miao; Huang, An-jie

    2015-01-01

    The seal stone is a kind of artwork with historical and cultural characteristics of China, which has been playing an important role in Chinese traditional culture. "Gaozhou stone", a new kind of the seal stone, has been found in the market recently. To investigate the mineralogical and spectral characterastics of "Gaozhou stone", samples were studied by using XRF, XRD, FTIR, SEM and DTA. Measurements by XRD reveal that kaolin minerals (kaolinite, dickite), pyrophyllite and minor sericite and illite occur in the ores. When kaolinite and dickite are associated, it is not easy to differentiate them from each other. Although some reflections overlap others, kaolin polytypes can be differentiated by XRD patterns in the range 18°-40° (2θ), the reflections at 0. 395, 0. 379, 0. 343, 0. 326, 0. 294, 0. 280, 0. 232 and 0. 221 nm are diagnostic of dickite. The XRD results indicate the presence of transitional mineral of kaolinite and dickite in these samples. The main chemical components of "Gaozhou stone" are SiO2 and Al2O3 with minor Fe2O3, K2O and Na2O, corresponding with that of kaolin minerals. The OH groups in kaolin group minerals have attracted considerable attention as a sensitive indicator of structural disorder. In principle, dickite has three bands, whereas kaolinite has four bands at the OH-stretching region. According to the results of FTIR, transitional mineral of kaolinite and dickite in "Gaozhou stone" has 3 absorption bands of 3 670, 3 650 and 3 620 cm-1 in high frequency region. The intensity of 3 670 cm-1 band that belongs to outer layer hydroxyl vibration is approximately equal to the intensity of 3 620 cm band ascribing to inner layer OH vibration. This value will only have subtle changes due to the different component ratio of kaolinite and dickite layers. Micro-morphology viewed by SEM presents irregular platy or pseudo-hexagonal platy particles with an average diameter of 0. 5-4 µm of "Gaozhou stone". Such morphologies are quite similar to other

  1. [Study on spectral reflectance characteristics of hemp canopies].

    PubMed

    Tian, Yi-Chen; Jia, Kun; Wu, Bing-Fang; Li, Qiang-Zi

    2010-12-01

    Hemp (Cannabis sativa L.) is a special economic crop and widely used in many field. It is significative for the government to master the information about planting acreage and spatial distribution of hemp for hemp industrial policy decision in China. Remote sensing offers a potential way of monitoring large area for the cultivation of hemp. However, very little study on the spectral properties of hemp is available in the scientific literature. In the present study, the spectral reflectance characteristics of hemp canopy were systematically analyzed based on the spectral data acquired with ASD FieldSpec portable spectrometer. The wavebands and its spectral resolution for discriminating hemp from other plants were identified using difference analysis. The major differences in canopy reflectance of hemp and other plants were observed near 530, 552, 734, 992, 1 213, 1 580 and 2 199 nm, and the maximal difference is near 734 nm. The spectral resolution should be 30 nm or less in visible and near infrared regions, and 50 nm or less in middle infrared regions.

  2. Effect of differential spectral reflectance on DIAL measurements using topographic targets. [Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1982-01-01

    Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance.

  3. Spectral and Instantaneous Flow Characteristics of Vascular Anastomoses.

    NASA Astrophysics Data System (ADS)

    Einav, Shmuel; Grad, Ygael

    1997-11-01

    A large percentage of patient implanted vascular bypass grafts fail early post- implantation. Biofluid factors as abnormal shear stresses and turbulence have been cited to promote graft failure. Previous studies were based on mean flow properties, while the pulsating flow field is affected by instantaneous and spectral distribution. Laminar to turbulent transition, flow separation, rotation and waves reflected from host artery leave characteristic spectral signature which escapes detection when only mean data is sampled. Our work was aimed into the time and frequency domain characteristics. Our in-vitro model consists of pulsating pump, transparent distensible graft tubes and variable anastomoses angles. Dimensions were based on in-vivo data. High speed Digital Particle Image Velocimetry (DPIV) was used to map the flow field and obtain the anastomoses spectral signature. High shear stress peaks and vortices were observed at the anastomosis toe. Flow reversal or separation was Womersley parameter dependent. The flow profile and spectra were dependent on graft angle and elasticity. Better host- graft match resulted in less flow disturbances and flatter spectral distribution. This can be translated in Doppler ultrasound or sound frequencies terms and thus potentially assist clinical observations. [DPIV Sample of Vascular Anastomosis]

  4. [Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake].

    PubMed

    Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin

    2010-05-01

    Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.

  5. The modification of spectral characteristics of cytostatics by optical beams

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail Lucian; Brezeanu, Mihail; Carstocea, Benone D.; Voicu, Letitia; Gazdaru, Doina M.; Smarandache, Adriana A.

    2004-10-01

    Besides the biochemical action of methotrexate (MTX) and 5-fluorouracil (FU) their effect in destroying cancer tumours could be enhanced by exposure to light at different doses. Absorption, excitation and emission spectra of 10-4M - 10-5M MTX solutions in natural saline and sodium hydroxide at pH = 8.4 were measured, while their exposure to coherent and uncoherent light in the visible and near ultraviolet (UV) spectral ranges was made (Hg lamps and Nitrogen pulsed laser radiation were used). Absorption spectra exhibit spectral bands in the range 200 nm - 450 nm. The 200 - 450 nm excitation spectra were measured with emission centered on 470 nm; MTX fluorescence excitation was measured at 390 nm and the emission was detected between 400 nm and 600 nm showing a maximum at 470 nm. Spectra modifications, nonlinearly depending on exposure time (varying from 1 min to 20 min), evidenced MTX photo-dissociation to the fluorescent compound 2,4 diamino-formylpteridine. In the 5-FU case the absorption spectra exhibit bands between 200 nm and 450 nm. The emission fluorescence spectra were measured between 400 nm and 600 nm, with λex = 350 nm for UV Hg lamp and with λex = 360 nm for laser irradiated samples; at irradiation with N2 laser emitted radiation the excitation spectra were measured in the range of 200 nm - 400 nm, with λem = 440 nm. New vascularity rapid destruction was observed for conjunctive impregnated with 5-FU solution whilst exposed to incoherent UV and visible light.

  6. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks. PMID:23601731

  7. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  8. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  9. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  10. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  11. [Absorption characteristics of molybdenum by reed and cattail].

    PubMed

    Lian, Jian-Jun; Xu, Shi-Guo; Han, Cheng-Wei

    2011-11-01

    The adsorption characteristics of reed and cattail to molybdenum were studied. The toxicity, removal rate, adsorption process and accumulation of Mo were investigated in the short-term indoor-culture experiment. The effects of Mo adsorbed by two plants in nutrition solution with different concentrations were also studied. Due to the Mo toxicity, the color of stems and leaves of two plants had become scorch and the transpiration was declined. The cattail illustrated higher tolerance to Mo than reed when Mo concentration was in the range of 2-20 mg x L(-1). The removal rate of Mo by cattail was 87%, which was higher than reed (62%) with Mo concentration of 2 mg x L(-1). The absorption process of Mo by two plants was homeostasis, and the passivity absorption was the main absorption mechanism. Mo enrichment amount in cattail was higher than that in reed, and Mo concentration in shoot were higher than that in roots. The results displayed that cattail was Mo hyper accumulator. The absorption of Mo was not enhanced with the increase of nutrition solution concentration, due to the competition of other ions. The study suggested that the absorption capacity of Mo was significant by the two plants, and cattail was better for Mo removal than reed.

  12. Absorption characteristics of vapor transport equilibrated Er:LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Pun, E. Y. B.; Chen, Xiao-Jun; Wang, Yan; Jin, Yue-Han; Zhu, Deng-Song; Wu, Zhong-Kang

    2002-04-01

    The visible and infrared transmission spectra of vapor transport equilibration (VTE) treated Er:LiNbO3 crystals, which have different doping levels (0.2%, 0.4%, and 2.0% Er per cation site), different cut orientation (X and Z cut) and different VTE duration (80, 120, 150, and 180 h), were recorded at room temperature in the wavelength range of 250-3700 nm. All of 2.0 mol % doped VTE crystals have precipitated whether X cut or Z cut, while the others have not. Their absorption characteristics were summarized and discussed in contrast to those of corresponding as-grown crystals. The OH- absorption feature of VTE treated Er:LiNbO3 is found to be different from that of pure VTE LiNbO3 crystal. The significant reduction of OH- absorption band implies that the hydrogen content in the VTE crystals has been reduced substantially whether the crystal precipitates or not. The electron transition absorption characteristics of the lower-doped, not precipitated crystals mainly include the higher transmittance, slight shift of peak or band position, slight absorption intensity change, the appearance of some additional peaks or bands, the narrowing of the peak width (full width at half maximum), and the definite blueshift of the optical absorption edge. The spectral changes are associated with the redistribution of Er3+ spectroscopic sites induced by the VTE procedure. In comparison with those lower-doped VTE crystals, the highly doped VTE crystals display more significant absorption characteristics: the significant enhancement of 1480 nm pumping band and the obvious weakening of 1531 nm peak, the appearance of many additional peaks in the infrared region, and the interesting evolution of the transmittance with the wavelength. These substantial spectral changes are unambiguously conducted with the formation of a precipitate ErNbO4 induced by the VTE treatment in these crystals. The mechanism for the formation of the precipitate has been tentatively explained from the viewpoint of

  13. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    SciTech Connect

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determined and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.

  14. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  15. Differences in spectral absorption properties between active neovascular macular degeneration and mild age related maculopathy.

    PubMed

    Balaskas, Konstantinos; Nourrit, Vincent; Dinsdale, Michelle; Henson, David B; Aslam, Tariq

    2013-05-01

    This study examines the differences in spectral absorption properties between the maculae of patients with active neovascular macular degeneration and those with early age related maculopathy (ARM). Patients attending for management of neovascular age related macular degeneration (AMD) underwent multispectral imaging with a system comprising of a modified digital fundus camera coupled with a 250-W tungsten-halogen lamp and a liquid crystal fast-tuneable filter. Images were obtained at 8 wavelengths between 496 and 700 nm. Aligned images were used to generate a DLA (differential light absorption, a measure of spectral absorption properties) map of the macular area. DLA maps were generated for both eyes of 10 sequential patients attending for anti-vascular endothelial growth factor injections. Each of these patients had active leaking neovascular AMD in one eye and early ARM or milder disease in the fellow eye. Eyes with neovascular AMD demonstrated lower average levels of DLA compared with their fellow eyes with early ARM (p=0.037, t test). The significant difference in DLA demonstrates the potential of multispectral imaging for differentiating the two pathologies non-invasively. PMID:23137662

  16. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-12-10

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  17. Spectral characteristics of lunar impact melts and inferred mineralogy

    NASA Astrophysics Data System (ADS)

    Tompkins, Stefanie; Pieters, Carlé M.

    2010-07-01

    Two suites of lunar impact melt samples have been measured in NASA's Reflectance Experiment Laboratory (RELAB) at Brown University. Suite 1 comprises seven Apollo 17 crystalline impact melt breccias and seven quenched glass equivalents. Suite 2 is made up of 15 additional impact melt samples (from Apollo 12, 15, 16, and 17) which exhibit a range of textures and compositions related to cooling conditions and glass abundance. A few of these samples have cooled slowly and fully crystallized, and thus have the same spectral properties as igneous rocks of similar texture and composition; they cannot be uniquely distinguished without geologic context. However, most of the impact melts and melt breccias contain either quantities of quenched glass and/or have developed microcrystalline nonequilibrium textures with well-defined, diagnostic spectral properties. The microcrystalline textures are associated with a distinctive 600nm absorption feature, apparently due to submicroscopic ilmenite inclusions in a transparent host (typically fine-grained plagioclase). The reflectance properties of these lunar sample suites contribute to and constrain the identification and characterization of impact melts in remote sensing data.

  18. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  19. Mechanical properties and energy absorption characteristics of a polyurethane foam

    SciTech Connect

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  20. Spectral characteristics of VUV radiation emitted by a laser plume

    SciTech Connect

    Khater, Mohamed A.

    2013-12-16

    We study some experimental parameters and conditions of laser-generated plasma plumes using time-integrated, spatially resolved emission spectroscopy in the VUV range. The influences of the laser focusing lens type, laser wavelength, as well as laser pulse energy on the emission characteristics of the laser plasmas are investigated. The aim of the work is to improve the detection capability of the laser-induced plasma spectroscopy (LIPS) technique. The results obtained demonstrate a set of optimum conditions for maximum spectral line intensities and signal-to-background ratios of laser-produced plasmas in the VUV regime.

  1. Determination of the concentration of mineral particles and suspended organic substance based on their spectral absorption

    NASA Astrophysics Data System (ADS)

    Konovalov, B. V.; Kravchishina, M. D.; Belyaev, N. A.; Novigatsky, A. N.

    2014-09-01

    A method to determine the concentrations of the particulate mineral matter ( C PMM) and the particulate organic matter ( C POM) is suggested. The values of C PMM and C POM are calculated from the measurements of the spectral coefficients of the light absorption a POM(440) and a PMM(750) using empirical equations. The latter have been obtained by comparing the concentrations of the suspended solids measured by means of the gravimetric method with the spectral values of the optical density of the suspended matter settled on membrane filters. The data used are typical of the coastal waters of inland and marginal seas and the open ocean and cover the range of three and two orders of magnitude for the concentrations of C PMM and C POM, respectively.

  2. Interaction of some fluorinated nucleic acid components with praseodymium: an absorption spectral approach.

    PubMed

    Misra, S N

    1990-10-01

    Absorption difference and comparative absorption spectrophotometric studies on praseodymium(III) and fluorouracil, fluorocytosine, fluoroadenine, fluorothymine, fluorouridine, fluorocytidine, fluoroadenosine and fluorothymidine systems at pH approximately 5.5 and in different stoichiometries in 80% DMF medium have been carried out. Magnitudes of spectral parameters, viz. Coulombic (Fk), spin-orbit (zeta 4f), nephelauxetic (beta), bonding (b), intensity (T lambda Judd-Ofelt), and oscillator strength (P) and their variation have provided information on the binding mode of these biomolecules in terms of outer and inner sphere complexation, degree of covalency and extent of 4f orbital involvement. Preliminary ultrasonic studies have indicated that these biomolecules behave as structure breakers, hence weak ligands in aqueous medium, while strengthening water structure in semi-nonaqueous medium. The analysis of the isolated solid complexes has suggested octa- and nona-coordination for praseodymium(III) in fluorinated nucleic bases and fluorinated nucleoside complexes.

  3. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol

  4. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  5. The impact absorption characteristics of cricket batting helmets.

    PubMed

    Stretch, R A

    2000-12-01

    To determine whether the helmets currently used by cricket batsmen offer sufficient protection against impacts of a cricket ball, the impact absorption characteristics of six helmets were measured using the drop test at an impact velocity equivalent to a cricket ball with a release speed of 160 km x h(-1) (44.4 m x s(-1)). An accelerometer transducer attached to a 5.0 kg striker was dropped from a height of 3.14 m onto the batting helmets to measure the impact characteristics at the three different impact sites: right temple, forehead and back of the helmet. These data were further expressed as a percentage above (-) or below (+) the recommended safety standard of 300 g. The results indicate that the force absorption characteristics of the helmets showed inter- and intra-helmet variations, with 14 of the 18 impact sites (66.7%) assessed meeting the recommended safety standards. Helmets 1, 2 and 4 succeeded in meeting the safety standards at all impact sites; helmets 5 and 6 both failed at the back and forehead, while helmet 3 failed at all impact sites. These differences were due to the structure and composition of the inner protective layer of the helmets. The helmets that succeeded in meeting the standards were made with a moulded polystyrene insert, a heat-formed ethylene vinyl acetate (EVA) insert, or EVA with a relatively high density that allows a minimal amount of movement of the helmet at ball impact.

  6. Modeling the spectral absorption by CDOM in Meiliang Bay, Taihu Lake

    NASA Astrophysics Data System (ADS)

    Fu, Qinghua; Wang, Shixin; Zhou, Yi; Yan, Fuli; Wang, Jingjing

    2007-06-01

    The interpretation of remotely sensed images of turbid coastal waters or inland lake waters is more difficult than case 1 water, because their optical properties are complex, and their optical constituents are independent of phytoplankton concentrations. In recent years significant efforts have been made to develop ocean color satellite missions with improved spectral and radiometric performance, and in the same time, techniques for constituent retrieval have evolved from empirical towards analytical algorithms. Analytical models can be developed and inverted to yield concentrations (Carder et al. 1999) of substances in the water from reflectance measurements, which require a suitable parameterization of the optically active constituents and their optical properties. This paper focused on absorption by chromophoric dissolved organic matter (CDOM; also Gelbstoff or yellow substances), which was the pool of absorbing substances in water and one of the main optically active constituents in Case 2 waters. The absorption of CDOM is generally considered as the exponential form model, which have three important main parameters, S, a(λ 0), λ 0. The S results got from the exponential form model fit using CDOM normalization absorptions by 350nm, or 400nm, or 440nm absorption were the same, and the final value of S for CDOM in Meiliang Bay, Taihu Lake was 0.0106, namely the mean of S for all samples; Normally, a(λ 0) is simply taken to be the mean of the absorption coefficient of CDOM of field samples in the reference wavelength, however, this study found that a(λ 0) a varied greatly between samples ( λ 0 = 400, 1.93

  7. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    PubMed Central

    Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  8. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase.

    PubMed

    Gennaro, Sylvain D; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V; Maier, Stefan A; Oulton, Rupert F

    2014-04-30

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode's scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences.

  9. Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption

    NASA Astrophysics Data System (ADS)

    Costabile, F.; Barnaba, F.; Angelini, F.; Gobbi, G. P.

    2013-03-01

    Characterizing chemical and physical aerosol properties is important to understand their sources, effects, and feedback mechanisms in the atmosphere. This study proposes a scheme to classify aerosol populations based on their spectral optical properties (absorption and scattering). The scheme is obtained thanks to the outstanding set of information on particle size and composition these properties contain. The spectral variability of the aerosol single scattering albedo (dSSA), and the extinction, scattering and absorption Angstrom exponents (EAE, SAE and AAE, respectively) were observed on the basis of two-year measurements of aerosol optical properties (scattering and absorption coefficients at blue, green and red wavelengths) performed in the suburbs of Rome (Italy). Optical measurements of various aerosol types were coupled to measurements of particle number size distributions and relevant optical properties simulations (Mie theory). These latter allowed the investigation of the role of the particle size and composition in the bulk aerosol properties observed. The combination of simulations and measurements suggested a general "paradigm" built on dSSA, SAE and AAE to optically classify aerosols. The paradigm proved suitable to identify the presence of key aerosol populations, including soot, biomass burning, organics, dust and marine particles. The work highlights that (i) aerosol populations show distinctive combinations of SAE and dSSA times AAE, these variables being linked by a linear inverse relation varying with varying SSA; (ii) fine particles show EAE > 1.5, whilst EAE < 2 is found for both coarse particles and ultrafine soot-rich aerosols; (iii) fine and coarse particles both show SSA > 0.8, whilst ultrafine urban Aitken mode and soot particles show SSA < 0.8. The proposed paradigm agrees with aerosol observations performed during past major field campaigns, this indicating that relations concerning the paradigm have a general validity.

  10. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features.

    PubMed

    Cina, Jeffrey A; Kovac, Philip A; Jumper, Chanelle C; Dean, Jacob C; Scholes, Gregory D

    2016-05-01

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to a simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done. PMID:27155654

  11. Temperature-dependent spectral weight transfer in YBa2Cu3Ox probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, J.-Y.

    2010-03-01

    The x-ray absorption spectroscopy was utilized to critically examine the temperature dependency of the spectral weight in YBa2Cu3Ox. Large excess spectral weight for the Zhang- Rice singlet due to dynamics of holes is found with its doping dependence showing similar doom-like shape as that for Tc. Furthermore, appreciable spectral weight transfer from the upper Hubbard band to Zhang-Rice singlet was observed as the temperature acrosses the onset temperature for the pseudogap. The observed spectral weight transfer follows the change of the pseudogap, indicating a strong link between pseudogap and the upper Hubbard band.

  12. An investigation of spectral characteristics of water-glucose solutions

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2016-04-01

    One of the problems of modern medical device engineering is the development of an instrument for non-invasive monitoring of glucose levels in the blood. The urgency of this task is ensured by the following facts: the increase in the incidence of diabetes, the need for regular monitoring of blood sugar, and pain of modern methods of glycemia measurement. The problem can be solved with the help of a spectrophotometric method. This report is devoted to the investigation of spectral characteristics of glucose solution with various molar concentrations. The authors proposed the methodology of experimental research and data processing algorithm. The results of the experimental studies confirmed potential opportunity of blood sugar control by spectrophotometric method. Further research is expected to continue by the way of complication of the composition of the object from an aqueous solution of glucose to biological object.

  13. [The spectral characteristic wavelength selection and parameter optimization based on Tikhonov regularization].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-07-01

    In the multicomponent mixture hydrocarbon gases Fourier transform infrared (FTIR) quantitative analysis, especially for light alkane gases, it is not easy to establish the quantitative analysis model because their IR spectra absorption peaks are seriously overlapped. Aiming at this problem, the Tikhonov regularization algorithm was used to select the characteristic wavelengths for seven kinds of light alkane mixture gases FTIR which are composed with methane, ethane, propane, iso-butane, n-butane, iso-pentane and n-pentane. And then the wavelength selection was used to establish the quantitative analysis model. By comparing the analysis characteristics wavelength selection and TR parameters optimization of the mixed gases in the infrared all wave band, the first absorption peak band and the second peak band, the characteristic wavelength of 7 kinds of gases were selected by Tikhonov algorithm. The wavelength selection and Tikhonov regularization parameters were used to test the actual measured methane spectral data, and then we got that with other gas components the max cross sensitivity was 11.153 7%, the minimum cross sensitivity was 1.239 7%, and the root mean square prediction error was 0.004 8. The Tikhonov regularization algorithm effectively enhanced the accuracy in the light alkane mixed gas quantitative analysis. The feasibility of alkane gases mixture Fourier transform infrared spectrum wavelength selection was preliminarily verified by using the Tikhonov regularization algorithm. PMID:25269291

  14. Origin of the characteristic X-ray spectral variations of IRAS 13224-3809

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroki; Mizumoto, Misaki; Ebisawa, Ken; Sameshima, Hiroaki

    2016-08-01

    The narrow-line Seyfert 1 galaxy (NLS1) IRAS 13224-3809 is known to exhibit significant X-ray spectral variation, a sharp spectral drop at ˜7 keV, strong soft excess emission, and a hint of an iron L-edge feature, which is very similar to the NLS1 1H 0707-495. We have proposed the "Variable Double Partial Covering (VDPC) model" to explain the energy spectra and spectral variability of 1H 0707-495 (Mizumoto et al. 2014, PASJ, 66, 122). In this model, the observed flux/spectral variations below 10 keV within ˜ a day are primarily caused by change of the partial covering fraction of patchy clouds composed by double absorption layers in the line of sight. In this paper, we apply the VDPC model to IRAS 13224-3809. Consequently, we have found that the VDPC model can explain the observed spectral variations of IRAS 13224-3809 in the 0.5-10 keV band. In particular, we can explain the observed root mean square (RMS) spectra (energy dependence of the fractional flux variation) in the entire 0.5-10 keV band. In addition to the well-known significant drop in the iron K-band, we have found intriguing iron L-peaks in the RMS spectra when the iron L-edge is particularly deep. This feature, which is also found in 1H 0707-495, is naturally explained with the VDPC model, such that the RMS variations increase at the energies where optical depths of the partial absorbers are large. The absorbers have a larger optical depth at the iron L-edge than in the adjacent energy bands, and thus a characteristic iron L-peak appears. On the other hand, just below the iron K-edge, the optical depth is the lowest and the RMS spectrum has a broad dip.

  15. Origin of the characteristic X-ray spectral variations of IRAS 13224-3809

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroki; Mizumoto, Misaki; Ebisawa, Ken; Sameshima, Hiroaki

    2016-10-01

    The narrow-line Seyfert 1 galaxy (NLS1) IRAS 13224-3809 is known to exhibit significant X-ray spectral variation, a sharp spectral drop at ˜7 keV, strong soft excess emission, and a hint of an iron L-edge feature, which is very similar to the NLS1 1H 0707-495. We have proposed the "Variable Double Partial Covering (VDPC) model" to explain the energy spectra and spectral variability of 1H 0707-495 (Mizumoto et al. 2014, PASJ, 66, 122). In this model, the observed flux/spectral variations below 10 keV within ˜ a day are primarily caused by change of the partial covering fraction of patchy clouds composed by double absorption layers in the line of sight. In this paper, we apply the VDPC model to IRAS 13224-3809. Consequently, we have found that the VDPC model can explain the observed spectral variations of IRAS 13224-3809 in the 0.5-10 keV band. In particular, we can explain the observed root mean square (RMS) spectra (energy dependence of the fractional flux variation) in the entire 0.5-10 keV band. In addition to the well-known significant drop in the iron K-band, we have found intriguing iron L-peaks in the RMS spectra when the iron L-edge is particularly deep. This feature, which is also found in 1H 0707-495, is naturally explained with the VDPC model, such that the RMS variations increase at the energies where optical depths of the partial absorbers are large. The absorbers have a larger optical depth at the iron L-edge than in the adjacent energy bands, and thus a characteristic iron L-peak appears. On the other hand, just below the iron K-edge, the optical depth is the lowest and the RMS spectrum has a broad dip.

  16. Remote sensing of forage nutrients: Combining ecological and spectral absorption feature data

    NASA Astrophysics Data System (ADS)

    Knox, Nichola M.; Skidmore, Andrew K.; Prins, Herbert H. T.; Heitkönig, Ignas M. A.; Slotow, Rob; van der Waal, Cornelis; de Boer, William F.

    2012-08-01

    Forage quality in grassland-savanna ecosystems support high biomass of both wild ungulates and domestic livestock. Forage quality is however variable in both space and time. In this study findings from ecological and laboratory studies, focused on assessing forage quality, are combined to evaluate the feasibility of a remote sensing approach for predicting the spatial and temporal variations in forage quality. Spatially available ecological findings (ancillary data), and physically linked spectral data (absorption data) are evaluated in this study and combined to create models which predict forage quality (nitrogen, phosphorus and fibre concentrations) of grasses collected in the Kruger National Park, South Africa, and analysed in both dry and wet seasons. Models were developed using best subsets regression modelling. Ancillary data alone, could predict forage components, with a higher goodness of fit and predictive capability, than absorption data (Ancillary: Radj2=0.42-0.74 compared with absorption: Radj2=0.11-0.51, and lower RMSE values for each nutrient produced by the ancillary models). Plant species and soil classes were found to be ecological variables most frequently included in prediction models of ancillary data. Models in which both ancillary and absorption variables were included, had the highest predictive capabilities ( Radj2=0.49-0.74 and lowest RMSE values) compared to models where data sources were derived from only one of the two groups. This research provides an important step in the process of creating biochemical models for mapping forage nutrients in savanna systems that can be generalised seasonally over large areas.

  17. DFT analysis and spectral characteristics of Celecoxib a potent COX-2 inhibitor

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kannappan, V.; Sathyanarayanamoorthi, V.

    2016-10-01

    Extensive quantum mechanical studies are carried out on Celecoxib (CXB), a new generation drug to understand the vibrational and electronic spectral characteristics of the molecule. The vibrational frequencies of CXB are computed by HF and B3LYP methods with 6-311++G (d, p) basis set. The theoretical scaled vibrational frequencies have been assigned and they agreed satisfactorily with experimental FT-IR and Raman frequencies. The theoretical maximum wavelength of absorption of CXB are calculated in water and ethanol by TD-DFT method and these values are compared with experimentally determined λmax values. The spectral and Natural bonds orbital (NBO) analysis in conjunction with spectral data established the presence of intra molecular interactions such as mesomeric, hyperconjugative and steric effects in CXB. The electron density at various positions and reactivity descriptors of CXB indicate that the compound functions as a nucleophile and establish that aromatic ring system present in the molecule is the site of drug action. Electronic distribution and HOMO - LUMO energy values of CXB are discussed in terms of intra-molecular interactions. Computed values of Mulliken charges and thermodynamic properties of CXB are reported.

  18. Spectral Light Absorption and Scattering by Aerosol Particles in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Holanda, B. A.; Ferreira De Brito, J.; Carbone, S.; Barbosa, H. M.; Rizzo, L. V.; Cirino, G. G.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Martin, S. T.; Holben, B. N.; Schafer, J.

    2015-12-01

    As part of the GoAmazon2014/5, a detailed characterization of spectral light absorption and light scattering was performed at four research sites located in the central Amazon forest at different distances upwind and downwind of Manaus. The sites ATTO (T0a) and Embrapa (T0e) are located upwind of Manaus where it is possible to observe very pristine atmospheric conditions in wet season. The site Tiwa (T2) is being operated under the direct influence of the Manaus plume at 5 km downwind of Manaus and, finally, the Manacapuru (T3) site is located at about 60 km downwind of Manaus. The spectral dependence of light absorption and light scattering were measured using Aethalometers (7-wavelengths) and Nephelometers (3-wavelengths), respectively. By calculating the Absorption Angstrom Exponent (AAE), it was possible to get information about the source of the aerosol whereas the Scattering Angstrom Exponent (SAE) gives information about its size distribution. Sunphotometers from the AERONET network were set up at T3 and T0e sites to measure column Aerosol Optical Depth (AOD). For all the stations, much higher absorption and scattering coefficients were observed during the dry season in comparison to the wet season, as a result of the larger concentration of BC and OC present in the biomass burning events. Additionally, we also observed Manaus plume pollution that alters the BC signal. There is also an increase of the AAE during the dry season due to the larger amount of aerosols from biomass burning compared with urban pollution. High values of AAE are also observed during the wet season, attributed to the presence of long-range transport of aerosols from Africa. The SAE for all the sites are lower during the wet season, with the dominance of large biological particles, and increases during the dry season as a consequence of fine particles emitted from both biomass and fossil fuel burning. The AOD at T0e and T3 (Jan-Jun/2014) showed very similar values ranging from 0.05 to

  19. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  20. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  1. Spectral characteristics of high-latitude raw 40 MHz cosmic noise signals

    NASA Astrophysics Data System (ADS)

    Hall, Chris M.

    2016-08-01

    Cosmic noise at 40 MHz is measured at Ny-Ålesund (79° N, 12° E) using a relative ionospheric opacity meter ("riometer"). A riometer is normally used to determine the degree to which cosmic noise is absorbed by the intervening ionosphere, giving an indication of ionisation of the atmosphere at altitudes lower than generally monitored by other instruments. The usual course is to determine a "quiet-day" variation, this representing the galactic noise signal itself in the absence of absorption; the current signal is then subtracted from this to arrive at absorption expressed in decibels (dB). By a variety of means and assumptions, it is thereafter possible to estimate electron density profiles in the very lowest reaches of the ionosphere. Here however, the entire signal, i.e. including the cosmic noise itself, will be examined and spectral characteristics identified. It will be seen that distinct spectral subranges are evident which can, in turn, be identified with non-Gaussian processes characterised by generalised Hurst exponents, α. Considering all periods greater than 1 h, α ≈ 24, an indication of fractional Brownian motion, whereas for periods greater than 1 day α ≈ 0.9 - approximately pink noise and just in the domain of fractional Gaussian noise. The results are compared with other physical processes, suggesting that absorption of cosmic noise is characterised by a generalised Hurst exponent ≈ 1.24 and thus non-persistent fractional Brownian motion, whereas generation of cosmic noise is characterised by a generalised Hurst exponent ≈ 1. The technique unfortunately did not result in clear physical understanding of the ionospheric phenomena, and thus, in this respect, the application was not successful; the analysis could, however, be used as a tool for instrument validation.

  2. Spectral characteristics of high latitude raw 40 MHz cosmic noise signals

    NASA Astrophysics Data System (ADS)

    Hall, C. M.

    2015-07-01

    Cosmic noise at 40 MHz is measured at Ny-Ålesund (79° N, 12° E) using a relative ionospheric opacity meter ("riometer"). A riometer is normally used to determine the degree to which cosmic noise is absorbed by the intervening ionosphere, giving an indication of ionization of the atmosphere at altitudes lower than generally monitored by other instruments. The usual course is to determine a "quiet-day" variation, this representing the galactic noise signal itself in the absence of absorption; the current signal is then subtracted from this to arrive at absorption expressed in dB. By a variety of means and assumptions, it is thereafter possible to estimate electron density profiles in the very lowest reaches of the ionosphere. Here however, the entire signal, i.e. including the cosmic noise itself will be examined and spectral characteristics identified. It will be seen that distinct spectral subranges are evident which can, in turn be identified with non-Gaussian processes characterized by generalized Hurst exponents, α. Considering all periods greater than 1 h, α ≈ 1.24 - an indication of fractional Brownian motion, whereas for periods greater than 1 day α ≈ 0.9 - approximately pink noise and just in the domain of fractional Gaussian noise. The results are compared with other physical processes suggesting that absorption of cosmic noise is characterized by a generalized Hurst exponent ≈ 1.24 and thus non-persistent fractional Brownian motion, whereas generation of cosmic noise is characterized by a generalized Hurst exponent ≈ 1.

  3. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  4. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation.

    PubMed

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15°C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r=0.82nm, disorder of the system D=1500cm(-1) for H-type and r=1.04nm, D=1800cm(-1) for J-type. PMID:27348046

  5. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.

  6. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  7. Characteristics of north jovian aurora from STIS FUV spectral images

    NASA Astrophysics Data System (ADS)

    Gustin, J.; Grodent, D.; Ray, L. C.; Bonfond, B.; Bunce, E. J.; Nichols, J. D.; Ozak, N.

    2016-04-01

    We analyzed two observations obtained in Jan. 2013, consisting of spatial scans of the jovian north ultraviolet aurora with the HST Space Telescope Imaging Spectrograph (STIS) in the spectroscopic mode. The color ratio (CR) method, which relates the wavelength-dependent absorption of the FUV spectra to the mean energy of the precipitating electrons, allowed us to determine important characteristics of the entire auroral region. The results show that the spatial distribution of the precipitating electron energy is far from uniform. The morning main emission arc is associated with mean energies of around 265 keV, the afternoon main emission (kink region) has energies near 105 keV, while the 'flare' emissions poleward of the main oval are characterized by electrons in the 50-85 keV range. A small scale structure observed in the discontinuity region is related to electrons of 232 keV and the Ganymede footprint shows energies of 157 keV. Interestingly, each specific region shows very similar behavior for the two separate observations. The Io footprint shows a weak but undeniable hydrocarbon absorption, which is not consistent with altitudes of the Io emission profiles (∼900 km relative to the 1 bar level) determined from HST-ACS observations. An upward shift of the hydrocarbon homopause of at least 100 km is required to reconcile the high altitude of the emission and hydrocarbon absorption. The relationship between the energy fluxes and the electron energies has been compared to curves obtained from Knight's theory of field-aligned currents. Assuming a fixed electron temperature of 2.5 keV, an electron source population density of ∼800 m-3 and ∼2400 m-3 is obtained for the morning main emission and kink regions, respectively. Magnetospheric electron densities are lowered for the morning main emission (∼600 m-3) if the relativistic version of Knight's theory is applied. Lyman and Werner H2 emission profiles, resulting from secondary electrons produced by

  8. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2015-06-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances might be the causes of the diversity of water quality parameters in Hulun Buir plateau. CDOM absorption in river waters was significantly lower than terminal waters (p < 0.01). Analysis of ratio of absorption at 250-365 nm (E250 : 365), specific UV absorbance (SUVA254), and spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.

  9. Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2016-02-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances were the likely causes of the diversity of water quality parameters. CDOM absorption in river waters was significantly lower than terminal lakes. Analysis of the ratio of absorption at 250 to 365 nm (E250 : 365), specific ultraviolet (UV) absorbance (SUVA254), and the spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance, and landscape features of the Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC

  10. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2008-01-01

    Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was −2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge. PMID:19081779

  11. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  12. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-11-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  13. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-07-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  14. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.

    PubMed

    Lin, Junfang; Cao, Wenxi; Wang, Guifeng; Hu, Shuibo

    2013-06-20

    Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data. PMID:23842167

  15. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.

    PubMed

    Lin, Junfang; Cao, Wenxi; Wang, Guifeng; Hu, Shuibo

    2013-06-20

    Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data.

  16. Variability, absorption features, and parent body searches in "spectrally featureless" meteorite reflectance spectra: Case study - Tagish Lake

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Craig, M. A.; Applin, D. M.; Sanchez, J. A.; Reddy, V.; Le Corre, L.; Mann, P.; Cloutis, E. A.

    2015-07-01

    Reflectance spectra of many asteroids and other Solar System bodies are commonly reported as "featureless". Here, we show that weak but consistently detectable absorption bands are observable in 200-2500 nm spectra of the Tagish Lake meteorite, a likely compositional and spectral analogue for low-albedo, "spectrally-featureless" asteroids. Tagish Lake presents a rare opportunity to study multiple lithologies within a single meteorite. Reflectance spectra of Tagish Lake display significant variation between different lithologies. The spectral variations are due in part to mineralogical variations between different Tagish Lake lithologies. Ultraviolet reflectance spectra (200-400 nm), few of which have been reported in the literature to date, reveal albedo and spectral ratio variations as a function of mineralogy. Similarly visible-near infrared reflectance spectra reveal variations in albedo, spectral slope, and the presence of weak absorption features that persist across different lithologies and can be attributed to various phases present in Tagish Lake. These observations demonstrate that significant spectral variability may exist between different lithologies of Tagish Lake, which may affect the interpretation of potential source body spectra. It is also important to consider the spectral variability within the meteorite before excluding compositional links between possible parent bodies in the main belt and Tagish Lake. Tagish Lake materials may also be spectral-compositional analogues for materials on the surfaces of other dark asteroids, including some that are targets of upcoming spacecraft missions. Tagish Lake has been proposed as a spectral match for 'ultra-primitive' D or P-type asteroids, and the variability reported here may be reflected in spatially or rotationally-resolved spectra of possible Tagish Lake parent bodies and source objects in the Near-Earth Asteroid population. A search for objects with spectra similar to Tagish Lake has been carried

  17. Characteristics of active spectral sensor for plant sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant stress has been estimated by spectral signature using both passive and active sensors. As optical sensors measure reflected light from a target, changes in illumination conditions critically affect sensor response. Active spectral sensors minimize the illumination effects by producing their ...

  18. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting

    USGS Publications Warehouse

    Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).

  19. A high spectral resolution VLA search for H I absorption towards A496, A1795, and A2584

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Gallimore, Jack F.; Baum, Stefi A.

    1995-01-01

    In this paper, we present the results of a Very Large Array (VLA) search for H I absorption with high spectral resolution (1.6 km/s) towards A496, A1795, A2584, and A2597. These observations are well matched to the properties of cold, optically thick H I clouds, where the line width is given by the width of an individual cloud rather than the dispersion in an ensemble of clouds. We do not detect any H I absorption with narrow linewidths in these clusters. Our limits mainly apply to clouds which are larger than a few tenths parsec-i.e., if the clouds are much smaller than the background radio source and have a low covering factor in velocity space, they could still escape detection. The estimated limits on column density (for clouds in this regime of parameter space) are 2-3 orders of magnitude less than the 10(exp 21)/sq cm required to explain the x-ray absorption seen in some cooling flow clusters. The combination of our high spectral resolution H I absorption searches with the existing lower spectral resolution H I absorption searches and the searches for H I emission makes it unlikely that atomic hydrogen is the dominant component of the cold x-ray absorbing gas in the inter-cloud medium (ICM).

  20. [Research on spectral reflectance characteristics for Glycyrrhizae Radix].

    PubMed

    Li, Hui; Xie, Cai-Xiang; Li, Xiao-Jin; Wen, Mei-Jia; Jia, Guang-Lin; Shi, Ming-Hui; Guo, Bao-Lin; Jia, Xiao-Guang

    2014-02-01

    In order to study the spectral reflectance differences of Glycyrrhizae Radix under different growth conditions and lay the foundation for quantitative monitoring of Glycyrrhizae Radix remote sensing images, spectra of Glycyrrhiza species under different growth period and different varieties and different regions were measured by a portable spectrometer. The results showed that the reflectivity of annual G. uralensis was obviously higher than that of the two years plant in the visible light band own to the contents of crown layer chlorophyll. The reflectivity of two years G. pallidiflora was higher than that of G. uralensis in the near infrared band own to the leaf area index and the content of leaf water. The red edge spectrum of annual plant fluctuated largely than that of two years plant due to vegetation coverage and leaf area index. G. pallidiflora grew well than G. uralensis. Under different regions of the Glycyrrhiza species, spectral data analysis showed that within a certain range, the average annual precipitation and average annual evaporation were the major factors to affect the differences of Glycyrrhiza species spectral data under different regions owe to the leaf water content, the higher leaf water content, the lower spectral reflectance. The principal component analysis and continuum-removed method of the spectral data under different regions found that, within a certain range, the average annual precipitation and average annual evaporation were the major factors caused by the differences of Glycyrrhiza species spectral data under the different regions, Glycyrrhiza species spectral similarity related to the spatial distance. PMID:24946542

  1. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  2. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  3. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  4. Zinc glycine chelate absorption characteristics in Sprague Dawley rat.

    PubMed

    Yue, M; Fang, S L; Zhuo, Z; Li, D D; Feng, J

    2015-06-01

    This study was conducted to investigate absorption characteristics of zinc glycine chelate (Zn-Gly) by evaluating tissues zinc status and the expression of zinc transporters in rats. A total of 24 male rats were randomly allocated to three treatments and administered either saline or 35 mg Zn/kg body weight from zinc sulphate (ZnSO4 ) or Zn-Gly by feeding tube separately. Four rats per group were slaughtered and tissues were collected at 2 and 6 h after gavage respectively. Our data showed that Zn-Gly did more effectively in increasing (p < 0.05) serum zinc levels, and the activities of serum and liver alkaline phosphatase (ALP) and liver Cu/Zn superoxide dismutase (Cu/Zn SOD) at 2 and 6 h. By 2 h after the zinc load, the mRNA and protein abundance of intestinal metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) were higher (p < 0.05), and zinc transporter SLC39A4 (Zip4) lower (p < 0.05) in ZnSO4 compared to other groups. Zinc transporter SLC39A5 (Zip5) mRNA expression was not zinc responsive, but Zip5 protein abundance was remarkably (p < 0.05) increased in ZnSO4 2 h later. Overall, our results indicated that in short-term periods, Zn-Gly was more effective in improving body zinc status than ZnSO4 , and ZnSO4 did more efficiently on the regulation of zinc transporters in small intestine.

  5. Recovery of x-ray absorption spectral profile in etched TiO{sub 2} thin films

    SciTech Connect

    Sano, Keiji; Niibe, Masahito; Kawakami, Retsuo; Nakano, Yoshitaka

    2015-05-15

    Near edge x-ray absorption fine structure (NEXAFS) spectra of plasma-etched TiO{sub 2} thin films were observed using the total fluorescence yield method involving visible emission. The disrupted spectrum recovered its as-grown (nonetched) profile, upon soft x-ray (SX) irradiation. This recovery was investigated by ultraviolet (UV) irradiation, spatial distribution measurements, exposing recovered samples to air, and NEXAFS measurements of ultrafine TiO{sub 2} particles. The spectral profile recovered upon UV irradiation, and at sample positions outside of the SX irradiation site. The recovered spectral profiles were disrupted again, upon exposure to air. Nonetched ultrafine TiO{sub 2} particles also exhibited a disrupted spectral profile, which was recovered upon SX irradiation. The spectral recovery is explained by a model involving electrons trapped in oxygen vacancies generated by etching.

  6. Influence of samarium impurity on spectral characteristics of calcium iodide crystals

    NASA Astrophysics Data System (ADS)

    Novosad, S. S.; Novosad, I. S.

    2013-03-01

    The influence of a SmBr3 impurity on optical absorption spectra and x-ray-, photo-, and thermally stimulated luminescence of CaI2 scintillator was studied in the temperature range 90-295 K. Activation of CaI2 from the melt by SmBr3 caused absorption bands related to 4 f 6 → 4 f 55 d electronic transitions in Sm2+ to appear in the spectra. Excitation and emission spectra of CaI2:SmBr3 (0.01 mol%) were represented mainly by bands characteristic of the matrix. The photoluminescence spectrum at 90 K upon optical excitation of the crystal in the impurity absorption region (λex = 280 nm) was approximated by individual Gaussian bands with maxima near 345, 395, 430, 470, 500, and 520 nm. The photoluminescence spectrum of CaI2:SmBr3 (0.5 mol%) at 295 K with excitation by radiation from an LGI-21 nitrogen laser (λex = 337.1 nm) was represented mainly by a band at 465 nm. The intensity of this band weakened, its maximum shifted to 470 nm, luminescence in the 520 nm region increased, and weak emission with a maximum near 585 nm was also observed upon lowering the crystal temperature to 90 K. Doping CaI2 with the Sm impurity decreased the yield and changed the spectral composition of its x-ray-luminescence. CaI2:SmBr3 stored a small light sum in shallow trapping levels upon x-ray excitation at 90 K. The nature of the emission and trapping centers in the investigated crystals was discussed.

  7. Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study.

    PubMed

    Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Bartkowiak, Wojciech; Samoc, Marek

    2013-10-10

    We present the results of wide spectral range Z-scan measurements of the two-photon absorption (2PA) spectrum of the Hoechst 33342 dye. The strongest 2PA of the dye in aqueous solution is found at 575 nm, and the associated two-photon absorption cross section is 245 GM. A weak but clearly visible 2PA band at ∼850 nm is also observed, a feature that could not be anticipated from the one-photon absorption spectrum. On the basis of the results of hybrid quantum mechanics/molecular mechanics calculations, we put forward a notion that the long-wavelength feature observed in the two-photon absorption spectrum of Hoechst 33342 is due to the formation of dye aggregates. PMID:24016295

  8. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015

    NASA Astrophysics Data System (ADS)

    Orphal, Johannes; Staehelin, Johannes; Tamminen, Johanna; Braathen, Geir; De Backer, Marie-Renée; Bais, Alkiviadis; Balis, Dimitris; Barbe, Alain; Bhartia, Pawan K.; Birk, Manfred; Burkholder, James B.; Chance, Kelly; von Clarmann, Thomas; Cox, Anthony; Degenstein, Doug; Evans, Robert; Flaud, Jean-Marie; Flittner, David; Godin-Beekmann, Sophie; Gorshelev, Viktor; Gratien, Aline; Hare, Edward; Janssen, Christof; Kyrölä, Erkki; McElroy, Thomas; McPeters, Richard; Pastel, Maud; Petersen, Michael; Petropavlovskikh, Irina; Picquet-Varrault, Benedicte; Pitts, Michael; Labow, Gordon; Rotger-Languereau, Maud; Leblanc, Thierry; Lerot, Christophe; Liu, Xiong; Moussay, Philippe; Redondas, Alberto; Van Roozendael, Michel; Sander, Stanley P.; Schneider, Matthias; Serdyuchenko, Anna; Veefkind, Pepijn; Viallon, Joële; Viatte, Camille; Wagner, Georg; Weber, Mark; Wielgosz, Robert I.; Zehner, Claus

    2016-09-01

    The activity "Absorption Cross-Sections of Ozone" (ACSO) started in 2008 as a joint initiative of the International Ozone Commission (IO3C), the World Meteorological Organization (WMO) and the IGACO ("Integrated Global Atmospheric Chemistry Observations") O3/UV subgroup to study, evaluate, and recommend the most suitable ozone absorption cross-section laboratory data to be used in atmospheric ozone measurements. The evaluation was basically restricted to ozone absorption cross-sections in the UV range with particular focus on the Huggins band. Up until now, the data of Bass and Paur published in 1985 (BP, 1985) are still officially recommended for such measurements. During the last decade it became obvious that BP (1985) cross-section data have deficits for use in advanced space-borne ozone measurements. At the same time, it was recognized that the origin of systematic differences in ground-based measurements of ozone required further investigation, in particular whether the BP (1985) cross-section data might contribute to these differences. In ACSO, different sets of laboratory ozone absorption cross-section data (including their dependence on temperature) of the group of Reims (France) (Brion et al., 1993, 1998, 1992, 1995, abbreviated as BDM, 1995) and those of Serdyuchenko et al. (2014), and Gorshelev et al. (2014), (abbreviated as SER, 2014) were examined for use in atmospheric ozone measurements in the Huggins band. In conclusion, ACSO recommends: The spectroscopic data of BP (1985) should no longer be used for retrieval of atmospheric ozone measurements. For retrieval of ground-based instruments of total ozone and ozone profile measurements by the Umkehr method performed by Brewer and Dobson instruments data of SER (2014) are recommended to be used. When SER (2014) is used, the difference between total ozone measurements of Brewer and Dobson instruments are very small and the difference between Dobson measurements at AD and CD wavelength pairs are diminished

  9. [Species Determination and Spectral Characteristics of Swelling Clay Minerals in the Pliocene Sandstones in Xinghai, Qinghai].

    PubMed

    Wang, Chao-wen; Chen, Jiang-jun; Fang, Qian; Yin, Ke; Hong, Han-lie

    2015-10-01

    X-ray diffraction (XRD) and Fourier infrared absorption spectroscopy (FTIR) were conducted to deepen our research on specific species and spectral characteristics of swelling clay minerals in the Pliocene sandstones in Xinghai, Qinghai province. XRD results show that swelling clay minerals are dominant clay minerals in the sandstones, which can be up to 97% in percentage. XRD patterns show 060 reflections of the samples occur both remarkably at 1.534 Å and 1.498 Å, indicating the samples contain physical mixtures of trioctahedral and dioctahedral swelling clay minerals, respectively. Further treatment of Li-300 degrees C heat and glycerol saturation shows the swelling clay minerals collapse to 9.3-9.9 Å with a partial expansion to -18 Å. This indicates the swelling clay minerals dominate montmorillonite and contain minor saponite. The montmorillonite shows no swelling after Li-300 degrees C heat and glycerol saturation because of Li+ inserting into the octahedral layers, which balances the layer charge caused by the substitution of Mg to Al. FTIR results show the samples are composed of a kind of phyllosilicate with absorbed and structural water, which is in agreement with the results of XRD. Absorbed peaks at 913, 842, 880 cm(-1), corresponding to OH associated with Al-Al, Al-Mg, and Al-Fe pairs, further indicates the minerals are dominant dioctahedron in structure. Meanwhile, absorbed peaks at 625 and 519 cm(-1), corresponding to coupled Si-O and Al-O-Si deformation, indicates parts of Si is replaced by Al in tetrahedron. The spectral characteristics of the samples are against the presence of beidellite and nontronite based on the results of XRD and FTIR, while demonstrating an,existence of montmorillonite. This study, to distinguish the specific species of swelling clay species in clay minerals, would be of great importance when using clay mineralogy to interpret provenance and climatic information.

  10. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  11. Spectral characteristics of digital phase-modulated signals

    NASA Technical Reports Server (NTRS)

    Mcgregor, D. N.; Miller, J. E.

    1975-01-01

    The power spectral density of two-level digital phase modulated signals is determined using various polar pulse shaping functions, the only restriction being that the pulses are independent and do not overlap. Rectangular pulses and pulses having finite rise and decay times are considered. It is shown that a substantial improvement in terms of minimizing spectral occupancy on a power basis over a given frequency band can be achieved by using linear and raised cosine pulse shaping functions. Further, the rate of decrease of the power spectral density is given for the asymptotic limit as f goes to infinity. The use of these and possibly other well chosen pulse shaping functions can then provide an additional aid to overall efficient spectrum utilization and management.

  12. Identification of an object by input and output spectral characteristics

    NASA Technical Reports Server (NTRS)

    Redko, S. F.; Ushkalov, V. F.

    1973-01-01

    The problem is discussed of identification of a linear object of known structure, the movement of which is described by a system of differential equations of the type y = Ay + Bu, where y is an n-dimensional output vector, u is an m-dimensional vector of stationary, random disturbances (inputs), A and B are matrices of unknown parameters of the dimension, n x n and n x m, respectively. The spectral and reciprocal spectral densities of the inputs and outputs are used as the initial information on the object.

  13. Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography.

    PubMed

    Xu, Heng; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D

    2004-09-01

    A novel approach to reconstructing both the absorption and the scattering properties of a turbid medium simultaneously from steady-state broadband spectral measurements is presented that utilizes second-differential fitting to the water spectrum to estimate the optical path length in tissue. Theoretical and experimental evidence is provided to demonstrate the robust accuracy of the spectroscopy approach and reconstructed absorption images. The steady-state broadband CCD system has the potential to provide accurate chromophore imaging without the technological complexity of time- or frequency-domain systems.

  14. Absorption characteristics of protons and photons in tissue.

    PubMed

    Dicello, John F

    2007-08-01

    This presentation reviews the radiation quality of protons and other energetic ion beams, where radiation quality refers to those relevant physical properties other than the dose of the different types of radiations that can contribute to differences in the absorption characteristics in various tissues and the corresponding clinical outcomes. Prior to initiation of clinical trials with protons, neutrons, pions, and heavy ions, it was generally believed that such particles might have a therapeutic advantage resulting from their greater relative biological effectiveness (RBE). Potential clinical advantages resulting from a greater biological effectiveness, however, have generally been overshadowed during the last three decades by improved controls or reduced complications resulting primarily from the better dose delivery and localization that was possible with these heavier particles in conjunction with improved imaging. The successes both in delivery and in the clinical responses with protons and other light ions resulting from improved dose localization have arguably led the way in stereotactic radiosurgery, intensity modulated radiation therapy, and tomotherapy, stimulating improved methods with conventional radiations as well. Protons or light ions differ significantly in comparison with photon or electron beams in how they interact with the tissue atoms and molecules, and in how they transfer energy to those tissues. Microscopically, the heavier particles tend to travel in straight lines and produce long tracks with the energy concentrated closer to the track of the primary particle, while photons or electrons tend to scatter more easily and produce a more uniform distribution of energy transfers. Because they are hadrons, i.e., nuclear particles, protons and ions are more likely to produce long-range nuclear secondaries with higher masses. This higher concentration of energy associated with the heavier particle beams and the more massive secondaries results in

  15. Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM).

    PubMed

    Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile

    2016-01-25

    The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.

  16. Spectral shape of the UV ionizing background and He II absorption at redshifts 1.8 < z < 2.9

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Fechner, C.; Tytler, D.; Simcoe, R. A.; Songaila, A.

    2007-01-01

    Aims:The shape of the UV ionizing background is reconstructed from optically thin metal absorption-line systems identified in spectra of HE 2347-4342, Q 1157+3143, and HS 1700+6416 in the redshift interval 1.8 < z < 2.9. Methods: The systems are analyzed by means of the Monte Carlo Inversion method completed with the spectral shape recovering procedure. Results: The UVB spectral shape fluctuates at 2.4 < z < 2.9 mostly due to radiative transfer processes in the clumpy IGM. At z ⪉ 1.8, the IGM becomes almost transparent both in the H I and He II Lyman continua and the variability of the spectral shape comes from diversity of spectral indices describing the QSO/AGN intrinsic radiation. At z > 2.4, the recovered spectral shapes show intensity depression between 3 and 4 Ryd due to He II Lyα absorption in the IGM clouds (line blanketing) and continuous medium (true Gunn-Petersen effect). The mean He II Lyα opacity estimated from the depth of this depression corresponds within 1-2σ to the values directly measured from the H I/He II Lyα forest towards the quasars studied. The observed scatter in η = N(He II)/N(H I) and anti-correlation between N(H I) and η can be explained by the combined action of variable spectral softness and differences in the mean gas density between the absorbing clouds. Neither of the recovered spectral shapes show features which can be attributed to the putative input of radiation from soft sources like starburst galaxies.

  17. The characteristic analysis of spectral image for cabbage leaves damaged by diamondback moth pests

    NASA Astrophysics Data System (ADS)

    Lin, Li-bo; Li, Hong-ning; Cao, Peng-fei; Qin, Feng; Yang, Shu-ming; Feng, Jie

    2015-02-01

    Cabbage growth and health diagnosis are important parts for cabbage fine planting, spectral imaging technology with the advantages of obtaining spectrum and space information of the target at the same time, which has become a research hotspot at home and abroad. The experiment measures the reflection spectrum at different stages using liquid crystal tunable filter (LCTF) and monochromatic CMOS camera composed of spectral imaging system for cabbage leaves damaged by diamondback moth pests, and analyzes its feature bands and the change of spectral parameters. The study shows that the feature bands of cabbage leaves damaged by diamondback moth pests have a tendency to blue light direction, the red edge towards blue shift, and red valley raising in spectral characteristic parameters, which have a good indication in diagnosing the extent of cabbage damaged by pests. Therefore, it has a unique advantage of monitoring the cabbage leaves damaged by diamondback moth pests by combinating feature bands and spectral characteristic parameters in spectral imaging technology.

  18. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints

    PubMed Central

    Keitel, Anne; Gross, Joachim

    2016-01-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  19. Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints.

    PubMed

    Keitel, Anne; Gross, Joachim

    2016-06-01

    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles ("fingerprints"), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease. PMID:27355236

  20. Energy absorption characteristics of nano-composite conical structures

    NASA Astrophysics Data System (ADS)

    Silva, F.; Sachse, S.; Njuguna, J.

    2012-09-01

    The effect of the filler material on the energy absorption capabilities of polyamide 6 composite structures is studied in details in the present paper. The axial dynamic and quasi-static collapse of conical structures was conducted using a high energy drop tower, as well as Instron 5500R electro-mechanical testing machine. The impact event was recorded using a high-speed camera and the fracture surface was investigated using scanning electron microscopy (SEM). The obtained results indicate an important influence of filler material on the energy absorption capabilities of the polymer composites. A significant increase in specific energy absorption (SEA) is observed in polyamide 6 (PA6) reinforced with nano-silica particles (SiO2) and glass-spheres (GS), whereas addition of montmorillonite (MMT) did not change the SEA parameter.

  1. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association.

    PubMed

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-02-25

    Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.

  2. Utilization of hyperspectral camera for determination of camouflage surfaces spectral characteristics homogeneity

    NASA Astrophysics Data System (ADS)

    Racek, František; Jobánek, Adam; Baláž, Teodor

    2015-10-01

    The paper deals with description of newly developing method of Hyperspectral camera utilization for determination of camouflage surfaces spectral characteristics homogeneity. The color patterns of camouflage surfaces are usually checked pointwise. It is assumed subsequently that the spectral characteristics of the pattern are the same for whole area of camouflage surface. The essential properties of hyperspectral camera allow to determine the level of spectral qualities homogeneity of the surface. Although the respective snapping of hyperspectral image is fairly easy, the evaluation of HS datacube features specific problems connected with homogeneity of illuminance, optical system aberrations, transformation to reflectance and spectral unmixing. All the measurement aspects have to be taken into account to correctly determine the homogeneity of camouflage surfaces spectral characteristics.

  3. Endoplasmic motility spectral characteristics in plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Avsievich, T. I.; Ghaleb, K. E. S.; Frolov, S. V.; Proskurin, S. G.

    2015-03-01

    Spectral Fourier analysis of experimentally acquired velocity time dependencies, V(t), of shuttle endoplasmic motility in an isolated strand of plasmodium of slime mold Physarum Polycephalum has been realized. V(t) registration was performed in normal conditions and after the treatment by respiration inhibitors, which lead to a complete cessation of endoplasmic motion in the strand. Spectral analysis of the velocity time dependences of the endoplasm allows obtaining two distinct harmonic components in the spectra. Their ratio appeared to be constant in all cases, ν2/ν1=1.97±0.17. After the inhibitors are washed out respiratory system becomes normal, gradually restoring the activity of both harmonic oscillatory sources with time. Simulated velocity time dependences correspond to experimental data with good accuracy.

  4. Observation of the optical and spectral characteristics of ball lightning.

    PubMed

    Cen, Jianyong; Yuan, Ping; Xue, Simin

    2014-01-24

    Ball lightning (BL) has been observed with two slitless spectrographs at a distance of 0.9 km. The BL is generated by a cloud-to-ground lightning strike. It moves horizontally during the luminous duration. The evolution of size, color, and light intensity is reported in detail. The spectral analysis indicates that the radiation from soil elements is present for the entire lifetime of the BL.

  5. Observation of the Optical and Spectral Characteristics of Ball Lightning

    NASA Astrophysics Data System (ADS)

    Cen, Jianyong; Yuan, Ping; Xue, Simin

    2014-01-01

    Ball lightning (BL) has been observed with two slitless spectrographs at a distance of 0.9 km. The BL is generated by a cloud-to-ground lightning strike. It moves horizontally during the luminous duration. The evolution of size, color, and light intensity is reported in detail. The spectral analysis indicates that the radiation from soil elements is present for the entire lifetime of the BL.

  6. Observation of the optical and spectral characteristics of ball lightning.

    PubMed

    Cen, Jianyong; Yuan, Ping; Xue, Simin

    2014-01-24

    Ball lightning (BL) has been observed with two slitless spectrographs at a distance of 0.9 km. The BL is generated by a cloud-to-ground lightning strike. It moves horizontally during the luminous duration. The evolution of size, color, and light intensity is reported in detail. The spectral analysis indicates that the radiation from soil elements is present for the entire lifetime of the BL. PMID:24484145

  7. Predicting leaf traits of herbaceous species from their spectral characteristics

    PubMed Central

    Roelofsen, Hans D; van Bodegom, Peter M; Kooistra, Lammert; Witte, Jan-Philip M

    2014-01-01

    Trait predictions from leaf spectral properties are mainly applied to tree species, while herbaceous systems received little attention in this topic. Whether similar trait–spectrum relations can be derived for herbaceous plants that differ strongly in growing strategy and environmental constraints is therefore unknown. We used partial least squares regression to relate key traits to leaf spectra (reflectance, transmittance, and absorbance) for 35 herbaceous species, sampled from a wide range of environmental conditions. Specific Leaf Area and nutrient-related traits (N and P content) were poorly predicted from any spectrum, although N prediction improved when expressed on a per area basis (mg/m2 leaf surface) instead of mass basis (mg/g dry matter). Leaf dry matter content was moderately to good correlated with spectra. We explain our results by the range of environmental constraints encountered by herbaceous species; both N and P limitations as well as a range of light and water availabilities occurred. This weakened the relation between the measured response traits and the leaf constituents that are truly responsible for leaf spectral behavior. Indeed, N predictions improve considering solely upper or under canopy species. Therefore, trait predictions in herbaceous systems should focus on traits relating to dry matter content and the true, underlying drivers of spectral properties. PMID:24683454

  8. Spectral Signature of Column Solar Radiation Absorption During the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Revision

    SciTech Connect

    O'Hirok, William; Gautier, Catherine; Ricchiazzi, Paul

    1999-11-01

    Spectral and broadband shortwave radiative flux data obtained from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) are compared with 3-D radiative transfer computations for the cloud field of October 30, 1995. Because the absorption of broadband solar radiation in the cloudy atmosphere deduced from observations and modeled differ by 135 Wm{sup -2}, we performed a consistency analysis using spectral observations and the model to integrate for wavelengths between the spectral observations. To match spectral measurements, aerosols need a reduction in both single scattering albedo (from 0.938 to 0.82) and asymmetry factor (from 0.67 to 0.61), and cloud droplets require a three-fold increase in co-albedo. Even after modifying the model inputs and microphysics the difference in total broadband absorption is still of the order of 75Wm{sup -2}. Finally, an unexplained absorber centered around 1.06 {micro}m appears in the comparison that is much too large to be explained by dimers.

  9. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  10. [Method of Remote Sensing Identification for Mineral Types Based on Multiple Spectral Characteristic Parameters Matching].

    PubMed

    Wei, Jing; Ming, Yan-fang; Han, Liu-sheng; Ren, Zhong-liang; Guo, Ya-min

    2015-10-01

    The traditional mineral mapping methods with remote sensing data, based on spectral reflectance matching techniques, shows low accuracy, for obviously being affected by the image quality, atmospheric and other factors. A new mineral mapping method based on multiple types of spectral characteristic parameters is presented in this paper. Various spectral characteristic parameters are used together to enhanced the stability in the situation of atmosphere and environment background affecting. AVIRIS (Airborne Visible Infrared Imaging Spectrometer) data of Nevada Cuprite are selected to determine the mineral types with this method. Typical mineral spectral data are also obtained from USGS (United States Geological Survey) spectral library to calculate the spectral characteristic parameters. A mineral identification model based on multiple spectral characteristic parameters is built by analyzing the various characteristic parameters, and is applied in the mineral mapping experiment in Cuprite area. The mineral mapping result produced by Clark et al. in 1995 is used to evaluate the effect of this method, results show, that mineral mapping results with this method can obtain a high precision, the overall mineral identification accuracy is 78.96%.

  11. Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy

    1992-01-01

    Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.

  12. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Etzkorn, Thomas; Klotz, Björn; Sørensen, Søren; Patroescu, Iulia V.; Barnes, Ian; Becker, Karl H.; Platt, Ulrich

    Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm -1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported. The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and ( E,Z)- and ( E,E)-2,4-hexadienedial). The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.

  13. Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy

    PubMed Central

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a “molecular fingerprint” that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells. PMID:25950513

  14. Spectral fingerprinting of individual cells visualized by cavity-reflection-enhanced light-absorption microscopy.

    PubMed

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a "molecular fingerprint" that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells.

  15. Effects of Mg(2+)on spectral characteristics and photosynthetic functions of spinach photosystem II.

    PubMed

    Liang, Chen; Xiao, Wu; Hao, Huang; Xiaoqing, Liu; Chao, Liu; Lei, Zheng; Fashui, Hong

    2009-03-01

    In the present paper we report the results obtained with the photosystem II (PSII) isolated from spinach treated by MgCl(2), and studied the effect of Mg(2+) on spectral characteristics and photosynthetic functions of PSII. The results showed that Mg(2+) treatment at a suitable concentration could significantly increase the absorption intensity of PSII and the intensity ratio of Soret band to Q band of chlorophyll-a. The treatment also elevated the excited peak intensity at 230, 278 and 343 nm, and the emitted peak intensity at 304 and 682 nm, and the ratio of F(278)/F(230), respectively. The results implied that Mg(2+) increased absorbance for visible light, improving energy transfer among amino acids within PSII protein complex and accelerating energy transport from tyrosine residue to chlorophyll-a. The photochemical activity and oxygen evolving rate of PSII were also enhanced by Mg(2+). This is viewed as evidence that Mg(2+) can promote energy transfer and oxygen evolution in PSII of spinach.

  16. Effects of Mg 2+on spectral characteristics and photosynthetic functions of spinach photosystem II

    NASA Astrophysics Data System (ADS)

    Liang, Chen; Xiao, Wu; Hao, Huang; Xiaoqing, Liu; Chao, Liu; Lei, Zheng; Fashui, Hong

    2009-03-01

    In the present paper we report the results obtained with the photosystem II (PSII) isolated from spinach treated by MgCl 2, and studied the effect of Mg 2+ on spectral characteristics and photosynthetic functions of PSII. The results showed that Mg 2+ treatment at a suitable concentration could significantly increase the absorption intensity of PSII and the intensity ratio of Soret band to Q band of chlorophyll-a. The treatment also elevated the excited peak intensity at 230, 278 and 343 nm, and the emitted peak intensity at 304 and 682 nm, and the ratio of F278/ F230, respectively. The results implied that Mg 2+ increased absorbance for visible light, improving energy transfer among amino acids within PSII protein complex and accelerating energy transport from tyrosine residue to chlorophyll-a. The photochemical activity and oxygen evolving rate of PSII were also enhanced by Mg 2+. This is viewed as evidence that Mg 2+ can promote energy transfer and oxygen evolution in PSII of spinach.

  17. Absorption-polarization characteristics of rhodamine 6G and its base in poly(methyl methacrylate)

    SciTech Connect

    Prishchepov, A.S.; Nizamou, N.

    1986-01-01

    Results are presented of the measurement and analysis of the absorption-polarization characteristics of rhodamine 6G and the base of rhodamine 6G (BR6G) in polymeric films of poly(methylmethacrylate) (PMMA). The absorption spectrum of a PMMA film containing BR6G and the cationic dye in the monomeric and associated states are shown.

  18. Spectral-Domain Measurements of Birefringence and Sensing Characteristics of a Side-Hole Microstructured Fiber

    PubMed Central

    Hlubina, Petr; Martynkien, Tadeusz; Olszewski, Jacek; Mergo, Pawel; Makara, Mariusz; Poturaj, Krzysztof; Urbańczyk, Waclaw

    2013-01-01

    We experimentally characterized a birefringent side-hole microstructured fiber in the visible wavelength region. The spectral dependence of the group and phase modal birefringence was measured using the methods of spectral interferometry. The phase modal birefringence of the investigated fiber increases with wavelength, but its positive sign is opposite to the sign of the group modal birefringence. We also measured the sensing characteristics of the fiber using a method of tandem spectral interferometry. Spectral interferograms corresponding to different values of a physical parameter were processed to retrieve the spectral phase functions and to determine the spectral dependence of polarimetric sensitivity to strain, temperature and hydrostatic pressure. A negative sign of the polarimetric sensitivity was deduced from the simulation results utilizing the known modal birefringence dispersion of the fiber. Our experimental results show that the investigated fiber has a very high polarimetric sensitivity to hydrostatic pressure, reaching −200 rad × MPa−1× m−1 at 750 nm. PMID:23989824

  19. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    PubMed

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  20. Spectral characteristics of lunar impact melts - Implications for remote sensing

    NASA Astrophysics Data System (ADS)

    Tompkins, S.; Pieters, C. M.; Ryder, G.

    1997-03-01

    Remote geochemical mapping of lunar impact melt associated with complex craters may provide a key to a better understanding of impact melt formation and the impact cratering process. Ground-based NIR spectra and Clementine multispectral images provide high-resolution spectral and spatial information, respectively, about lunar impact melts. As part of an effort towards improving our ability to interpret these data, two suites of lunar samples have been measured in NASA's Reflectance Experiment Laboratory (RELAB) at Brown University. The samples include seven Apollo 17 crystalline impact melts as well as synthesized glass equivalents and 15 naturally occurring impact melts from four landing sites. The naturally occurring melts have a range of textures and compositions related to glass abundance.

  1. Nonlinear optical absorption and fluorescence of phosphine-substituted bithiophenes in the violet-blue spectral region

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Zhao, Qun; Lawson, Christopher M.; Gray, Gary M.

    2011-06-01

    The nonlinear optical absorptions of two 5,5‧-bis(diphenylphosphino)-2,2‧-bithiophene derivatives, Ph2(X)P(C4H2S)2P(X)Ph2 (X = O, 1; S, 2), have been investigated by direct transmission measurement with both picosecond and nanosecond laser pulses from 420 nm to 480 nm. Saturated dichloromethane solutions of 1 and 2 exhibit strong nonlinear optical absorptions in this violet-blue spectral region with that of 2 being stronger at all wavelengths. In the picosecond regime, at 420 nm, the transmittance rapidly falls to 50% when the incident fluence is 0.22 J/cm2 for 1 and 0.11 J/cm2 for 2. Two-photon absorption appears to be the primary mechanism for this nonlinear absorption. The two-photon absorption coefficients β for 1 (2.1 cm/GW) and 2 (4.4 cm/GM) were obtained by fitting the measurement of transmittance as the function of incident beam intensity at 420 nm. These β values are comparable with some of the best results obtained for organic materials in the green, red and infrared spectral region. Both compounds also show fluorescence with an emission peak at 390 nm for 1 and 400 nm for 2. The fluorescence of 1 is considerably stronger than is that of 2. The combination of the wide band gap and strong fluorescence emission of 1 makes it a promising candidate as a host material for blue organic light emitting diodes.

  2. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  3. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  4. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    SciTech Connect

    Wang, Xiaodong; Pan, Ming; Hou, Liwei; Xie, Wei; Hu, Weida Xu, Jintong; Li, Xiangyang; Chen, Xiaoshuang Lu, Wei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantum efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.

  5. Spectral Fingerprinting: The potential of VNIR-SWIR spectral characteristics for tracing sediment sources in a Spanish mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Brosinsky, Arlena; Foerster, Saskia; Segl, Karl; Bronstert, Axel; Kaufmann, Hermann; Lopéz-Tarazón, José-Andrés

    2014-05-01

    Knowledge on the origin of suspended sediment can greatly facilitate erosion prevention and thus sustainable watershed management. One approach providing information on the origin of suspended sediments is the fingerprinting technique. It is based on the assumption that potential sediment sources can be discriminated and that the contribution of these sources to the sediment can be determined on the basis of distinctive characteristics (fingerprints). Recent studies indicate that VNIR-SWIR reflectance characteristics of soil may be a rapid, inexpensive alternative to traditional fingerprinting properties such as e.g. geochemical composition. In this study, we aim at further assessing the potential of this innovative sediment tracing technique, specifically whether (a) potential sediment sources can be reliably identified based on spectral features, (b) field derived source information (more rapid) is sufficient for spectral fingerprinting, (c) spectral fingerprints permit the quantification of source contribution, and (d) to examine changes in the relative contributions from different sources both, between and within individual storm events. Therefore, samples were collected in the Isábena catchment (445 km²) in the central Spanish Pyrenees: 1) soil samples from the main potential source areas and 2) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet and at several subcatchment outlets. In addition, 3) artificial mixtures of known proportions were produced from soil samples for testing of key assumptions in a controlled environment. Soil samples (1) were spectrally measured in the field using an ASD spectrometer and subsequently all samples (1-3) were dried and spectrally measured in the laboratory using the same equipment. Colour parameters and physically based features with relation to organic carbon, iron oxide and clay content were calculated from field- and laboratory spectra. Principal component

  6. Spectral analysis of sung vowels. III. Characteristics of singers and modes of singing.

    PubMed

    Bloothooft, G; Plomp, R

    1986-03-01

    The 1/3-oct spectra of nine different vowels, sung by 14 professional male and female singers in nine different modes of singing, were analyzed to reveal spectral characteristics of individual singers and modes of singing. The main spectral differences between singers could be described in two dimensions characterizing, respectively, differences among male and among female singers. Spectral characteristics of these dimensions suggested that interindividual differences among males, like the average difference between males and females, arise mainly from differences in vocal tract dimensions, whereas interindividual differences among females may have a glottal basis. The spectral characteristics of the modes of singing could be represented for each vowel in two dimensions. Differences among the soft (pianissimo), light, neutral, free, straight, extra vibrato, and loud (fortissimo) modes were mainly due to the spectral effect of vocal effort, which constituted a very dominant first spectral dimension. This dimension essentially reflected the slope of the spectrum. The second dimension mainly described the spectral differences between the dark and pressed modes of singing. A possible explanation of the results in terms of glottal and supraglottal morphological variation is discussed. PMID:3958327

  7. The two-micron spectral characteristics of the Titanian haze derived from Cassini/VIMS solar occultation spectra

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, Sang Joon; Courtin, Régis; Sohn, Mirim; Lee, Dong-Hun

    2013-11-01

    Vertically-resolved spectral characteristics of the Titanian haze in the 2-μm wavelength range were derived from solar occultation spectra measured by Cassini/VIMS on January 15, 2006. At the various altitudes probed by the solar occultation measurements, we reproduced the observed spectra using a radiative transfer program including absorption by CH4 ro-vibrational bands, collision-induced absorption by N2-N2 pairs, and H2-N2 dimers, as well as absorption and scattering by the haze particles. The retrieved optical depth spectra (or τ-spectra) for the haze show marked variations in the 2.1-2.8 μm range, with peaks near 2.30 and 2.35 μm, and the relative amplitude of these peaks changing with altitude. The gross spectral shape of the τ-spectra is found similar to the typical 2-μm absorption spectra of the alkane group of hydrocarbon (CnH2n+2) ices. The τ-spectra retrieved at 2 μm and those previously retrieved at 3 μm by Kim et al. (2011) are simultaneously reproduced by combinations of 2- and 3-μm absorbance spectra of alkane ices such as CH4, C2H6, C5H12, C6H14, with the addition of a nitrile ice, CH3CN. These combinations are neither unique nor limited and need more fine-tuning to fit the detailed features of the τ-spectra. There is a need for additional laboratory measurements of absorbance and indices of refraction for a wider variety of hydrocarbon and nitrile ices in the temperature range relevant to Titan.

  8. Characteristics of spectral aerosol optical depths over India during ICARB

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Moorthy, K. Krishna; Nair, Vijayakumar S.; Babu, S. Suresh; Satheesh, S. K.; Vinoj, V.; Reddy, R. Ramakrishna; Gopal, K. Rama; Badarinath, K. V. S.; Niranjan, K.; Pandey, Santosh Kumar; Behera, M.; Jeyaram, A.; Bhuyan, P. K.; Gogoi, M. M.; Singh, Sacchidanand; Pant, P.; Dumka, U. C.; Kant, Yogesh; Kuniyal, J. C.; Singh, Darshan

    2008-07-01

    Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent ( α) remained significantly lower (˜1) over the Arabian Sea compared to Bay of Bengal (BoB) (˜1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of

  9. Preliminary assessment of dispersion versus absorption analysis of high spectral and spatial resolution magnetic resonance images in the diagnosis of breast cancer

    PubMed Central

    Weiss, William A.; Medved, Milica; Karczmar, Gregory S.; Giger, Maryellen L.

    2015-01-01

    Abstract. Water resonance lineshapes observed in breast lesions imaged with high spectral and spatial resolution (HiSS) magnetic resonance imaging have been shown to contain diagnostically useful non-Lorentzian components. The purpose of this work is to update a previous method of breast lesion diagnosis by including phase-corrected absorption and dispersion spectra. This update includes information about the shape of the complex water resonance, which could improve the performance of a computer-aided diagnosis breast lesion classification scheme. The non-Lorentzian characteristics observed in complex breast lesion water resonance spectra are characterized by comparing a plot of the real versus imaginary components of the spectrum to that of a perfect complex Lorentzian spectrum, a “dispersion versus absorption” (DISPA) analysis technique. Distortion in the shape of the observed spectra indicates underlying physiologic changes, which have been shown to be correlated with malignancy. These spectral shape distortions in each lesion voxel are quantified by summing the deviations in DISPA radius from an ideal complex Lorentzian spectrum over all Fourier components, yielding a “total radial difference” (TRD). We limited our analysis to those voxels in each lesion with the largest TRD. The number of voxels considered was dependent on the lesion size. The TRD was used to classify voxels from 15 malignant and 8 benign lesions (∼2400 voxels after voxel elimination). Lesion discrimination performance was evaluated for both the average and variance of the TRD within each lesion. Area under the receiver operating characteristic curve (ROC AUC) was used to assess both the voxel- and lesion-based discrimination methods in the task of distinguishing between malignant and benign. In the task of distinguishing voxels from malignant and benign lesions, TRD yielded an AUC of 0.89 (95% confidence interval [0.84, 0.91]). In the task of distinguishing malignant from benign

  10. Spectral, electrochemical and thermal characteristics of glass forming hydrazine derivatives

    NASA Astrophysics Data System (ADS)

    Bijak, Katarzyna; Sek, Danuta; Siwy, Mariola; Grucela-Zajac, Marzena; Janeczek, Henryk; Wiacek, Malgorzata; Malecki, Grzegorz; Schab-Balcerzak, Ewa

    2014-11-01

    The azines being condensation products of benzophenone hydrazone with triphenylamine substituted with different numbers of aldehyde groups and also with terephthaldicarboxaldehyde were prepared. Their spectral, thermal and electronic properties that is, orbital energies and resulting energy gap calculated theoretically by density functional theory (DFT) and estimated by electrochemical measurements were explored. The prepared hydrazine derivatives exhibited glass-forming properties with glass-transition temperatures in the range of 10-98 °C and high thermal stability with decomposition temperatures placed between 231 and 337 °C. The photoluminescence (PL) studies showed that all investigated compounds both in solid state as blends with PMMA and in NMP solution emitted blue light, however, with different intensity. Relative PL intensity of azines was investigated in NMP in relation to rhodamine-B used as a standard. Moreover, the stability of azines during doping with acid and ferric chloride was spectroscopically demonstrated via repeated doping/dedoping in solution and in film. All compounds are electrochemically active. Depend on chemical structure of azines they undergo reversible or irreversible electrochemical oxidation and reduction processes. The LUMO levels were found in the range from -2.66 to -3.0 eV. They exhibited energy band gap (Eg) estimated electrochemically from 2.57 to 3.22 eV.

  11. [The Research of Spectral Dimension Reduction Method Based on Human Visual Characteristics].

    PubMed

    He, Song-hua; Chen, Qiao; Duan, Jiang

    2015-06-01

    The traditional spectral dimension reduction methods are usually carried out by matching the reconstructed spectra to the original spectra mathematically, which will often result in reconstructed spectra of small spectral reconstruction errors but very poor colorimetric accuracy when compared with the original one. In order to minimize both the spectral and colorimetric errors more efficiently, we proposed three spectral dimension reduction methods by introducing the characteristics of human vision. The first method is VPCA, in which we apply spectral luminous efficiency function to the original spectra before reduction; The Second method (LMSPCA) uses a matrix derived from LMS cone sensitivity to weight the original spectra before reduction, and the matrix can be form by two methods, in which the L, M, S cones response offset is calculated by in two different ways: one is computed as the absolute value of each corresponding wave length offset, and the other is calculated as the square of each corresponding wave length offset. The third method is LMSPCAs, which is based on the second method LMSPCA by further applying PCA to the residual spectra. The result shows that the VPCA method produces the poorest perfomance. The two cones response weighted matrixes of LMSPCA method have similar performances by presenting better colorimetric accuracy and low spectral accuracy, while LMSPCAs method which compensates for the spectral loss of LMSPCA method can produce higher spectral and colorimetric reconstruction accuracy and color stability under different light source, and satisfies the requirements of spectral color reproduction. PMID:26601347

  12. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells†

    PubMed Central

    Chen, Tao; Chen, Shouhui; Zhou, Jihan; Liang, Dehai

    2015-01-01

    Gold nanorods (AuNRs) have shown great potential as bio-compatible imaging probes in various biological applications. Probing nanomaterials in live cells is essential to reveal the interaction between them. In this study, we used a transient absorption microscope to selectively image AuNRs in live cells. The transient absorption signals were monitored through lock-in amplification. This provides a new way of observing AuNRs with no interference from background autofluorescence. PMID:25098209

  13. Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells.

    PubMed

    Chen, Tao; Chen, Shouhui; Zhou, Jihan; Liang, Dehai; Chen, Xiaoyuan; Huang, Yanyi

    2014-09-21

    Gold nanorods (AuNRs) have shown great potential as bio-compatible imaging probes in various biological applications. Probing nanomaterials in live cells is essential to reveal the interaction between them. In this study, we used a transient absorption microscope to selectively image AuNRs in live cells. The transient absorption signals were monitored through lock-in amplification. This provides a new way of observing AuNRs with no interference from background autofluorescence.

  14. Spectral characteristics of normal and nutrient-deficient maize leaves

    NASA Technical Reports Server (NTRS)

    Al-Abbas, A. H.; Barr, R.; Hall, J. D.; Crane, F. L.; Baumgardner, M. F.

    1972-01-01

    Reflectance, transmittance and absorbance spectra of normal and six types of mineral-deficient (N,P,K,S,Mg and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths along the electromagnetic spectrum from 500 to 2600 nm. Chlorophyll content and percent leaf moisture were also determined. Leaf thermograms were obtained for normal, N- and S- deficient leaves. The results of the analysis of variance showed significant differences in reflectance, transmittance and absorbance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven nutrient treatments, and among the interactions of leaves and treatments. In the reflective infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all deficiencies in comparison to controls. Percent moisture was increased in S-, Mg- and N- deficiencies. Positive correlation (r = 0.707) between moisture content and percent absorption at both 1450 and 1930 nm were obtained. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related (r = 0.894).

  15. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.

    PubMed

    Zhang, Jianfa; Zhu, Zhihong; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-08-28

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges.

  16. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  17. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.; Sung, K.; Devi, V. M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-06-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 µmol mol-1 and 12 µmol mol-1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  18. Infrared absorption and emission characteristics of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission.

  19. Light absorption efficiencies of photosynthetic pigments: the dependence on spectral types of central stars

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    2015-07-01

    For detecting life from reflection spectra on extrasolar planets, trace of photosynthesis is one of the indicators. However, it is not yet clear what kind of radiation environments is acceptable for photosynthesis. Light absorption in photosystems on the Earth occurs using limited photosynthetic pigments such as chlorophylls (Chls) and bacteriochlorophylls (BChls). Efficiencies of light absorption for the pigments were evaluated by calculating the specific molecular absorption spectra at the high accuracy-quantum mechanical level. We used realistic stellar radiation spectra such as F, G, K and M-type stars to investigate the efficiencies. We found that the efficiencies are increased with the temperature of stars, from M to F star. Photosynthetic pigments have two types of absorption bands, the Q y and Soret. In higher temperature stars like F star, contributions from the Soret region of the pigments are dominant for the efficiency. On the other hand, in lower temperature stars like M stars, the Q y band is crucial. Therefore, differences on the absorption intensity and the wavelength between the Q y and Soret band are the most important to characterize the photosynthetic pigments. Among photosynthetic pigments, Chls tend to be efficient in higher temperature stars, while BChls are efficient for M stars. Blueward of the 4000 Å break, the efficiencies of BChls are smaller than Chls in the higher temperature stars.

  20. Variability of light absorption by aquatic particles in the near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Tassan, Stelvio; Ferrari, Giovanni M.

    2003-08-01

    We have measured the light absorption of a set of particle suspensions of varying nature (pure minerals, particulate standards, aquatic particles) using a double-beam spectrophotometer with a 15-cm-diameter integrating sphere. The sample was located inside the sphere so as to minimize the effect of light scattering by the particles. The results obtained showed highly variable absorption in the near-IR region of the wavelength spectrum. The same particle samples were deposited on glass-fiber filters, and their absorption was measured by the transmittance-reflectance method, based on a theoretical model that corrects for the effect of light scattering. The good agreement found between the results of the measurements carried out inside the sphere and by the transmittance-reflectance method confirms the validity of the scattering correction included in the above method.

  1. Solar absorption by elemental and brown carbon determined from spectral observations

    PubMed Central

    Bahadur, Ranjit; Praveen, Puppala S.; Xu, Yangyang; Ramanathan, V.

    2012-01-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC. PMID:23045698

  2. Inversion of the volume scattering function and spectral absorption in coastal waters with biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Huot, Y.; Gray, D. J.; Weidemann, A.; Rhea, W. J.

    2013-06-01

    In the aquatic environment, particles can be broadly separated into phytoplankton (PHY), non-algal particle (NAP) and dissolved (or very small particle, VSP) fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs) can also be used. Both absorption spectra and VSFs were used to calculate particle fractions for an experiment in Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM); the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient (measured by an ac-s) and the VSF (at a few backward angles, measured by a HydroScat 6 and an ECO-VSF) agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative error s = -20%). The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering.

  3. Solar absorption by elemental and brown carbon determined from spectral observations.

    PubMed

    Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V

    2012-10-23

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.

  4. Investigation of Tree Spectral Reflectance Characteristics Using a Mobile Terrestrial Line Spectrometer and Laser Scanner

    PubMed Central

    Lin, Yi; Puttonen, Eetu; Hyyppä, Juha

    2013-01-01

    In mobile terrestrial hyperspectral imaging, individual trees often present large variations in spectral reflectance that may impact the relevant applications, but the related studies have been seldom reported. To fill this gap, this study was dedicated to investigating the spectral reflectance characteristics of individual trees with a Sensei mobile mapping system, which comprises a Specim line spectrometer and an Ibeo Lux laser scanner. The addition of the latter unit facilitates recording the structural characteristics of the target trees synchronously, and this is beneficial for revealing the characteristics of the spatial distributions of tree spectral reflectance with variations at different levels. Then, the parts of trees with relatively low-level variations can be extracted. At the same time, since it is difficult to manipulate the whole spectrum, the traditional concept of vegetation indices (VI) based on some particular spectral bands was taken into account here. Whether the assumed VIs capable of behaving consistently for the whole crown of each tree was also checked. The specific analyses were deployed based on four deciduous tree species and six kinds of VIs. The test showed that with the help of the laser scanner data, the parts of individual trees with relatively low-level variations can be located. Based on these parts, the relatively stable spectral reflectance characteristics for different tree species can be learnt. PMID:23877127

  5. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  6. Absolute Rovibrational Intensities of C-12O2-16 Absorption Bands in the 3090-3850/ CM Spectral Region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1998-01-01

    A multispectrum nonlinear least-squares fitting technique has been used to determine the absolute intensities for approximately 1500 spectral lines in 36 vibration - rotation bands Of C-12O2-16 between 3090 and 3850/ cm. A total of six absorption spectra of a high- purity (99.995% minimum) natural sample of carbon dioxide were used in the analysis. The spectral data (0.01/cm resolution) were recorded at room temperature and low pressure (1 to 10 Torr) using the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak. The absorption path lengths for these spectra varied between 24.86 and 385.76 m. The first experimental determination of the intensity of the theoretically predicted 2(nu)(sub 2, sup 2) + nu(sub 3) "forbidden" band has been made. The measured line intensities obtained for each band have been analyzed to determine the vibrational band intensity, S(sub nu), in /cm/( molecule/sq cm) at 296 K, square of the rotationless transition dipole moment |R|(exp 2) in Debye, as well as the nonrigid rotor coefficients. The results are compared to the values listed in the 1996 HITRAN database which are obtained using the direct numerical diagonalization (DND) technique as well as to other published values where available.

  7. [High-speed target recognition positioning system based on multi-spectral radiation characteristics].

    PubMed

    Li, Jian-Min; Wang, Gao

    2014-11-01

    In order to achieve quick recognition and positioning of the high-speed target, using multi-spectral radiation combined with acoustic positioning technology, in the passive state, the blast wave spectral characteristics and acoustic characteristics of the measured target were rapidly obtained, thus analysis was performed to determine the type, location and other important parameters. Multi-spectral radiation detection target recognition formula was deduced. The accuracy of the optical path length and the logical integration time was calculated by shock acoustic positioning method. Experiments used 5.56 mm NATO bullets, 7.62 mm 56-rifle bullets, 12.7 mm 54 type machine-gun bullets as a target identified projectile. Interference fringes were collected by the static Fourier transform interferometer system and ICX387AL type CCD, and the peak of sound pressure was collected using 2209 pulse sound pressure meter made by B & K Company from Denmark Experimental results show that for the 5.56 mm NATO bullets, the three characteristic wavelengths position amplitudes are close to each other, with the maximum amplitude at 966 nm; For the 7.62 mm 56-rifle bullets, 935 nm is the maximum amplitude position, while for 966 and 997 nm position the magnitudes are sunukar; For 12.7 mm 54 type machine-gun bullets, the three wavelengths show a ladder-like distribution. With the increase in the detection distance spectral radiation energy decreased. Meanwhile, with the decrease in the total radiation spectrum, the spectrum of target was affected strongly by background noise, and the SNR of system was decreased. But the spectral characteristics of different target still exist, the target species can be identified by the system with the ratio algorithm of characteristic peaks. Through spectral calibration and characteristic wavelengths extraction, the target can successfully identify the type of projectile and target position, and it meets the design requirements. PMID:25752076

  8. Sub-millisecond Transient Absorption Frequency Comb Spectroscopy in the Mid-Infrared Spectral Region

    NASA Astrophysics Data System (ADS)

    Bjork, Bryce; Fleisher, Adam; Bui, Thinh; Cossel, Kevin; Okumura, Mitchio; Ye, Jun

    2013-05-01

    The study of highly-reactive transient reaction intermediates is fundamental to understanding chemical dynamics and is particularly relevant to applications such as atmospheric chemistry. Their study often poses a significant challenge for traditional spectrometers, which typically provide broad bandwidth or fast temporal resolution, but not both without long acquisition times. We introduce a cavity-enhanced frequency-comb solution that allows for high-resolution, sensitive spectra to be captured at millisecond intervals in the mid-infrared spectral region using a VIPA dispersive etalon. Once individual comb teeth are resolved, the spectral resolution of the system is limited by the comb linewidth (<40 kHz) while the temporal resolution is limited by the minimum integration time of the InSb detector array (10 μs). In this presentation, I will present the application of this real-time spectroscopic system to small molecule photodissociation.

  9. Evidence for cyclotron absorption from spectral features in gamma-ray bursts seen with Ginga

    NASA Technical Reports Server (NTRS)

    Murakami, T.; Fujii, M.; Hayashida, K.; Itoh, M.; Nishimura, J.

    1988-01-01

    New observations by the gamma-ray burst detector on board the Ginga satellite, which has two well-calibrated detectors covering a wide energy range of 1.5 to 375 keV, are reported. The spectral features obtained are consistent with first and second cyclotron harmonics. This finding is taken as strong evidence for the magnetized neutron star model of gamma-ray bursts.

  10. [Nitrogen and phosphorus absorption and growth characteristics of Alexandrium tamarense].

    PubMed

    Shi, Yanjun; Hu, Hanhua; Ma, Runyu; Cong, Wei; Cai, Zhaoling

    2003-07-01

    The uptake of nitrate and phosphate by Alexandrium tamarense and its growth characteristics were studied in laboratory cultures, which were conducted using environmentally realistic levels of physical factors during red tide occurrences. The results indicated that the specific growth rate had little difference under three nitrate levels (low-nitrate, 0.0882 mmol.L-1; middle-nitrate, 0.882 mmol.L-1; high-nitrate, 2.646 mmol.L-1). The cell yield was the lowest at low-nitrate, a maximum yield was achieved at the middle-nitrate, which increased by 44.7% and 53.6% respectively, compared with high-nitrate and low-nitrate. The cell yield increased with increasing phosphate concentrations in cultures (low-phosphate, 0.0036 mmol.L-1; middle-phosphate, 0.036 mmol.L-1; high-phosphate, 0.108 mmol.L-1), and the maximum yield (17200 cell.ml-1) was observed at high-phosphate concentration, while the maximum specific growth rate occurred at middle-phosphate. The growth conditions had a significant effect on the uptake rate of nitrate and phosphate by cells, and the cells grown in low-nitrate and low-phosphate cultures had a higher uptake rate. Further experiment suggested that lower ratio of N/P promoted the propagation of cells, and the supplementation of nitrate at later exponential growth phase had a positive effect to the accumulation of biomass. PMID:14587339

  11. Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures

    SciTech Connect

    Isfahani, RN; Moghaddam, S

    2013-08-01

    An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at a LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.

  12. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  13. Development of a Cone Penetrometer for Measuring Spectral Characteristics of Soils in Situ

    NASA Technical Reports Server (NTRS)

    Lee, Landris T., Jr.; Malone, Philip G.

    1993-01-01

    A patent was recently granted to the U.S. Army for an adaptation of a soil cone penetrometer that can be used to measure the spectral characteristics (fluorescence or reflectance) of soils adjacent to the penetrometer rod. The system can use a variety of light sources and spectral analytical equipment. A laser induced fluorescence measuring system has proven to be of immediate use in mapping the distribution of oil contaminated soil at waste disposal and oil storage areas. The fiber optic adaptation coupled with a cone penetrometer permits optical characteristics of the in-situ soil to be measured rapidly, safely, and inexpensively. The fiber optic cone penetrometer can be used to gather spectral data to a depth of approximately 25 to 30 m even in dense sands or stiff clays and can investigate 300 m of soil per day. Typical detection limits for oil contamination in sand is on the order of several hundred parts per million.

  14. Some spectral and pulsation characteristics of the horizontal flow of a gas-liquid suspension

    NASA Astrophysics Data System (ADS)

    Krokovnyi, P. M.

    1980-02-01

    In the experiments described, the turbulence characteristics of a two-phase gas-liquid pipe flow were studied, using a 6 m long, 19-mm-diam tube. The inlet temperature of the suspension was maintained at 25 C. The friction energy spectra and the relative intensity of the friction pulsations were measured. The spectral and pulsation characteristics were obtained by an electrodiffusion technique which provided reliable data on the pulsations of the wall shear stress.

  15. Some spectral and pulsation characteristics of a horizontal gas-liquid stream

    NASA Astrophysics Data System (ADS)

    Krokovnyi, P. M.

    1980-07-01

    In the experiments described, the turbulence characteristics of a two-phase gas-liquid pipe flow were studied, using a 6 m long, 19-mm-diam tube. The inlet temperature of the suspension was maintained at 25 C. The friction energy spectra and the relative intensity of the friction pulsations were measured. The spectral and pulsation characteristics were obtained by an electrodiffusion technique which provided reliable data on the pulsations of the wall shear stress.

  16. Regular algorithm for the automatic refinement of the spectral characteristics of acoustic finite element models

    NASA Astrophysics Data System (ADS)

    Suvorov, A. S.; Sokov, E. M.; V'yushkina, I. A.

    2016-09-01

    A new method is presented for the automatic refinement of finite element models of complex mechanical-acoustic systems using the results of experimental studies. The method is based on control of the spectral characteristics via selection of the optimal distribution of adjustments to the stiffness of a finite element mesh. The results of testing the method are given to show the possibility of its use to significantly increase the simulation accuracy of vibration characteristics of bodies with arbitrary spatial configuration.

  17. Spectral characteristics and feature selection of satellite remote sensing data for climate and anthropogenic changes assessment in Bucharest area

    NASA Astrophysics Data System (ADS)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan; Tautan, Marina; Miclos, Sorin; Cristescu, Luminita; Carstea, Elfrida; Baschir, Laurentiu

    2010-05-01

    Urban systems play a vital role in social and economic development in all countries. Their environmental changes can be investigated on different spatial and temporal scales. Urban and peri-urban environment dynamics is of great interest for future planning and decision making as well as in frame of local and regional changes. Changes in urban land cover include changes in biotic diversity, actual and potential primary productivity, soil quality, runoff, and sedimentation rates, and cannot be well understood without the knowledge of land use change that drives them. The study focuses on the assessment of environmental features changes for Bucharest metropolitan area, Romania by satellite remote sensing and in-situ monitoring data. Rational feature selection from the varieties of spectral channels in the optical wavelengths of electromagnetic spectrum (VIS and NIR) is very important for effective analysis and information extraction of remote sensing data. Based on comprehensively analyses of the spectral characteristics of remote sensing data is possibly to derive environmental changes in urban areas. The information quantity contained in a band is an important parameter in evaluating the band. The deviation and entropy are often used to show information amount. Feature selection is one of the most important steps in recognition and classification of remote sensing images. Therefore, it is necessary to select features before classification. The optimal features are those that can be used to distinguish objects easily and correctly. Three factors—the information quantity of bands, the correlation between bands and the spectral characteristic (e.g. absorption specialty) of classified objects in test area Bucharest have been considered in our study. As, the spectral characteristic of an object is influenced by many factors, being difficult to define optimal feature parameters to distinguish all the objects in a whole area, a method of multi-level feature selection

  18. Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin

    NASA Astrophysics Data System (ADS)

    Cherkasova, O. P.; Fedorov, V. I.; Nemova, E. F.; Pogodin, A. S.

    2009-10-01

    The exposure of albumin (transport protein of blood serum) to laser radiation with a frequency of 3.6 THz resulted in a change in the intensity of characteristic bands in UV absorption spectra and in circular dichroism spectra. These changes depend on the exposure duration and the laser radiation power and indicate conformational changes in protein molecules.

  19. [Progress in spectral characteristics of biological soil crust of arid or semiarid region].

    PubMed

    Fang, Shi-bo; Liu, Hua-jie; Zhang, Xin-shi; Dong, Ming; Liu, Jian-dong

    2008-08-01

    The Biological Soil Crusts (BSC) (also known as organic or microphytic crust) can be formed by different combinations of microphytic communities including mosses, lichens, liverworts, algae, fungi, cyanobacteria (= blue-green algae or Cyanophyta), as well as bacteria. Large areas of sand fields in arid and semi-arid regions are covered by BSC. Remote sensing distinction should be made between physical and biogenical crust formations. It was reviewed the advances of domestic and overseas studies of BSC spectral characteristics, as well as spectral reflectance measurement in situ of our workgruop. When the BSC is wet, it turns green, a notable change in the reflectance curve occurs. The wet BSC's spectral reflectance curve is similar to those of the higher plants and therefore may lead to misinterpretation of the vegetation dynamics and to overestimation of ecosystem productivity. This spectral feature produces a much higher NDVI value for the wet moss BSC than for the dry moss BSC (0.65 vs. 0.30 units, respectively), a higher NDVI value for the wet algae BSC than for the dry algae BSC (0.30 vs. 0.15 units, respectively). The "maximum value composite" (MVC) technique is used to eliminate the effect of clouds and haze from vegetation maps. Misinterpretation of the vegetation dynamics could be more severe due to the MVC technique used to compose the global vegetation maps in the study of vegetation dynamics. But relatively limited research has been conducted to investigate the spectral characteristics of BSC change with different moisture conditions and under different seasons. More research works could be considered in spectral characteristics of BSC. The researches would be useful for detecing and mapping BSC, from remote sensing imagery. It also is to the advantage to employ Vegetation Index wisely.

  20. Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Brauers, T.; Bossmeyer, J.; Dorn, H.-P.; Schlosser, E.; Tillmann, R.; Wegener, R.; Wahner, A.

    2007-07-01

    The results from a simulation chamber study on the formaldehyde (HCHO) absorption cross section in the UV spectral region are presented. We performed 4 experiments at ambient HCHO concentrations with simultaneous measurements of two DOAS instruments in the atmosphere simulation chamber SAPHIR in Jülich. The two instruments differ in their spectral resolution, one working at 0.2 nm (broad-band, BB-DOAS), the other at 2.7 pm (high-resolution, HR-DOAS). Both instruments use dedicated multi reflection cells to achieve long light path lengths of 960 m and 2240 m, respectively, inside the chamber. During two experiments HCHO was injected into the clean chamber by thermolysis of well defined amounts of para-formaldehyde reaching mixing rations of 30 ppbV at maximum. The HCHO concentration calculated from the injection and the chamber volume agrees with the BB-DOAS measured value when the absorption cross section of Meller and Moortgat (2000) and the temperature coefficient of Cantrell (1990) were used for data evaluation. In two further experiments we produced HCHO in-situ from the ozone + ethene reaction which was intended to provide an independent way of HCHO calibration through the measurements of ozone and ethene. However, we found an unexpected deviation from the current understanding of the ozone + ethene reaction when CO was added to suppress possible oxidation of ethene by OH radicals. The reaction of the Criegee intermediate with CO could be 240 times slower than currently assumed. Based on the BB-DOAS measurements we could deduce a high-resolution cross section for HCHO which was not measured directly so far.

  1. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    2000-01-01

    A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.

  2. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    1999-01-01

    A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.

  3. Spectral characteristics of low-frequency plasma turbulence upstream of Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.-H.; Coates, A. J.; Acuna, M. H.; Goldstein, M. L.; Johnstone, A. D.; Neubauer, F. M.; Reme, H.

    1989-01-01

    Two upstream regions have been identified in Giotto spacecraft magnetic field and plasma measurements subjected to cross-spectral analyses, in order to determine this cometary environment's low-frequency plasma turbulence spectral characteristics. One region's solar wind magnetic field was approximately parallel, and the other's perpendicular, to the solar wind flow velocity direction. Additional divergences relate to the regions having magnetic field lines that are either connected or disconnected to the cometary bow shock wave in either the quasi-parallel or quasi-perpendicular regions.

  4. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  5. The use of the spectral matrix in analyzing the propagation characteristics of electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Lefeuvre, F.; Parrot, M.

    1984-09-01

    Estimations of all or part of the power spectra of the wave field components of an electromagnetic emission, observed on GEOS and ISEE satellites are used to obtain information on the wave field, and to determine the wave distribution function (WDF). Knowledge of 3 X 3 spectral matrix of the magnetic wave field components provides information on the degree of polarization of the wave and on the validity of the plane wave approximation. Full information on the propagation characteristics of a sum of waves, or of random wave fields, is also obtained from the spectral matrix using either multiplane wave models or WDF models.

  6. Spectral characteristics of two-photon autofluorescence and second harmonic generation from human skin in vivo

    NASA Astrophysics Data System (ADS)

    Breunig, Hans G.; König, Karsten

    2011-03-01

    We performed multiphoton imaging of human skin and recorded in combination the complete spectral content of the signals in vivo. The spectra represent the integration of multiphoton signals over the investigated regions of the epidermis and dermis. They are used to study depth-resolved in vivo emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, collagen and elastin. The identification of the specific fluorophores is supported by analysis of additional in vivo fluorescence lifetime imaging. Furthermore, as a potential application of spectrally selective imaging the possibility to investigate the penetration of nanoparticles from sunscreen lotion into skin in vivo is discussed.

  7. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  8. Spectral Moments of Collision-Induced Absorption of CO2 Pairs: The Role of the Intermolecular Potential

    NASA Technical Reports Server (NTRS)

    Gruszka, Marcin; Borysow, Aleksandra

    1994-01-01

    In this paper we examine the role of the anisotropy of the intermolecular potential in the rototranslational collision-induced absorption of the CO2 pairs. Using newly developed formulas that include the effects of anisotropy of the potential to all orders, we calculate the two lowest spectral moments gamma(prime), and alpha(prime), for four different classes of C02 pair potentials and compare the results with the experimental values. We assumed only multipolar induction in the process of forming the induced dipole, with the second-order contributions included. Using a site-site LJ and a site-site semi-ab initio intermolecular potentials we were able to reproduce the experimental values of gamma(prime), and alpha(prime) moments over entire temperature range from 230 to 330 K. Also, the role of an electrostatic interaction between two C02 molecules and its impact on the spectral moments is thoroughly investigated. An isotropic core with a point quadrupole centered at each molecule is shown to be an inadequate representation of the C02-CO2 potential. Additionally, we show the results obtained with the first- and second-order perturbation theory to be more than twice too small.

  9. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  10. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  11. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  12. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    NASA Astrophysics Data System (ADS)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  13. Correlation of Coal Calorific Value and Sulphur Content with 57Fe Mössbauer Spectral Absorption

    NASA Astrophysics Data System (ADS)

    Wynter, C. I.; May, L.; Oliver, F. W.; Hall, J. A.; Hoffman, E. J.; Kumar, A.; Christopher, L.

    Coal is the most abundant, most economical and widely distributed fossil fuel in the world today. It is also the principal form of reductant in the iron and steel industry. This study was undertaken to not only add to the growing use of Mössbauer spectroscopy application in industry but also to increase the chemistry and physics knowledge base of coal. Coal is 40 to 80 percent carbon with small amounts of sulphur and iron as pyrite and ferrous sulphate. The environmental concern associated with mining and burning of coal has long been a subject of investigation with emphasis on the sulphur content. We examined five ranks of coal: anthracite, Eastern bituminous, bituminous, sub-bituminous, and lignite. Relationships were investigated between the Calorific Value (CV) of coal and inorganic sulphur content, 57Fe Mössbauer absorption, and ratio of pyrite (FeS2) to FeSO4. Twenty-eight samples of the five different types of coal had CVs ranging from 32,403 to 16,100 kJ/kg and sulphur concentrations ranging from 0.28 to 2.5 percent. CV appeared to be positively correlated with concentrations of sulphur and of iron-sulphur salts, although there appears to be little connection with the distribution of their oxidation states.

  14. Organic Carbon: Correlating UV-Vis Absorption Spectral Patterns to Hygroscopicity

    NASA Astrophysics Data System (ADS)

    Kanu, A. M.; Bond, T. C.

    2005-12-01

    The complex composition of organic aerosols (OC) in the atmosphere results from an array of sources. Thousands of individual organic compounds within these aerosols are difficult to identify: however, studies suggest these mixtures affect the radiative balance of Earth's atmosphere. Therefore, it is at least as vital to study the absorption and scattering of incoming solar radiation by aerosols as it is to distinguish and quantify the myriad compounds. OC can represent significant fractions of atmospheric aerosol and can play a prominent role in atmospheric radiative forcing. My research focuses on identifying organic carbon with different hygroscopic and optical properties--both of which are affected by composition. We use gradient chromatographic elution with reverse-phase and ion-exchange chromatography columns. We examine aerosols from wood combustion generated within strict temperature regimes. Results demonstrate distinct clusters according to different water affinities. Furthermore, each cluster absorbs in staggered regimes of ultraviolet and visible light, depending on the combustion temperature at which the OC fraction is generated. The association between various absorbing features and hygroscopic properties may imply distinct climate forcing potentials for different fractions of the organic carbon.

  15. SWIFT view of the 2015 outburst of GS 2023+338 (V404 Cyg): complex evolution of spectral and temporal characteristics

    NASA Astrophysics Data System (ADS)

    Radhika, D.; Nandi, A.; Agrawal, V. K.; Mandal, S.

    2016-10-01

    We study the spectral and temporal characteristics of the source GS 2023+338 (V404 Cyg) during the initial phase of its 2015 June outburst, over the energy range of 0.5-150 keV. This is the first detailed study of the characteristics of this source based on SWIFT observations, being reported. Based on our analysis, we understand that the source existed in the hard, intermediate and soft spectral states. We find that the evolution of the spectral parameters, the hardness-intensity diagram and the rms-intensity diagram are not similar to those observed for most of the outbursting black hole sources. We also observe presence of weak peaked components in the power density spectra during the intermediate state of the source. Dramatic changes in the spectral and temporal properties are also exhibited before the ejection of a radio jet suggesting it to be associated with the coronal mass ejection. It seems that may be due to evacuation of the inner part of the Keplerian disc for a short duration, the disc component is not observed after the huge radio flare. The absorption features observed in the low-energy spectra suggest the presence of wind emission and the evolution of the characteristics of the variable Fe line emission during both hard and intermediate states, indicate its origin to be probably related to the wind/outflow.

  16. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine–phospholipid nanocomplex

    PubMed Central

    Hu, Jiangbo; Chen, Dilong; Jiang, Rong; Tan, Qunyou; Zhu, Biyue; Zhang, Jingqing

    2014-01-01

    Purpose The purpose of this study was to assess the improved absorption and in vivo kinetic characteristics of a novel water-in-oil nanoemulsion containing evodiamine–phospholipid nanocomplex (NEEPN) when administered orally. Methods NEEPN was fabricated by loading an evodiamine–phospholipid nanocomplex into a water-in-oil nanoemulsive system. The gastrointestinal absorption of NEEPN was investigated using an in situ perfusion method. The modified in vivo kinetic characteristics of evodiamine (EDA) in NEEPN were also evaluated. Results Compared with EDA or conventional nanoemulsions containing EDA instead of evodiamine–phospholipid complex, NEEPN with its favorable in vivo kinetic characteristics clearly enhanced the gastrointestinal absorption and oral bioavailability of EDA; for example, the relative bioavailability of NEEPN to free EDA was calculated to be 630.35%, and the effective permeability of NEEPN in the colon was 8.64-fold that of EDA. Conclusion NEEPN markedly improved the oral bioavailability of EDA, which was probably due to its increased gastrointestinal absorption. NEEPN also increased efficacy and reduced adverse effects for oral delivery of EDA. Such finding demonstrates great clinical significance as an ideal drug delivery system demands high efficacy and no adverse effects. PMID:25258531

  17. The Effect of Heat on Structural Characteristics and Water Absorption Behavior of Agave Fibers

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2008-04-01

    The structural characteristics and water absorptions behavior agave fibers were investigated over a range of temperature by using XRD, IR, TG and gravimetric methods. Three distinct thermal processes were observed during heating the fiber in the temperature range 310-760 K in air, oxygen and nitrogen invariably. The cellulose structures of the fibers were unaffected on heating up to 450 K. The samples showed thermal decomposition processes beyond 500 K. Fibers displayed a two-stage diffusion behavior. The structural parameters and kinetic of water absorption of the fibers at specific temperatures were analyzed.

  18. Absorption characteristics of glass fiber materials at normal and oblique incidence. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1974-01-01

    The absorption characteristics of several fibrous materials of the Owens Corning 700 Fiberglas Series were measured to determine the variation in impedance as a function of incident angle of the sound wave. The results, indicate that the fibrous absorbents behave as extended reacting materials. The poor agreement between measurement and theory for sound absorption based on the parameters of flow resistance and porosity indicates that this theory does not adequately predict the acoustic behavior of fibrous materials. A much better agreement with measured results is obtained for values calculated from the bulk acoustic parameters of the material.

  19. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance.

    PubMed

    Judycka-Proma, U; Bober, L; Gajewicz, A; Puzyn, T; Błażejowski, J

    2015-03-01

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH=2.5 and pH=7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds). PMID:25544186

  20. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance

    NASA Astrophysics Data System (ADS)

    Judycka-Proma, U.; Bober, L.; Gajewicz, A.; Puzyn, T.; Błażejowski, J.

    2015-03-01

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH = 2.5 and pH = 7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds).

  1. [Investigation of dynamic spectral characteristics of water in blood plasma hydrosols from breast cancer patients].

    PubMed

    Anichkov, N M; Manikhas, A G; Rozin, I T; Khaloimov, A I

    2006-01-01

    Our data on spectral characteristics of water in blood plasma hydrosols from breast cancer patients and healthy subjects are presented. A substantial difference between the two groups was found. As it was shown by us earlier, in breast cancer patients, as well as in other cancer patients, changes in spectral characteristics of water influence tissue hydrosols of the whole body. They persist even after tumor is radically removed. Such differences were probably linked to those in water molecular resonance frequencies. Using infrared spectroscopy, we confirmed the evidence available on carcinogenic (promoting) effect of both native and synthetic estrogens. It is suggested that healthy adult women have a certain "frequency immunity" which protects from the monthly autogenous promoting influences of estrogens. Our findings may contribute to devising further therapeutic frequency-assisted means of impacting on malignant tissue hydrosols.

  2. Temporal and spatial variation of canopy spectral characteristics in apple orchard

    NASA Astrophysics Data System (ADS)

    Deng, Xiaolei; Li, Minzan; Zheng, Lihua; Zhang, Yao; An, Xiaofei

    2012-11-01

    Plant nutritional status can be evaluated with remote sensing. In order to detect the temporal and spatial variation of spectral characteristics in apple orchard, the experiments were carried out. Firstly the flower/ leaf samples from 15 year-on trees and 5 year-off t rees were collected. The real time reflectance spectra of flowers/leaves from three parts (base, middle, top) of each main branch were measured by using the ASD spectrometer. And then the temporal and spatial variations of spectral characteristics were analyzed. The results showed that leaves from the top of the branch had higher reflectance than the other parts of the branch at the same time. The reflectance spectra of apple trees changed significantly at different stages. Furthermore, the reflectance spectra varied in different parts of the apple trees as well as in different trees. Accordingly the temporal curve and spatial figure were obtained and the growing informat ion can be analyzed from them.

  3. Spectral and temperature characteristics of light transmission in solutions of chemical indicators

    NASA Astrophysics Data System (ADS)

    Gavrichev, V. D.; Dmitriev, A. L.; Karacharov, G.; Nagibin, Yu. T.

    2015-12-01

    Spectral and temperature characteristics of light transmission in water solutions of chemical indicators— bromophenol blue, bromothymol blue, and cresol red—were measured in the wavelength range of 500-750 nm and the temperature range from 20 to 90°C. It was demonstrated that these solutions can be applied in optical fiber thermometers with continuous reading which are not affected by strong external electromagnetic fields.

  4. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system*

    PubMed Central

    Fang, Zhen-huan; Fu, Xia-ping; He, Xue-ming

    2016-01-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μ a and the reduced scattering coefficient μ s' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μ a and μ s' of different parts of the kiwifruit were 0.031–0.308 mm−1 and 0.120–0.946 mm−1, respectively. The results showed significant differences among the μ a and μ s' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  5. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.

    PubMed

    Fang, Zhen-Huan; Fu, Xia-Ping; He, Xue-Ming

    2016-06-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μa and the reduced scattering coefficient μs' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μa and μs' of different parts of the kiwifruit were 0.031-0.308 mm(-1) and 0.120-0.946 mm(-1), respectively. The results showed significant differences among the μa and μs' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  6. Assessment of cross-sensor NDVI-variations caused by spectral band characteristics

    NASA Astrophysics Data System (ADS)

    Heinzel, V.; Franke, J.; Menz, G.

    2006-08-01

    Remote sensing-based vegetation indices are widely used for vegetation monitoring applications. The NDVI is the most commonly used indicator for spatial and temporal vegetation dynamics. For long term or multitemporal observations, the combined use of multisensoral NDVI data is necessary. However, due to different sensor characteristics NDVIvariations occur. The sensor geometry, like viewing- and solar angle, atmospherical conditions, topography and spatial or radiometric resolution influence the data. This study contributes to another important factor, the spectral characteristics of different sensors, in particular the relative spectral response (RSR) functions. In order to analyze the NDVI variations caused by different RSR functions, the multispectral bands of Landsat 5 TM, QuickBird, Aster and SPOT 5 were simulated by the use of hyperspectral data of the airborne HyMap sensor. The observed NDVI differences showed a non-linear but systematic NDVI offset between the sensors. Results indicate that the NDVI differences decrease significantly after cross-calibration. A gradual cross-sensor calibration of NDVI taking first spectral characteristics into account is essential. Residual factors could be calibrated in a second step. Such an inter-calibration is desirable for multisensoral NDVI- analyses to ensure the comparability of achieved results.

  7. Spectral particle absorption coefficients, single scattering albedos and imaginary parts of refractive indices from ground based in situ measurements at Cape Verde Island during SAMUM-2

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Kandler, K.; Wiedensohler, A.

    2011-09-01

    During the SAMUM-2 experiment, spectral absorption coefficients, single scattering albedos and imaginary parts of refractive indices of mineral dust particles were investigated at the Cape Verde Islands. Main absorbing constituents of airborne samples were mineral dust and soot. PM10 spectral absorption coefficients were measured using a Spectral Optical Absorption Photometer (SOAP) covering the wavelength range from 300 to 960 nm with a resolution of 25 nm. From SOAP, also information on the particle scattering coefficients could be retrieved. Spectral single scattering albedos were obtained in the wavelength range from 350 to 960 nm. Imaginary parts of the refractive index were inferred from measured particle number size distributions and absorption coefficients using Mie scattering theory. Imaginary parts for a dust case were 0.012, 0.0047 and 0.0019 at the wavelengths 450, 550 and 950 nm, respectively, and the single scattering albedos were 0.91, 0.96 and 0.98 at the same wavelengths. During a marine case, the imaginary parts of the refractive indices were 0.0045, 0.0040 and 0.0036 and single scattering albedos were 0.93, 0.95 and 0.96 at the wavelengths given above.

  8. [Study on canopy spectral characteristics of paddy polluted by heavy metals].

    PubMed

    Ren, Hong-Yan; Zhuang, Da-Fang; Pan, Jian-Jun; Shi, Xue-Zheng; Shi, Run-He; Wang, Hong-Jie

    2010-02-01

    Because of frequent mining, heavy metals are brought into environment like soils, water and atmosphere, resulting heavy metal contamination in the agricultural region beside mines. Heavy metals contamination causes vegetation stress like destruction of chloroplast structure, chlorophyll content decrease, blunt photosynthesis, etc. Spectral responses to changes in chlorophyll content and photosynthesis make it possible that remote sensing is applied in monitoring heavy metals stress on paddy plants. Field spectroradiometer was used to acquire canopy reflectance spectra of paddy plants contaminated by heavy metals released from local mining. The present study was conducted to (1) investigate discrimination of canopy reflectance spectra of heavy metal polluted and normal paddy plants; (2) extract spectral characteristics of contaminated paddy plants and compare them. By means of correlation analysis, sensitive bands (SB) were firstly picked out from canopy spectra. Secondly, on the basis of these sensitive bands, normalized difference vegetation indices (NDVI) were established, and then red edge position (REP) was extracted from canopy spectra via curve fitting of inverted Gaussian model. As a result of correlation analysis, 460, 560, 660 and 1 100 nm were considered respectively as sensitive band for Pb, Zn, Cu and As concentration in paddy leaves. Furthermore, heavy metal concentrations (Pb, Zn, Cu and As) were significantly correlated with NDVIs (Pb, NDV(510, 810); Zn, NDVI(510, 870; Cu, NDVI(660, 870); As, NDVI(510, 810)). Heavy metals were also significantly correlated with REP, however, the inflexion termed as spectral critical value (SCV) between low and high heavy metals concentrations should be considered during applying REP in remote sensing monitoring. Moreover, NDVI and REP are much better than SB in terms of capability of expressing spectral information. Therefore, heavy metals contamination in paddy plants can be remotely monitored via ground

  9. Broadband Two-Photon Absorption Characteristics of Highly Photostable Fluorenyl-Dicyanoethylenylated [60]Fullerene Dyads.

    PubMed

    Jeon, Seaho; Wang, Min; Ji, Wei; Tan, Loon-Seng; Cooper, Thomas; Chiang, Long Y

    2016-01-01

    We synthesized four C60-(light-harvesting antenna) dyads C60 (>CPAF-Cn) (n = 4, 9, 12, or 18) 1-Cn for the investigation of their broadband nonlinear absorption effect. Since we have previously demonstrated their high function as two-photon absorption (2PA) materials at 1000 nm, a different 2PA wavelength of 780 nm was applied in the study. The combined data taken at two different wavelength ranges substantiated the broadband characteristics of 1-Cn. We proposed that the observed broadband absorptions may be attributed by a partial π-conjugation between the C60 > cage and CPAF-Cn moieties, via endinitrile tautomeric resonance, giving a resonance state with enhanced molecular conjugation. This transient state could increase its 2PA and excited-state absorption at 800 nm. In addition, a trend of concentration-dependent 2PA cross-section (σ₂ ) and excited-state absorption magnitude was detected showing a higher σ value at a lower concentration that was correlated to increasing molecular separation with less aggregation for dyads C60(>CPAF-C18) and C60(>CPAF-C₉), as better 2PA and excited-state absorbers. PMID:27187350

  10. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  11. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon

    SciTech Connect

    Hadley, Odelle; Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2008-04-14

    Black carbon (BC), a main component of combustion-generated soot, is a strong absorber of sunlight and contributes to climate change. Measurement methods for BC are uncertain, however. This study presents a method for analyzing the BC mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength as the sample is heated. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration based on derived mass attenuation efficiencies (MAE) of BC and char. The fraction of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO{sub 2}) at temperatures higher than 480 C. This method was applied to measure the BC concentration in precipitation samples collected from coastal and mountain sites in Northern California. The uncertainty in measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12 to 100 percent, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 {micro}g BC and uncertainty approached 20 percent for BC mass loading greater than 1.0 {micro}g BC.

  12. Measurements of mesospheric water vapour, aerosols and temperatures with the Spectral Absorption Line Imager (SALI-AT)

    NASA Astrophysics Data System (ADS)

    Shepherd, M. G.; Mullins, M.; Brown, S.; Sargoytchev, S. I.

    2001-08-01

    Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, mesospheric clouds (MC). The processes of formation and occurrence parameters of MC constitute an interesting problem in their own right, but recently evidence has been provided which suggests that they are a critical indicator of atmospheric change. The aim of the SALI-AT experiment is to make simultaneous (although not strictly collocated) measurements of water vapour, aerosols and temperature in the mesosphere and the mesopause region under twilight condition in the presence of mesospheric clouds. The water vapour will be measured in the regime of solar occultation utilizing a water vapour absorption band at 936 nm wavelength employing the SALI (Spectral Absorption Line Imager) instrument concept. A three-channel zenith photometer, AT-3, with wavelengths of 385 nm, 525 nm, and 1040 nm will measure Mie and Rayleigh scattering giving both mesospheric temperature profiles and the particle size distribution. Both instruments are small, low cost and low mass. It is envisioned that the SALI-AT experiment be flown on a small rocket - the Improved Orion/Hotel payload configuration, from the Andoya Rocket range, Norway. Alternatively the instrument can be flown as a "passenger" on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height.

  13. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  14. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  15. The spectral and image characteristics of vegetation in the presence of heavy metals in southern China

    NASA Astrophysics Data System (ADS)

    Yang, Fengjie; Li, Na; Zhou, Guangzhu; Song, Cuiyu; Li, Qingting

    2008-10-01

    The principle and methodology to monitor the heavy metal pollution using hyperspectral remote sensing are put forward based on the study areas, copper mine in De-Xing and tin ore in GeJiu, and selected plants, China Sumac, Sweet Wormwood Herb, and Nephrolepis Cordifolia. In the areas defined by former information, vegetation samples and corresponding spectral data are gathered. The samples are then analyzed in chemical lab, telling us to what extent the vegetation is polluted by heavy metal. The spectral curves are also processed, and some spectral parameters are extracted, such as reflectance, blue-shift extent, position of red-edge, vegetation index, band-depth. Then the regression model from spectral characteristic parameters to heavy metal content can be built. At last, the conclusion can be attained. In copper mine area, the vegetation is polluted by seven kinds of heavy metals. As far as China Sumac, the reflectance of red band correlates the Pb content well. The reflectance of all study plants at 1240nm and 725/675(nm) correlates heavy metal content well. The reflectance of 450nm, 550nm, 670nm, 760nm, and 1240nm can be liner combined as a parameter to monitor heavy metal pollution. Besides, some band-depth can also be combined as parameters using "Enter". In a word, as an advanced technique to monitor environmental pollution, hyperspectral remote sensing has wild perspective.

  16. Relationship between anaerobic digestion of biodegradable solid waste and spectral characteristics of the derived liquid digestate.

    PubMed

    Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing

    2014-06-01

    The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion.

  17. [Absorption and fluorescence characteristics of dissolved organic matter (DOM) in rainwater and sources analysis in summer and winter season].

    PubMed

    Liang, Jian; Jiang, Tao; WeiI, Shi-Qiang; Lu, Song; Yan, Jin-Long; Wang, Qi-Lei; Gao, Jie

    2015-03-01

    This study aimed at evaluating the variability of the optical properties including UV-Vis and fluorescence characteristics of dissolved organic matter (DOM) from rainwater in summer and winter seasons. UV-Vis and fluorescence spectroscopy, together with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and fire events map, were conducted to characterize DOM and investigate its sources and contributions. The results showed that as compared with aquatic and soil DOM, rainwater DOM showed similar spectral characteristics, suggesting DOM in precipitation was also an important contributor to DOM pool in terrestrial and aquatic systems. The concentrations of DOC in rainwater were 0.88-12.80 mg x L(-1), and the CDOM concentrations were 3.17-21.11 mg x L(-1). Differences of DOM samples between summer and winter were significant (P < 0.05). In comparison to summer, DOM samples in winter had lower molecular weight and aromaticity, and also lower humification. Input of DOM in winter was predominantly derived from local and short-distance distances, while non-special scattering sources were identified as the main contributors in summer. Although absorption and fluorescence spectroscopy could be used to identify DOM composition and sources, there were obvious differences in spectra and sources analysis between rainwater DOM and the others from other sources. Thus, the classic differentiation method by "allochthonous (terrigenous) and autochthonous (authigenic)" is possibly too simple and arbitrary for characterization of DOM in rainwater.

  18. Absorption fever characteristics due to percutaneous renal biopsy-related hematoma.

    PubMed

    Hu, Tingyang; Liu, Qingquan; Xu, Qin; Liu, Hui; Feng, Yan; Qiu, Wenhui; Huang, Fei; Lv, Yongman

    2016-09-01

    This study aims to describe the unique characteristics of absorption fever in patients with a hematoma after percutaneous renal biopsy (PRB) and distinguish it from secondary infection of hematoma.We retrospectively studied 2639 percutaneous renal biopsies of native kidneys. We compared the clinical characteristics between 2 groups: complication group (gross hematuria and/or perirenal hematoma) and no complication group. The axillary temperature of patients with a hematoma who presented with fever was measured at 06:00, 10:00, 14:00, and 18:00. The onset and duration of fever and the highest body temperature were recorded. Thereafter, we described the time distribution of absorption fever and obtained the curve of fever pattern.Of 2639 patients, PRB complications were observed in 154 (5.8%) patients. Perirenal hematoma was the most common complication, which occurred in 118 (4.5%) of biopsies, including 74 small hematoma cases (thickness ≤3 cm) and 44 large hematoma cases (thickness >3 cm). Major complications were observed in only 6 (0.2%) cases resulting from a large hematoma. Of 118 patients with a perirenal hematoma, absorption fever was observed in 48 cases. Furthermore, large hematomas had a 5.23-fold higher risk for absorption fever than the small ones.Blood pressure, renal insufficiency, and prothrombin time could be risk factors for complications. Fever is common in patients with hematoma because of renal biopsy and is usually noninfectious. Evaluation of patients with post-biopsy fever is necessary to identify any obvious infection sources. If no focus is identified, empiric antibiotic therapy should not be initiated nor should prophylactic antibiotics be extended for prolonged durations. Absorption fevers will resolve in time without specific therapeutic interventions.

  19. Absorption fever characteristics due to percutaneous renal biopsy-related hematoma.

    PubMed

    Hu, Tingyang; Liu, Qingquan; Xu, Qin; Liu, Hui; Feng, Yan; Qiu, Wenhui; Huang, Fei; Lv, Yongman

    2016-09-01

    This study aims to describe the unique characteristics of absorption fever in patients with a hematoma after percutaneous renal biopsy (PRB) and distinguish it from secondary infection of hematoma.We retrospectively studied 2639 percutaneous renal biopsies of native kidneys. We compared the clinical characteristics between 2 groups: complication group (gross hematuria and/or perirenal hematoma) and no complication group. The axillary temperature of patients with a hematoma who presented with fever was measured at 06:00, 10:00, 14:00, and 18:00. The onset and duration of fever and the highest body temperature were recorded. Thereafter, we described the time distribution of absorption fever and obtained the curve of fever pattern.Of 2639 patients, PRB complications were observed in 154 (5.8%) patients. Perirenal hematoma was the most common complication, which occurred in 118 (4.5%) of biopsies, including 74 small hematoma cases (thickness ≤3 cm) and 44 large hematoma cases (thickness >3 cm). Major complications were observed in only 6 (0.2%) cases resulting from a large hematoma. Of 118 patients with a perirenal hematoma, absorption fever was observed in 48 cases. Furthermore, large hematomas had a 5.23-fold higher risk for absorption fever than the small ones.Blood pressure, renal insufficiency, and prothrombin time could be risk factors for complications. Fever is common in patients with hematoma because of renal biopsy and is usually noninfectious. Evaluation of patients with post-biopsy fever is necessary to identify any obvious infection sources. If no focus is identified, empiric antibiotic therapy should not be initiated nor should prophylactic antibiotics be extended for prolonged durations. Absorption fevers will resolve in time without specific therapeutic interventions. PMID:27631225

  20. Variation of Spectral Characteristics of Coelenteramide-Containing Fluorescent Protein from Obelia Longissima Exposed to Dimethyl Sulfoxide

    NASA Astrophysics Data System (ADS)

    Petrova, A. S.; Alieva, R. R.; Belogurova, N. V.; Tirranen, L. S.; Kudryasheva, N. S.

    2016-08-01

    Effect of dimethyl sulfoxide (DMSO), a widespread biomedical agent, on spectral-luminescent characteristics of coelenteramide-containing fluorescent protein - discharged obelin - is investigated. Contributions of violet and blue-green spectral components to fluorescence of discharged obelin are elucidated and characterized at different photoexcitation energies. Dependences of these contributions on the DMSO concentration are presented. Spectral changes are related to the destructive effect of DMSO on fluorescent protein and decreasing efficiency of proton transfer to electronically excited states of fluorophore.

  1. Spectral characteristics of tramadol in different solvents and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Anton Smith, A.; Manavalan, R.; Kannan, K.; Rajendiran, N.

    2009-10-01

    Effect of solvents and β-cyclodextrin on the absorption and fluorescence spectra of tramadol drug has been investigated and compared with anisole. The solid inclusion complex of tramadol with β-CD is investigated by FT-IR, 1H NMR, scanning electron microscope (SEM), DSC and semiempirical methods. The thermodynamic parameter (Δ G) of inclusion process is determined. A solvent study shows (i) the spectral behaviour of both tramadol and anisole molecules is similar to each other and (ii) the cyclohexanol group in tramadol is not effectively conjugated with anisole group. However, in β-CD, due to space restriction of the CD cavity, a weak interaction is present between the above groups in tramadol. β-Cyclodextrin studies show that tramadol forms 1:2 inclusion complex with β-CD. A mechanism is proposed for the inclusion process.

  2. Characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy.

    PubMed

    Li, Kuohu; Guo, Lianbo; Li, Xiangyou; Hao, Zhongqi; Li, Jiaming; Yang, Xinyan; Shen, Meng; Zeng, Qingdong; Lu, Yongfeng; Zeng, Xiaoyan

    2016-09-10

    To study the characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy, the changes in the spectral line intensities of iron (Fe) and chromium (Cr) during the development of craters were investigated. Images of the plasmas formed during crater development were captured, and the temperatures and electron densities of the plasmas were calculated. The results showed that when a crater developed, the intensities of the ion lines decreased and the intensities of the atomic lines increased. This is because the plasmas generated in the crater have a higher initial emission intensity and experience more rapid cooling as the crater develops. These two effects lead to changes in the rates of decrease of ion and atomic line intensities over time. Therefore, the changes in intensities of ion lines caused by crater development differ from which of atomic lines.

  3. Spectral and lasing characteristics of 1% Ho:YAG ceramics under intracavity pumping

    SciTech Connect

    Bagayev, S N; Vatnik, S M; Vedin, I A; Kurbatov, P F; Osipov, V V; Shitov, V A; Maksimov, R N; Luk'yashin, K E; Pavlyuk, A A

    2015-01-31

    High-transparency 1% Ho:YAG ceramics with the transmission coefficient of 82% in the IR range at the sample thickness of 1 mm are synthesised from a mixture of the Ho:Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} nanopowders obtained by the laser method. Results of investigations of spectral and lasing characteristics of 1 % Ho:YAG ceramics under intracavity pumping by radiation of a 5% Tm:KLuW disk element are presented. Based on spectral intensity analysis of generation in the 1.8 – 2.1 mm range and on cavity parameters, the estimated lasing slope efficiency for 1% Ho:YAG ceramics is about 40%. (lasers)

  4. Characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy.

    PubMed

    Li, Kuohu; Guo, Lianbo; Li, Xiangyou; Hao, Zhongqi; Li, Jiaming; Yang, Xinyan; Shen, Meng; Zeng, Qingdong; Lu, Yongfeng; Zeng, Xiaoyan

    2016-09-10

    To study the characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy, the changes in the spectral line intensities of iron (Fe) and chromium (Cr) during the development of craters were investigated. Images of the plasmas formed during crater development were captured, and the temperatures and electron densities of the plasmas were calculated. The results showed that when a crater developed, the intensities of the ion lines decreased and the intensities of the atomic lines increased. This is because the plasmas generated in the crater have a higher initial emission intensity and experience more rapid cooling as the crater develops. These two effects lead to changes in the rates of decrease of ion and atomic line intensities over time. Therefore, the changes in intensities of ion lines caused by crater development differ from which of atomic lines. PMID:27661384

  5. [Spectral characteristics of decomposition of incorporated straw in compound polluted arid loess].

    PubMed

    Fan, Chun-Hui; Zhang, Ying-Chao; Xu, Ji-Ting; Wang, Jia-Hong

    2014-04-01

    The original loess from western China was used as soil sample, the spectral methods of scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR) were used to investigate the characteristics of decomposed straw and formed humic acids in compound polluted arid loess. The SEM micrographs show the variation from dense to decomposed surface, and finally to damaged structure, and the EDS data reveal the phenomenon of element transfer. The newly-formed humic acids are of low aromaticity, helpful for increasing the activity of organic matters in loess. The FTIR spectra in the whole process are similar, indicating the complexity of transformation dynamics of humic acids. The molecular structure of humic acids becomes simpler, shown from 13C NMR spectra. The spectral methods are useful for humic acids identification in loess region in straw incorporation process.

  6. Spectral and Temporal Characteristics of LS PEG and TW PIC Using XMM-NEWTON Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, Nasrin; Balman, Solen

    2016-07-01

    We report the analysis of archival XMM-Newton X-ray observations of LS Peg and TW Pic. These are Cataclysmic Variables (CVs) suggested as Intermediate Polars (IPs), but unconfirmed in the X-rays. Identification of several periodic oscillations in the optical band hint them as IPs. Unlike the previous spectral analysis on the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature for LS Peg, we simultaneously fitted all EPIC spectrum (pn+MOS) using a composite model of absorption for interstellar medium (tbabs) with two different partial covering absorbers (pcfabs) including a multitemperature plasma emission component (cevmkl) and a Gaussian emission line at 6.4 keV. TW Pic is best modeled in a similar manner with only one partial covering absorber and an extra Gaussian emission line at 6.7 keV. LS Peg has a maximum plasma temperature of ˜14.8 keV with an X-ray luminosity of ˜5×10^{32}ergs ^{-1} translating to an accretion rate of ˜1.27×10^{-10}M _{⊙}yr ^{-1}. TW Pic shows kT _{max} ˜38.7 keV with an X-ray luminosity around 1.6×10^{33}ergs ^{-1} at an accretion rate of ˜4×10^{-10}M _{⊙}yr ^{-1}. In addition, we discuss orbital modulations in the X-rays and power spectral analysis, and derive the EPIC pn spectra for orbital minimum and orbital maximum phases for both sources. We elaborate on the geometry of accretion and absorption in the X-ray emitting regions of both sources with articulation on the magnetic nature.

  7. Theoretical analysis of the sound absorption characteristics of periodically stiffened micro-perforated plates

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-An; Wang, Xiao-Ming; Mei, Yu-Lin

    2014-10-01

    The vibro-acoustic responses and sound absorption characteristics of two kinds of periodically stiffened micro-perforated plates are analyzed theoretically. The connected periodical structures of the stiffened plates can be ribs or block-like structures. Based on fundamental acoustic formulas of the micro-perforated plate of Maa and Takahashi, semi-analytical models of the vibrating stiffened plates are developed in this paper. Approaches like the space harmonicmethod, Fourier transforms and finite elementmethod (FEM) are adopted to investigate both kinds of the stiffened plates. In the present work, the vibro-acoustic responses of micro-perforated stiffened plates in the wavenumber space are expressed as functions of plate displacement amplitudes. After approximate numerical solutions of the amplitudes, the vibration equations and sound absorption coefficients of the two kinds of stiffened plates in the physical space are then derived by employing the Fourier inverse transform. In numerical examples, the effects of some physical parameters, such as the perforation ratio, incident angles and periodical distances etc., on the sound absorption performance are examined. The proposed approaches are also validated by comparing the present results with solutions of Takahashi and previous studies of stiffened plates. Numerical results indicate that the flexural vibration of the plate has a significant effect on the sound absorption coefficient in the water but has little influence in the air.

  8. Maxillary Arch Dimensions and Spectral Characteristics of Children with Cleft Lip and Palate Who Produce Middorsum Palatal Stops

    ERIC Educational Resources Information Center

    Zajac, David J.; Cevidanes, Lucia; Shah, Sonam; Haley, Katarina L.

    2012-01-01

    Purpose: The purpose of this study was twofold: (a) to determine maxillary arch dimensions of children with repaired cleft lip and palate (CLP) who produced middorsum palatal stops and (b) to describe some spectral characteristics of middorsum palatal stops. Method: Maxillary arch width, length, and height dimensions and first spectral moments of…

  9. Determination of the parameters of a holographic layer from its spectral characteristics

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. A.; Kraiskii, A. V.

    2016-06-01

    Methods for estimating the main parameters of holographic sensors (refractive index modulation depth and hologram thickness) from transmission spectra in the absence of absorption and light scattering are discussed. The consideration is performed for layers oriented parallel to the holographic layer surface under normal light incidence. Direct numerical solution of the problem of light propagation in a periodic nonabsorbing medium is used to study the reflection and transmission spectra of the holographic layer in a wide range of variation in its thickness and the refractive index modulation depth. A classification of the reflection regimes from the holographic layer is proposed (from weak reflection to the photonic crystal regime). A comparison with the results obtained by the coupled-wave analysis is performed, and the limitations of this method at a significant spectral detuning from resonance and under conditions of strong reflection are revealed. It is shown that the main hologram parameters can be estimated from the experimental transmission spectrum of the phase hologram (in the case of strong reflection) based on the spectral dip parameters.

  10. The dynamic nature and spectral characteristics of low-albedo slope streaks on Mars and their possible hydrologic implications

    NASA Astrophysics Data System (ADS)

    Mushkin, A.; Stillman, D. E.; Gillespie, A. R.; Montgomery, D. R.; Schreiber, B. C.; Hibbitts, C.

    2014-12-01

    Low-albedo down-slope streaks that form repeatedly within weekly time-scales and subsequently fade over seasonal to decadal periods are commonly observed in the tropical and mid-latitudes of Mars. 'Dry' mass-wasting processes vs. 'wet' modification of the surface by aqueous phases are the mechanisms typically considered to explain their formation. Recently, high frequency HiRISE image time-series of seasonal recurrence, incremental growth and fading of small (meter-decameter scale) slope streaks, also termed 'recurring slope lineae' (RSL), have been presented in support of a 'wet' origin likely associated with brine seepage. Here, we present new results that demonstrate comparable recurrence, incremental growth and fading characteristics over yearly time-scales for decameter-kilometer scale low-albedo slope-streaks in Lycus Sulci, Amazonis Planitia and Arabia Terra. These dynamic characteristics support the previous association of low-albedo slope streaks with brine seepage based on their geomorphic and spectral relations with surrounding unaffected slopes. Low-albedo slope streaks are typically not associated with detectable erosion or terminal, down-slope depositional activity at the resolution of 25 cm/pixel HiRISE images. CRISM observations consistently indicate that darkened slope-streak surfaces are spectrally enriched in FeOx and are void of detectable water/ice spectral absorption bands. Thus, the liquid seeps considered for the formation of meter to kilometer scale slope streaks are likely low-volume transient events that evaporate and/or freeze and sublime leaving behind a meta-stable dry precipitate that 'stains' the surface dark and may provide insights into the possible composition of such brines. Slope streak formation through a 'wet' brine seepage mechanism supports the possible presence of pressurized sub-surface aquifers that may be released via faults or cracks able to produce recurring transient discharge events during favorably warm daily

  11. Depth-resolved water column spectral absorption of sunlight by phytoplankon during the Southern Ocean Gas Exchange (SOGasEx) Lagrangian tracer experiments

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2008-12-01

    Optical measurements made during gas exchange tracer experiments in the Southern Ocean, Atlantic sector near 51°S, 38°W from March-April 2008 (SOGasEx) were used to develop daily integrated depth- resolved PAR absorbed by phytoplankton. Particulate and phytoplankton pigment spectral absorption coefficients (ap and aph), and methanol-extracted chlorophyll-a concentrations (chl-a) from discrete samples within and below the upper mixed layer (40 stations) were combined with data from optical casts where chlorophyll-a and cdom fluorescence and PAR scalar irradiance were measured (11 stations), PAR Kd was measured from a buoy free of ship shadow for 0-5m (11 stations), and Wetlabs AC-9 whole water absorption coefficients to 150m were measured (14 stations, with 3 in common with fluorescence data) to estimate depth-resolved values for both total spectral absorption and spectral PAR irradiance. By combining depth-adjusted spectral absorption of phytoplankton pigments (aph) with depth-adjusted PAR spectral irradiance we estimated depth-resolved daily PAR irradiance absorbed by photosynthetic pigments. These data can be compared with time-integrated primary production measurements conducted on deck where solar exposure or lamp exposure was modified to simulate a range of depths. Such a synthesis should improve our estimates of depth-integrated daily primary production, and ultimately contribute to refining estimates of carbon export rates to be incorporated into a carbon budget and CO2 air-sea flux models for the SOGasEx experiments.

  12. Spectral characteristics of 254-nm mercury line with consideration for hyperfine structure as applied to quantitative mercury analysis

    NASA Astrophysics Data System (ADS)

    Antipov, A. B.; Genina, E. Y.; Sapozhnikova, V. A.

    2000-01-01

    The differential atomic absorption spectroscopy method is widely used both in scientific investigations and analytical applications. Absorption coefficient (absorption cross section) is an individual characteristics of every element therefore it provides for a high selectivity of an analysis. Differential absorption technique allows one to increase the selectivity by means of background absorption correction. In the cases where we should analyze gas mixtures at different pressures, we should take into account an influence of pressure on absorption line contour of the component to be analyzed. In the paper we present an estimation of such an influence. As an example, we consider an influence of pressure of analyzed gas mixture on sensitivity of RGA-11 differential atomic absorption analyzer with Zeeman background correction. This analyzer had been developed at Institute of Optical Monitoring SB RAS. The authors of the report are well experienced in its exploitation under different conditions.

  13. Studies on Absorption and Emission Characteristics of Inclusion Complexes of Some 4-Arylidenamino-5-phenyl-4H-1, 2, 4-triazole-3-thiols.

    PubMed

    Panda, Sunakar; Nayak, Sashikanta

    2016-03-01

    The inclusion complexes of a series of 4-arylidenamino-5-phenyl-4H-1, 2, 4-triazole-3-thiols have been prepared with β-cyclodextrin. The compounds and their inclusion complexes have been characterized by studying their physical and spectral properties. The thermodynamic stability constant and free energy of activation have been determined to know the stability of inclusion complexes and type of host-guest relation. Finally, absorption, excitation and emission spectra of the compounds (4-arylidenamino-5-phenyl-4H-1, 2, 4-triazole-3-thiols) and their inclusion complexes have been taken. It is found that inclusion complex formation brings about a drastic change in absorption and fluorescence characteristic (both excitation and emission spectra) of newly synthesized compounds.

  14. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  15. [Effect of Foliar Dustfall Content (FDC) on High Spectral Characteristics of Pear Leaves and Remote Sensing Quantitative Inversion of FDC].

    PubMed

    Peng, Jie; Wang, Jia-qiang; Xiang, Hong-ying; Niu, Jian-long; Chi, Chun-ming; Liu, Wei-yang

    2015-05-01

    The precipitation of floating and sinking dust on leaves of plants is called as foliar dustfall. To monitor foliar dustfall, it will provide fundamental basis for environmental assessment and agricultural disaster evaluation of dust area. Therefore, the aim of this work to (1) study the effect of foliar dustfall content (FDC) on high spectral characteristics of pear leaves, (2) analyze the relationship between reflectances and FDC, and (3) establish high spectral remote sensing quantitative inversion model of FDC. The results showed that FDC increased reflectances of visible band (400~700 nrn) with maximum band of 666 nm. Absolute and relative rates of change were -10. 50% and -62. 89%, respectively. The FDC decreased reflectances of near infrared band (701 ~ 1 050 nm) with maximum band of 758 nm. Absolute and relative rates of change were 12. 04% and 41. 75%, respectively. After dustfall was removed, reflection peak of green light and absorption valley of red and blue light became prominent, and slope of 500~750 nm wake band increased when FDC was more than 20 g . m-2. While FDC just slightly affected shape and area of reflection peak of green light when FDC was less than 20 g . m-2. FDC were positive and negative correlated with reflectances of visible band and near infrared band, respectively. Maximum correlation coefficient (0. 61) showed at 663 nm. All of 7 inversion models, the model based on the first-order differential of logarithm of the reciprocal had better stability and predictive ability. The coefficient of determination(R2), root mean square error (RMSE) and relative percent deviation (RPD) of this model were 0. 78, 3. 37 and 2. 09, respectively. The results of this study can provide a certain reference basis for hyperspectral remote sensing of FDC.

  16. [Effect of Foliar Dustfall Content (FDC) on High Spectral Characteristics of Pear Leaves and Remote Sensing Quantitative Inversion of FDC].

    PubMed

    Peng, Jie; Wang, Jia-qiang; Xiang, Hong-ying; Niu, Jian-long; Chi, Chun-ming; Liu, Wei-yang

    2015-05-01

    The precipitation of floating and sinking dust on leaves of plants is called as foliar dustfall. To monitor foliar dustfall, it will provide fundamental basis for environmental assessment and agricultural disaster evaluation of dust area. Therefore, the aim of this work to (1) study the effect of foliar dustfall content (FDC) on high spectral characteristics of pear leaves, (2) analyze the relationship between reflectances and FDC, and (3) establish high spectral remote sensing quantitative inversion model of FDC. The results showed that FDC increased reflectances of visible band (400~700 nrn) with maximum band of 666 nm. Absolute and relative rates of change were -10. 50% and -62. 89%, respectively. The FDC decreased reflectances of near infrared band (701 ~ 1 050 nm) with maximum band of 758 nm. Absolute and relative rates of change were 12. 04% and 41. 75%, respectively. After dustfall was removed, reflection peak of green light and absorption valley of red and blue light became prominent, and slope of 500~750 nm wake band increased when FDC was more than 20 g . m-2. While FDC just slightly affected shape and area of reflection peak of green light when FDC was less than 20 g . m-2. FDC were positive and negative correlated with reflectances of visible band and near infrared band, respectively. Maximum correlation coefficient (0. 61) showed at 663 nm. All of 7 inversion models, the model based on the first-order differential of logarithm of the reciprocal had better stability and predictive ability. The coefficient of determination(R2), root mean square error (RMSE) and relative percent deviation (RPD) of this model were 0. 78, 3. 37 and 2. 09, respectively. The results of this study can provide a certain reference basis for hyperspectral remote sensing of FDC. PMID:26415461

  17. EUV/FUV response characteristics of photographic films for the Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Allen, Maxwell J.; Lindblom, Joakim F.

    1991-01-01

    The photographic film employed by NASA's Multi-Spectral Solar Telescope Array must have high-to-ultrahigh resolution; since the spacecraft bearing the telescope must be evacuated to prevent the failure of delicate EUV and soft X-ray filters due to acoustic vibration during launch, the films must also have very low outgassing rates. An account is presently given of the properties of important new emulsions selected for flight, together with response-characteristics data for the experimental XUV 100 film and an uncoated Spectroscopic 649 emulsion.

  18. Discharge characteristics of dielectric materials examined in mono-, dual-, and spectral energy electron charging environments

    NASA Technical Reports Server (NTRS)

    Coakley, P.; Treadway, M.; Wild, N.; Kitterer, B.

    1985-01-01

    The effects of midenergy electrons on the charge and discharge characteristics of spacecraft dielectric materials and the data base from which basic discharge models can be formulated is expanded. Thin dielectric materials were exposed to low, mid combined low and mid, and spectral energy electron environments. Three important results are presented: (1) it determined electron environments that lead to dielectric discharges at potentials less negative than -5 kV; (2) two types of discharges were identified that dominate the kinds of discharges seen; and (3) it is shown that, for the thin dielectric materials tested, the worst-case discharges observed in the various environments are similar.

  19. Influence of drug physicochemical characteristics on in vitro transdermal absorption of hydrophobic drug nanosuspensions.

    PubMed

    Shen, Cheng-Ying; Li, Rui-Sheng; Shen, Bao-de; Shen, Gang; Wang, Li-Qiang; Zheng, Juan; Li, Xiao-Rong; Min, Hong-Yan; Han, Jin; Yuan, Hai-Long

    2015-01-01

    The purpose of this paper was to study the influence of drug physicochemical characteristics on in vitro transdermal absorption of hydrophobic drug nanosuspensions. Four drug nanosuspensions were produced by high-pressure homogenization technique, which were the same in stabilizer and similar in particle size. Differential scanning calorimetry and powder X-ray diffraction analysis showed that the crystalline state of the nanocrystals did not change. In vitro permeation study demonstrated that the drug nanosuspensions have a higher rate of permeation that ranged from 1.69- to 3.74-fold compared to drug microsuspensions. Correlation analysis between drug physicochemical properties and Jss revealed that log P and pKa were factors that influenced the in vitro transdermal absorption of hydrophobic drug nanosuspensions, and drugs with a log P value around 3 and a higher pKa value (when pKa < pH+2) would gain higher Jss in this paper.

  20. Solar absorption characteristics of several coatings and surface finishes. [for solar energy collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1977-01-01

    Solar absorption characteristics are established for several films potentially favorable for use as receiving surfaces in solar energy collectors. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings. It was found that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

  1. Solar energy absorption characteristics and the effects of heat on the optical properties of several coatings

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1981-01-01

    The solar energy absorption characteristics of several high temperature coatings were determined and effects of heat on these coatings were evaluated. Included in the investigation were an electroplated alloy of black chrome and vanadium, electroplated black chrome, and chemically colored 316 stainless steel. Each of the coatings possessed good selective solar energy absorption properties at laboratory ambient temperature. Measured at a temperature of 700 K (800 F), the emittances of black chrome, black chrome vanadium, and colored stainless steel were 0.11, 0.61, and 0.15, respectively. Black chrome and black chrome vanadium did not degrade optically in the presence of high heat (811 K (1000 F)). Chemically colored stainless steel showed slight optical degradation when exposed to moderately high heat (616 K (650 F)0, but showed more severe degradation at exposure temperatures beyond this level. Each of the coatings showed good corrosion resistance to a salt spray environment.

  2. Moisture absorption and bakeout characteristics of rigid-flexible multilayer printed wiring boards

    SciTech Connect

    Lula, J.W.

    1991-01-01

    Moisture absorption and bakeout characteristics of Allied-Signal Inc., Kansas City Division (KCD) rigid-flexible printed wiring boards were determined. It was found that test specimens had absorbed 0.95 weight percent moisture when equilibrated to a 50 percent RH, 25{degree}C environment. Heating those equilibrated specimens in a 120{degree}C static air oven removed 92 percent of this absorbed moisture in 24 h. Heating the samples in a 80{degree}C static air oven removed only 64 percent of the absorbed moisture at the end of 24 h. A 120{degree}C vacuum bake removed moisture at essentially the same rate with parylene slowed the absorption rate by approximately 50 percent but did not appreciably affect the equilibrium moisture content or the drying rate.

  3. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    PubMed

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-01

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  4. Reflectance Mechanism and Biophysical Characteristics of a Boreal Forest through Analyses of Airborne Spectral Radiance Observations

    NASA Astrophysics Data System (ADS)

    Dim, J. R.; Kajiwara, K.; Honda, Y.

    2006-12-01

    Hyperspectral radiance data were recorded from airborne observations simultaneously with whiteboard measurements in order to identify the reflectance mechanism patterns of the vegetation of a boreal forest located in the northern part of Japan. Because the degree of reflectance of a leaf depends on the leaf surface properties and internal structure as well as its water content and biochemical composition, the canopy reflectance signature may be used to understand the vegetation growing conditions and influencing factors. In this study a radio-controlled helicopter flying at a height just above the trees and bearing a portable spectral radiometer, a digital camera, a video camera and a laser scanner, was used to obtain the vegetation spectral reflectance data and biophysical characteristics of this forest. Spectral reflectance discrimination analyses show that vegetation types of the study field can be well distinguished. And, the amount of vegetation reflectance tends to decrease with the complexity of the canopy structure, as a result of increasing radiation scattering of these surfaces. The mechanism of multiple reflection was suggested to explain the relation between reflectance and irregularities of the canopy structures.

  5. Spectral bidirectional and hemispherical reflectance characteristics of selected sites in the Streletskaya steppe

    NASA Technical Reports Server (NTRS)

    Eck, Thomas F.; Deering, Donald W.

    1992-01-01

    Measurements of plant canopy bidirectional reflectance made by the PARABOLA (portable apparatus for rapid acquisition of bidirectional observations of the land and atmosphere) instrument in three spectral bands are analyzed for steppe grassland sites of differing productivity levels. The variation of spectral reflectance and the normalized difference vegetation index in the solar principal plane is presented. Comparisons are made with PARABOLA measurements from selected first ISLSCP field experiment (FIFE) grassland sites in the Konza prairie, Kansas. The Streletskaya steppe sites showed no strong hot spot reflectance, while this effect was present in some FIFE sites but absent in others. The hot spot effect seems to be dependent on canopy geometry and background reflectance characteristics of these sites. Spectral hemispherical reflectance was computed from the angular integration of the bidirectional measurements for the steppe sites. Total shortwave albedo was estimated from these hemispherical reflectance measurements and compared to albedo measured by pyranometers. The albedo estimates from PARABOLA were found to be approximately 12-17 percent higher than the pyranometer measurements.

  6. Spectral characteristics of geomagnetic field variations at low and equatorial latitudes

    USGS Publications Warehouse

    Campbell, W.H.

    1977-01-01

    Geomagnetic field spectra from eight standard observations at geomagnetic latitudes below 30?? were studied to determine the field characteristics unique to the equatorial region. Emphasis was placed upon those variations having periods between 5 min and 4 hr for a selection of magnetically quiet, average, and active days in 1965. The power spectral density at the equator was about ten times that the near 30?? latitude. The initial manifestation of the equatorial electrojet as evidenced by the east-west alignment of the horizontal field or the change in vertical amplitudes occurred below about 20?? latitude. Induced current effects upon the vertical component from which the Earth conductivity might be inferred could best be obtained at times and latitudes unaffected by the electrojet current. Values of about 1.6 ?? 103 mhos/m for an effective skin depth of 500-600 km were determined. The spectral amplitudes increased linearly with geomagnetic activity index, Ap. The spectral slope had a similar behavior at all latitudes. The slope changed systematically with Ap-index and showed a diurnal variation, centered on local noon, that changed form with geomagnetic activity.

  7. Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR

    SciTech Connect

    Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y.; Makigami, T.

    2012-07-01

    The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)

  8. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    SciTech Connect

    Zou, Longfang; López-García, Martin; Oulton, Ruth; Klemm, Maciej; Withayachumnankul, Withawat; Fumeaux, Christophe; Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  9. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  10. A method for monitoring the variability in nuclear absorption characteristics of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1988-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  11. Spectral characteristics of different structural modifications of Lu1 - x Eu x BO3

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kedrov, V. V.; Kiselev, A. P.; Smyt'ko, I. M.

    2015-01-01

    The spectral and structural characteristics of polycrystals of Eu3+-doped lutetium borates Lu1 - x Eu x BO3) annealed at different temperatures have been investigated over a wide range of europium concentrations. The conditions for the preparation of Lu1 - x Eu x BO3 in the calcite and vaterite phases have been determined. It has been found that there is a radical difference between the excitation spectra of the main emission bands of the calcite and vaterite phases of the Lu1 - x Eu x BO3 borates. The influence of the europium concentration on the structure of Lu1 - x Eu x BO3 has been analyzed. It has been established that, at europium concentrations of higher than 15 at %, only the vaterite structure is formed independently of the annealing temperature. Thus, by varying the Eu3+ concentration and the annealing temperature of Lu1 - x Eu x BO3, it is possible to directionally synthesize a specific structural modification and, consequently, to control the spectral characteristics of this compound.

  12. Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis

    SciTech Connect

    Lu, G.; Yan, Y.; Colechin, M.; Hill, R.

    2006-02-15

    This paper presents the monitoring of the oscillatory characteristics of pulverized coal flames using image processing and spectral analysis techniques. The instrumentation system employed in this investigation is an integral part of a multifunctional flame monitoring system, being capable of monitoring the oscillatory frequency of a flame on a two-dimensional and concurrent basis. A quantitative flicker frequency is defined as the power-density-weighted mean frequency over the spectral range to represent the oscillatory characteristics of a specific region of the flame. Digital filtering techniques incorporating direct gray-level thresholding and wavelet shrinkage algorithms are employed to reduce background noise from flame images and white noise from the resulting flame frequency signal. A series of tests was undertaken on an industrial-scale coal-fired combustion test facility (CTF) under a range of operating conditions. Relationships between the measured flame oscillatory frequency and the process data including emissions are identified. Results obtained demonstrate that the flame oscillatory frequency responds in predictable ways to the effects of operating conditions on the dynamic nature of the flame.

  13. The spectral characteristics of rotor blade-vortex interaction noise - Experimental and mathematical results

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.; Hardin, Jay C.

    1987-01-01

    The BVI impulsive content of a rotor acoustic signal is shown to appear in the mid-frequency range of the power spectrum, between the fifth and thirtieth harmonics of the blade passage frequency, concentrated at the harmonics of the blade passage frequency. These harmonics exhibit a humped or scalloped shape in this mid-frequency spectral region. Increased energy at the harmonics of the shaft frequency appears when the BVI impulsive content demonstrates unsteadiness and blade-to-blade differences in the time domain. A mathematical model of a generalized BVI acoustic signal and its power spectrum shows that the power spectrum is scalloped and filtered by a comb function. The spectrum amplitude is defined by the impulse amplitude and emission time. The scalloping of the spectrum is related to the emission time of the impulse itself, and the spacing of the comb function is related to the repetition time (period) of the impulse. The decay rate of the spectral humps is governed by the inverse of frequency squared. The mathematical model validates the characteristics observed in the data and verify that these characteristics are due to blade-vortex interaction activity.

  14. EMG spectral characteristics of masticatory muscles and upper trapezius during maximum voluntary teeth clenching.

    PubMed

    Lodetti, Gianluigi; Mapelli, Andrea; Musto, Federica; Rosati, Riccardo; Sforza, Chiarella

    2012-02-01

    To assess the surface electromyographic spectral characteristics of masticatory and neck muscles during the performance of maximum voluntary clench (MVC) tasks, 29 healthy young adults (15 men, 14 women, mean age 22years) were examined. Electromyography of masseter, temporalis and upper trapezius muscles was performed during 5-s MVCs either on cotton rolls or in intercuspal position. Using a fast Fourier transform, the median power frequency (MPF) was obtained for the first and last seconds of clench, and compared between sexes, muscles, sides, tests and time intervals using ANOVAs. On average, the MPFs did not differ between sexes or sides (p>0.05), but significant effects of muscle (MPF temporalis larger than masseter, larger than trapezius muscles), test (larger MPFs when clenching in intercuspal position than when clenching on cotton rolls) and time (larger MPFs in the first than in the fifth second of clench) were found. In conclusion, a set of data to characterize the sEMG spectral characteristics of jaw and neck muscles in young adult subjects performing MVC tasks currently in use within the dental field was obtained. Reference values may assist in the assessment of patients with alterations in the cranio-cervical-mandibular system.

  15. Spectral characteristics and energy transfer from Ce3+ to Tb3+ in compounds Lu1 - x - y Ce x Tb y BO3

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kedrov, V. V.; Kiselev, A. P.; Fursova, T. N.; Smyt'ko, I. M.

    2016-03-01

    The structure, IR absorption spectra, morphology, and spectral characteristics of compounds Lu1 - x - y Ce x Tb y BO3 have been investigated. It has been shown that the Tb3+ luminescence excitation spectrum of the Lu1 - x - y Ce x Tb y BO3 compounds is dominated by a broad band coinciding with the excitation band of Ce3+ ions, which clearly indicates energy transfer from the Ce3+ ions to the Tb3+ ions. The spectral position of this band depends on the structural state of the sample: in the structures of calcite and vaterite, the band has maxima at ~339 and ~367 nm, respectively. By varying the ratio between the calcite and vaterite phases in the sample, it is possible to purposefully change the Tb3+ luminescence excitation spectrum, which is important for the optimization of the spectral characteristics of Lu1 - x - y Ce x Tb y BO3 when it is used in light-emitting diode sources. An estimate has been obtained for the maximum distance between Ce3+ and Tb3+ ions, which corresponds to electronic excitation energy transfer. It has been shown that the high intensity of Tb3+ luminescence in these compounds is due to the high efficiency of electronic excitation energy transfer from the Ce3+ ions to the Tb3+ ions as a result of the dipole-dipole interaction.

  16. [Oat growth and cation absorption characteristics under salt and alkali stress].

    PubMed

    Fan, Yuan; Ren, Chang-Zhong; Li, Pin-Fang; Ren, Tu-Sheng

    2011-11-01

    This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat.

  17. Discrimination between rock classes and identification of mineral diversity through spectral reflectance characteristics

    NASA Astrophysics Data System (ADS)

    Krezhova, D.; Yanev, T.; Pristavova, S.; Pavlova, P.

    A remote sensing spectrometric method for aerospace and ground based research was developed and laboratory tested to provide reliable information for discrimination of basic classes of natural objects and identification of their diversity and status. Spectrometric investigations under laboratory conditions were carried out on rocks, products of different physical and chemical processes in Earth's crust and its surface. Natural rock surfaces of basic genetic types of rocks, such as igneous (granite, quartzmonzonite, rhyolite), sedimentary (psephite - conglomerate) and metamorphic (kyanite schist) with various mineral composition, were investigated by their spectral reflectance characteristics (SRC) in the visible and near infrared ranges of the electromagnetic spectrum. SRC were obtained by means of the multichannel spectrometric system ``Spectrum 256'' developed by scientists from STIL and used for more than 12 years onboard the manned space station MIR. ``Spectrum 256'' operates in the spectral range 450div 850 nm in 256 or 128 spectral channel mode at 1.3 nm or 2.6 nm channel halfwidth, respectively. Adapted for laboratory measurements, the system provides a spatial resolution from 2 mm2 to 10 mm2. SRC from adjacent 40 pixels per sample taken along horizontal profiles were recorded on the average. A preliminary classification of the spectral subclasses of the primary rock-forming minerals in the samples was made using the projective transform of measured SRC as well as the SRC color coordinates and taking into account the corresponding mineralogical information. The results were utilized to design the grouping variables necessary as an a priori input information for the application of linear discriminant analysis over the training set of rock samples. Then the discriminant functions were obtained through the measured SRC for selected subsets of wavelengths and applied for statistical predictive classification of new rock samples by means of the discriminant

  18. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  19. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm. PMID:22870644

  20. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  1. [Study on Spectral Characteristics of Two Kinds of Home-Made Novel Yb-Doped Fluoride Laser Crystals].

    PubMed

    Xu, Wen-bin; Chai, Lu; Shi, Jun-kai; Song, You-jian; Hu, Ming-lie; Wang, Qing-yue; Su, Liang-bi; Jiang, Da-peng; Xu, Jun

    2015-09-01

    Yb-doped fluoride crystals are of important another Yb-doped laser materials besides Yb-doped oxide, which are becoming one of interests for developing tunable lasers and ultrafast lasers. In this paper, the systematic and contrastive experiments of the optical spectral characteristics are presented for two types of home-made novel Yb-doped fluoride laser crystals, namely, Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal. The fluorescent features of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal are apparently different by the fluorescence experiment. The physical mechanism of these fluorescence spectra were analyzed and proposed. The influence of doping concentrations of active Yb(3+) ions or co-doping Y ions on the absorption of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal was experimentally investigated, and the optimal values of doping concentrations of active Yb(3+) ions or co-doping Y ions in the two types of fluoride laser crystals were obtained. Continuous-wave laser operation for the two novel fluoride laser crystals has been achieved in three-mirror-folded resonator using a laser diode as the pump source. Therein, the laser operation for the co-doped Yb, Y:CaF2 crystal is demonstrated for the first time. For the two types of fluoride laser crystals (four samples), the input-output power relational curves, the optical slope efficiencies and the laser spectra were demonstrated by the laser experiments. By comparisons between the two types of fluoride laser crystals in the absorbability, fluorescence and laser spectra, laser threshold and slope efficiency of the continuous-wave laser operation, the results show that the best one of the four samples in spectral and laser characteristics is co-doped 3at%Yb, 6at% Y:CaF2 single crystal, which has an expected potential in the application. The research results provide available references for improving further laser performance of Yb

  2. Spectral Characteristics of White Organic Light-emitting Diodes Based on Novel Phosphorescent Sensitizer

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-qing; Yu, Jun-sheng; Li, Lu; Wen, Wen; Jiang, Ya-dong

    2008-12-01

    White organic light-emitting diodes were fabricated by using a novel phosphorescence bis(1,2-dipheny1-1H-benzoimidazole)iridium(acetylacetonate)[(pbi)2Ir(acac)] as sensitizer and a fluorescent dye of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) codoped into a car-bazole polymer of poly(N-vinylcarbazole) (PVK). Through characterizing the UV-Vis absorption spectra, the photoluminescence spectra of (pbi)2Ir(acac) and DCJTB, and the electroluminescence spectral properties of the WOLEDs, the energy transfer mechanisms of the codoped polymer system were deduced. The results demonstrate that the luminescent spectra with different intensity of (pbi)2Ir(acac) and DCJTB were co-existent in the EL spectra of the blended system, which is ascribed to an incomplete energy transfer process in the EL process. The efficient Förster and Dexter energy transfer between the host and the guests enabled a strong yellow emission from (pbi)2Ir(acac) and DCJTB, where (pbi)2Ir(acac) plays an important role as a phosphorescent sensitizer for DCJTB. With the blue emitting-layer of N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'-diamine, the codoped system device achieved white emission. The codoped system showed that its Commissions Internationale de 1'Eclairage coordinates were more independent of the variation of bias voltage than those of phosphorescent doped PVK systems.

  3. [Spectral characteristics and implication of granite from pozaiying molybdenite deposits in west of Guangdong].

    PubMed

    An, Yan-Fei; Zhong, Li-li; Zhou, Yang-Zhang; Chen, Qing; Li, Xing-yuan

    2014-06-01

    Some granite samples from Pozaiying molybdenite deposits in the west of Guangdong were retrieved to characterize the spectral signature of XRD, FT-NIR and Raman. The results show that compared to the Porphyry granite and granite in the far zone, the signal of XRD and Raman of granite in near zone is weaker while the signal of FT-NIR is stronger. The authors' analyses indicate that the FWHM of quartz (101) peak in XRD, Sericite peak (4 529 cm(-1)) in FT-NIR and quartz peak in Raman shift from the latter are higher than those of former two. Those spectral characteristics indicate that compared with other samples, the content of petrogenetic mineral in samples from near zone is lower while the content of alteration mineral is higher, and its crystallinity and crystallization temperatures are both lower. The authors' studies suggest that there may be an alteration zone, embracing the granite-porphyry, which comprised low temperature mineral, and the quartz-porphyry which related to molybdenite mineralization belongs to the zone near Guanshanzhang mass. PMID:25358146

  4. Neural net identification of thumb movement using spectral characteristics of magnetic cortical rhythms.

    PubMed

    Portin, K; Kajola, M; Salmelin, R

    1996-04-01

    Neural nets have shown great promise as tools for reducing and examining multi-dimensional data. When carefully tuned with selected data sets of individual subjects neural nets have indisputable potential in identifying distinct stages of voluntary finger movements. However, robust, automatized data description methods would be needed to eventually extend the use of neural networks into visualization of brain activity during more complex, multimodal tasks where the cortical processes are not equally well understood. We explored the suitability of a self-organizing map (SOM) in the widely studied case of voluntary finger movements (left and right thumb), using as input such spectral characteristics that showed systematic task-dependent changes when averaged over repeated movements. SOMs constructed without individual fine-tuning and with generally chosen training parameters from these spectral features identified correctly 85% of the ongoing movements but, somewhat surprisingly, not the side of thumb movement. Even for this inclusive choice of input, the neural nets were sensitive to transient signals, but focused fine tuning, based on a priori known subgroups in the data, is clearly required for more detailed classification. Thus, a neural net visualization is likely not the most attractive first approach for characterization of cortical processing during complex multimodal tasks.

  5. [An improved characteristic spectral selection method for multicomponent gas quantitative analysis based on Tikhonov regularization].

    PubMed

    Tang, Xiao-Jun; Zhang, Lei; Wang, Er-Zhen; Li, Zhe-Bu; Meng, Yong-Peng; Liu, Jun-Hua

    2012-10-01

    In the present paper, an improved approach to the TR characteristic spectral selection is presented. For this approach, two ideas of TR1-norm and TR2-norm are used, two constraint items, spectral line distance and minimizing absolute value of coefficient are introduced, and a general formula of ill-posed optimization problem is established. The formula can reduce effectively the errors caused by experienced and experimental method when used in determining the regular matrix and parameter. Finally, the improved approach presented in the paper was used in the analysis of alkane gas mixture, with methane, ethane, propane, n-butane, iso-butane, n-pentane and iso-pentane included. The concentration range is 0.01%-20%. The experimental results show that the predicting error square is only 2.6 x 10(-4), and the coefficient of determination is 0. 959 2, which means that preceding accuracy is high, and that the practicability of TR regularization has been enhanced. PMID:23285876

  6. Spectral-luminescence characteristics of lead sulfide molecular clusters and quantum dots in fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Lipatova, Zh. O.; Kolobkova, E. V.; Nikonorov, N. V.

    2015-12-01

    PbS molecular clusters and quantum dots (QDs) have been formed by heat treatment in fluorophosphate glasses of the Na2O3-P2O5-Ga2O3-ALF3-ZnO(S)-PbF2 system, and their spectral-luminescence characteristics have been investigated. It is experimentally shown that the transition from molecular clusters to QDs is accompanied by a stepwise change in the spectrum and luminescence quantum yield. Molecular PbS clusters luminesce in the visible spectral range (1.5-3.5 eV) and QDs luminesce in the IR region (0.6-1.4 eV). The luminescence of molecular PbS clusters is characterized by low quantum yield, which decreases from 10 to 1% with an increase in excitation energy. An increase in nanoparticle size leads to a decrease in the Stokes shift from 80 to 50 meV. The QD luminescence spectrum contains two bands, which are due to transitions from two lower excited states.

  7. Working-day effects on the spectral characteristics of teaching voice.

    PubMed

    Rantala, L; Paavola, L; Körkkö, P; Vilkman, E

    1998-01-01

    Ten teachers made recordings during one normal working day using a portable DAT recorder and a head-mounted microphone. In addition, the subjects filled in a questionnaire of signs of vocal fatigue. The speech samples were selected from the first and last lesson from three points representing the beginning, middle and end part of the lesson, respectively. To standardize the samples, 30 [a] vowels from stressed syllables were chosen for spectral analysis. The level of the fundamental and second formant regions (L1), the level of frequency ranges 2-5 kHz (L2) and 5-10 kHz (L5) were measured. From these measurements the parameters L1-L0, L1-L2 and L1-L5 were formed and used in the analyses as well as the energy levels below and above 1 kHz (alpha). Statistically significant changes were observed in the following parameters: the L1-L2 and L1-L5 differences, and the alpha ratio. In general, there was an increase in the energy content of the high frequency components due to vocal loading. The subjective reports revealed a statistically significant relationship with the spectral characteristics.

  8. [Spectral characteristics and implication of granite from pozaiying molybdenite deposits in west of Guangdong].

    PubMed

    An, Yan-Fei; Zhong, Li-li; Zhou, Yang-Zhang; Chen, Qing; Li, Xing-yuan

    2014-06-01

    Some granite samples from Pozaiying molybdenite deposits in the west of Guangdong were retrieved to characterize the spectral signature of XRD, FT-NIR and Raman. The results show that compared to the Porphyry granite and granite in the far zone, the signal of XRD and Raman of granite in near zone is weaker while the signal of FT-NIR is stronger. The authors' analyses indicate that the FWHM of quartz (101) peak in XRD, Sericite peak (4 529 cm(-1)) in FT-NIR and quartz peak in Raman shift from the latter are higher than those of former two. Those spectral characteristics indicate that compared with other samples, the content of petrogenetic mineral in samples from near zone is lower while the content of alteration mineral is higher, and its crystallinity and crystallization temperatures are both lower. The authors' studies suggest that there may be an alteration zone, embracing the granite-porphyry, which comprised low temperature mineral, and the quartz-porphyry which related to molybdenite mineralization belongs to the zone near Guanshanzhang mass.

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spectral and temporal characteristics of a laser plasma

    NASA Astrophysics Data System (ADS)

    Lipchak, A. I.; Solomonov, V. I.; Tel'nov, V. A.; Osipov, V. V.

    1995-04-01

    An experimental investigation was made of the spectral and temporal characteristics of a laser plasma formed by the interaction of a CO2 laser pulse with a target in atmospheric air. The results obtained indicate that the main role in the process of filling the excited states in a laser plasma is played by a recombination cascade and that both atoms and molecules of the atmospheric gases are excited. The result also show that a laser plasma can be used in spectroscopic analysis of multicomponent samples. The solution of the thermophysical problem of heating of a target by laser radiation supports the existing ideas on the process of formation of a plasma near the target surface in air.

  10. Spectral characteristics of multimode semiconductor lasers with a high-order surface diffraction grating

    SciTech Connect

    Zolotarev, V V; Leshko, A Yu; Pikhtin, N A; Lyutetskiy, A V; Slipchenko, S O; Bakhvalov, K V; Lubyanskiy, Ya V; Rastegaeva, M G; Tarasov, I S

    2014-10-31

    We have studied the spectral characteristics of multimode semiconductor lasers with high-order surface diffraction gratings based on asymmetric separate-confinement heterostructures grown by metalorganic vapour phase epitaxy (λ = 1070 nm). Experimental data demonstrate that, in the temperature range ±50 °C, the laser emission spectrum is ∼5 Å in width and contains a fine structure of longitudinal and transverse modes. A high-order (m = 15) surface diffraction grating is shown to ensure a temperature stability of the lasing spectrum dλ/dT = 0.9 Å K{sup -1} in this temperature range. From analysis of the fine structure of the lasing spectrum, we have evaluated the mode spacing and, thus, experimentally determined the effective length of the Bragg diffraction grating, which was ∼400 μm in our samples. (lasers)

  11. [Study on influence of gamma-ray treatment on spectral characteristic of rapeseed].

    PubMed

    Huang, Min; Wang, Zun-Yi; He, Yong

    2008-11-01

    After being treated by gamma-ray, the spectral characteristic of rapeseed would be changed. Based on the principle, a rapid and nondestructive method by using visible and near infrared spectroscopy was proposed to discriminate rapeseeds (Brassica nupus) treated by different dosages of gamma-ray. Partial least square (PLS) method and BP neural network (BPNN) were applied to establish the discrimination model, and the influences of different pretreatment methods of original spectra data, data transformation methods of PIS principal components and the.selection of node number of hidden layers of BP neural network model on prediction precision were compared and discussed. In the experiment, 184 samples were treated by gamma-ray with 5 different dosages (50, 100, 150, 200 Gy, and the samples without gamma-ray treatment). Then spectra tests were performed on the 184 samples using a spectrophotometer (325-1 075 nm). One hundred thiry five samples were selected randomly for model calibration and the left 49 samples were used for prediction. As a result, the optimal model was established and the parameters of the model were shown as follows. The original spectra data were pretreated by smoothing media filter, multiplicative scatter correction and Savitzky-Golay derivatives, then 6 PLS principal components were selected by using partial least square method. After being transformed by using natural logarithm transformation method, the 6 PLS principal components were used as the input layer factors to establish the BP neural network model and the node number of hidden layers was selected as 4 or 9. The prediction precision of the optimal model to distinguish the untreated samples from gamma-ray treated samples was 100%. The precision of predicting the dosages of gamma-ray treatment of all samples achieved 85.71%. It can be concluded that the proposed method for estimating the influence of different gamma-ray dosages on the spectral characteristic of treated rapeseeds was

  12. A simple fiber optic humidity sensor based on water-absorption characteristic of CAB

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xu, Wei; Huang, Xuguang

    2015-02-01

    A simple fiber-optic relative humidity sensor based on cellulose acetate butyrate (CAB) and Fresnel reflection is proposed and investigated theoretically and experimentally. The sensing system is only composed of one light source, three optical couplers, two photo-detectors and two fiber sensing ends. The operation principle is based on relative Fresnel reflection and water-absorption characteristic of the CAB which simultaneously contains hydrophilic and hydrophobic groups. The water absorption process will lead to variation of the CAB's refractive index or permittivity. It has to be noted that the double-channel system can effectively eliminate the intensity fluctuation of the light source and the influence of the environment. In this paper, the relative humidity environments approximately ranging from 10 % to 100% are generated and measured both in the humidification and dehumidification processes, which shows a good repeatability and reveals a very good fitting feature with a high value of R2 above 0.99. It is of reflection type and can be simply extend to be a multi-point-monitoring system. The sensing system is of cost- effective, simple operation and high precision.

  13. Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra.

    PubMed

    Curiel, Fernando; Vargas, William E; Barrera, Rubén G

    2002-10-01

    A spectral-projected gradient method and an extension of the Kubelka-Munk theory are applied to obtain the relevant parameters of the theory from measured diffuse reflectance spectra of pigmented samples illuminated with visible diffuse radiation. The initial estimate of the spectral dependence of the parameters, required by a recursive spectral-projected gradient method, was obtained by use of direct measurements and up-to-date theoretical estimates. We then tested the consistency of the Kubelka-Munk theory by repeating the procedure with samples of different thicknesses.

  14. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics.

    PubMed

    Zietzschmann, Frederik; Altmann, Johannes; Ruhl, Aki Sebastian; Dünnbier, Uwe; Dommisch, Ingvild; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-06-01

    Eight commercially available powdered activated carbons (PAC) were examined regarding organic micro-pollutant (OMP) removal efficiencies in wastewater treatment plant (WWTP) effluent. PAC characteristic numbers such as B.E.T. surface, iodine number and nitrobenzene number were checked for their potential to predict the OMP removal of the PAC products. Furthermore, the PAC-induced removal of UV254 nm absorption (UVA254) in WWTP effluent was determined and also correlated with OMP removal. None of the PAC characteristic numbers can satisfactorily describe OMP removal and accordingly, these characteristics have little informative value on the reduction of OMP concentrations in WWTP effluent. In contrast, UVA254 removal and OMP removal correlate well for carbamazepine, diclofenac, and several iodinated x-ray contrast media. Also, UVA254 removal can roughly describe the average OMP removal of all measured OMP, and can accordingly predict PAC performance in OMP removal. We therefore suggest UVA254 as a handy indicator for the approximation of OMP removal in practical applications where direct OMP concentration quantification is not always available. In continuous operation of large-scale plants, this approach allows for the efficient adjustment of PAC dosing to UVA254, in order to ensure reliable OMP removal whilst minimizing PAC consumption. PMID:24651017

  15. Broadband absorption and reduced scattering spectra of in-vivo skin can be noninvasively determined using δ-P1 approximation based spectral analysis

    PubMed Central

    Hung, Cheng-Hung; Chou, Ting-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2015-01-01

    Previously, we revealed that a linear gradient line source illumination (LGLSI) geometry could work with advanced diffusion models to recover the sample optical properties at wavelengths where sample absorption and reduced scattering were comparable. In this study, we employed the LGLSI geometry with a broadband light source and utilized the spectral analysis to determine the broadband absorption and scattering spectra of turbid samples in the wavelength range from 650 to 1350 nm. The performance of the LGLSI δ-P1 diffusion model based spectral analysis was evaluated using liquid phantoms, and it was found that the sample optical properties could be properly recovered even at wavelengths above 1000 nm where μs' to μa ratios were in the range between 1 to 20. Finally, we will demonstrate the use of our system for recovering the 650 to 1350 nm absorption and scattering spectra of in-vivo human skin. We expect this system can be applied to study deep vessel dilation induced hemoglobin concentration variation and determine the water and lipid concentrations of in-vivo skin in clinical settings in the future. PMID:25780735

  16. [The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics].

    PubMed

    Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying

    2016-03-01

    Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor. PMID:27400537

  17. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Overview and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1993-01-01

    Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.

  18. Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux

    NASA Astrophysics Data System (ADS)

    Handmer, Casey J.; Szilágyi, Béla; Winicour, Jeffrey

    2016-11-01

    We present a new approach for the Cauchy-characteristic extraction (CCE) of gravitational radiation strain, news function, and the flux of the energy–momentum, supermomentum and angular momentum associated with the Bondi–Metzner–Sachs asymptotic symmetries. In CCE, a characteristic evolution code takes numerical data on an inner worldtube supplied by a Cauchy evolution code, and propagates it outwards to obtain the space–time metric in a neighborhood of null infinity. The metric is first determined in a scrambled form in terms of coordinates determined by the Cauchy formalism. In prior treatments, the waveform is first extracted from this metric and then transformed into an asymptotic inertial coordinate system. This procedure provides the physically proper description of the waveform and the radiated energy but it does not generalize to determine the flux of angular momentum or supermomentum. Here we formulate and implement a new approach which transforms the full metric into an asymptotic inertial frame and provides a uniform treatment of all the radiation fluxes associated with the asymptotic symmetries. Computations are performed and calibrated using the spectral Einstein code.

  19. In vivo ultrasound biomicroscopy of skin: spectral system characteristics and inverse filtering optimization.

    PubMed

    Vogt, Michael; Ermert, Helmut

    2007-08-01

    High-frequency ultrasound (HFUS) in the 20 MHz to 100 MHz range has to meet the opposite requirements of good spatial resolution and of high penetration depth for in vivo ultrasound biomicroscopy (UBM) of skin. The attenuation of water, which serves as sound propagation medium between utilized single element transducers and the skin, becomes very eminent with increasing frequency. Furthermore, the spectra of acquired radio frequency (rf) echo signals change over depth because of the diffracted sound field characteristics. The reduction of the system's center frequency and bandwidth causes a significant loss of spatial resolution over depth. In this paper, the spectral characteristics of HFUS imaging systems and the potential of inverse echo signal filtering for the optimization of pulse-echo measurements is analyzed and validated. A Gaussian model of the system's transfer function, which takes into account the frequency-dependent attenuation of the water path, was developed. Predictions of system performance are derived from this model and compared with measurement results. The design of a HFUS skin imaging system with a 100 MHz range transducer and a broadband driving electronics is discussed. A time-variant filter for inverse rf echo signal filtering was designed to compensate the system's depth-dependent imaging properties. Results of in vivo measurements are shown and discussed. PMID:17703658

  20. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  1. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    PubMed Central

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  2. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  3. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  4. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  5. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  6. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility

    PubMed Central

    Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne

    2015-01-01

    Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus. PMID:26657203

  7. Relationship between Spectral Characteristics of Spontaneous Postural Sway and Motion Sickness Susceptibility.

    PubMed

    Laboissière, Rafael; Letievant, Jean-Charles; Ionescu, Eugen; Barraud, Pierre-Alain; Mazzuca, Michel; Cian, Corinne

    2015-01-01

    Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus. PMID:26657203

  8. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].

    PubMed

    Liu, Zhan-Yu; Shi, Jing-Jing; Wang, Da-Cheng; Huang, Jing-Feng

    2010-03-01

    An ASD Field Spec Pro Full Range spectrometer was used to acquire the spectral reflectance of healthy and diseased leaves infected by rice Aphelenchoides besseyi Christie, which were cut from rice individuals in the paddy field. Firstly, foliar pigment content was investigated. As compared with healthy leaves, the total chlorophyll and carotene contents (mg x g(-1)) of diseased leaves decreased 18% and 22%, respectively. The diseased foliar content ratio of total chlorophyll to carotene was nearly 82% of the healthy ones. Secondly, the response characteristics of hyperspectral reflectance of diseased leaves were analyzed. The spectral reflectance in the blue (450-520 nm), green (520-590 nm) and red (630-690 nm) regions were 2.5, 2 and 3.3 times the healthy ones respectively due to the decrease in foliar pigment content, whereas in the near infrared (NIR, 770-890 nm) region was 71.7 of the healthy ones because of leaf twist, and 73.7% for shortwave infrared (SWIR, 1 500-2 400 nm) region, owing to water loss. Moreover, the hyperspectral feature parameters derived from the raw spectra and the first derivative spectra were analyzed. The red edge position (REP) and blue edge position (BEP) shifted about 8 and 10 nm toward the short wavelengths respectively. The green peak position (GPP) and red trough position (RTP) shifted about 8.5 and 6 nm respectively toward the longer wavelengths. Finally, the area of the red edge peak (the sum of derivative spectra from 680 to 740 nm) and red edge position (REP) as the input vectors entered into C-SVC, which was an soft nonlinear margin classification method of support vector machine, to recognize the healthy and diseased leaves. The kernel function was radial basis function (RBF) and the value of punishment coefficient (C) was obtained from the classification model of training data sets (n = 138). The performance of C-SVC was examined with the testing sample (n = 126), and healthy and diseased leaves could be successfully

  9. Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.

    1995-01-01

    We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal

  10. Evaluation of intensity and energy interaction parameters for the complexation of Pr(III) with selected nucleoside and nucleotide through absorption spectral studies.

    PubMed

    Bendangsenla, N; Moaienla, T; David Singh, Th; Sumitra, Ch; Rajmuhon Singh, N; Indira Devi, M

    2013-02-15

    The interactions of Pr(III) with nucleosides and nucleotides have been studied in different organic solvents employing absorption difference and comparative absorption spectrophotometry. The magnitudes of the variations in both energy and intensity interaction parameters were used to explore the degree of outer and inner sphere co-ordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Various electronic spectral parameters like Slater-Condon (F(k)), Racah (E(k)), Lande parameter (ξ(4f)), Nephelauxatic ratio (β), bonding (b(1/2)), percentage covalency (δ) and intensity parameters like oscillator strength (P) and Judd Ofelt electronic dipole intensity parameter (T(λ), λ=2,4,6) have been evaluated. The variation of these evaluated parameters were employed to interpret the nature of binding of Pr(III) with different ligands i.e. Adenosine/ATP in presence and absence of Ca(2+).

  11. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].

    PubMed

    Tao, Zhi-qiang; Chen, Yuan-quan; Zou, Juan-xiu; Li, Chao; Yuan, Shu-fen; Yan, Peng; Shi, Jiang-tao; Sui, Peng

    2016-02-01

    This paper discussed the response of spectral characteristics on high temperature at grain filling stage of different spring maize varieties by adopting two spectrometer (SPAD-502 Chlorophyll Meter and Sunscan Plant Canopy Analyzer), and analyzed the impact of high temperature on the photosynthetic properties of spring maize in North China Plain. The test was conductedfrom the year 2011 to 2012 in Wuqiao County, Hebei Province. This test chose three different varieties, i. e. Tianyu 198 (TY198), Xingyu 998 (XY998) and Tianrun 606 (TR606), then two sowing date (April 15th and April 25th) was set. We analyzed chlorophyll relative content (SPAD), leaf area index (LAI) and photosynthetically active radiation (PAR) at grain filling stage. The results showed that the days of daily maximum temperature above 33 °C and the mean day temperature at grain filling stage in spring maize sowing on April 15th increased 3.5 d and 0.8 °C, respectively, compared to that sowing on April 25th, moreover the sunshine hours, rainfall, diurnal temperature and length of growing period were similar. Compared with XY998 and TR606, TY198's stress tolerance indices (STI) increased by 2.9% and 11.0%, respectively. According to STI from high to low order, TY198, XY998 and TR606 respectively as heat resistant type, moderate heat resistant type and thermo-labile type variety. TY198, compared with XY998 and TR606 sowing on April 15th, yield increased by 4.1% and 13.7%, SPAD increased by 12.5% and 19.6%, LAI increased by 5.3% and 5.6%, PAR increased by 4.0% and 14.0%. Sowing on April 15th, yield increased by 1.3% and 2.8%, SPAD increased by 3.5% and 6.0%, LAI increased by 1.7% and 4.1%, PAR increased by -4.4% and 0.9%. Three varieties had significant yield differences in the environment of high temperature stress, heat resistant type have significant (p < 0.05) advantage in the aspect of yield, SPAD and LAI. The production of TY198, XY998 and TR606 sowing on April 15th compared to that sowing on

  12. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].

    PubMed

    Tao, Zhi-qiang; Chen, Yuan-quan; Zou, Juan-xiu; Li, Chao; Yuan, Shu-fen; Yan, Peng; Shi, Jiang-tao; Sui, Peng

    2016-02-01

    This paper discussed the response of spectral characteristics on high temperature at grain filling stage of different spring maize varieties by adopting two spectrometer (SPAD-502 Chlorophyll Meter and Sunscan Plant Canopy Analyzer), and analyzed the impact of high temperature on the photosynthetic properties of spring maize in North China Plain. The test was conductedfrom the year 2011 to 2012 in Wuqiao County, Hebei Province. This test chose three different varieties, i. e. Tianyu 198 (TY198), Xingyu 998 (XY998) and Tianrun 606 (TR606), then two sowing date (April 15th and April 25th) was set. We analyzed chlorophyll relative content (SPAD), leaf area index (LAI) and photosynthetically active radiation (PAR) at grain filling stage. The results showed that the days of daily maximum temperature above 33 °C and the mean day temperature at grain filling stage in spring maize sowing on April 15th increased 3.5 d and 0.8 °C, respectively, compared to that sowing on April 25th, moreover the sunshine hours, rainfall, diurnal temperature and length of growing period were similar. Compared with XY998 and TR606, TY198's stress tolerance indices (STI) increased by 2.9% and 11.0%, respectively. According to STI from high to low order, TY198, XY998 and TR606 respectively as heat resistant type, moderate heat resistant type and thermo-labile type variety. TY198, compared with XY998 and TR606 sowing on April 15th, yield increased by 4.1% and 13.7%, SPAD increased by 12.5% and 19.6%, LAI increased by 5.3% and 5.6%, PAR increased by 4.0% and 14.0%. Sowing on April 15th, yield increased by 1.3% and 2.8%, SPAD increased by 3.5% and 6.0%, LAI increased by 1.7% and 4.1%, PAR increased by -4.4% and 0.9%. Three varieties had significant yield differences in the environment of high temperature stress, heat resistant type have significant (p < 0.05) advantage in the aspect of yield, SPAD and LAI. The production of TY198, XY998 and TR606 sowing on April 15th compared to that sowing on

  13. [Infrared Spectral Characteristics of Ambers from Three Main Sources (Baltic, Dominica and Myanmar)].

    PubMed

    Wang, Yan; Shi, Guang-hai; Shi, Wei; Wu, Rui-hua

    2015-08-01

    Infrared spectra of ambers from Baltic, Dominica and Myanmar are obtained by Specular Reflection and KBr Pellet Transmission Methods. Although the infrared spectra of these ambers present similar features for ambers from different locations, refined differences in location and intensity of absorption peaks could be identified among them. Between 3000 and 2800 cm(-1), two obvious bands with a weak shoulder peak are seen in the Baltic amber spectrum, whereas there are two bands in the Dominica's and three bands in the Myanmar's. In region of 1740~1690 cm(-1), one band appears at 1732 cm(-1) in the spectra of the Baltic amber sample, distinctly different from those of the Dominican and Myanmar ambers which have a doublet at 1730 and 1695 cm(-1). For the Dominican amber, the intensity of 1730 cm(-1) is much stronger than that of 1695 cm(-1), being contrary to the spectra of the Myanmar amber, whose intensity of 1730 cm(-1) is weaker than that of 1695 cm(-1). Within region of 1300~1000 cm(-1), Baltic amber can be distinguished from other two origin ambers by a horizontal shoulder, often called "Baltic shoulder", with a definite band at 1163 cm(-1). Spectra of the Dominican amber show a unique band at 1240 cm(-1), while spectra of the Myanmar amber have a triplet at 1224, 1130 or 1154 cm(-1) and 1033 cm(-1), like "wave of mountain" altogether. Ratios of absorption intensity of 1381 vs. 1456 cm(-1) are about 0.9, 0.8 and 0.7 respectively for the Baltic, Dominican and Myanmar ambers. These differences of absorption spectra could be used as the identifiable characteristics corresponding to the ambers locality. The correlation between the ambers' infrared spectra and localities is probably due to their age, plant provenance and geological environment indivadually. On the basis of presence and intensity of the bands attributed to exocyclic methylene groups, it is suggested that the Myanmar amber formed earliest, followed by Baltic and then the youngest Dominican. These

  14. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  15. [Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings].

    PubMed

    Liu, Xin-wei; Wang, Qiao-lan; Duan, Bi-hui; Lin, Ya-meng; Zhao, Xiao-hu; Hu, Cheng-xiao; Zhao, Zhu-qing

    2015-07-01

    Abstract: The rape (Brassica napus L. cv. Xiangnongyou 571) was chosen as the experimental material to undergo solution cultivation at seedling stage to investigate the effects of selenite addition on the selenium (Se) absorption and distribution, root morphology and physiological characteristics of rape seedlings. The results showed that the bioaccumulation ability of Se decreased significantly with increasing the Se application rate, but the Se distribution coefficient remained around 0.9 with no significant influence. The application of 10 µmol . L-1 selenite stimulated the growth of rape seedlings through improving the root physiological characteristics and root morphology significantly, including significantly increasing the production of superoxide radical (O2∙-) rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and fungal catalase (CAT) in the root system, which resulted in a reduction of the lipids peroxidation (MDA) content as much as 26.0%, consequently increasing the root activity as much as 17.4%. The promoting degrees of selenite on root morphological parameters were from strong to weak in such a tendency: root volume > total surface area > number of root forks > total root length > number of root tips > average diameter. However, such positive effects had no significant difference with those in treatment with 1 µmol . L-1 selenite, indicating that small amounts (≤ 10 Lmol . L-1) of selenite were able to increase the activity of antioxidant enzymes and reduce the content of MDA in root system, which could increase root activity and improve root morphology, hence increased the biomass of rape seedlings.

  16. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.

    PubMed

    Zhao, Weixiong; Dong, Meili; Chen, Weidong; Gu, Xuejun; Hu, Changjin; Gao, Xiaoming; Huang, Wei; Zhang, Weijun

    2013-02-19

    Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days. PMID:23320530

  17. Clay composition and swelling potential estimation of soils using depth of absorption bands in the SWIR (1100-2500 nm) spectral domain

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Granjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Presence of clay minerals is traditionally a good estimator of soils swelling and shrinking behavior. Montmorillonite (i.e. smectite group), illite, kaolinite are the most common minerals in soils and are usually associated to high, moderate, and low swelling potential when they are present in significant amount. Characterization of swelling potential and identification of clay minerals of soils using conventional analysis are slow, expensive, and does not permit integrated measurements. SWIR (1100-2500 nm) spectral domain are characterized by significant spectral absorption bands related to clay content that can be used to recognize main clay minerals. Hyperspectral laboratory using an ASD Fieldspec Pro spectrometer provides thus a rapid and less expensive field surface sensing that permits to measure soil spectral properties. This study presents a new laboratory reflectance spectroscopy method that used depth of clay diagnostic absorption bands (1400 nm, 1900 nm, and 2200 nm) to compare natural soils to synthetic montmorillonite-illite-kaolinite mixtures. We observe in mixtures that illite, montmorillonite, and kaolinite content respectively strongly influence the depth of absorption bands at 1400 nm (D1400), 1900 nm (D1900), and 2200 nm (D2200). To attenuate or removed effects of abundance and grain size, depth of absorption bands ratios were thus used to performed (i) 3D (using D1900/D2200, D1400/D1900, and D2200/D1400 as axis), and (ii) 2D (using D1400/D1900 and D1900/D2200 as axis) diagrams of synthetic mixtures. In this case we supposed that the overall reduction or growth of depth absorption bands should be similarly affected by the abundance and grain size of materials in soil. In 3D and 2D diagrams, the mixtures define a triangular shape formed by two clay minerals as external envelop and the three clay minerals mixtures

  18. Study of the spectral and angular characteristics of laser action by rhodamine 6G solutions in a short cavity

    SciTech Connect

    Smirnov, V.S.; Studenov, V.I.; Rozuvanova, V.A.

    1984-05-01

    An experimental and theoretical study has been made of the spectral and angular characteristics of a laser with an ethanol solution of rhodamine 6G, pumped with the second-harmonic radiation of an LTIPCh-6 laser, as a function of the spacing of a Fabry-Perot interferometer used as a cavity laser. It is shown experimentally that when the cavity is short, the radiation of the laser studied has a distinct spectral and angular structure which is determined by the length of the cavity and is independent of the reflectancies of the cavity mirrors, activator concentration, or power of the exciting radiation. Good agreement is shown to exist between the experimental and theoretical results. It is concluded that the character of formation of the spectral and angular radiation characteristics of a dye laser is determined almost entirely by the properties of the Fabry-Perot interferometer used as the cavity.

  19. Optical absorption characteristics of polycrystalline AgGaSe2 thin films

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. R. A.; Firoz Hasan, S. M.

    2006-12-01

    Silver gallium di-selenide (AgGaSe2) composite thin films have been formed onto ultrasonically and chemically cleaned glass substrates by in situ thermal annealing of the stack of successively evaporated individual elemental layers in vacuum. The structural properties of the films were ascertained by the x-ray diffraction method. The diffractogram indicated that these films were polycrystalline in nature having tetragonal structure with lattice parameters, a ap 6.00 Å and c ap 10.92 Å and average grain dimension 40 nm. The optical properties and atomic compositions of the films have been determined by UV-VIS-NIR spectrophotometry (photon wavelength ranging between 300 and 2500 nm) and energy dispersive analysis of x-ray, respectively. The typical optical absorption characteristic of the films has been critically analysed. The optical absorption coefficients vary from 103 to 105 cm-1 in the measured wavelength range of photons. The films have more than one type of fundamental electronic transitions. Direct allowed and direct forbidden transitions vary from 1.628 to 1.748 eV and 2.077 to 2.193 eV, respectively, depending on the composition of the films. The former transitions are found to have a general tendency to be symmetric around non-molecularity ΔX = 0, defined by ΔX = [(Ag/Ga)] - 1, while the latter shows no such dependence. Stoichiometric or slightly silver-deficient films show electron transition energies closer to the single crystal value. Spin-orbit splitting of the valence band becomes minimum at perfect stoichiometry.

  20. Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices.

    PubMed

    Xia, Xianping; Cai, Shuizhou; Hu, Junhui; Xie, Changsheng

    2006-11-01

    Intrauterine devices (IUDs), especially the copper-containing IUDs (Cu-IUDs), are one of the worldwide used forms for birth control, owing to their advantages of long-lasting and high efficacy, economy, safety, and reversibility. However, it is not perfect for the existing Cu-IUDs; some shortcomings related to its side effects have not been overcome yet. For this reason, a new Cu-IUDs material, the copper/low-density polyethylene (Cu/LDPE) nanocomposite, has been developed in our research team. The structure and water uptake characteristics of this new Cu-IUDs material have been investigated by using X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and gravimetric analysis in this paper. The results of XRD, SEM, EDS, and FT-IR show three important outcomes associated with the structure of the nanocomposite. First, the nanocomposite is hybrid of the polymer and the copper nanoparticles (nano-Cu). Second, porosities, nano-Cu aggregates, and primary alcohol (R--CH(2)--OH) are existed in the nanocomposite. Third, the nano-Cu aggregates are distributed uniformly in the polymer matrix in general. The results of Gravimetric analysis, which associated with the water uptake characteristics of the nanocomposite, exhibit that the water absorption behavior of the nanocomposite obeys the classical diffusion theory very well, the water uptake of the nanocomposite increases with the increasing of the nano-Cu loading, and that the water uptake ability of the nanocomposite with 15.0 wt % nano-Cu (50 nm in diameter) is about 150 times larger than that of the base resin and about 45 times higher than that of the Cu/LDPE microcomposite with 15.0 wt % copper microparticles (5 microm in diameter). These water uptake characteristics are mainly attributed to the structure of the Cu/LDPE composites and the size effect of the nano-Cu.

  1. Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Huot, Y.; Gray, D. J.; Weidemann, A.; Rhea, W. J.

    2013-09-01

    In the aquatic environment, particles can be broadly separated into phytoplankton (PHY), non-algal particle (NAP) and dissolved (or very small particle, VSP) fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs) can also be used. Both absorption spectra and VSFs were used to estimate particle fractions for an experiment in the Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM); the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient measured by an ac-s and the VSF at a few backward angles measured by a HydroScat-6 and an ECO-VSF agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative errors = -20%). The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering. Since the sizes of VSP range from 0.02 to 0.2 μm, covering (a portion of) the operationally defined "dissolved" matter, the typical assumption that colored dissolved organic matter (i.e., CDOM) does not scatter may not hold, particularly in a coastal or estuarine environment.

  2. Experimental facility for reactor experiments on study of spectral-luminescent characteristics of nuclear-excited plasma

    NASA Astrophysics Data System (ADS)

    Gordienko, Yu N.; Batyrbekov, E. G.; Skakov, M. K.; Ponkratov, Yu V.; Khasenov, M. U.; Zaurbekova, Zh A.; Barsukov, N. I.; Kulsartov, T. V.; Tulubayev, Ye Yu

    2016-09-01

    The description of experimental facility and reactor ampoule device for carrying out the experiments on study of spectral-luminescent characteristics of nuclear-excited plasma formed by products of 6Li(n,α)T nuclear reaction under conditions of neutron irradiation is given in paper.

  3. Polarization and spectral characteristics of the two-photon luminescence from colloidal gold nanoparticles excited by tunable laser radiation

    SciTech Connect

    Yashunin, D. A. Korytin, A. I.; Stepanov, A. N.

    2015-12-15

    We have experimentally studied two-photon luminescence from a colloidal solution of spherical gold nanoparticles by tuning the wavelength of the exciting radiation. The measured polarization and spectral characteristics of the two-photon luminescence signal show that the observed nonlinear optical response is determined by the dimers present in the solution with a concentration of a few percent of total nanoparticle number.

  4. Temporal and spectral characteristics of seismicity observed at Popocatepetl volcano, central Mexico

    USGS Publications Warehouse

    Arciniega-Ceballos, A.; Valdes-Gonzalez, C.; Dawson, P.

    2000-01-01

    Popocatepetl volcano entered an eruptive phase from December 21, 1994 to March 30, 1995, which was characterized by ash and fumarolic emissions. During this eruptive episode, the observed seismicity consisted of volcano-tectonic (VT) events, long-period (LP) events and sustained tremor. Before the initial eruption on December 21, VT seismicity exhibited no increase in number until a swarm of VT earthquakes was observed at 01:31 hours local time. Visual observations of the eruption occurred at dawn the next morning. LP activity increased from an average of 7 events a day in October 1994 to 22 events per day in December 1994. At the onset of the eruption, LP activity peaked at 49 events per day. LP activity declined until mid-January 1995 when no events were observed. Tremor was first observed about one day after the initial eruption and averaged 10 h per episode. By late February 1995, tremor episodes became more intermittent, lasting less than 5 min, and the number of LP events returned to pre-eruption levels (7 events per day). Using a spectral ratio technique, low-frequency oceanic microseismic noise with a predominant peak around 7 s was removed from the broadband seismic signal of tremor and LP events. Stacks of corrected tremor episodes and LP events show that both tremor and LP events contain similar frequency features with major peaks around 1.4 Hz. Frequency analyses of LP events and tremor suggest a shallow extended source with similar radiation pattern characteristics. The distribution of VT events (between 2.5 and 10 km) also points to a shallow source of the tremor and LP events located in the first 2500 m beneath the crater. Under the assumption that the frequency characteristics of the signals are representative of an oscillator we used a fluid-filled-crack model to infer the length of the resonator.

  5. Comparisons of spectral characteristics of wind noise between omnidirectional and directional microphones.

    PubMed

    Chung, King

    2012-06-01

    Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences.

  6. Myopic Macular Retinoschisis in Teenagers: Clinical Characteristics and Spectral Domain Optical Coherence Tomography Findings

    PubMed Central

    Sun, Chuan-bin; You, Yong-sheng; Liu, Zhe; Zheng, Lin-yan; Chen, Pei-qing; Yao, Ke; Xue, An-quan

    2016-01-01

    To investigate the morphological characteristics of myopic macular retinoschisis (MRS) in teenagers with high myopia, six male (9 eyes) and 3 female (4 eyes) teenagers with typical MRS identified from chart review were evaluated. All cases underwent complete ophthalmic examinations including best corrected visual acuity (BCVA), indirect ophthalmoscopy, colour fundus photography, B-type ultrasonography, axial length measurement, and spectral-domain optical coherence tomography (SD-OCT). The average age was 17.8 ± 1.5 years, average refractive error was −17.04 ± 3.04D, average BCVA was 0.43 ± 0.61, and average axial length was 30.42 ± 1.71 mm. Myopic macular degenerative changes (MDC) by colour fundus photographs revealed Ohno-Matsui Category 1 in 4 eyes, and Category 2 in 9 eyes. Posterior staphyloma was found in 9 eyes. SD-OCT showed outer MRS in all 13 eyes, internal limiting membrane detachment in 7 eyes, vascular microfolds in 2 eyes, and inner MRS in 1 eye. No premacular structures such as macular epiretinal membrane or partially detached posterior hyaloids were found. Our results showed that MRS rarely occurred in highly myopic teenagers, and was not accompanied by premacular structures, severe MDC, or even obvious posterior staphyloma. This finding indicates that posterior scleral expansion is probably the main cause of MRS. PMID:27294332

  7. On the vertical structure and spectral characteristics of the marine Low-Level Jet

    NASA Astrophysics Data System (ADS)

    Helmis, C. G.; Sgouros, G.; Wang, Q.

    2015-01-01

    The aim of this work is the study of the vertical structure and the spectral characteristics of the marine Low Level Jets (LLJs) which are associated with frontal events. The analyzed data are based on remote sensing (sodar) and in-situ instrumentation measurements, performed during summer 2003, in the frame of the Coupled Boundary Layers Air-Sea Transfer Experiment in Low Winds (CBLAST-Low), at Nantucket Island, MA, U.S.A. The study of the vertical structure of the lower marine Atmospheric Boundary Layer (MABL), during a ten day period, has shown that the first 100 to 200 m, is characterized by strongly stable atmospheric conditions which are modified to slightly stable or almost neutral at higher levels. The frequent development of LLJs was also observed and was associated with frontal events, depending on the meteorological conditions. In order to understand the influence of the different physical processes and to study the vertical distribution of the wind intensity variations at the various time scales of interest, the Hilbert-Huang Transform (HHT) algorithm was applied to the time series of the wind data from the sodar, at different levels. Results are presented and discussed for certain LLJ cases, where the observed LLJs were persistent for several hours or days while the analysis of the wind speed data showed high amplitude variations corresponding to contributions not only from inertial but also from diurnal and meso-scale motions.

  8. Myopic Macular Retinoschisis in Teenagers: Clinical Characteristics and Spectral Domain Optical Coherence Tomography Findings.

    PubMed

    Sun, Chuan-Bin; You, Yong-Sheng; Liu, Zhe; Zheng, Lin-Yan; Chen, Pei-Qing; Yao, Ke; Xue, An-Quan

    2016-01-01

    To investigate the morphological characteristics of myopic macular retinoschisis (MRS) in teenagers with high myopia, six male (9 eyes) and 3 female (4 eyes) teenagers with typical MRS identified from chart review were evaluated. All cases underwent complete ophthalmic examinations including best corrected visual acuity (BCVA), indirect ophthalmoscopy, colour fundus photography, B-type ultrasonography, axial length measurement, and spectral-domain optical coherence tomography (SD-OCT). The average age was 17.8 ± 1.5 years, average refractive error was -17.04 ± 3.04D, average BCVA was 0.43 ± 0.61, and average axial length was 30.42 ± 1.71 mm. Myopic macular degenerative changes (MDC) by colour fundus photographs revealed Ohno-Matsui Category 1 in 4 eyes, and Category 2 in 9 eyes. Posterior staphyloma was found in 9 eyes. SD-OCT showed outer MRS in all 13 eyes, internal limiting membrane detachment in 7 eyes, vascular microfolds in 2 eyes, and inner MRS in 1 eye. No premacular structures such as macular epiretinal membrane or partially detached posterior hyaloids were found. Our results showed that MRS rarely occurred in highly myopic teenagers, and was not accompanied by premacular structures, severe MDC, or even obvious posterior staphyloma. This finding indicates that posterior scleral expansion is probably the main cause of MRS. PMID:27294332

  9. Spectral characteristics of nonchain HF and DF electric-discharge lasers in efficient excitation modes

    SciTech Connect

    Panchenko, Aleksei N; Orlovsky, V M; Tarasenko, Viktor F

    2004-04-30

    The spectral characteristics of efficient nonchain HF and DF chemical lasers are studied. It is found that the emission spectra of nonchain lasers operating with high efficiency are strongly broadened. Almost 30 emission lines of an HF laser and cascade lasing on the v(3-2) {yields} v(2-1) {yields} v(1-0) vibrational transitions of HF molecules for a number of rotational lines are obtained. It is shown that the development of discharge inhomogeneities significantly reduces the number of lasing lines in the spectra of nonchain chemical lasers. For an SF{sub 6} - D{sub 2} mixture excited by a generator with an inductive storage, about 40 lasing lines are observed on four vibrational transitions of DF molecules and the v(4-3) {yields} v(3-2) {yields} v(2-1) {yields} v(1-0) cascade lasing is obtained at several rotational lines. Nonchain HF and DF electric-discharge lasers with a total and intrinsic efficiency of up to 6% and 10%, respectively, pumped from capacitive and inductive generators are developed. (lasers)

  10. Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools.

    PubMed

    AzimiHashemi, N; Erbguth, K; Vogt, A; Riemensperger, T; Rauch, E; Woodmansee, D; Nagpal, J; Brauner, M; Sheves, M; Fiala, A; Kattner, L; Trauner, D; Hegemann, P; Gottschalk, A; Liewald, J F

    2014-12-15

    Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.

  11. Comparisons of spectral characteristics of wind noise between omnidirectional and directional microphones.

    PubMed

    Chung, King

    2012-06-01

    Wind noise reduction is a topic of ongoing research and development for hearing aids and cochlear implants. The purposes of this study were to examine spectral characteristics of wind noise generated by directional (DIR) and omnidirectional (OMNI) microphones on different styles of hearing aids and to derive wind noise reduction strategies. Three digital hearing aids (BTE, ITE, and ITC) were fitted to Knowles Electronic Manikin for Acoustic Research. They were programmed to have linear amplification and matching frequency responses between the DIR and OMNI modes. Flow noise recordings were made from 0° to 360° azimuths at flow velocities of 4.5, 9.0, and 13.5 m/s in a quiet wind tunnel. Noise levels were analyzed in one-third octave bands from 100 to 8000 Hz. Comparison of wind noise revealed that DIR generally produced higher noise levels than OMNI for all hearing aids, but it could result in lower levels than OMNI at some frequencies and head angles. Wind noise reduction algorithms can be designed to detect noise levels of DIR and OMNI outputs in each frequency channel, remove the constraint to switch to OMNI in low-frequency channel(s) only, and adopt the microphone mode with lower noise levels to take advantage of the microphone differences. PMID:22712924

  12. Characteristics of spectral-hole burning in Tm3+:YAG based on the perturbation theory

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Yu; Ma, Xiu-Rong; Zhang, Shuang-Gen; Chen-Lei; Wang, Xia-Yang; Mu, Kuan-Lin; Wang, Song

    2014-06-01

    In this paper, the physical mechanism of the interaction between electromagnetic wave and spectral-hole burning crystal material is investigated in detail. In the small signal regime, a perturbation theory model is used to analyze the mechanism of spectral-hole burning. By solving the Liouville equation, three-order perturbation results are obtained. From the theoretic analysis, spectral-hole burning can be interpreted as a photon echo of the zero-order diffraction echo when the first optical pulse and the second optical pulse are overlapped in time. According to the model, the spectral-hole width is dependent on the chirp rate of the reading laser. When the chirp rate is slow with respect to the spectral features of interest, the spectral hole is closely mapped into time domain. For a fast chirp rate, distortions are observed. The results follow Maxwell—Bloch model and they are also in good agreement with the experimental results.

  13. [Spectral characteristics of Pinus tabulaeformis canopy with different damaged rates of needle leaf in western Liaoning Province, Northeast China].

    PubMed

    Feng, Rui; Zhang, Yu-Shu; Yu, Wen-Ying; Wu, Jin-Wen; Wang, Pei-Juan; Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning

    2012-07-01

    Through the measurement of the spectral reflectance of large areas Chinese pine (Pinus tabulaeformis Carr. ) canopy in western Liaoning Province, this paper analyzed the difference of the spectral reflectance of the canopies with different damaged rates of needle leaf. In visible band, the characteristics of the spectral reflectance of P. tabulaeformis canopies with healthy and damaged needle leaf were in accordance with the spectral characteristics of green plants, but the position of red valley was not obvious when the damaged rate of needle leaf was higher than 60%. In near-infrared band, with the decrease of the damaged rate of needle leaf, the canopy spectral reflectance increased at 780-1350 nm, but decreased at 1450-1800 and 1950-2350 nm. With the increase of the damaged rate, the position of red-edge inflection moved to the short-wave direction. There were significant correlations between the damaged rate of needle leaf and the red edge feature variables and some vegetation indices. The model based on DVI (1470, 860) could be more reliable for predicting the damaged rate of needle leaf in P. tabulaeformis canopy in western Liaoning Province. PMID:23173448

  14. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    SciTech Connect

    MacFarlane, Joseph J

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for

  15. Spectral Characteristics of Vegetation Functional Traits across a Range of Thaw Gradients on Alaska's Seward Peninsula

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Hayes, D. J.; Sloan, V. L.; Liebig, J. A.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    The Arctic and Boreal regions are warming rapidly, leading to the thawing of the underlying permafrost and associated changes in vegetation structure and composition. The thawing of ice-rich permafrost drives land surface dynamics called thermokarst, characterized by a variety of geomorphic surface features across high latitude landscapes. The development of these thermokarst or thermo-erosional features depends on factors such as local permafrost conditions, hydrology, geomorphology, vegetation, and climate, but their degree of dependence are not well understood across scales. The structure, functions and traits of the vegetation can work as effective indicators of these landscape changes. Our ability to characterize these vegetation characteristics across a wide range of thaw gradients at the local scale could help us to better understand the dependency as well as the impacts of thermokarst processes on them. This will also help us to develop capabilities to quantify these characteristics and dependencies from local to regional scales by using remote sensing and ecosystem modeling techniques. During the months of June - July of 2013 and 2014, we conducted field surveys at various sites across the central Seward Peninsula in Alaska covering a range of thaw gradients to collect data for vegetation functional traits, ancillary data and also hyperspectral data in the 400-2500 nm range using a field spectrometer. Data were collected from plots established along 50 m transects to capture transitional states of these thaw features from the upland zone, transition zone, and thaw lake basins as well as in polygonal features. Here we discuss the characteristics of vegetation functional traits and how they relate to the ground-based spectral measurements. Some of these findings could be scaled up using airborne and satellite remote sensing data. The findings from this study can improve our understanding of disturbance patterns and their feedbacks to local scale plant and

  16. Stabilization and spectral characterization of an alexandrite laser for water vapor lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Higdon, Noah S.; Grossman, Benoist E.; Browell, Edward V.

    1991-01-01

    A description of an optical system used to lock the alexandrite laser frequency on a water vapor absorption line is presented. The laser spectral characteristics, which include the spectral purity, the effect of the laser linewidth on the absorption, and the laser wavelength stability, are evaluated.

  17. Understanding X-ray Spectral and Timing Characteristics of Active Galactic Nuclei by a Novel Picture with Multiple Primary Emission

    NASA Astrophysics Data System (ADS)

    Noda, H.; Makishima, K.; Yamada, S.; Miyake, K.

    2014-07-01

    Our understanding of the central engine of type I Active Galactic Nuclei (AGNs) has been hampered by spectral ambiguity among different X-ray components: e.g., Comptonized primary emission, secondary components possibly affected by strong relativistic effects (e.g., Miniutti et al. 2007), and/or complex partial absorption (e.g., Miller et al. 2008). With a variability-assisted spectral analysis method developed in Noda et al. (2011, 2013), we succeeded in model-independently decomposing the AGN spectra, and establishing a novel view of the engine, that it consists of multiple primary X-ray continua with distinct spectral shapes, variability timescales, and Eddington-ratio dependences (Noda et al. 2013). The novel view with the multiple primary X-ray components can explain several long-lasting problems with the AGN central engine. The hardest of the primary components can now partially explain the "too strong hard X-ray hump", and make the secondary reflection strength moderate. The well-known X-ray spectral softening, when a source brightens, can be successfully reproduced by an increasing dominance of a softer-slope primary component towards higher Eddington ratios. Furthermore, the puzzling lack of good optical vs. X-ray intensity correlation, in some AGNs, can be solved by considering that the optical emission is correlated only with some of the primary X-ray components.

  18. [Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings].

    PubMed

    Liu, Xin-wei; Wang, Qiao-lan; Duan, Bi-hui; Lin, Ya-meng; Zhao, Xiao-hu; Hu, Cheng-xiao; Zhao, Zhu-qing

    2015-07-01

    Abstract: The rape (Brassica napus L. cv. Xiangnongyou 571) was chosen as the experimental material to undergo solution cultivation at seedling stage to investigate the effects of selenite addition on the selenium (Se) absorption and distribution, root morphology and physiological characteristics of rape seedlings. The results showed that the bioaccumulation ability of Se decreased significantly with increasing the Se application rate, but the Se distribution coefficient remained around 0.9 with no significant influence. The application of 10 µmol . L-1 selenite stimulated the growth of rape seedlings through improving the root physiological characteristics and root morphology significantly, including significantly increasing the production of superoxide radical (O2∙-) rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and fungal catalase (CAT) in the root system, which resulted in a reduction of the lipids peroxidation (MDA) content as much as 26.0%, consequently increasing the root activity as much as 17.4%. The promoting degrees of selenite on root morphological parameters were from strong to weak in such a tendency: root volume > total surface area > number of root forks > total root length > number of root tips > average diameter. However, such positive effects had no significant difference with those in treatment with 1 µmol . L-1 selenite, indicating that small amounts (≤ 10 Lmol . L-1) of selenite were able to increase the activity of antioxidant enzymes and reduce the content of MDA in root system, which could increase root activity and improve root morphology, hence increased the biomass of rape seedlings. PMID:26710631

  19. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  20. Temperature Measurement Using all Fiber Fabry-Perot Interferometers Based on Phase Measurement Between Reference and Sensing Interferometer Spectral Characteristic

    NASA Astrophysics Data System (ADS)

    Njegovec, Matej; Đonlagic, Denis

    2010-04-01

    This paper presents the signal interrogator for fiber optic temperature sensors based on all-fiber miniature Fabry-Perot interferometers that are implemented by creation of the low reflectivity mirrors within optical fiber. This kind of Fabry-Perot interferometer has low finesse and nearly sinusoidal spectral characteristics. Since the optical path length between mirrors depends on refractive index and thereby temperature, change in sensor temperature shifts the sensor's spectral characteristics in wavelength domain. The presented measurement system is composed of the sensing interferometer and signal interrogator that further includes the reference interferometer. The reference interferometer is also an all-fiber interferometer with nearly identical length as sensing interferometer. The wavelength of the signal interrogator optical source was cyclically swept over available wavelength range while both interferometers' spectral responses were simultaneously recorded. The optical path length variation of the sensing interferometer was determined by direct phase difference measurement between both recorded sinusoidal spectral characteristics. This phase difference was directly correlated to the temperature difference between sensing and reference interferometer. Since reference interferometer was situated within the signal integrator its temperature was measured by the reference electrical sensors. Thus the proposed system can provide accurate absolute temperature measurements. In the proposed interrogator we used as an optical source a standard telecommunication DFB diode module with integrated thermo-electric cooler. Standard DFB diode can be shifted in wavelength for abut 2 nm, which allows interrogation of the Fabry-Perot interferometers having free spectral range below 2 nm. In case of an all fiber Fabry-Perot interferometers, this corresponds to interferometers with length that is more than 0.5 mm. Since recorded nearly sinusoidal spectral characteristics

  1. Lanthanides and other spectral oddities in a Centauri. Ce III, Nd III, Kr II, and broad absorption features

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Hubrig, S.; González, J. F.

    2010-11-01

    Context. There is considerable interest in the helium variable a Cen as a bridge between helium-weak and helium-strong CP stars. Aims: We investigate Ce iii and other possible lanthanides in the spectrum the of hottest chemically peculiar (CP) star in which these elements have been found. A Kr ii line appears within a broad absorption which we suggest may be due to a high-level transition in C ii. Methods: Wavelengths and equivalent widths are measured on high-resolution UVES spectra, analyzed, and their phase-variations investigated. Results: New, robust identifications of Ce iii and Kr ii are demonstrated. Nd iii is likely present. A broad absorption near λ4619 is present at all phases of a Cen, and in some other early B stars. Conclusions: The presence of lanthanides in a Cen strengthens the view that this star is a significant link between the cooler CP stars and the hotter helium-peculiar stars. Broad absorptions in a Cen are not well explained. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 65.L-0316(A), 073.D-0504(A), and 076.B-0055(A)).

  2. [Spectral Characteristics of Dissolved Organic Matters in Reject Water from Wastewater Treatment Plants].

    PubMed

    Niu, Tian-hao; Zhou, Zhen; Hu, Da-long; Wei, Hai-juan; Li, Jing; Dou, Wei-xiao; Ge, Hong-hua

    2016-04-15

    Reject water generated from sludge thickening, dewatering and stabilization process contains high-content and complex dissolved organic matters (DOM). The spectral characteristics of DOM in the reject water were investigated by three-dimensional excitation-emission matrix and Fourier transform infrared spectroscopy. Fluorescent DOM (FDOM) from reject water were decomposed into six components by parallel factor analysis, the protein-like C1 (275/355 nm), C4 (235/350 nm) and C6 (275/305 nm) and the humic-like C2 (250, 340/440 nm) , C3 (320/380 nm) and CS (250/465 nm). Soluble COD in the sludge thickening reject water was positively correlated with all the three humic-like substances at P < 0.01 level, and was insignificantly influenced by protein-like substances. The tryptophan-like C1, C4 and humic-like CS increased in the centrifugal dewatering reject water (CDRW). FDOM in the advanced dewatering reject water (ADRW) were significantly different from those of other reject water in fluorescence peak locations and intensities, and humic-like C3 and tyrosine-like C6 in the DOM were 15.63 and 7.30 times higher than those in CDRW. Compared to sludge thickening reject water, infrared peaks related to polysaccharide and humic substances in CDRW were enhanced and massive proteins were released into ADRW. DOM structures in ADRW were changed owing to the complexation between metals and both humic substances and proteins. PMID:27548969

  3. Spectral-induced polarization characteristics of rocks from Shinyemi deposit in Northeastern South Korea

    NASA Astrophysics Data System (ADS)

    Park, Samgyu; Shin, Seung Wook; Son, Jeong-Sul; Kim, Changryol

    2016-04-01

    Contact metasomatism between carbonate and igneous rocks leads to the formation of skarn deposits, and ore minerals are abundant. Geophysical methods that visualize the distributions of physical properties have been utilized to determine lithological boundaries in ore deposits. In particular, spectral-induced polarization (SIP) is the most effective of those methods for mineral exploration because it can obtain not only the boundaries but also the abundance and grain size of ore minerals. It is crucial to characterize the SIP responses of in situ rocks for a more realistic interpretation. Thus, typical rocks composed of igneous rock, skarn rock, skarn ore, and carbonate rock were sampled from drilling cores in the Shinyemi deposit, which is one of the well-known skarn deposits in Northeastern South Korea. The purpose of this study was to characterize the SIP responses of rocks by laboratory measurements. The characterization was performed by evaluating spectra and IP parameters. The IP properties were acquired from equivalent circuit analysis using a circuit model based on the electrochemical theory, and the analysis results of this circuit model were relatively well fit compared with those of the traditional Dias and Cole-Cole models. The frequency responses below 100 Hz in the spectra and the chargeability values of the skarn rocks and ores containing magnetite were relatively strong and high, respectively, compared with those of non-mineralized igneous and carbonate rocks. Therefore, it is considered that these characteristics are dependent on the abundance of magnetite. In case of the skarn ores with high magnetite content, the resistivity values were significantly low and the relaxation time values were influenced by the grain size of magnetite. On the other hand, it is considered that the DC resistivity and the relaxation time values of the igneous and carbonate rocks are slightly related to the porosity and the grade of hydrothermal alteration, respectively.

  4. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  5. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  6. Age-Related Changes to Spectral Voice Characteristics Affect Judgments of Prosodic, Segmental, and Talker Attributes for Child and Adult Speech

    ERIC Educational Resources Information Center

    Dilley, Laura C.; Wieland, Elizabeth A.; Gamache, Jessica L.; McAuley, J. Devin; Redford, Melissa A.

    2013-01-01

    Purpose: As children mature, changes in voice spectral characteristics co-vary with changes in speech, language, and behavior. In this study, spectral characteristics were manipulated to alter the perceived ages of talkers' voices while leaving critical acoustic-prosodic correlates intact, to determine whether perceived age differences were…

  7. Positive Flash High-Speed Spectral Characteristics in the Upward Lightning Triggering Study (UPLIGHTS)

    NASA Astrophysics Data System (ADS)

    Orville, R. E.; Warner, T.

    2013-12-01

    The spectral properties of positive lightning flashes have been recorded for the first time. Two high-speed cameras, each operating at 35,000 fps, have recorded the positive leaders in the UPLIGHTS experiment in Rapid City, South Dakota. One of the cameras is modified to a spectrograph with a transmission diffraction grating to capture the lightning emissions from 400 to 900 nm. The positive leader infrared spectral emissions are relatively more intense compared to the visible spectral emissions. The positive lightning return stroke peak currents range from 24 to 91 kA.

  8. Optimizing spectral resolutions for the classification of C3 and C4 grass species, using wavelengths of known absorption features

    NASA Astrophysics Data System (ADS)

    Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad

    2012-01-01

    Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.

  9. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension.

  10. Real-time calibration of laser absorption spectrometer using spectral correlation performed with an in-line gas cell.

    PubMed

    Smith, Clinton J; Wang, Wen; Wysocki, Gerard

    2013-09-23

    A real-time drift correction and calibration method using spectral correlation based on a revolving in-line gas cell for laser-based spectroscopic trace-gas measurements has been developed and evaluated experimentally. This technique is relatively simple to implement in laser spectroscopy systems and assures long-term stability of trace-gas measurements by minimizing the effects of external sources of drift in real-time. Spectroscopic sensitivity sufficient for environmental monitoring and effective drift suppression has been achieved for long-term measurements of CO₂ with a quantum cascade laser based spectrometer.

  11. Theoretical study of the spectral shift of the absorption line of Rb and Cs in liquid helium

    NASA Astrophysics Data System (ADS)

    Modesto-Costa, Lucas; Mukherjee, Prasanta K.; Canuto, Sylvio

    2015-07-01

    A combined and sequential use of Monte Carlo simulation and time-dependent density functional theory is made to obtain the excitation line shifts and widths of Rb and Cs embedded in liquid 4He. In each case calculations are made on 100 statistically uncorrelated configurations with Rb (Cs) surrounded by nearly 60 He atoms treated explicitly. Different basis sets and functionals are used for obtaining the blue shifts of the absorption lines 5s → 5p of Rb and 6s → 6p of Cs. Estimate of the line broadening is also made and results for both the shift and broadening are obtained in good agreement with experiment.

  12. Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region.

    PubMed

    Yang, Ping; Wei, Heli; Huang, Hung-Lung; Baum, Bryan A; Hu, Yong X; Kattawar, George W; Mishchenko, Michael I; Fu, Qiang

    2005-09-10

    The single-scattering properties of ice particles in the near- through far-infrared spectral region are computed from a composite method that is based on a combination of the finite-difference time-domain technique, the T-matrix method, an improved geometrical-optics method, and Lorenz-Mie theory. Seven nonspherical ice crystal habits (aggregates, hexagonal solid and hollow columns, hexagonal plates, bullet rosettes, spheroids, and droxtals) are considered. A database of the single-scattering properties for each of these ice particles has been developed at 49 wavelengths between 3 and 100 microm and for particle sizes ranging from 2 to 10,000 microm specified in terms of the particle maximum dimension. The spectral variations of the single-scattering properties are discussed, as well as their dependence on the particle maximum dimension and effective particle size. The comparisons show that the assumption of spherical ice particles in the near-IR through far-IR region is generally not optimal for radiative transfer computation. Furthermore, a parameterization of the bulk optical properties is developed for mid-latitude cirrus clouds based on a set of 21 particle size distributions obtained from various field campaigns.

  13. [Light Absorption Characteristics of FeS2-Fe1-xS Heterostructures Synthesized under Hydrothermal Conditions].

    PubMed

    Liu, Jia; Huang, Fei; Meng, Lin; Yu, Hao-ran; Chen, Ying-hua

    2015-05-01

    Fe-S series, especially FeS2 and Fe1-x S is the main component of crustal rocks as important metal sulphides. Pyrite (FeS2) shows a promising vision in solar cell materials for its high absorption coefficient and suitable band gap. Predecessors have done some researches on the photovoltaic properties of Fe-S series under different conditions. However, little researches have been done on the coexisted sulphide of FeS2 and Fe1-xS. FeS2 and Fe1-xS often appear as symbiotically due to their similar formation conditions. So the study on the optical absorption characteristics of FeS2 and Fe1-xS are of important significance. In order to study the optical absorption characteristics of FeS2-Fe1-xS heterostructures, using the SEM and XRD to characterize the morphology, composition and structure, respectively. The results show that the samples were cubic pyrite with a certain amount of pyrhotite (Fe1-xS). The crystal partical size was between 5 and 10 nm. Measurement of the absorption spectrum was performed using Cary 500 UV-Vis-NIR spectrophotoineter, acquiring the results of 1 860-1 889 nm, and the absorption peak in 1879nm. According to the band gap (eV) formula, the band gap value is calculated to be 0. 657 8 eV. The extreme electrical-to-optical conversion efficiency achieved was about 15%. By the first principles, we analysed the reason of the changing of the band gap value, and then compared the result with previous one. The internal structure of mineral is the important factor affecting the photoelectric conversion. The light absorption characteristics of FeS2-Fel-xS heterostructures synthesized under hydrothermal conditions is better than the characteristics from natural pyrite with defects of Co and Ni. The heterostructures can improve the electrical-to-optical conversion efficiency and provide scientific basis for the absorption characteristics research of Fe-S series materials. PMID:26415446

  14. [Light Absorption Characteristics of FeS2-Fe1-xS Heterostructures Synthesized under Hydrothermal Conditions].

    PubMed

    Liu, Jia; Huang, Fei; Meng, Lin; Yu, Hao-ran; Chen, Ying-hua

    2015-05-01

    Fe-S series, especially FeS2 and Fe1-x S is the main component of crustal rocks as important metal sulphides. Pyrite (FeS2) shows a promising vision in solar cell materials for its high absorption coefficient and suitable band gap. Predecessors have done some researches on the photovoltaic properties of Fe-S series under different conditions. However, little researches have been done on the coexisted sulphide of FeS2 and Fe1-xS. FeS2 and Fe1-xS often appear as symbiotically due to their similar formation conditions. So the study on the optical absorption characteristics of FeS2 and Fe1-xS are of important significance. In order to study the optical absorption characteristics of FeS2-Fe1-xS heterostructures, using the SEM and XRD to characterize the morphology, composition and structure, respectively. The results show that the samples were cubic pyrite with a certain amount of pyrhotite (Fe1-xS). The crystal partical size was between 5 and 10 nm. Measurement of the absorption spectrum was performed using Cary 500 UV-Vis-NIR spectrophotoineter, acquiring the results of 1 860-1 889 nm, and the absorption peak in 1879nm. According to the band gap (eV) formula, the band gap value is calculated to be 0. 657 8 eV. The extreme electrical-to-optical conversion efficiency achieved was about 15%. By the first principles, we analysed the reason of the changing of the band gap value, and then compared the result with previous one. The internal structure of mineral is the important factor affecting the photoelectric conversion. The light absorption characteristics of FeS2-Fel-xS heterostructures synthesized under hydrothermal conditions is better than the characteristics from natural pyrite with defects of Co and Ni. The heterostructures can improve the electrical-to-optical conversion efficiency and provide scientific basis for the absorption characteristics research of Fe-S series materials.

  15. Acoustic and spectral characteristics of young children's fricative productions: A developmental perspective

    NASA Astrophysics Data System (ADS)

    Nissen, Shawn L.; Fox, Robert Allen

    2005-10-01

    Scientists have made great strides toward understanding the mechanisms of speech production and perception. However, the complex relationships between the acoustic structures of speech and the resulting psychological percepts have yet to be fully and adequately explained, especially in speech produced by younger children. Thus, this study examined the acoustic structure of voiceless fricatives (/f, θ, s, /sh/) produced by adults and typically developing children from 3 to 6 years of age in terms of multiple acoustic parameters (durations, normalized amplitude, spectral slope, and spectral moments). It was found that the acoustic parameters of spectral slope and variance (commonly excluded from previous studies of child speech) were important acoustic parameters in the differentiation and classification of the voiceless fricatives, with spectral variance being the only measure to separate all four places of articulation. It was further shown that the sibilant contrast between /s/ and /sh/ was less distinguished in children than adults, characterized by a dramatic change in several spectral parameters at approximately five years of age. Discriminant analysis revealed evidence that classification models based on adult data were sensitive to these spectral differences in the five-year-old age group.

  16. Radio spectral characteristics of the supernova remnant Puppis A and nearby sources

    NASA Astrophysics Data System (ADS)

    Reynoso, E. M.; Walsh, A. J.

    2015-08-01

    This paper presents a new study of the spectral index distribution of the supernova remnant (SNR) Puppis A. The nature of field compact sources is also investigated according to the measured spectral indices. This work is based on new observations of Puppis A and its surroundings performed with the Australia Telescope Compact Array in two configurations using the Compact Array Broad-band Backend centred at 1.75 GHz. We find that the global spectral index of Puppis A is α = -0.563 ± 0.013. Local variations have been detected, however this global index represents well the bulk of the SNR. At the SE, we found a pattern of parallel strips with a flat spectrum compatible with small-scale filaments, although not correlated in detail. The easternmost filament agrees with the idea that the SNR shock front is interacting with an external cloud. There is no evidence of the previously suggested correlation between emissivity and spectral index. A number of compact features are proposed to be evolved clumps of ejecta based on their spectral indices, although dynamic measurements are needed to confirm this hypothesis. We estimate precise spectral indices for the five previously known field sources, two of which are found to be double (one of them, probably triple), and catalogue 40 new sources. In the light of these new determinations, the extragalactic nature previously accepted for some compact sources is now in doubt.

  17. Pressure influence on the structural characteristics of modified absorptive glass mat separators: A standard contact porosimetry study

    NASA Astrophysics Data System (ADS)

    Burashnikova, M. M.; Khramkova, T. S.; Kazarinov, I. A.; Shmakov, S. L.

    2015-09-01

    The article presents a comparative analysis of the structural characteristics of absorptive glass mats manufactured by "Hollingsworth & Vose" (a 2.8 mm thickness) and "Bernard Dumas" (a 3.0 mm thickness) modified by impregnation with polymeric emulsions based on polyvinylidene fluoride, a polyvinylpyrrolidone styrene copolymer, and polytetrafluoroethylene, by means of standard contact porosimetry. The key study is influence of features of the porous structure on the compression properties, the rate of wicking, and the oxygen cycle efficiency in lead-acid battery mock-ups under several plate-group compression pressures. It is found that the treatment of the absorptive glass mat separators with polymeric emulsions leads to redistribution of their pores by size. An increased pressure in the electrode unit insignificantly changes the pore structure of the modified absorptive glass mat separators, and the oxygen cycle efficiency rises in comparison with unmodified separators.

  18. The studies of high-frequency magnetic properties and absorption characteristics for amorphous-filler composites

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Yang, Z. H.

    2015-10-01

    Pure amorphous flake fillers and amorphous flakes coated by ferrite nanoparticles with core-shell-like structure were fabricated using mechanical ball-milling. The later with core-shell-like structure can greatly decrease permittivity and improve the absorption properties, as compared to the former. The absorption of all amorphous-filler composites has its origin in a quarter-wavelength resonator. Based on the resonator model, absorption frequency fA and the corresponding return loss RL are calculated, which are well consistent with observed values. It is also found that the resonance frequency is proportional to effective resistivity, based on William-Shockley-Kittel's eddy model.

  19. Spectral lineshapes of collision-induced absorption (CIA) and collision-induced light scattering (CILS) for molecular nitrogen using isotropic intermolecular potential. New insights and perspectives

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Mostafa, S. I.; Bancewicz, T.; Maroulis, G.

    2014-08-01

    The rototranslational collision-induced absorption (CIA) at different temperatures and collision-induced light scattering (CILS) at room temperature of nitrogen gas are analyzed in terms of new isotropic intermolecular potential, multipole-induced dipole functions and interaction-induced pair polarizability models, using quantum spectral lineshape computations. The irreducible spherical form for the induced operator of light scattering mechanisms was determined. The high frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability E4, is obtained and checked with the ab initio theoretical value. The quality of the present potential has been checked by comparing between calculated and experimental thermo-physical and transport properties over a wide temperature range, which are found to be in good agreement.

  20. Spectral characteristics of mid-latitude continental convection from a global variable-resolution Voronoi-mesh atmospheric model

    NASA Astrophysics Data System (ADS)

    Wong, M.; Skamarock, W. C.

    2015-12-01

    Global numerical weather forecast tests were performed using the global nonhydrostatic atmospheric model, Model for Prediction Across Scales (MPAS), for the NOAA Storm Prediction Center 2015 Spring Forecast Experiment (May 2015) and the Plains Elevated Convection at Night (PECAN) field campaign (June to mid-July 2015). These two sets of forecasts were performed on 50-to-3 km and 15-to-3 km smoothly-varying horizontal meshes, respectively. Both variable-resolution meshes have nominal convection-permitting 3-km grid spacing over the entire continental US. Here we evaluate the limited-area (vs. global) spectra from these NWP simulations. We will show the simulated spectral characteristics of total kinetic energy, vertical velocity variance, and precipitation during these spring and summer periods when diurnal continental convection is most active over central US. Spectral characteristics of a high-resolution global 3-km simulation (essentially no nesting) from the 20 May 2013 Moore, OK tornado case are also shown. These characteristics include spectral scaling, shape, and anisotropy, as well as the effective resolution of continental convection representation in MPAS.

  1. Investigation of sensitometric characteristics of X-ray photoemulsions in the spectral range of 15-80 Å

    NASA Astrophysics Data System (ADS)

    Alexandrov, Yu. M.; Eidmann, K.; Fedin, D. A.; Fedorchuk, R. V.; Koshevoi, M. O.; Murashova, V. A.; Rupasov, A. A.; Shikanov, A. S.; Shpol'sky, M. R.; Yakimenko, M. N.

    1991-10-01

    An investigation of the sensitometric characteristics of X-ray films RAR 2497, SB-2, 101-01 (Kodak), D-7 (Agfa-Gevaert) and UFSh-0 (GNIIKhFP) has been carried out. These films are widely used in scientific research with different types of X-ray sources. The investigation was realized with the aid of a transmission grating spectrograph. An S-60 electron accelerator (P.N. Lebedev Physical Institute) was used as the source of X-ray radiation. The characteristic curves for different wavelengths (within the mentioned range) are presented, as well as the spectral dependences of absolute sensitivity and contrast for the tested films.

  2. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    SciTech Connect

    Ding, Z. F.; Sun, B.; Huo, W. G.

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  3. Spectral and Lensing Characteristics of Gel-Derived Strontium Tartrate Single Crystals Using Dual-Beam Thermal Lens Technique.

    PubMed

    Rejeena, I; Thomas, V; Mathew, S; Lillibai, B; Nampoori, V P N; Radhakrishnan, P

    2016-09-01

    The Dual Beam mode-matched thermal lens spectrometry is a sensible technique for direct measurements of the thermal properties of tartrate crystalline materials. Here we report the measurement of thermal diffusivity of Strontium Tartrate single crystals incorporated with Rhodamine 6G using the thermal lens experiment. The respective crystals were prepared by solution-gel method at room temperature. The absorption characteristics of three different Strontium Tartrate crystals viz. pure, electric field applied and magnetic field applied were also carried out.

  4. [The reflection of the motivational status in the spectral characteristics of the species-specific acoustic signals of the domestic cat].

    PubMed

    Sokolova, N N; Liakso, E E

    1989-01-01

    Spectral characteristics of species-specific acoustic signals were analyzed in cats under various unfavourable conditions: hunger, isolation, pain stimulation, agony. The increase in the need to get rid of the discomfort accompanied by the development of emotional excitation was reflected in spectral characteristics of produced signals. The frequency and duration of signals increased, their spectrum widened accompanied by spectral maxima shifted towards the high-frequency area similar to the range of formant frequencies in the signals of newborn kittens. The similarity between spectral characteristics of the above signals in adult and newborn cats might indicate the appearance of infantile features in adult cats under conditions of a marked desire to change the existing situation. The fact that motivational state was reflected in spectral characteristics of acoustic signals along with stable responses to the signals, spoke in favour of a considerable contribution made by communication to the organization of intraspecific relations.

  5. The dynamics and spectral characteristics of the GPS TEC wave packets excited by the solar terminator

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Y. V.; Zhivetiev, I. V.

    2009-04-01

    The great variety of solar terminator (ST) -linked phenomena in the atmosphere gave rise to a num¬ber of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. Main part of experimental data was obtained using methods for analyzing the spectrum of ionosphere parameter variations in separate local points. To identify ST-generated wave disturbances it is necessary to measure the dynamic and spectral characteristics of the wave disturbances and to compare it with spatial-temporal characteristics of ST. Using TEC measurements from the dense network of GPS sites GEONET (Japan), we have obtained the first GPS-TEC image of the space structure of medium-scale traveling wave packets (MS TWP) excited by the solar terminator. We use two known forms of the 2D GPS-TEC image for our presentation of the space structure of ST-generated MS TWP: 1) - the diagram "distance-time"; 2) - the 2D-space distribution of the values of filtered TEC series dI (λ, φ, t) on the latitude φ and longitude λ for each 30-sec TEC counts. We found that the time period and wave-length of ST-generated wave packets are about 10-20 min and 200-300 km, respectively. Dynamic images analysis of dI (λ, φ, t) gives precise estimation of velocity and azimuth of TWP wave front propagation. We use the method of determining velocity of traveling ionosphere disturbances (SADM-GPS), which take into account the relative moving of subionosphere points. We found that the velocity of the TWP phase front, traveling along GEONET sites, varies in accordance with the velocity of the ST line displacement. The space image of MS TWP manifests itself in pronounced anisotropy and high coherence over a long distance of about 2000 km. The TWP wave front extends along the ST line with the angular shift of about 20°. The hypothesis on the connection between the TWP generation and the solar terminator can be tested in the terminator local time (TLT) system: d

  6. Optical absorption characteristics in thermally reduced Er:LiNbO 3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Ma, Rui; Pun, E. Y. B.

    2006-03-01

    Influence of thermal reduction on intrinsic (bipolarons), extrinsic (Er3+) defects and OH- groups in Er:LiNbO3 crystals, which were as-grown and VTE-treated (VTE: vapor transport equilibration) before being reduced, was studied by measuring the polarised or unpolarised optical absorption in visible and near infrared regions. A wide and strong band extending from the optical absorption edge up to the infrared region and peaking around 500 nm (∼2.5 eV), resulting from the absorption of reduction-induced bipolarons, is observed. Meanwhile, the thermal reduction also induces an additional, relatively much narrow absorption band around 370 nm in a crystal whether it is Er-doped or undoped and whether it is congruent or originally VTE-treated. Both the 500 nm and the 370 nm bands show similar polarisation dependence. The thermal reduction treatment hardly influences Er3+ spectroscopic properties such as absorption amplitude, linewidth, peaking position and polarisation dependence. The original VTE effects on the spectroscopic properties of Er:LiNbO3 crystal are essentially retained still. The thermal reduction has a similar effect on the OH- absorption to a strong VTE treatment: the removal of the OH- groups contained in the crystal.

  7. Contrasting phytoplankton community structure and associated light absorption characteristics of the western Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pandi, Sudarsana Rao; Kiran, Rayaprolu; Sarma, Nittala S.; Srikanth, A. S.; Sarma, V. V. S. S.; Krishna, M. S.; Bandyopadhyay, D.; Prasad, V. R.; Acharyya, T.; Reddy, K. G.

    2014-01-01

    Absorption spectra, particulate pigments, and hydrochemical constituents were measured in the western Bay of Bengal (BoB) during July-August 2010 when influence of river discharge is at peak. Chromophoric dissolved organic matter (CDOM) absorption coefficient (aCDOM(440)) displayed a significant inverse linear relationship with salinity in the surface waters implying conservative mixing of marine and terrestrial end members. The northern part of the study area is influenced by discharge from the river Ganga and a dominant terrestrial CDOM signal is seen. The southern part receives discharge from peninsular rivers with corresponding signals of higher CDOM than the linear model would indicate and higher UV-specific absorption coefficient (SUVA) indicating more aged and humified DOM. Lower contribution of CDOM to total non-water absorption and higher phytoplankton biomass (chlorophyll a absorption coefficient, aph(440)) but lower chlorophyll a specific phytoplankton absorption coefficient (a{ph/*}(440)) characterize the northern part, compared to the southern part. Chlorophyll b had a distinct linear relationship with chlorophyll a in the latter. The size index (SI) indicated dominance of microphytoplankton in the northern and nano and picophytoplankton in the southern parts. Chlorophyll a is significantly related to a{ph/*}(440) by an inverse power model in the northern part but by an inverse linear model in the southern part. Our study suggests that knowledge of the phytoplankton community structure is essential to improve chlorophyll a algorithm in the coastal Bay of Bengal.

  8. A study of protein-carotenoid interactions in the astaxanthin-protein crustacyanin by absorption and Stark spectroscopy; evidence for the presence of three spectrally distinct species.

    PubMed

    Krawczyk, S; Britton, G

    2001-01-12

    Molecular mechanisms underlying the peculiar spectral properties of the carotenoid astaxanthin in alpha-crustacyanin, the blue carotenoprotein isolated from the exoskeleton of the lobster Homarus gammarus, were investigated by comparing the basic electrooptical parameters of astaxanthin free in vitro with those of astaxanthin in the complex. Absorption and electroabsorption (Stark effect) spectra were obtained for alpha-crustacyanin in low-temperature glasses to provide information about the molecular interactions that lead to the large bathochromic shift of the spectra resulting from this complexation. The low-temperature spectra reveal the presence of at least three spectral forms of alpha-crustacyanin, with vibronic (0-0) transitions at 14000 cm(-1), 13500 cm(-1) and 11600 cm(-1) (corresponding to approximately 630, 660 and 780 nm, respectively, at room temperature) and with relative aboundance 85%, 10% and 5%. The longer wavelength absorbing species have not previously been detected. The changes in polarizability and in permanent dipole moments associated with the S0-->S2 electronic transition for all these forms are about 1.5 times larger than for isolated astaxanthin. The results are discussed with reference to the symmetric polarization model for astaxanthin in alpha-crustacyanin. PMID:11341939

  9. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region.

    PubMed

    Stramski, Dariusz; Reynolds, Rick A; Kaczmarek, Sławomir; Uitz, Julia; Zheng, Guangming

    2015-08-01

    Spectrophotometric measurement of particulate matter retained on filters is the most common and practical method for routine determination of the spectral light absorption coefficient of aquatic particles, ap(λ), at high spectral resolution over a broad spectral range. The use of differing geometrical measurement configurations and large variations in the reported correction for pathlength amplification induced by the particle/filter matrix have hindered adoption of an established measurement protocol. We describe results of dedicated laboratory experiments with a diversity of particulate sample types to examine variation in the pathlength amplification factor for three filter measurement geometries; the filter in the transmittance configuration (T), the filter in the transmittance-reflectance configuration (T-R), and the filter placed inside an integrating sphere (IS). Relationships between optical density measured on suspensions (ODs) and filters (ODf) within the visible portion of the spectrum were evaluated for the formulation of pathlength amplification correction, with power functions providing the best functional representation of the relationship for all three geometries. Whereas the largest uncertainties occur in the T method, the IS method provided the least sample-to-sample variability and the smallest uncertainties in the relationship between ODs and ODf. For six different samples measured with 1 nm resolution within the light wavelength range from 400 to 700 nm, a median error of 7.1% is observed for predicted values of ODs using the IS method. The relationships established for the three filter-pad methods are applicable to historical and ongoing measurements; for future work, the use of the IS method is recommended whenever feasible. PMID:26368092

  10. [Impacts of different alkaline soil on canopy spectral characteristics of overlying vegetation].

    PubMed

    Jia, Ke-Li; Zhang, Jun-Hua

    2014-03-01

    The relationship between alkalinity and pH of the soil, reflectance spectra and red-edge parameters of the sunflower canopy in different growth periods under different alkalinity soil were analyzed, respectively. The results showed that the spectral reflectance of the sunflower canopy in different stage under different alkalinity soil is the same as the spectral reflectance characters of the other greenery canopy. Along with the advancement of the sunflower growth period, sunflower canopy spectral reflectance increases gradually at different stages, the spectral reflectance is higher at flowering stage than 7-leaf stage and budding stage, and there exists a high reflection peak at 809nm at flowering period. At the same time, the spectral reflectance is affected by salinity-alkalinity stress at different stages, in the near infrared shortwave band, the spectral reflectance of the sunflower canopy in different stage increases with the decreases in soil alkalinity. When the derivatives are applied to determine the wavelength of the red-edge, there is a shift phenomenon of the red edge. The red edges were at 702-720 nm during every growth period of the sunflower. The "blue shift" phenomenon is also emerged for red edge position and red edge sloped with the increase in the soil alkalinity. Conversely, at the same growth periods, the red edge positions and red edge slope move to longer wave bands with the decrease in soil alkalinity. There is a "red shift" phenomenon before flowering period and "blue shift" phenomenon after flowering period for the red edge position and red edge slope of canopy spectrum at the same soil alkalinity. Respectively. The red edges at different growth stages of the sunflower show very significant positive correlation and quadratic polynomial to alkalinity and pH of the soil. Therefore, we thought used the red edge features of greenery could indicate the soil alkalization degree, it providing scientific basis for monitoring soil alkalization

  11. Spectral characteristics of high-power 1. 5. mu. m broad-band superluminescent fiber sources

    SciTech Connect

    Wysocki, P.F.; Digonnet, M.J.F.; Kim, B.Y. . Edward L. Ginzton Lab.)

    1990-03-01

    The authors study the spectral variation of spontaneous emission from erbium-doped single-mode fibers with the aim of producing high-power (more than 5 mW), broad-band (in excess of 10 nm) amplified spontaneous emission sources for fiber gyroscope applications. In particular, they demonstrate the evolution of spectral shape and center wavelength with fiber length and output power in the previously unstudied high-power regime where saturation effects dominate. Also presented is a visibility curve for a potential twin-peaked nonresonant erbium-doped fiber gyroscope source with a short (210 {mu}m) coherence length.

  12. AVIRIS data characteristics and their effects on spectral discrimination of rocks exposed in the Drum Mountains, Utah: Results of a preliminary study

    NASA Technical Reports Server (NTRS)

    Bailey, G. B.; Dwyer, J. L.; Meyer, D. J.

    1988-01-01

    Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over a geologically diverse field site and over a nearby calibration site were analyzed and interpreted in efforts to document radiometric and geometric characteristics of AVIRIS, quantify and correct for detrimental sensor phenomena, and evaluate the utility of AVIRIS data for discriminating rock types and identifying their constituent mineralogy. AVIRIS data acquired for these studies exhibit a variety of detrimental artifacts and have lower signal-to-noise ratios than expected in the longer wavelength bands. Artifacts are both inherent in the image data and introduced during ground processing, but most may be corrected by appropriate processing techniques. Poor signal-to-noise characteristics of this AVIRIS data set limited the usefulness of the data for lithologic discrimination and mineral identification. Various data calibration techniques, based on field-acquired spectral measurements, were applied to the AVIRIS data. Major absorption features of hydroxyl-bearing minerals were resolved in the spectra of the calibrated AVIRIS data, and the presence of hydroxyl-bearing minerals at the corresponding ground locations was confirmed by field data.

  13. Spectral characteristics of medium-scale equatorial f-region irregularities. Topical report 1 Jan-29 Feb 1980

    SciTech Connect

    Livingston, R.C.; Rino, C.L.

    1980-03-01

    The spectral characteristics of equatorial F-region irregularities with scale sizes from a few kilometers to several hundred kilometers have been measured using data from the Atmospheric Explorer-E (AE-E) satellite. The spectra admit the expected power-law characterization with a mean spectral index slightly less than 2. The spectral index, p1, however, decreases with increasing perturbation strength. The same data have been compared with nearly simultaneous phase scintillation data from the Wideband satellite. The power-law index of the phase scintillation data varies with perturbation strength in exactly the same manner as does p1. With realistic propagation model parameters, the scintillations-inferred perturbation levels can be made to match those measured in-situ. However, the long-accepted unity separation between the in-situ and phase spectral indices is not observed. This discrepancy is attributed either to shortcomings in the theory or to lack of temporal/spatial comparability of the two measurements.

  14. Analysis of the Spectral Characteristics of Pure Moxa Stick Burning by Hyperspectral Imaging and Fourier Transform Infrared Spectroscopy

    PubMed Central

    Li, Yin-long

    2016-01-01

    The objective of this study was to investigate the spectra characteristics (SC) at wavelengths of 400~1000 nm and 2.5~15.5 μm of pure moxa stick (MS) during its 25-minute burning process using new spectral imaging techniques. Spectral images were collected for the burning pure MS at 5, 10, 15, 20, and 25 min using hyperspectral imaging (HSI) and Fourier transform infrared spectroscopy (FTIR) for the first time. The results showed that, at wavelengths of 400~1000 nm, the spectral range of the cross section of MS burning was 750~980 nm; the peak position was 860 nm. At wavelengths of 2.5~15.5 μm, the spectral range of the cross section of MS burning was 3.0~4.0 μm; the peak position was approximately 3.5 μm. The radiation spectra of MS burning include litter red and amount of infrared (but mainly near infrared) wavelengths. The temperature, blood perfusion, and oxygen saturation increase of Shenshu (BL23) after moxibustion radiation were observed too. According to mechanism of photobiological effects and moxibustion biological effects, it was inferred that moxibustion effects should be linked with moxibustion SC. This study provided new data and means for physical properties of moxibustion research. PMID:27721889

  15. [Effects of temperature on the ultraviolet absorption characteristics of SO2].

    PubMed

    Zheng, Hai-Ming; Jin, Wei-Jia

    2013-03-01

    Absorption spectrum of SO2 is obtained under the condition of room temperature and atmosphere pressure. The spectrum is composed of banded structure superimposed on a continuum. The continuum structure comes from the transition of SO2 molecule from the ground electronic state to the higher dense rovibronic energy levels, and the banded one comes from the transition of B1B1<--X1A1. The symmetric stretch and bend vibration frequencies are obtained from the banded structure. They are omega1 =(665+/-29) cm-1 and omega2 = (448+/-17) cm-1, respectively. Measuring the absorption spectra of SOz at different temperature, it was also found that the configuration of the spectra is similar. But the absorption cross-section decreases with the increase in temperature. The absorption cross-section corresponding to the absorption peaks varies with temperature in the manner of cube. But the rate coefficients are different. So the effect of temperature on the measurement results must be considered when we use the technique of DOAS for the detection of SO2. PMID:23705452

  16. Environmental Processes and Spectral Reflectance Characteristics Associated with Soil Erosion in Desert Fringe Regions

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.

    1987-01-01

    Results of analysis of spectral variation of sand dunes in El Ghorabi, Bahariya, Egypt; Tombouctou/Azaouad, Mali; and Tsodilo Hills, western Botswana are presented. Seasonal variations in dune extent and location of dune crests and their relationship to such factors as wind and weather variations are emphasized.

  17. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  18. Optical nonlinear absorption characteristics of Sb{sub 2}Se{sub 3} nanoparticles

    SciTech Connect

    Muralikrishna, Molli Kiran, Aditha Sai Ravikanth, B. Sowmendran, P. Muthukumar, V. Sai Venkataramaniah, Kamisetti

    2014-04-24

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb{sub 2}Se{sub 3}) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb{sub 2}Se{sub 3} nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  19. [Research on spectral characteristic of miniature X-ray tube and determination of beryllium window thickness].

    PubMed

    Gu, Yi; Xiong, Sheng-Qing; Ge, Liang-Quan; Fan, Zheng-Guo; Zhang, Qing-Xian; Zhu, Zhen-Ya

    2014-01-01

    Applying Monte Carlo method, the present paper simulates the emitted X-ray spectrum of miniature X-ray tube with thirteen thickness of beryllium window in the range from 50 to 500 microm. By analyzing the characteristic of the spectrums, the reasonable choice of thickness of beryllium window relies on the application and for the beryllium window it is not the thinner the better. Taking in-situ EDXRF as an example, though the emission X-ray intensity is higher as the thickness of the beryllium window becomes thinner, the proportion of useless low-energy X-ray (<5 keV) intensity to all energy X-ray intensity also is higher (>20%). The accuracy of in-situ EDXRF will be reduced when the high-throughput low-energy X-ray enters the detector. Therefore, this paper puts forward several parameters as judgment index for beryllium window thickness, which is described as follows: 1)The intensity ratios of the K-series X-ray to middle-energy (5-25 keV) bremsstrahlung and middle-high-energy (5-50 keV) bremsstrahlung (F1 and F3); 2)The intensity ratios of useless low-energy X-ray (<5 keV) to middle-energy (5-25 keV) X-ray and middle-high-energy (5-50 keV) X-ray (F2 and F4), it can reflect the relative intensity of useless low-energy X-ray. The simulation results demonstrate that with the increase in the beryllium window thickness, the value of F1 (F3) improves slowly, and the value of F2 (F4) decreases rapidly. In addition to the judgment index discussed above, and considering the X-ray shielded by beryllium window, the beryllium window of miniature X-ray tube can be determined. Based on simulation analysis, the thickness of around 250 microm is appropriate to miniature X-ray tube applied in the in-situ EDXRF. Comparing the emitted spectrum with 50 microm-thick beryllium window, 71.66% of low-energy X-rays are shielded, only 21.31% of X-rays with energy from 5 to 50 keV is shielded, the intensity ratio of low-energy X-ray to total energy X-ray is less than 10%, and the intensity

  20. Development In Tunable Solid State Lasers With High Spectral Purity, High Efficiency And Long Lifetime For Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Hess, R. V.; Brockman, P.; Bair, C. H.; Barnes, J. C.; Byvik, C. E.; Buoncristiani, A. M.; Magee, C. J.

    1988-05-01

    The Height of an Equivalent Theoretical Plate (HETP) is a characteristic process constant for any separation column in which a small elementary effect is to be multiplied. The smaller the HETP. the steeper is the enrichment along the column. In order to determine the HETP experimentally, it is not necessary to bring the column into the final, stationary state. One can more readily evaluate it from the initial slope of the enrichment at a closed end of the column. This is demonstrated for isotope separations on lithium, copper, rubidium and uranium obtained recently by means of exchange electromigration and chromatography.

  1. Infrared absorption mechanisms of black silicon

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2014-09-01

    Black silicon has a wide spectrum of non-spectral characteristics high absorption from visible to long wave infrared band .Based on semi-empirical impurity band model, free carrier absorption, radiation transitions between the valence band and the impurity band, radiation transitions between the impurity band and the conduction band were calculated, and absorption coefficients for each process were got. The results showed that the transitions from valence band to the impurity band induced absorption in the near-infrared waveband, but it has a rapid decay with wavelength. In the shortwave mid-wave and long-wave IR bands, transitions from the impurity band to the conduction band caused a huge absorption, and the absorption coefficient was slowly decreased with increasing wavelength. The free carrier absorption dominates in long-wave band. The calculation results agreed well with the test results of plant black silicon in magnitude and trends.

  2. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  3. Computer simulations and models for the performance characteristics of spectrally equivalent X-ray beams in medical diagnostic radiology

    PubMed Central

    Okunade, Akintunde A.

    2007-01-01

    In order to achieve uniformity in radiological imaging, it is recommended that the concept of equivalence in shape (quality) and size (quantity) of clinical Xray beams should be used for carrying out the comparative evaluation of image and patient dose. When used under the same irradiation geometry, X-ray beams that are strictly or relatively equivalent in terms of shape and size will produce identical or relatively identical image quality and patient dose. Simple mathematical models and software program EQSPECT.FOR were developed for the comparative evaluation of the performance characteristics in terms of contrast (C), contrast to noise ratio (CNR) and figure-of-merit (FOM = CNR2/DOSE) for spectrally equivalent beams transmitted through filter materials referred to as conventional and k-edged. At the same value of operating potential (kVp), results show that spectrally equivalent beam transmitted through conventional filter with higher atomic number (Z-value) in comparison with that transmitted through conventional filter with lower Z-value resulted in the same value of C and FOM. However, in comparison with the spectrally equivalent beam transmitted through filter of lower Z-value, the beam through filter of higher Z-value produced higher value of CNR and DOSE at equal tube loading (mAs) and kVp. Under the condition of equivalence of spectrum, at scaled (or reduced) tube loading and same kVp, filter materials of higher Z-value can produce the same values of C, CNR, DOSE and FOM as filter materials of lower Z-value. Unlike the case of comparison of spectrally equivalent beam transmitted through one conventional filter and that through another conventional filter, it is not possible to derive simple mathematical formulations for the relative performance of spectrally equivalent beam transmitted through a given conventional filter material and that through kedge filter material. PMID:21224928

  4. Defect assisted saturable absorption characteristics in Al and Li doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    K. M., Sandeep; Bhat, Shreesha; S. M., Dharmaprakash; P. S., Patil; Byrappa, K.

    2016-09-01

    The influence of different doping ratios of Al and Li on the nonlinear optical properties, namely, a two-photon absorption and a nonlinear refraction using single beam Z-scan technique, of nano-crystalline ZnO thin films has been investigated in the present study. A sol-gel spin-coated pure ZnO, Al-doped ZnO (AZO), and Li-doped ZnO (LZO) thin films have been prepared. The stoichiometric deviations induced by the occupancy of Al3+ and Li+ ions at the interstitial sites injects the compressive stress in the AZO and LZO thin films, respectively, while the extended defect states below the conduction band leads to a redshift of energy band gap in the corresponding films as compared to pure ZnO thin film. Switching from an induced absorption in ZnO and 1 at. wt. % doped AZO and LZO films to a saturable absorption (SA) in 2 at. wt. % doped AZO and LZO films has been observed, and it is attributed to the saturation of a linear absorption of the defect states. The closed aperture Z-scan technique revealed the self-focusing (a positive nonlinear refractive index) in all the films, which emerge out of the thermo-optical effects due to the continuous illumination of laser pulses. A higher third-order nonlinear optical susceptibility χ(3) of the order 10-3 esu has been observed in all the films.

  5. Cirrus cloud characteristics derived from volume imaging lidar, high spectral resolution lidar, HIS radiometer, and satellite

    NASA Technical Reports Server (NTRS)

    Grund, Christian J.; Ackerman, Steven A.; Eloranta, Edwin W.; Knutsen, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Preliminary measurement results are presented from the Cirrus Remote Sensing Pilot Experiment which used a unique suite of instruments to simultaneously retrieve cirrus cloud visible and IR optical properties, while addressing the disparities between satellite volume averages and local point measurements. The experiment employed a ground-based high resolution interferometer sounder (HIS) and a second Fourier transform spectrometer to measure the spectral radiance in the 4-20 micron band, a correlated high spectral resolution lidar, a volume imaging lidar, a CLASS radiosonde system, the Scripps Whole Sky Imager, and multispectral VAS, HIRS, and AVHRR satellite data from polar orbiting and geostationary satellites. Data acquired during the month long experiment included continuous daytime monitoring with the Whole Sky Imager.

  6. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  7. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  8. Spectral characteristics and the extent of paleosols of the Palouse formation

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Busacca, Alan; Cheng, Yaan; Wherry, David; Hart, Judy; Gill, Steve

    1987-01-01

    Three spectral models defining the spatial distribution of soil areas by levels of amorphous iron, organic carbon, and the ratio of amorphous iron to organic carbon were developed and field verification studies were conducted. The models used particular Thematic Mapper band ratios selected by statistical correlation with soil chemical data. The ability of the models to indicate erosion severity and to differentiate between iron enriched and carbonate paleosols is discussed. In addition, the effect of vegetation cover on paleosols is addressed.

  9. Time- and spectrally resolved characteristics of flavin fluorescence in U87MG cancer cells in culture

    NASA Astrophysics Data System (ADS)

    Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta

    2015-05-01

    Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.

  10. Comparison of DTR spectral-angular characteristics of divergent beam of relativistic electrons in scattering geometry of Laue and Bragg

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Koskova, T. V.; Ligidov, A. Z.; Noskov, A. V.

    2016-07-01

    Diffracted transition radiation (DTR) generated by a divergent beam of relativistic electrons crossing a single-crystal plate in different (Laue, Bragg) scattering geometry has been considered for the general case of asymmetric reflection of the electron coulomb field relative to the entrance target surface. The expressions for spectral-angular density of DTR and parametric X-ray Radiation (PXR) has been derived. Then DTR and PXR has been considered in case of a thin target, when multiple scattering of electron is negligibly small, which is important for divergence measurement in real time regime. Numerical calculation of spectral-angular density of DTR by a beam of relativistic electrons has been made using averaging over the bivariate Gauss distribution as angular distribution of relativistic electrons in the beam. It has been shown that in Bragg scattering geometry the angular density of DTR is bigger, than in Laue geometry, which can be explained by the existence of the frequency range, in which the incident wave propagation vector takes complex value even under absence of absorption. In this range, all of photons are reflected in Bragg direction. It means that the range of total reflection defines the width of DTR spectrum.

  11. Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy

    NASA Technical Reports Server (NTRS)

    Sherman, D. M.; Burns, R. G.; Mee Burns, V.

    1982-01-01

    Reflectance spectra of eight polymorphs of FeOOH and Fe2O3 are determined in order to clarify the nature and significance of the iron oxide mineralogy on Mars. The effect of other components that might interfere with iron oxide absorption features is qualitatively constrained through the use of the Kebulka-Munk theory. It is found that the effect of temperature complicates the identification of a given Fe(3+) phase based on the position of the 6A1-4T1 absorption feature. While the Fe(3+) crystal field transitions are spin forbidden, most of the iron oxide polymorphs exhibit anomalously intense crystal field absorption features due to magnetic coupling between adjacent FeO6 octahedra. It is suggested that the resulting deviations from observed remotely sensed reflectance spectra of Mars may provide a basis for the exclusion of many iron oxide phases as significant components of the Martian Fe(3+) mineralogy. A comparison of these results with the visible region spectra of Martian bright regions indicates that the predominant Fe(3+)-bearing phase may be a magnetically disordered material, such as amorphous gels, some ferric sulphates, and other minerals in which Fe(3+) ions in the crystal structure are not magnetically coupled.

  12. Using Finite Element and Eigenmode Expansion Methods to Investigate the Periodic and Spectral Characteristic of Superstructure Fiber Bragg Gratings.

    PubMed

    He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping

    2016-01-01

    In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322

  13. Correlation between aging grade of T91 steel and spectral characteristics of the laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Li, Jun; Lu, Jidong; Dai, Yuan; Dong, Meirong; Zhong, Wanli; Yao, Shunchun

    2015-08-01

    T91 steel with favorable mechanical performance has become the representative heat-resistant steel used as heat exchange surfaces in supercritical and ultra-supercritical boilers. The organizational structure and mechanical properties change during the service period, called material aging, which affects the service life and the equipment safety. To develop a fast and easy aging predictive technique of heat exchange metal surfaces, laser-induced breakdown spectroscopy (LIBS) was applied to investigate the plasma characteristics of T91 steel specimens with different aging grades. The metallographic structure, mechanical properties and spectral characteristics of the specimens were analyzed. Then, the correlations between the spectral characteristics and the aging grade were established. The analysis results show that the martensite substructure disappears, and the dimension of the carbide particles among the crystal lattices increases with aging. At the same time, the hardness of the samples gradually decreases. The peak intensities of both the matrix and the alloying element increases then decreases with aging, owing to the change of the metallography structure and mechanical properties. Furthermore, good unique value correlations between the intensity ratio of CrI/FeI, MoI/FeI and the aging grade are found. This demonstrates that LIBS is a possible new way to estimate the aging grade of metal materials.

  14. Using Finite Element and Eigenmode Expansion Methods to Investigate the Periodic and Spectral Characteristic of Superstructure Fiber Bragg Gratings

    PubMed Central

    He, Yue-Jing; Hung, Wei-Chih; Lai, Zhe-Ping

    2016-01-01

    In this study, a numerical simulation method was employed to investigate and analyze superstructure fiber Bragg gratings (SFBGs) with five duty cycles (50%, 33.33%, 14.28%, 12.5%, and 10%). This study focuses on demonstrating the relevance between design period and spectral characteristics of SFBGs (in the form of graphics) for SFBGs of all duty cycles. Compared with complicated and hard-to-learn conventional coupled-mode theory, the result of the present study may assist beginner and expert designers in understanding the basic application aspects, optical characteristics, and design techniques of SFBGs, thereby indirectly lowering the physical concepts and mathematical skills required for entering the design field. To effectively improve the accuracy of overall computational performance and numerical calculations and to shorten the gap between simulation results and actual production, this study integrated a perfectly matched layer (PML), perfectly reflecting boundary (PRB), object meshing method (OMM), and boundary meshing method (BMM) into the finite element method (FEM) and eigenmode expansion method (EEM). The integrated method enables designers to easily and flexibly design optical fiber communication systems that conform to the specific spectral characteristic by using the simulation data in this paper, which includes bandwidth, number of channels, and band gap size. PMID:26861322

  15. Research on multi-angle near infrared spectral-polarimetric characteristic for polluted water by spilled oil

    NASA Astrophysics Data System (ADS)

    Shen, Hui-yan; Zhou, Pu-cheng; Feng, Shao-ru

    2011-08-01

    As the incidence of oil spills increases, the detection and measurement of oil pollution in the marine environment are receiving augmented attention. Remote sensing is an increasingly important tool for the effective direction of oil spill countermeasures. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. While the spectral information tells us about materials, polarization information tells us about surface feature, shape, shading and roughness, and has the potential to enhance many applications in optical remote sensing. During the course of reflecting light-wave, water-surface spilled oil will cause polarimetric characteristic which is related to the nature of itself. Thus, detection of the polarization information for polluted water by spilled oil has become a new remote sensing monitoring method. In this paper, four kinds of oils, they are gasoline, diesel oil, motorcycle oil and soybean oil, were regarded as the experimental samples for polluted water, and the multi-angle spectral-polarimetric instrument was used to obtain the multi-angle near infrared spectralpolarimetric characteristic data of different oil-spilled water specimens. Then, the change rule between polarimetric characteristic with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle as well as waveband of the detector were discussed, so as to provide a scientific basis for the research on polarization remote sensing for polluted water by spilled oil.

  16. Striation model and spectral characteristics of optical-ir emission from HANE (high-altitude nuclear event). Memorandum report

    SciTech Connect

    Hyman, E.; Mulbrandon, M.; Zabusky, N.J.

    1985-04-30

    An analytical model of a late-time high-altitude ionospheric striation is presented that incorporates characteristic shapes from recent simulations. The model striation is nonaxisymmetric with a long diffuse tail (frontside), a compact core, and a steep backside. It contains six adjustable parameters to vary the shape and edge properties for sensitivity studies. Model parameters and the power spectral density (PSD) as observed from different view angles. Results of the model are compared with Chesnut's PSD obtained from photographs of Checkmate. A good fit is obtained with the model without any size distribution of striations.

  17. Transport characteristics of a finite-difference dynamics model combined with a spectral transport model of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Duncan, T.; Fairlie, A.; Turner, Richard E.; Siskind, David E.

    1994-01-01

    A three-dimensional off-line spectral transport model has been combined with a global, mechanistic, finite-difference dynamics model of the middle atmosphere in order to study transport and photochemistry in the middle atmosphere for specific, observed episodes. In this paper, the basic transport characteristics of the combined models are examined, first using steady, idealized flow fields and second using time-dependent flow fields closely related to observed atmospheric behavior. Transport conducted with the combined models is found to compare favorably with transport conducted on-line in the dynamics model, given appropriate time averaging of the flow fields and suitable choice of artificial diffusion.

  18. Effect of perfluorocarbons on the ultraviolet absorption and fluorescence characteristics of some saturated hydrocarbon liquids

    SciTech Connect

    Choi, H.T.; Lipsky, S.

    1981-12-24

    Perfluoro-n-alkanes and perfluorocycloalkanes are found to affect the photophysical properties of saturated hydrocarbons in markedly different ways.The addition of a low concentration (<0.2 M) of a perfluoro-n-alkane to a hydrocarbon liquid has no observable effect on the electronic absorption spectrum and only very slightly quenches the hydrocarbon fluorescence. In contrast, at the same concentration levels, the perfluorocycloalkane strongly perturbs the absorption spectrum and very effectively reduces the fluorescence quantum yield. The change in the absorption spectrum is attributed to a contact charge-transfer absorption with the hydrocarbon acting as electron donor. The efficiency with which the perfluorocycloalkane reduces the hydrocarbon fluorescence quantum yield increases with increasing perfluorocycloalkane concentration. The results are analyzed with a conventional diffusional model that includes transient terms. The model contains two parameters, an encounter distance, R, and the product of the relative diffusion coefficient, D, and the lifetime, tau/sub 0/, of the hydrocarbon excited state. The model is applied to perfluorodecalin quenching of cyclohexane, decalin, and 2,3-dimethylbutane at excitation wavelengths, lambda/sub ex/, ranging from 185 to 147 nm. An unrestricted, two-parameter, least-squares fit of the model to the data provides values of R and D(tau/sub 0/) for each solvent system at each lambda/sub ex/. Where values of D and tau/sub 0/ are known independently, their product agrees well with the D(tau/sub 0/) obtained from the fit. The value of R is found to be approx. = 14 angstrom for all solvents at all lambda/sub ex/. This value is estimated to be about 2 times larger than the ground-state hydrocarbon-perfluorodecalin contact distance.

  19. Gamma-ray Spectral Characteristics of Thermal and Non-thermal Emission from Three Black Holes

    NASA Technical Reports Server (NTRS)

    Ling, James C.; Wheaton, William A.

    2004-01-01

    Cygnus X-1 and the gamma-ray transients GROJ0422+32 and GROJ1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high (gamma)-ray intensity state ((gamma)2, for Cygnus X-l), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >= 3) that extended to 1 MeV or beyond. When the sources were in the low-intensity state ((gamma)0, for Cygnus X-l), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to 1 MeV can be characterized by a single power law with a relatively harder photon index 2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the 400 KeV - 1 MeV range, in contrast to the spectral pivoting seen previously at lower (10 keV) energies. The presence of the power-law component in both the high- and low-intensity gammaray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.

  20. Spectral and Lensing Characteristics of Gel-Derived Strontium Tartrate Single Crystals Using Dual-Beam Thermal Lens Technique.

    PubMed

    Rejeena, I; Thomas, V; Mathew, S; Lillibai, B; Nampoori, V P N; Radhakrishnan, P

    2016-09-01

    The Dual Beam mode-matched thermal lens spectrometry is a sensible technique for direct measurements of the thermal properties of tartrate crystalline materials. Here we report the measurement of thermal diffusivity of Strontium Tartrate single crystals incorporated with Rhodamine 6G using the thermal lens experiment. The respective crystals were prepared by solution-gel method at room temperature. The absorption characteristics of three different Strontium Tartrate crystals viz. pure, electric field applied and magnetic field applied were also carried out. PMID:27465706

  1. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    PubMed

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in

  2. [Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn].

    PubMed

    Li, Si-jia; Song, Kai-shan; Zhao, Ying; Mu, Guang-yi; Shao, Tian-tian; Ma, Jian-hang

    2016-01-15

    Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in

  3. Spatial and spectral selective characteristics of the plasmonic sensing using metallic nanoslit arrays

    NASA Astrophysics Data System (ADS)

    Ge, Caiwang; Guo, Zhongyi; Sun, Yongxuan; Shen, Fei; Tao, Yifei; Zhang, Jingran; Li, Rongzhen; Luo, Linbao

    2016-01-01

    A novel spatial and spectral selective plasmonic sensing based on the metal nanoslit arrays has been proposed and investigated theoretically, which shows a high performance in the multiplexing biomolecular detections. By properly tuning the geometric parameters of metal nanoslit arrays, the enhanced optical fields at different regions can be obtained selectively due to the excitation of SPP, cavity mode (CM), and their coupling effects. Simulation results show that the resonances of the metal nanoslit arrays at different spatial locations and different wavelengths can be achieved simultaneously. A relative bigger red-shift of 57 nm can be realized when a layer of biomolecular film is adsorbing at the slit walls, and the corresponding total intensity difference will be enhanced near 10 times compared to that at the top surface. In addition, when a BSA protein monolayer is adsorbing at slit walls with different slit widths, the corresponding wavelength shifts can reach to more than 80 nm by modulating the widths of the slit. The simulated results demonstrate that our designed metal nanoslit arrays can serve as a portable, low-cost biosensing with a high spatial and spectral selective performance.

  4. Angle- and polarization-dependent spectral characteristics of circular grating filters.

    PubMed

    Wang, Wei; Zhu, Gangyi; Liu, Qifa; Li, Xin; Sa, Tongliang; Fang, Xiaojing; Zhu, Hongbo; Wang, Yongjin

    2016-05-16

    We design and implement one type of guided mode resonance (GMR) circular grating filters (CGFs) on an HfO2-on-silicon platform. Taking advantage of an angle-resolved micro-reflection measurement system, we achieve their incident angle- and polarization-dependent reflection spectra. For normal incident arbitrary linear polarization, a pair of reflection peaks is experimentally observed due to the coexistence of the azimuthal component Ea and the radial component Er of the incident wave electric field (E-field). For oblique incident s-polarization (E-field perpendicular to the incident plane), the peak excited by the Ea component splits into two sub-peaks due to the removal of degeneracy, while that excited by the Er component gradually fades away with the increase of the incident angle. For oblique incident p-polarization (E-field parallel to the incident plane), the spectrum appears to be reversed; that is, the peak corresponding to the Er component gets split while that corresponding to the Ea component gradually disappears when the incident angle increases. Moreover, we experimentally demonstrate the spectral relationships between CGFs and linear grating filters under not only normal incidence but also oblique incidence; these relationships greatly facilitate the spectral design and tailoring of the CGFs.

  5. Correlations between X-Ray Spectral Characteristics and Quasi-Periodic Oscillations in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2007-07-01

    Correlations between 1-10 Hz quasi-periodic oscillations (QPOs) and spectral power-law index have been reported for black hole (BH) candidate sources and one neutron star source, 4U 1728-34. An examination of QPO frequency and index relationships in Sco X-1 is reported here. We discover that Sco X-1, representing Z-source groups, can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K line. The results show a strong correlation between spectral power-law index and kHz QPOs. Because Sco X-1 radiates near the Eddington limit, one can infer that the geometrical configuration of the Compton cloud (CC) is quasi-spherical from high radiation pressure in the CC. Thus, we conclude that the high Thomson optical depth of the Compton cloud, in the range of ~5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material. Moreover, a spin frequency of Sco X-1 is likely suppressed due to photon scattering off CC electrons. In addition, we demonstrate how the power spectrum evolves when Sco X-1 transitions from the horizontal branch to the normal branch.

  6. Identification and characterization of Salmonella serotypes using DNA spectral characteristics by fourier transform infrared

    NASA Astrophysics Data System (ADS)

    Sundaram, Jaya; Park, Bosoon; Hinton, Arthur; Yoon, Seung Chul; Lawrence, Kurt C.

    2012-05-01

    Analysis of DNA samples of Salmonella serotypes were performed using FT-IR spectrometer by placing directly in contact with a diamond attenuated total reflection (ATR) crystal. Spectra were recorded from 4000 cm-1 to 525 cm-1 wavenumber with the resolution of 4 cm-1 and data spacing of 1.928 cm-1. Collected spectra were subtracted from the background spectra of empty diamond crystal surface. Principal Component Analysis (PCA) was conducted at four different spectral regions to differentiate the different serotypes of Salmonella on the basis of difference in their spectral features of DNA structure macromolecules. PCA was used to show the natural clusters in the data set and to describe the difference between the sample clusters. At the region 1800 - 1200 cm-1, PC1 distinguished 93 % and PC2 distinguished 7 % of the serotypes. Therefore, maximum classification of 100 % in total was obtained at this region. For all the Salmonella serotypes, the frequency between 1000-1150 cm-1 and 1170 -1280 cm-1 had higher loading values which showed their significant contribution in the serotype classification.

  7. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.

    PubMed

    Ben-David, A

    1999-04-20

    The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape beta(lambda) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence beta(lambda) was computed from the measurements and used to estimate the error Delta(CL) (concentration-path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration-path-length product CL and the average concentration C = /L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements.

  8. Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell

    SciTech Connect

    Tamaki, Ryo Shoji, Yasushi; Okada, Yoshitaka; Miyano, Kenjiro

    2014-08-18

    Two-step photon absorption processes in a self-organized In{sub 0.4}Ga{sub 0.6}As/GaAs quantum dot (QD) solar cell have been investigated by monitoring the mid-infrared (IR) photoinduced modulation of the external quantum efficiency (ΔEQE) at low temperature. The first step interband and the second step intraband transitions were both spectrally resolved by scanning photon energies of visible to near-IR CW light and mid-IR pulse lasers, respectively. A peak centered at 0.20 eV corresponding to the transition to virtual bound states and a band above 0.42 eV probably due to photoexcitation to GaAs continuum states were observed in ΔEQE spectra, when the interband transition was above 1.4 eV, directly exciting wetting layers or GaAs spacer layers. On the other hand, resonant excitation of the ground state of QDs at 1.35 eV resulted in a reduction of EQE. The sign of ΔEQE below 1.40 eV changed from negative to positive by increasing the excitation intensity of the interband transition. We ascribe this to the filling of higher energy trap states.

  9. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  10. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.

    PubMed

    Machida, Yuta; Yamamoto, Takahiko; Koshiji, Kohji

    2013-01-01

    Human body communication (HBC) is a new communication technology that has presented potential applications in health care and elderly support systems in recent years. In this study, which is focused on a wearable transmitter and receiver for HBC in a body area network (BAN), we performed electromagnetic field analysis and simulation using the finite difference time domain (FDTD) method with various models of the human body. Further we redesigned a number of impedance-matched electrodes to allow transmission without stubs or transformers. The specific absorption rate (SAR) and transmission characteristics S21 of these electrode structures were compared for several models.

  11. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-07-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  12. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-10-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  13. Characteristics of reversible absorption-enhancing effect of sodium nitroprusside in rat small intestine.

    PubMed

    Takizawa, Yusuke; Kishimoto, Hisanao; Kitazato, Takuya; Ishizaka, Haruka; Kamiya, Naomi; Ito, Yasuhiko; Tomita, Mikio; Hayashi, Masahiro

    2013-07-16

    Nitric oxide (NO) donors increase the permeability of water-soluble compounds with neither loss of cell viability nor lactate dehydrogenase release. In addition, the rectal absorption of insulin has been reported to be remarkably enhanced in the presence of NO donors such as 1-Hydroxy-3-(3-aminopropyl)-3-isopropyltriazene 2-oxide (NOC5) and N-Ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino) ethanamine (NOC12). In this study, we examined the effect of sodium nitroprusside (SNP), which is used in clinical situations as a vasodilator, as a model NO donor on the ileal mucosa of rats. We used an in situ closed loop method in rat ileum to study changes in the permeability of fluorescein isothiocyanate dextran 4000 (FD-4) as a paracellular marker. The effect of SNP (1 and 10mg/kg) on the protein expression level of the claudin family was examined by Western blotting. The membrane permeation of FD-4 was increased but no mucosal lesion was observed upon the administration of SNP. Moreover, the protein expression level of the claudin family was not changed by the administration of SNP. When SNP was removed 2h after its administration, no significant change in the membrane permeation of FD-4 was observed. Moreover, no decrease of ileal membrane resistance or disruption of membrane structure was observed. The absorption-enhancing effect of SNP was associated with low injury and low toxicity. The reversibility of the effect of SNP was observed. Consequently, it was shown that SNP can be a useful absorption enhancer.

  14. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.

    PubMed

    Habib, Robert H; Pyon, Kee H; Courtney, Sherry E; Aghai, Zubair H

    2003-05-01

    We compared the harmonic content of tidal flows measured simultaneously at the mouth and chest wall in spontaneously breathing very low birth weight infants (n = 16, 1,114 +/- 230 g, gestation age: 28 +/- 2 wk). Airway opening flows were measured via face mask-pneumotachograph (P-tach), whereas chest wall flows were derived from respiratory inductance plethysmography (RIP) excursions. Next, for each, we computed two spectral shape indexes: 1) harmonic distortion (k(d); k(d,P-tach) and k(d,RIP), respectively) defines the extent to which flows deviated from a single sine wave, and 2) the exponent of the power law (s; s(P-tach) and s(RIP), respectively), describing the spectral energy vs. frequency. P-tach and RIP flow spectra exhibited similar power law functional forms consistently in all infants. Also, mouth [s(P-tach) = 3.73 +/- 0.23% (95% confidence interval), k(d,P-tach) = 38.8 +/- 4.6%] and chest wall (s(RIP) = 3.51 +/- 0.30%, k(d,RIP) = 42.8 +/- 4.8%) indexes were similar and highly correlated (s(RIP) = 1.17 x s(P-tach) + 0.85; r(2) = 0.81; k(d,RIP) = 0.90 x k(d,P-tach) + 8.0; r(2) = 0.76). The corresponding time to peak tidal expiratory flow-to-expiratory time ratio (0.62 +/- 0.08) was higher than reported in older infants. The obtained s and k(d) values are similar to those reported in older and/or larger chronic lung disease infants, yet appreciably lower than for 1-mo-old healthy infants of closer age and/or size; this indicated increased complexity of tidal flows in very low birth weight babies. Importantly, we found equivalent flow spectral data from mouth and chest wall tidal flows. The latter are desirable because they avoid face mask artificial effects, including leaks around it, they do not interfere with ventilatory support delivery, and they may facilitate longer measurements that are useful in control of breathing assessment.

  15. Moisture absorption characteristics of the Orbiter thermal protection system and methods used to prevent water ingestion

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L.; Tillian, D. J.

    1983-01-01

    The Space Shuttle Orbiter's silica tile Thermal Protection System (TPS) is beset by the moisture absorption problems inherently associated with low density, highly porous insulation systems. Attention is presently given to the comparative success of methods for the minimization and/or prevention of water ingestion by the TPS tiles, covering the development of water-repellent agents and their tile application techniques, flight test program results, and materials improvements. The use of external films for rewaterproofing of the TPS tiles after each mission have demonstrated marginal to unacceptable performance. By contrast, a tile interior waterproofing agent has shown promise.

  16. Study on spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Metzler, M. D. (Principal Investigator); Crist, E. P.

    1983-01-01

    Previous characterization of scan-related low-frequency noise was extended and refined through detailed analysis of shutter calibration data on CCT-ADDS tapes and reflective-band data from nighttime acquisitions. A recommended correction procedure was identified that uses calibration shutter data both as a diagnostic and to obtain correction values. Through comparison of coincident TM and MSS data, illustrations of the added information content of TM data for agricultural applications were developed. The capability of improved spatial resolution to better define boundaries and to resolve spatial details is shown. Spectral analysis of tasseled-cap transformations of TM and MSS data shows high correlation between greenness features, greater signal range for TM, and indications that a subset of TM bands could accurately simulate MSS data, if required.

  17. Spectral characteristics and the extent of paleosols of the Palouse formation

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Busacca, Alan; Cheng, Yaan; Wherry, David; Hart, Judy; Gill, Steve

    1987-01-01

    Thematic mapping data was analyzed and verified by comparison to previously gathered transect samples and to aerial photographs. A bare-soil field with exposed paleosols characterized by slight enrichment of iron was investigated. Spectral relationships were first investigated statistically by creating a data set with DN values spatially matched as nearly as possible to field sample points. Chemical data for each point included organic carbon, free iron oxide, and amorphous iron content. The chemical data, DN values, and various band ratios were examined with the program package Statistix in order to find the combinations of reflectance data most likely to show a relationship which would dependably separate the exposed paleosols from the other soils. Cluster analysis and Fastclas classification procedures were applied to the most promising of the band ratio combinations.

  18. In situ measurements of the spectral characteristics of F region ionospheric irregularities

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Mcclure, J. P.; Hanson, W. B.

    1974-01-01

    The retarding potential analyzer aboard Ogo 6 has provided high-resolution observations of the ion concentration along the satellite path. Changes in ion concentration as small as 0.03% and at times as small as 0.01% could be measured. Spatial resolution varied from 35 to 380 m. Samples of data have been analyzed to determine the spectral properties of the F region irregularities observed. The most common frequency spectrum observed suggests that the responsible irregularities result from the turbulent dissipation of larger irregularities. At the equator, the larger irregularities are probably produced by convective electric fields. At high latitudes, electric fields may also be involved, but other factors such as precipitating particles may contribute to, or be primarily responsible for, the production of large irregularities. Examples of other types of spectra associated with wavelike irregularities and with 'ground glass' (high-frequency noise) irregularities are also shown.

  19. Attractors and Spectral Characteristics of Neural Structures Based on the Model of the Quantum Harmonic Oscillator

    SciTech Connect

    Rigatos, Gerasimos G.

    2007-09-06

    Neural computation based on principles of quantum mechanics can provide improved models of memory processes and brain functioning and is of importance for the realization of quantum computing machines. To this end, this paper studies neural structures with weights that follow the model of the quantum harmonic oscillator. These weights correspond to diffusing particles, which interact to each other as the theory of Brownian motion predicts. The learning of the stochastic weights (convergence of the diffusing particles to an equilibrium) is analyzed. In the case of associative memories the proposed neural model results in an exponential increase of the number of attractors. Spectral analysis shows that the stochastic weights satisfy an equation which is analogous to the principle of uncertainty.

  20. Plant Resources, (13)C-NMR Spectral Characteristic and Pharmacological Activities of Dammarane-Type Triterpenoids.

    PubMed

    Ruan, Jingya; Zheng, Chang; Qu, Lu; Liu, Yanxia; Han, Lifeng; Yu, Haiyang; Zhang, Yi; Wang, Tao

    2016-01-01

    Dammarane-type triterpenoids (DTT) widely distribute in various medicinal plants. They have generated a great amount of interest in the field of new drug research and development. Generally, DTT are the main bioactive ingredients abundant in Araliaceae plants, such as Panax ginseng, P. japonicas, P. notoginseng, and P. quinquefolium. Aside from Araliaceae, DTT also distribute in other families, including Betulaceae, Cucurbitaceae, Meliaceae, Rhamnaceae, and Scrophulariaceae. Until now, about 136 species belonging to 46 families have been reported to contain DTT. In this article, the genus classifications of plant sources of the botanicals that contain DTT are reviewed, with particular focus on the NMR spectral features and pharmacological activities based on literature reports, which may be benefit for the development of new drugs or food additives. PMID:27529202

  1. Correlation of spectral, spatial, and angular characteristics of an ultrashort laser driven proton source

    SciTech Connect

    Ter-Avetisyan, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Nakamura, T.; Mima, K.

    2009-04-15

    The laser driven ion source is a highly organized dynamical system. It relies on a well defined interrelation between the spatial and momentum distributions of emitted ions. This correlation is found by a consecutive spectral characterization of distinct proton beamlets emitted from different spatial target positions and under different angles. In case of a flat target and a perfectly round laser focal spot, the proton source is circular symmetric and each source point behaves similarly: the higher the proton energy the smaller the source size and the larger the emission angle for a similar source extension. Only the symmetry axis is unique; here all protons are emitted at 0 deg. to the target normal.

  2. Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydrodynamical Models

    NASA Astrophysics Data System (ADS)

    Baron, E.; Bongard, Sebastien; Branch, David; Hauschildt, Peter H.

    2006-07-01

    We have performed detailed non-local thermodynamic equilibrium (NLTE) spectral synthesis modeling of two types of one-dimensional hydrodynamical models: the very highly parameterized deflagration model W7, and two delayed-detonation models. We find that, overall, both models do about equally well at fitting well-observed SNe Ia near maximum light. However, the Si II λ6150 feature of W7 is systematically too fast, whereas for the delayed-detonation models it is also somewhat too fast but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II λ6150 line near maximum light, and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydrodynamical model to fit the spectra of observed SNe Ia near maximum light.

  3. [Effect of surface decoration on the spectral characteristics of alpha-Fe2O3 ultrafine particles].

    PubMed

    Liu, Cheng-lin; Zhong, Ju-hua; Zhang, Zhao-kui

    2003-02-01

    The alpha-Fe2O3 ultrafine particles were equally dispersed in the solutions of stearic acid/n-hexane/chloroform by the ultrasonic method, the surfaces of the alpha-Fe2O3 ultrafine particles were decorated by stearic acid, and the alpha-Fe2O3 ultrafine particles decorated had very good flowage characteristic. Before alpha-Fe2O3 ultrafine particles were decorated, the UV absorption was very strong at wavelengths shorter than 290 nm, and there was a shoulder peak at 330 nm. The absorption band edges of alpha-Fe2O3 ultrafine particles was at 392 nm, and shifted toward blue, which was in contrast with that of bulk Fe2O3. This was caused by the quanta size effect and surface effect. IR characteristic peaks of the alpha-Fe2O3 ultrafine particles appeared at 524.36 and 446.37 cm-1. After alpha-Fe2O3 ultrafine particles were decorated, the absorption side moved from 392 to 896 nm, which significantly shifted to the red in contrast with that of bulk F2O3. The vibration of Fe-O bond moved from 524.36 to 521.33 cm-1 and from 446.37 to 443.34 cm-1, respectively. These were caused by the dielectric confinement effect. The relative intensity of X-ray diffraction obviously increased, and the diffraction peak size moved toward the direction of smaller diffraction angle after the alpha-Fe2O3 ultrafine particles were decorated. PMID:12939995

  4. Gender Recognition Method Using Near Infrared Ray Spectral Characteristics of Narrow Band

    NASA Astrophysics Data System (ADS)

    Nishino, Satoshi

    Male and female recognition is necessary to make security stronger and when various statistics on the visitor are taken in commercial facilities and so on. The conventional method of male and female recognition is currently determined by using the person's dress and in such cases, the way of walking, the foot pressure, the hair type. But, these characteristics can be intentionally changed by human intervention or design. The proposed method obtains a difference in the male's and female's characteristics by taking absorbance characteristics of the fat distribution of the person's cheek by near infrared ray scanning spectrophotometer. This is a male and female recognition based on the new concept idea which this is used for. Consequently, this can be used to recognize a male from a female even if a male turns himself into the female intentionally (and vice versa), because this method involves biometrics authentication. Therefore, the proposed method will be applied to the security system.

  5. Spectral and metabolic characteristics of mitochondrial fractions from rotenone-induced tumours.

    PubMed Central

    Gosálvez, M.; Díaz-Gil, J.; Coloma, J.; Salganicoff, L.

    1977-01-01

    Mitochondrial fractions isolated from tumours induced with the respiratory inhibitor rotenone lack respiratory control, oxidative phosphorylation, are partially or totally insensitive to cyanide and have a near-normal content of respiratory carriers. These characteristics are more similar to those of mitochondria from atrophic mammary gland than to those of mitochondria from spontaneous mammary adenomas. Thus, the characteristic structural and biochemical mitochondrial alteration of rotenone-induced tumours would represent a lack of mitochondrial differentiation as the tumour develops from the atrophic mammary gland. Slices of rotenone-induced tumours are insensitive to oligomycin and dinitrophenol, thus indicating that glycolysis would be their sole source of metabolic energy. Images Fig. 2 PMID:911663

  6. [Influence of the Composition of the Initial Mixtures on the Physicochemical and Biological Properties and Spectral Characteristics of Composts].

    PubMed

    Song, Cai-hong; Li, Ming-xiao; Wei, Zi-min; Xi, Bei-dou; Zhao, Yue; Jia, Xuan; Liu, Ya-ru; Liu, Dong-ming

    2015-08-01

    In this work, biogas residues, the remnant of the anaerobic digestion, was used for composting with livestock manure as the co-substrate. It is important for improving the soil quality in China, because the negative influence of biogas residues being utilized directly as organic fertilizer (a mainstream way of disposing biogas residues in China) on the soil could be eliminated or mitigated via composting. The composition of composting substrate has a great influence on the composting process. To explore the influence of the composition of the initial mixtures on the physicochemical properties and spectroscopic characteristics of composts, fifteen co-composting of biogas residue, pig manure and chicken manure, with different material ratios, were carried out. Physicochemical and biological indicators were determined. Meanwhile, spectroscopic methods, such as UV-Vis, synchronous fluorescence and 3D-EEM spectra were used for identifying characteristic spectral parameters companied with FRI and PARAFAC. Therefore, spectroscopic characteristics of composts were characterized. The relationship between physicochemical properties of composts and the composition of the initial mixtures was established using CCA. Similarly, that between spectroscopic characteristics of composts and the composition of the initial mixtures was also established. The results showed that: physicochemical properties of composts exhibits a significant correlation with the composition of the initial mixtures. A significant correlation between spectroscopic characteristics of composts and the composition of the initial mixtures was also observed. In the two CCA, the former four axes account for 83.9% and 97.5% of the total sample variation. The influence of enviro nmental factors on physicochemical properties of composts was in the order of pig manure amount>chicken manure amount>biogas residue amount and that on spectroscopic characteristics of composts was in the order of biogas residue amount

  7. Hydrogenation and dehydrogenation of interstellar PAHs: Spectral characteristics and H2 formation

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Candian, A.; Tielens, A. G. G. M.

    2016-10-01

    Context. We have modelled the abundance distribution and IR emission of the first 3 members of the coronene family in the north-west photodissociation region of the well-studied reflection nebulae NGC 7023. Aims: Our aim was 3-fold: i) analyze the distribution of abundances; (ii) examine the spectral footprints from the hydrogenation state of polycyclic aromatic hydrocarbons (PAHs); and (iii) assess the role of PAHs in the formation of H2 in photodissociation regions. Methods: To model the physical conditions inside the cloud, we used the Meudon PDR Code, and we gave this as input to our kinetic model. We used specific molecular properties for each PAH, based on the latest data available at the present time. We considered the loss of an H atom or an H2 molecule as multiphoton processes, and we worked under the premise that PAHs with extra H atoms can form H2 through an Eley-Rideal abstraction mechanism. Results: In terms of abundances, we can distinguish clear differences with PAH size. The smallest PAH, coronene (C24H12), is found to be easily destroyed down to the complete loss of all of its H atoms. The largest species circumcircumcoronene (C96H24), is found in its normal hydrogenated state. The intermediate size molecule, circumcoronene (C54H18), shows an intermediate behaviour with respect to the other two, where partial dehydrogenation is observed inside the cloud. Regarding spectral variations, we find that the emission spectra in NGC 7023 are dominated by the variation in the ionization of the dominant hydrogenation state of each species at each point inside the cloud. It is difficult to "catch" the effect of dehydrogenation in the emitted PAH spectra since, for any conditions, only PAHs within a narrow size range will be susceptible to dehydrogenation, being quickly stripped off of all H atoms (and may isomerize to cages or fullerenes). The 3 μm region is the most sensitive one towards the hydrogenation level of PAHs. Conclusions: Based on our results, we

  8. The influence of impact object characteristics on impact force and force absorption by mouthguard material.

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Shintaro, Kawamura; Nakajima, Kazunori; Shimada, Atsushi; Regner, Connell Wayne

    2004-02-01

    Most impact force and impact energy absorption tests for mouthguards have used a steel ball in a drop-ball or the pendulum device. However, in reality most sports-related trauma is caused by objects other than the steel ball, e.g. various sized balls, hockey puck, or bat or stick. Also, the elasticity, the velocity and the mass of the object could change the degree and the extent of injuries. In this study, we attempted to measure the impact force from actual sports equipment in order to clarify the exact mechanism of dental-related sports injuries and the protective effects of mouthguards. The present study was conducted using the pendulum impact device and load cell. Impact objects were removable. Seven mobile impact objects were selected for testing: a steel ball, baseball, softball, field hockey ball, ice hockey puck, cricket ball, and wooden baseball bat. The mouthguard material used in this study was a 3-mm-thick Drufosoft (Dreve-Dentamid GmbH, Unna, Germany), and test samples were made of the one-layer type. The peak transmitted forces without mouthguard ranged from the smallest (ice hockey stick, 46.9 kgf) to the biggest (steel ball, 481.6 kgf). The peak transmitted forces were smaller when the mouthguard was attached than without it for all impact materials but the effect was significantly influenced by the object type. The steel ball showed the biggest (62.1%) absorption ability while the wooden bat showed the second biggest (38.3%). The other balls or the puck showed from 0.6 to 6.0% absorbency. These results show that it is important to test the effectiveness of mouthguards on specific types of sports equipment. In future, we may select different materials and mouthguard designs suitable for specific sports. PMID:14998410

  9. The influence of impact object characteristics on impact force and force absorption by mouthguard material.

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Shintaro, Kawamura; Nakajima, Kazunori; Shimada, Atsushi; Regner, Connell Wayne

    2004-02-01

    Most impact force and impact energy absorption tests for mouthguards have used a steel ball in a drop-ball or the pendulum device. However, in reality most sports-related trauma is caused by objects other than the steel ball, e.g. various sized balls, hockey puck, or bat or stick. Also, the elasticity, the velocity and the mass of the object could change the degree and the extent of injuries. In this study, we attempted to measure the impact force from actual sports equipment in order to clarify the exact mechanism of dental-related sports injuries and the protective effects of mouthguards. The present study was conducted using the pendulum impact device and load cell. Impact objects were removable. Seven mobile impact objects were selected for testing: a steel ball, baseball, softball, field hockey ball, ice hockey puck, cricket ball, and wooden baseball bat. The mouthguard material used in this study was a 3-mm-thick Drufosoft (Dreve-Dentamid GmbH, Unna, Germany), and test samples were made of the one-layer type. The peak transmitted forces without mouthguard ranged from the smallest (ice hockey stick, 46.9 kgf) to the biggest (steel ball, 481.6 kgf). The peak transmitted forces were smaller when the mouthguard was attached than without it for all impact materials but the effect was significantly influenced by the object type. The steel ball showed the biggest (62.1%) absorption ability while the wooden bat showed the second biggest (38.3%). The other balls or the puck showed from 0.6 to 6.0% absorbency. These results show that it is important to test the effectiveness of mouthguards on specific types of sports equipment. In future, we may select different materials and mouthguard designs suitable for specific sports.

  10. Spectral characteristics and the extent of paleosols of the Palouse formation

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Busacca, Alan; Cheng, Yaan; Wherry, David; Hart, Judy; Gill, Steve

    1988-01-01

    The objective of this study is to test the hypothesis that TM data is adequate in band selection and width and in spatial resolution to distinguish soil organic matter, iron oxide, and lime-silica contents to map several severity classes of erosion in soils of the Palouse region. The methodology used is as follows: (1) To develop spectral relationships from TM data that define the spatial distribution of soil areas by levels of (1) organic matter in the surface soil, (2) iron oxide and clay in exposed paleosol B horizons, and (3) lime-silica accumulations in exposed paleosol B horizons; (2) To compare areas determined by the method outlined in 1 to patterns interpreted from color aerial photos, and to ground observations on bare-soil fields; and (3) To define, on the basis of results of 1 and 2 to the extent possible, where exposed paleosols exist within fields that are not bare, but have a crop cover, and the distribution of desirable and undesirable soil properties in each field.

  11. The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples

    NASA Astrophysics Data System (ADS)

    Zheng, Peichao; Shi, Minjie; Wang, Jinmei; Liu, Hongdi

    2015-08-01

    Laser induced breakdown spectroscopy (LIBS) provides a useful technique for food security as well as determining nutrition contents. In this paper, optical emission studies of laser induced plasma on commercial tea samples were carried out. The spectral intensities of Mg, Mn, Ca, Al, C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied. In addition, the relative concentrations of six microelements, i.e., Mg, Mn, Ca, Al, Na and K, were analyzed semi-quantitatively as well as H, for four kinds of tea samples. Moreover, the plasma parameters were explored, including electron temperature and electron number density. The electron temperature and electron number density were around 11000 K and 1017 cm-3, respectively. The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples. supported by National Natural Science Foundation of China (No. 61205149), the Scientific and Technological Talents Training Project of Chongqing, China (No. CSTC2013kjrc-qnrc40002), the Scientific and Technological Project of Nan'an District (2011) and the Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology at Chongqing University, China (No. 2007DA10512714409)

  12. Impact of helmet-mounted display visor spectral characteristics on visual performance

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.

    2002-08-01

    Visors are an important component in modern helmet-mounted displays (HMDs). In addition to their more conventional use as eye protection, they can be used as the final element in the optical system that relays visual information to the observer. To enhance their usefulness as the final optical element (as a beam splitter or image combiner), visors are sometimes coated to increase their reflectivity and improve the efficiency of the optics. However, pilots often object to the addition of reflective patches, indicating, among other reasons, that they decrease observed target contrast and, therefore, decrease target detection range. This paper will examine the impact of the additional reflective coating on visual performance through a helmet-mounted display visor. It will propose design parameters based on the spectral nature of the coating that might make it more useful to both the HMD designer and to the HMD wearer. Finally, this paper will examine visual phenomena that may affect visual performance through a coated visor.

  13. Spectral and cospectral characteristics of atmospheric turbulence in the marine boundary layer

    SciTech Connect

    Volkov, Yu.A.; Grachev, A.A.; Elagina, L.G.; Matveev, D.T.

    1994-12-31

    The behavior of frequency spectra and cospectra of atmospheric turbulence over the sea surface is described through analysis of data obtained from shipboard in a number of marine expeditions in Atlantic. These data sets have a wide variety of weather conditions. Many cases have demonstrated similarity between spectra of velocity, temperature and humidity fluctuations as well as momentum, heat and water vapor flux cospectra. These cases are characterized by strongly unstable stratification of surface layer, which observed during expedition in winter/spring 1988 in North Atlantic near Newfoundland Island. However, in weak unstable conditions typical for Subtropical (Pre-ASTEX-91 experiment) and Equatorial Atlantic, spectra of temperature and humidity and heat and moisture flux cospectra were often dissimilar. Spectral dissimilarity of turbulent quantities are also related with unsteady cases. For these cases heat flux cospectra often change sign at low frequency and the net sensible heat flux may be close to zero. The turbulent measurements are accompanied by simultaneous remote sensing of sea surface temperature and cloud low boundary. The obtained results indicate that the anomalous behavior of low-frequency cospectra is related to large-scale circulations (coherent structures) in the atmospheric boundary layer (ABL) and oceanic subsurface layer.

  14. Spectral characteristics and the extent of paleosols of the Palouse formation

    NASA Technical Reports Server (NTRS)

    Frazier, B. E.; Busacca, A.; Cheng, Y.; Wherry, D.; Hart, J.; Gill, S.

    1986-01-01

    Spectral relationships were investigated for several bare soil fields which were in summer fallow rotation on the date of the imagery. Printouts of each band were examined and compared to aerial photography. Bands with dissimilar reflectance patterns for known areas were then combined using ratio techniques which were proven useful in other studies (Williams, 1983). Selected ratios were Thematic Mapper (TM) 1/TM4, TM3/TM4, and TM5/TM4. Cluster analyses and Baysian and Fastclass classifier images were produced using the three ratio images. Plots of cluster analysis outputs revealed distinct groupings of reflectance data representing green crops, ripened crops, soil and green plants, and bare soil. Bare soil was represented by a line of clusters on plots of the ratios TM5/TM4 and TM3/TM4. The soil line was investigated further to determine factors involved in the distributin of clusters alone the line. The clusters representing the bare soil line were also studied by plotting the Tm5/TM4, TM1/TM4 dimension. A total of 76 soil samples were gathered and analyzed for organic carbon.

  15. Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility

    SciTech Connect

    Tsarenko, A.; Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M. J.; Scholz, M.; Paduch, M.; Tomaszewski, K.

    2006-01-15

    The paper reports on spectroscopic studies of high-current plasma discharges performed at different gas fillings within the large PF-1000 facility. To study visible radiation (VR) the use was made of a MECHELLE registered 900-spectrometer equipped with the CCD readout. The observations of a PF pinch column were performed at an angle of about 65 deg. to the z-axis, and the viewing field was at a distance of 40-50 mm from the electrode ends. Optical measurements were carried out at 0.5-{mu}s exposition synchronized with a chosen period of the investigated discharge. Differences in the optical spectra, recorded at various deuterium-helium mixtures, were analyzed. Intensities of HeI lines were computed for an assumed electron temperature and compared with the experiment. Estimated plasma concentration in pure-deuterium discharges amounted to 8x1018 cm-3, while that in pure helium shots was (4-7)x1017 cm-3 only. Estimates of the electron temperature, from the ratio of intensities of the chosen spectral lines and the continuum, gave values ranging from 5 eV to 50 eV. The paper presents also some spectra from 'weak shots', which show distinct impurity lines caused by different reasons.

  16. Characteristics of surface cyclone forecasts in the Aviation Run of the Global Spectral Model

    SciTech Connect

    Grumm, R.H. )

    1993-03-01

    Results are presented of an evaluation of the performance of the Aviation Run (AVN) of the NMC Global Spectral Model (GSM) in predicting surface cyclones, which was conducted during the autumn of 1990 through the winter of 1992. The results indicated that the finer-resolution T126 GSM produces stronger and deeper cyclones than the old T80 GSM. The errors in AVN position forecasts of surface cyclones were smaller than those found in the NMC Nested Grid Model (NGM). The geographical distribution of the pressure errors were similar to those found in the NGM over eastern North America and the adjacent western Atlantic Ocean. The AVN tended to underpredict the 1000-500-mb thickness over surface cyclones, especially during the first 36 h of the forecast cycle. The T126 AVN forecasts are accurate enough to provide guidance for basic weather forecasts to three days, as has been done for the two-day forecasts for the past 25-30 yr. 19 refs.

  17. Spectral characteristics of caries-related autofluorescence spectra and their use for diagnosis of caries stage

    NASA Astrophysics Data System (ADS)

    Son, Sung-Ae; Jung, Kyeong-Hoon; Ko, Ching-Chang; Kwon, Yong Hoon

    2016-01-01

    The purpose of the present study was to identify factors useful for diagnosis of the caries stage from laser-induced autofluorescence (AF) spectra. Affected teeth were accurately staged and allocated to four groups: sound, stage II, stage III, or stage IV. A 405-nm laser was used to produce AF spectra. The spectrum factors analyzed were spectrum slope at 550 to 600 nm, spectral area from 500 and 590 nm, and intensity ratio of peaks 625 and 667 nm (625/667 nm). DIAGNOdent was used as control measurement. AF spectra of sound teeth had a peak near 500 nm followed by a smooth decline to 800 nm. As caries progressed, some specimens in stages II to IV showed one or two peak(s) near 625 and 667 nm. Slopes at 550 to 600 nm and areas under the curve at 500 to 590 nm were significantly different (p<0.001) for each stage. Two-peak ratios were also significantly different (p<0.001) except for stage III and stage IV. DIAGNOdent readings for sound and stage II and stage III and IV were not significantly different. Among the studied factors, the spectrum slope at 550 to 600 nm and area under curve at 500 to 590 nm could be useful treatment decision-making tools for carious lesions.

  18. Spectral Characteristics of Phase Sensitivity and Discharge Rate of Neurons in the Ascending Tectofugal Visual System

    PubMed Central

    Wypych, Marek; Nagy, Attila; Mochol, Gabriela; Foik, Andrzej; Benedek, György; Waleszczyk, Wioletta J.

    2014-01-01

    Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component. PMID:25083715

  19. Environmental processes and spectral reflectance characteristics associated with soil erosion in desert fringe regions

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.

    1986-01-01

    Two Thematic Mapper (TM) scenes were acquired. A scene was acquired for the Bahariya, Egypt field area, and one was acquired covering the Okavango Delta site. Investigations at the northwest Botswana study sites have concentrated upon a system of large linear (alab) dunes possessing an average wavelength of 2 kilometers and an east-west orientation. These dunes exist to the north and west of the Okavango Swamp, the pseudodeltaic end-sink of the internal Okavango-Cubango-Cuito drainage network. One archival scene and two TM acquisitions are on order, but at present no TM data were acquired for the Tombouctou/Azaouad Dunes, Mali. The three areas taken together comprise an environmental series ranging from hyperarid to semi-arid, with desertization processes operational or incipient in each. The long range goal is to predict normal seasonal variations, so that aperiodic spectral changes resulting from soil erosion, vegetation damage, and associated surface processes would be distinguishable as departures from the norm.

  20. [Ultraviolet spectral characteristics of charge-transfer reaction complex in micellar system and its application].

    PubMed

    Du, Li-ming; Chen, Cai-ping; Li, Jian-hua

    2005-02-01

    Charge-transfer (CT) reaction of chloranil (TCBQ) as a pi-electron acceptor with fleroxacin (FLX) as an electron donor has been studied by ultraviolet spectrophotometry method. Experiment showed that FLX reacted with TCBQ in sodium dodecyl sulfate (SDS) micellar systems, and a stable complex was formed and the absorbency was remarkably enhanced. Therefore, a simple, rapid, accurate and sensitive method for the determination of FLX has been developed. Beer's law is obeyed in the range of 0.6-24 mg x L(-1) of FLX and r = 0.9993. The apparent molar absorptivity of CT complexes at 326 nm is 3.3 x 10(4) L x mol(-1) x cm(-1). The composition of CT complex was found to be 1:1 by Bent-French and curved intersection methods. The proposed method has been applied to the determination of ESL in tablets. The recoveries are 99.2%-99.7%. The relative standard deviation is 0.7%-2.1%. The proposed methods are suitable for the routine quality control of drug alone and in tablets or capsules without fear of interference caused by the excipients expected to be present in tablets or capsules.

  1. Spectral characteristics of heterocyclic compounds with a chain structure, cooled in an ultrasonic jet

    NASA Astrophysics Data System (ADS)

    Povedailo, V. A.; Yakovlev, D. L.

    2006-11-01

    We have recorded the fluorescence excitation spectra of three heterocyclic compounds with a chain structure [BPO (2-phenyl-5-(4-diphenylyl)oxazole), POPOP (1,4-di[2-(5-phenyloxazolyl)]benzene, and TOPOT (1,4-di[2-(5-n-tolyloxazolyl)]benzene] and the fluorescence spectra of POPOP, under conditions where the molecules were cooled in an ultrasonic helium jet. A line structure is observed in the spectra of POPOP and TOPOT; for the BPO molecules, whose configuration changes considerably during electronic excitation, vibrational structure is apparent only in the low-frequency region of the excitation spectrum, and a diffuse spectrum is recorded starting from ν 0 0 + 200 cm-1. For all the compounds, in the spectra we recorded vibrations with frequencies up to 100 cm-1, arising due to the flexibility of the molecular structure. The rotational contours of the lines for the electronic and vibronic transitions of the POPOP molecules (Trot = 10.5 K) and TOPOT molecules (Trot = 15 K) are structureless and bell-shaped. The degree of polarization of the fluorescence Pfl for the jet-cooled POPOP molecules for excitation of vibrations along the absorption band up to 2000 cm-1 above ν 0 0 is practically constant (˜8.4%) and matches Pfl for high-temperature vapors.

  2. Study of spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Metzler, M. D. (Principal Investigator)

    1985-01-01

    The radiometric characteristics of LANDSAT 5 TM data were analyzed. Effects which were found earlier and quantified in LANDSAT 4 TM data were quantified for LANDSAT-5 data as well, including: scan-direction-related signal droop and scan correlated level shifts. Coincident LANDSAT 4 and 5 fully corrected (CCT-PT) TM data were analyzed, and band-by-band relationships between the two sensors were derived in terms of both signal counts and radiance.

  3. Absorption and luminescence characteristics of 5I7 <--> 5I8 transitions of the holmium ion in Ho3+-doped aluminosilicate preforms and fibres

    NASA Astrophysics Data System (ADS)

    Ryabochkina, P. A.; Chabushkin, A. N.; Kosolapov, A. F.; Kurkov, A. S.

    2015-02-01

    We have obtained the spectral dependences of the absorption cross sections for the Ho3+ 5I8 → 5I6 and 5I8 → 5I7 transitions in Ho3+-doped aluminosilicate fibres and the spectral dependence of the stimulated emission cross section for the Ho3+ 5I7 → 5I8 laser transition in Ho3+-doped aluminosilicate fibre preforms. The lifetime of the Ho3+ 5I7 upper laser level in the preforms has been determined.

  4. MUSCLES: Measurements of the Ultraviolet Spectral Characteristics of Low-Mass Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    France, K.

    2014-04-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. In this talk, I will present results from a recent study of the UV radiation fields around nearby M dwarf planet hosts that covers both FUV and NUV wavelengths. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No 'UV quiet' M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise ~37 - 75% of the total 1150 - 3100 A flux from most M dwarfs; > 1000 times the solar value. The F(FUV)/F(NUV) flux ratio, a driver for possible abiotic production of the suggested biomarkers O2 and O3, is shown to be ~ 0.5 - 3 for all M dwarfs in our sample, > 1000 times the solar ratio. For the four stars with moderate signal-to-noise COS time-resolved spectra, we find UV emission line variability with amplitudes of 50 - 500% on 100 - 1000 second timescales. Finally, we observe relatively bright H2 fluorescent emission from four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832). I will describe the possible origins of the hot (T (H2) ~ 2000 - 4000 K) molecular gas observed in these systems.

  5. Spectral Characteristics of Continuous Acoustic Emission (AE) Data from Laboratory Rock Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Flynn, J. William; Goodfellow, Sebastian; Reyes-Montes, Juan; Nasseri, Farzine; Young, R. Paul

    2016-04-01

    Continuous acoustic emission (AE) data recorded during rock deformation tests facilitates the monitoring of fracture initiation and propagation due to applied stress changes. Changes in the frequency and energy content of AE waveforms have been previously observed and were associated with microcrack coalescence and the induction or mobilisation of large fractures which are naturally associated with larger amplitude AE events and lower-frequency components. The shift from high to low dominant frequency components during the late stages of the deformation experiment, as the rate of AE events increases and the sample approaches failure, indicates a transition from the micro-cracking to macro-cracking regime, where large cracks generated result in material failure. The objective of this study is to extract information on the fracturing process from the acoustic records around sample failure, where the fast occurrence of AE events does not allow for identification of individual AE events and phase arrivals. Standard AE event processing techniques are not suitable for extracting this information at these stages. Instead the observed changes in the frequency content of the continuous record can be used to characterise and investigate the fracture process at the stage of microcrack coalescence and sample failure. To analyse and characterise these changes, a detailed non-linear and non-stationary time-frequency analysis of the continuous waveform data is required. Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA) are two of the techniques used in this paper to analyse the acoustic records which provide a high-resolution temporal frequency distribution of the data. In this paper we present the results from our analysis of continuous AE data recorded during a laboratory triaxial deformation experiment using the combined EMD and HSA method.

  6. Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel-Ziv complexity.

    PubMed

    Liu, Xiaokun; Zhang, Chunlai; Ji, Zheng; Ma, Yi; Shang, Xiaoming; Zhang, Qi; Zheng, Wencheng; Li, Xia; Gao, Jun; Wang, Ruofan; Wang, Jiang; Yu, Haitao

    2016-04-01

    To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer's disease (AD), power spectrum density (PSD) and Lempel-Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel-Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease.

  7. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  8. Structural and spectral characteristics of the cross-linked dimer derived from electrooxidation of cyclic 1,N2-propanoguanosine.

    PubMed

    Murakami, Hiroya; Esaka, Yukihiro; Uno, Bunji

    2011-01-01

    The acetaldehyde-derived cyclic propano adduct of 2'-deoxyguanosine was easily oxidized electrochemically into the cross-linked dimer as an oxidative product. The structural and spectroscopic characteristics of the dimer were investigated by MS, (1)H and (13)C-NMR, UV, and DFT calculations. The dimer formation was inferred from a molecular ionic peak of m/z 705 ([(2M-2H)+H](+), M being the molecular weight of the monomer) on the ESI-MS spectra and the chemical formula as C(28)H(36)N(10)O(12) provided by the high-resolution ESI-MS results. The C2-N5 linkage between the two monomers in the dimer was deduced from the (1)H- and (13)C-NMR spectral results. In addition, the correlations in the 2-dimensional NMR spectra (DQF-COSY and HMBC) were consistently explained by the structure of the C2-N5 cross-linked dimer. UV spectral measurements also support the C2-N5 linking in the dimer formation. The formation of the cross-link dimer as an oxidative lesion of the acetaldehyde-derived cyclic propano adduct of guanosine is expected to interfere with DNA replication and to contribute to acetaldehyde-mediated genotoxicity.

  9. Study of spectral characteristics of radiation from a thermal wake of a pulsating optical discharge in a supersonic air flow

    NASA Astrophysics Data System (ADS)

    Malov, A. N.; Orishich, A. M.; Terent'eva, Ya S.

    2015-10-01

    The spectral characteristics of the thermal wake of a pulsating optical discharge (POD) in a supersonic air flow are studied. The POD is stimulated by radiation of a mechanically Q-switched, repetitively pulsed CO2 laser with a pulse repetition rate of 7 - 150 kHz and a power up to 4.5 kW. The flow is produced by means of the supersonic aerodynamic MAU-M setup having a conic nozzle with a critical cross-section size of 50 mm, the Mach number being 1.3 - 1.6. We describe in detail the system of optical diagnostics that allows the detection of the spectrum of the weak thermal wake glow against the background of high-power POD radiation. The glow of the thermal wake is due to the emission of light by atoms and ions of nitrogen and oxygen, carried by the flow in the form of hot low-density gas clouds (caverns). The wavelengths of the thermal wake emission and the data on the transitions, corresponding to the spectral lines are presented.

  10. Study of spectral/radiometric characteristics of the Thematic Mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D.

    1984-01-01

    Progress during the Environmental Research Institute of Michigan-ERIM's and 5 image data quality assessment program for the thematic mapper is described. Analyses of LANDSAT 5 TM radiometric characteristics were performed. Effects which had earlier been found in LANDSAT 4 TM data were found to be present in LANDSAT 5 data as well, including: (1) scan direction related signal droop; (2) scan correlated level shifts; and (3) low frequency coherent noise. Coincident LANDSAT 4 and 5 raw TM data were analyzed, and band by band relationships between the two sensors were derived. Earlier efforts which developed an information theoretic measure of multispectral information content were continued, comparing TM and MSS information content.

  11. Electrospray ionization mass spectral characteristics and fragmentation mechanisms of Angiotensin II and its analogues

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Yuan, Gu

    2006-05-01

    The characteristic fragmentation pathways of Angiotensin II and eight analogues were investigated by electrospray ionization tandem mass spectrometry. The main fragmentations involve the cleavages of the CCO and CONH bonds with the loss of water, ammonia or carbon monoxide and rearrangements involving hydrogen atoms, and the MS/MS spectra give significant sequence information of these octapeptides. In addition, the two members of the analogues with the same mass and different elemental composition can be distinguished by the MS/MS spectra of [M + H]+ and fragment ions. These results show that ESI tandem mass spectrometry is an excellent tool for the structural identification of Angiotensin II and its analogues.

  12. Using naive Bayes classifier for classification of convective rainfall intensities based on spectral characteristics retrieved from SEVIRI

    NASA Astrophysics Data System (ADS)

    Hameg, Slimane; Lazri, Mourad; Ameur, Soltane

    2016-07-01

    This paper presents a new algorithm to classify convective clouds and determine their intensity, based on cloud physical properties retrieved from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The convective rainfall events at 15 min, 4 × 5 km spatial resolution from 2006 to 2012 are analysed over northern Algeria. The convective rain classification methodology makes use of the relationship between cloud spectral characteristics and cloud physical properties such as cloud water path (CWP), cloud phase (CP) and cloud top height (CTH). For this classification, a statistical method based on `naive Bayes classifier' is applied. This is a simple probabilistic classifier based on applying `Bayes' theorem with strong (naive) independent assumptions. For a 9-month period, the ability of SEVIRI to classify the rainfall intensity in the convective clouds is evaluated using weather radar over the northern Algeria. The results indicate an encouraging performance of the new algorithm for intensity differentiation of convective clouds using SEVIRI data.

  13. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  14. Spectral Characteristics of Wave Breaking and Dissipation in Combined Tsunami - Swell Wave Conditions

    NASA Astrophysics Data System (ADS)

    Kaihatu, J. M.; Goertz, J.; Sheremet, A.; Weiss, R.

    2014-12-01

    It has been observed that the front face of landfalling tsunamis often feature dispersive "fission" waves. These are short, almost monochromatic coherent waves which result from the piling up of water as the tsunami rapidly decelerates upon encountering land. Photographs taken during the 2004 Indian Ocean tsunami show these waves to resemble cnoidal waves in shape and have a spatial and temporal scale of the same order as swell waves. As part of our goal to study the tsunami in concert with other aspects of the physical environment, we investigate possible physical linkages between the background random swell, monochromatic fission waves, and the long-scale tsunami waves. This particular investigation involves the modification of the dissipation characteristics of random surface waves when interacting with a coherent wavefield (e.g., laboratory proxies for the fission wave or the tsunami). Data from laboratory experiments conducted at the Large Wave Flume at Oregon State University (part of the Network for Earthquake Engineering Simulation supported by the National Science Foundation) were analyzed and the dissipation characteristics inferred using a steepness-regulated instantaneous dissipation mechanism. It is shown that, for random waves, the instances of significant dissipation events temporally correspond to the appearance of high frequency energy in the time-frequency spectrogram. Furthermore, these observations are strongly affected by the presence of an underlying coherent wave signal, particularly in the case of interaction with a tsunami. We further discuss the possible effect of these interactions on the forces in the hydrodynamic field responsible for sediment transport.

  15. Trends, spectral characteristics, and rainfall relationships of low-latitude sea surface temperatures at different longitudes

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    2000-01-01

    The sea surface temperature (SST) data for low latitudes in the Pacific, Atlantic, and Indian Oceans for 1950-1996 (47 years) showed different seasonal variation patterns at different longitudes. When the seasonal patterns were subtracted from the monthly values, the deseasoned residuals showed considerable anomalies (interannual variability). In the Pacific the main features were the El Niño events. In the Atlantic, North and South Atlantic SST showed dissimilar anomalies, and these did not have any fixed lag or lead relationships with the Pacific events. The same was true for the low-latitude Indian Ocean SST. The correlation of Pacific SST with Atlantic or Indian Oceans' SST was less than ˜0.65, yielding a common variance (square of the correlation) of less than ˜40%. Thus, whereas SST anomalies might have some common origin, the manifestation of SST anomalies at different longitudes was erratic, with no preference for any longitude to start with, nor any definite sequence of occurrence in the Pacific relative to the Atlantic or Indian Oceans. A spectral analysis showed that all regions had quasi-biennial, quasi-triennial, and higher periodicities, but the exact values of these periodicities differed significantly at different longitudes. All parameters had long-term trends. These were mostly nonuniform, almost negligible in the first half (1950-1973) and mostly upward in the second half (1973-1996), indicating warming in recent decades, which is also reflected in decreases in snow cover area in the Northern Hemisphere. Rainfalls in various regions are considerably influenced by local SST regimes. For northeast Brazil, Atlantic SST influence is overpowering and often operates independently of the Pacific SST (El Niños). Hence the emphasis given in mass media (press, radio, and television) to the role of El Niño events only in influencing the rainfalls may turn out to be misleading, as seems to have happened for the 1997 El Niño. This El Niño started in

  16. Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Hu, Zhaofu; Gao, Shaopeng; Qu, Bin; Sillanpää, Mika

    2016-10-01

    Light absorption characteristics of carbonaceous aerosols are key considerations in climate forcing research. However, in situ measurement data are limited, especially on the Tibetan Plateau (TP) - the Third Pole of the world. In this study, the mass absorption cross section (MAC) of elemental carbon (EC) and water soluble organic carbon (WSOC) of total suspended particles at two high-altitude stations (Lulang station and Everest station) in the Tibetan Plateau (TP) were investigated. The mean MACEC values at 632 nm were 6.85 ± 1.39 m2 g-1 and 6.49 ± 2.81 m2 g-1 at these two stations, both of which showed little seasonal variations and were slightly higher than those of EC of uncoated particles, indicating that the enhancement of MACEC by factors such as coating with organic aerosols was not significant. The mean MACWSOC values at 365 nm were 0.84 ± 0.40 m2 g-1 and 1.18 ± 0.64 m2 g-1 at the two stations. Obvious seasonal variations of high and low MACWSOC values appeared in winter and summer, respectively, mainly reflecting photobleaching of light absorption components of WSOC caused by fluctuations in sunlight intensity. Therefore, this phenomenon might also exists in other remote areas of the world. The relative contributions of radiative forcing of WSOC to EC were 6.03 ± 3.62% and 11.41 ± 7.08% at these two stations, with a higher ratio in winter. As a result, both the contribution of WSOC to radiative forcing of carbonaceous aerosols and its seasonal variation need to be considered in radiative forcing related study.

  17. [Experiment results of conduction, spectral induced polarization and dielectric characteristics for chrome-contaminated soil].

    PubMed

    Nai, Chang-Xin; Liu, Yu-Qiang; Liu, Hao-Rui; Dong, Lu

    2011-03-01

    The resistivity, complex resistivity and complex permittivity of the chrome-contaminated soil were studied. Under the different pollution concentration and water content in the soil samples conditions, the relations between the resistivity, complex resistivity and complex permittivity of the chrome-contaminated soil and water content and the concentration of pollution were analyzed. When adding chrome pollution with different concentrations and water content, the experimental results show that the resistivity and complex resistivity of all the soil samples decreased with the pollution concentration and water content increased; but the phase of complex resistivity, which reflects the soil's capacitance, decreased below the 20 kHz and increase above the 20 kHz frequency. The real part and imaginary part of complex resostivity increased with the increase of pollution concentration and water content. The concentration of chrome pollutions and water content were the two main factor to determine the soil electrical characteristics.

  18. Study on spectral/radiometric characteristics of the thematic mapper for land use applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D.

    1983-01-01

    The change in mean signal level as a function of scan angle and scan direction was studied. The overall scan angle effect corresponded to that expected based on atmospheric modeling and scene characteristics. An initial, empirical correction model employing exponential decay was developed for reflective bands. Band 6 has a significant scan direction effect which is markedly different from that found in the reflective bands. A low frequency noise was discovered which was most pronounced in Band 1, detectors 4, 12, 10, and 8, having amplitudes of approximately 2.0, 1.5, 1.0, and 0.75 quantizing levels, respectively. This low frequency variation in mean signal amplitude was highly correlated among these four Band 1 detectors. Low frequency noise was also observed in Band 7, detector 7; band 2, detector 1; Band 3, detectors 1 and 16; and Band 5, detector 10.

  19. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study. PMID:25269317

  20. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  1. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  2. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    NASA Astrophysics Data System (ADS)

    Sreedhar, Sreeja; Illyaskutty, Navas; Sreedhanya, S.; Philip, Reji; Muneera, C. I.

    2016-05-01

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  3. Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Hannemann, Klaus; Kuhn, Markus

    2014-06-01

    Preceding studies in the high enthalpy shock tunnel Göttingen of the German Aerospace Center (DLR) revealed that carbon fibre reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities leading to a delay of boundary layer transition onset. To assess the ultrasonic absorption properties of the material, a test rig was set up to measure the reflection coefficient at ambient pressures ranging from 0.1 × 105 to 1 × 105 Pa. For the first time, broadband ultrasonic sound transducers with resonance frequencies of up to 370 kHz were applied to directly cover the frequency range of interest with respect to the second-mode instabilities observed in previous experiments. The reflection of ultrasonic waves from three flat plate test samples with a porous layer thickness between 5 and 30 mm was investigated and compared to an ideally reflecting surface. C/C was found to absorb up to 19 % of the acoustic power transmitted towards the material. The absorption characteristics were investigated theoretically by means of the quasi-homogeneous absorber theory. The experimental results were found to be in good agreement with the theory.

  4. Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements

    NASA Astrophysics Data System (ADS)

    Pathak, B.; Subba, T.; Dahutia, P.; Bhuyan, P. K.; Moorthy, K. Krishna; Gogoi, M. M.; Babu, S. Suresh; Chutia, L.; Ajay, P.; Biswas, J.; Bharali, C.; Borgohain, A.; Dhar, P.; Guha, A.; De, B. K.; Banik, T.; Chakraborty, M.; Kundu, S. S.; Sudhakar, S.; Singh, S. B.

    2016-01-01

    Four years (2010-2014) of spectral aerosol optical depth (AOD) data from 4 Indian Space Research Organisation's ARFINET (Aerosol Radiative Forcing over India) stations (Shillong, Agartala, Imphal and Dibrugarh) in the North-Eastern Region (NER) of India (lying between 22-30°N and 89-98°E) are synthesized to evolve a regional aerosol representation, for the first time. Results show that the columnar AOD (an indicator of the column abundance of aerosols) is highest at Agartala (0.80 ± 0.24) in the west and lowest at Imphal (0.59 ± 0.23) in the east in the pre-monsoon season due to intense anthropogenic bio-mass burning in this region aided by long-range transport from the high aerosol laden regions of the Indo-Gangetic Plains (IGP), polluted Bangladesh and Bay of Bengal. In addition to local biogenic aerosols and pollutants emitted from brick kilns, oil/gas fields, household bio-fuel/fossil-fuel, vehicles, industries. Aerosol distribution and climatic impacts show a west to east gradient within the NER. For example, the climatological mean AODs are 0.67 ± 0.26, 0.52 ± 0.14, 0.40 ± 0.17 and 0.41 ± 0.23 respectively in Agartala, Shillong, Imphal and Dibrugarh which are geographically located from west to east within the NER. The average aerosol burden in NER ranks second highest with climatological mean AOD 0.49 ± 0.2 next to the Indo-Gangetic Plains where the climatological mean AOD is 0.64 ± 0.2 followed by the South and South-East Asia region. Elevated aerosol layers are observed over the eastern most stations Dibrugarh and Imphal, while at the western stations the concentrations are high near the surface. The climate implications of aerosols are evaluated in terms of aerosol radiative forcing (ARF) and consequent heating of the atmosphere in the region which follows AOD and exhibit high values in pre-monsoon season at all the locations except in Agartala. The highest ARF in the atmosphere occurs in the pre-monsoon season ranging from 48.6 Wm-2 in Agartala

  5. The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Bandow, S.; Nagata, S.; Saito, K.; Tokunaga, K.; Morita, K.

    Hydrogen (H)- and water (H2O)-storage and desorption characteristics of 25 nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309 K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition.

  6. [Analysis of cloud spectral structure characteristics based on cloud profile radar data].

    PubMed

    Han, Yong; Lü, Da-Ren

    2013-04-01

    Cloud plays a very important role in the earth-atmosphere system. However, the current climate models are still lacking data about internal fine structure of cloud. And when the traditional passive satellite radiometer is used for remote sense, a plentiful information of the vertical distribution of cloud layer will be lost. For these reasons, NASA proposed the launch project of CloudSat, Whose purpose is to provide the necessary observation, and then allow us to understand better the internal structure of the cloud. CloudSat was successfully launched on April 28, 2006. It carried the first cloud profile radar (CPR) with W band (94 GHz), which can provide continuous and global time sequence vertical structure and characteristics of cloud. In the present paper, using CloudSat satellite data, we analyzed the 8th "Morakot" and 15th " Koppu" typhoon cloud systems. According to the "typhoon" cloud detection results, the radar reflectivity, cloud types and optical thickness successive variation of cloud layer were gotten, which will provide a reference for studying optical properties of typhoon cloud system.

  7. Airborne and ground based CCN spectral characteristics: Inferences from CAIPEEX - 2011

    NASA Astrophysics Data System (ADS)

    Varghese, Mercy; Prabha, Thara V.; Malap, Neelam; Resmi, E. A.; Murugavel, P.; Safai, P. D.; Axisa, Duncan; Pandithurai, G.; Dani, K.

    2016-01-01

    A first time comprehensive study of Cloud Condensation Nuclei (CCN) and associated spectra from both airborne and ground campaigns of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted over the rain shadow region of Western Ghats during September and October 2011 is illustrated. Observations of CCN spectra during clean, polluted and highly polluted conditions indicated significant differences between airborne and ground observations. Vertical variation of CCN concentration is illustrated from airborne observations in the clean, polluted and highly polluted conditions with different air mass characteristics. The cloud base CCN number concentrations are three times less than that of the surface measurements at different supersaturations. Diurnal variations of the ground based CCN number concentration and activation diameter showed bimodality. Atmospheric mixing in the wet conditions is mainly through mechanical mixing. The dry conditions favored convective mixing and were dominated by more CCN than the wet conditions. New particle formation and growth events have been observed and were found more often on days with convective mixing. The average critical activation diameter (at 0.6% SS) observed at the ground is approximately 60 nm and availability of a large number of particles below this limit was due to the new particle formation. Observations give convincing evidence that the precipitable water and liquid water path is inversely proportional to surface CCN number concentration, and this relationship is largely dictated by the meteorological conditions.

  8. Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    SciTech Connect

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-07-28

    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudo-monochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo- and thermal-emission characteristics of the quantum rings.

  9. Spectral reflectance characteristics and automated data reduction techniques which identify wetland and water quality conditions in the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.

    1970-01-01

    Progress on research designed to test the usability of multispectral, high altitude, remotely sensed data to analyze ecological and hydrological conditions in estuarine environments is presented. Emphasis was placed on data acquired by NASA aircraft over the Patuxent River Chesapeake Bay Test Site, No. 168. Missions were conducted over the Chesapeake Bay at a high altitude flight of 18,460 m and a low altitude flight of 3070. The principle objectives of the missions were: (1) to determine feasibility of identifying source and extent of water pollution problems in Baltimore Harbor, Chesapeake Bay and major tributaries utilizing high altitude, ERTS analogous remote sensing data; (2) to determine the feasibility of mapping species composition and general ecological condition of Chesapeake Bay wetlands, utilizing high altitude, ERTS analogous data; (3) to correlate ground spectral reflectance characteristics of wetland plant species with tonal characteristics on multispectral photography; (4) to determine usefulness of high altitude thermal imagery in delinating isotherms and current patterns in the Chesapeake Bay; and (5) to investigate automated data interpretive techniques which may be usable on high altitude, ERTS analogous data.

  10. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  11. Experimental study of the spectral characteristics of laser-induced air plasma

    SciTech Connect

    Lin Zhaoxiang; Wu Jinquan; Sun Fenglou; Gong Shunsheng

    2010-05-01

    The characteristics of laser-induced air, N2, and O2 plasma spectra are investigated spectroscopically. The study concentrates mainly on the temporal behavior of laser-induced plasma after breakdown. We used delayed spectra and spectra evolution for this study. Except for the general one-beam laser-induced breakdown experiment, a second laser beam was added to further probe the behavior of plasma during its decay. We report the experimental results of spectra composition, spectra time evolution, and spectra affected by a second laser beam. We determined that all the laser-induced air plasma spectra are from a continuous spectrum and some line spectra superposed on the continuous spectrum. The stronger short wavelength continuous spectrum is caused by bremsstrahlung radiation of electrons in the plasma, and the weaker long wavelength continuous spectrum is caused by electron and ion recombination. Line spectra originate from excited molecules, atoms, and their first-order ions, but no line spectra form higher-order ions. The results show that the temporal behavior of some spectra is a decay-rise-redecay pattern. With the two laser beam experiment we found that all the spectra intensities are enhanced by the second laser beam, but the response of various spectra to the delay of the second laser beam is quite different, in particular, the intensity increments of some spectra increase with the delay of the second laser beam. Some microscopic processes of laser-induced plasma obtained from the experimental results are discussed. These results are useful for a better understanding of some laser-induced air plasma related applications, such as laser-guided lightning and laser-induced breakdown spectroscopy.

  12. Spectral Changes of Erythrosin B Luminescence Upon Binding to Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Sablin, N. V.; Gerasimova, M. A.; Nemtseva, E. V.

    2016-04-01

    Changes in absorption, fluorescence, phosphorescence, and delayed fluorescence spectra of erythrosin B are studied in the presence of bovine serum albumin at room temperature. Spectral and chronoscopic characteristics of the observed photophysical processes are defined. The binding of erythrosin B with the protein followed by spectral changes is demonstrated. Absorption and fluorescence spectra of the dye in the bound state are described, the binding mechanism is analyzed. The binding parameters of the dye-protein complex are estimated.

  13. Kinetic equations for a density matrix describing nonlinear effects in spectral line wings

    SciTech Connect

    Parkhomenko, A. I. Shalagin, A. M.

    2011-11-15

    Kinetic quantum equations are derived for a density matrix with collision integrals describing nonlinear effects in spectra line wings. These equations take into account the earlier established inequality of the spectral densities of Einstein coefficients for absorption and stimulated radiation emission by a two-level quantum system in the far wing of a spectral line in the case of frequent collisions. The relationship of the absorption and stimulated emission probabilities with the characteristics of radiation and an elementary scattering event is found.

  14. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe2+ polycrystal

    NASA Astrophysics Data System (ADS)

    Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2016-04-01

    The energy and spectral characteristics of a laser on a ZnS:Fe2+ polycrystal operating at room temperature have been studied. The laser was pumped by a non-chain electro-discharge HF laser with a full-width at half-maximum pulse duration of ~140 ns. The diameter of the pumping radiation spot on the crystal surface was 3.8 mm. The two-sided diffuse doping of a polycrystalline CVD-ZnS sample with the surfaces preliminarily coated by high-purity