Sample records for absorption spectral studies

  1. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  2. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  3. Two-photon absorption by spectrally shaped entangled photons

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2018-03-01

    We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.

  4. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  5. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  6. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application.

  7. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    PubMed

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density

  8. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  9. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol

  10. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  11. Brown carbon absorption in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  12. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  13. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  14. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  15. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  16. Spectral Absorption Properties of Aerosol Particles from 350-2500nm

    NASA Technical Reports Server (NTRS)

    Martins, J. Vanderlei; Artaxo, Paulo; Kaufman, Yoram J.; Castanho, Andrea D.; Remer, Lorraine A.

    2009-01-01

    The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.

  17. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  18. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    NASA Astrophysics Data System (ADS)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  19. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association

    NASA Astrophysics Data System (ADS)

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-02-01

    Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.

  20. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association.

    PubMed

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-02-25

    Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  2. Modeling ocean primary production: Sensitivity to spectral resolution of attenuation and absorption of light

    NASA Astrophysics Data System (ADS)

    Kettle, Helen; Merchant, Chris J.

    2008-08-01

    Modeling the vertical penetration of photosynthetically active radiation (PAR) through the ocean, and its utilization by phytoplankton, is fundamental to simulating marine primary production. The variation of attenuation and absorption of light with wavelength suggests that photosynthesis should be modeled at high spectral resolution, but this is computationally expensive. To model primary production in global 3d models, a balance between computer time and accuracy is necessary. We investigate the effects of varying the spectral resolution of the underwater light field and the photosynthetic efficiency of phytoplankton ( α∗), on primary production using a 1d coupled ecosystem ocean turbulence model. The model is applied at three sites in the Atlantic Ocean (CIS (∼60°N), PAP (∼50°N) and ESTOC (∼30°N)) to include the effect of different meteorological forcing and parameter sets. We also investigate three different methods for modeling α∗ - as a fixed constant, varying with both wavelength and chlorophyll concentration [Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters. Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033-31044], and using a non-spectral parameterization [Anderson, T.R., 1993. A spectrally averaged model of light penetration and photosynthesis. Limnol. Oceanogr. 38, 1403-1419]. After selecting the appropriate ecosystem parameters for each of the three sites we vary the spectral resolution of light and α∗ from 1 to 61 wavebands and study the results in conjunction with the three different α∗ estimation methods. The results show modeled estimates of ocean primary productivity are highly sensitive to the degree of spectral resolution and α∗. For accurate simulations of primary production and chlorophyll distribution we recommend a spectral resolution of at least six wavebands

  3. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    PubMed Central

    Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  4. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates

  5. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    PubMed

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  6. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  7. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determinedmore » and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.« less

  8. New in situ Aerosol Spectral Optical Measurements over 300-700 nm, Extinction and Total Absorption, Paired with Absorption from Water- and Methanol-soluble Aerosol Extracts

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.

    2017-12-01

    A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer

  9. Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM).

    PubMed

    Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile

    2016-01-25

    The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.

  10. Synthetic Absorption Lines for a Clumpy Medium: A Spectral Signature for Cloud Acceleration in AGN?

    NASA Technical Reports Server (NTRS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionized multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called warm absorbers. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds that are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line-of-sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result that can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  11. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  12. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    PubMed

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum.

  13. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  14. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    PubMed Central

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2017-01-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm−1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360–500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors. PMID:29201583

  15. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    PubMed

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  16. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study

    NASA Astrophysics Data System (ADS)

    Caponi, Lorenzo; Formenti, Paola; Massabó, Dario; Di Biagio, Claudia; Cazaunau, Mathieu; Pangui, Edouard; Chevaillier, Servanne; Landrot, Gautier; Andreae, Meinrat O.; Kandler, Konrad; Piketh, Stuart; Saeed, Thuraya; Seibert, Dave; Williams, Earle; Balkanski, Yves; Prati, Paolo; Doussin, Jean-François

    2017-06-01

    This paper presents new laboratory measurements of the mass absorption efficiency (MAE) between 375 and 850 nm for 12 individual samples of mineral dust from different source areas worldwide and in two size classes: PM10. 6 (mass fraction of particles of aerodynamic diameter lower than 10.6 µm) and PM2. 5 (mass fraction of particles of aerodynamic diameter lower than 2.5 µm). The experiments were performed in the CESAM simulation chamber using mineral dust generated from natural parent soils and included optical and gravimetric analyses. The results show that the MAE values are lower for the PM10. 6 mass fraction (range 37-135 × 10-3 m2 g-1 at 375 nm) than for the PM2. 5 (range 95-711 × 10-3 m2 g-1 at 375 nm) and decrease with increasing wavelength as λ-AAE, where the Ångström absorption exponent (AAE) averages between 3.3 and 3.5, regardless of size. The size independence of AAE suggests that, for a given size distribution, the dust composition did not vary with size for this set of samples. Because of its high atmospheric concentration, light absorption by mineral dust can be competitive with black and brown carbon even during atmospheric transport over heavy polluted regions, when dust concentrations are significantly lower than at emission. The AAE values of mineral dust are higher than for black carbon (˜ 1) but in the same range as light-absorbing organic (brown) carbon. As a result, depending on the environment, there can be some ambiguity in apportioning the aerosol absorption optical depth (AAOD) based on spectral dependence, which is relevant to the development of remote sensing of light-absorbing aerosols and their assimilation in climate models. We suggest that the sample-to-sample variability in our dataset of MAE values is related to regional differences in the mineralogical composition of the parent soils. Particularly in the PM2. 5 fraction, we found a strong linear correlation between the dust light-absorption properties and

  17. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  18. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  19. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  20. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  1. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  2. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States

    NASA Astrophysics Data System (ADS)

    Nelson, James R.; Guarda, Sonia

    1995-05-01

    Visible absorption spectra of particulate and dissolved materials were characterized on the continental shelf off the southeastern United States (the South Atlantic Bight), emphasizing cross-shelf and seasonal variability. A coastal front separates turbid coastal waters from clearer midshelf waters. Spatial and seasonal patterns were evident in absorption coefficients for phytoplankton, detritus, and colored dissolved organic matter (CDOM); spectral shape parameters for CDOM and detritus; and phytoplankton chlorophyll-specific absorption. The magnitude of CDOM absorption reflected seasonal differences in freshwater discharge and the salinity of the midshelf waters. In the spring of 1993 (high discharge), CDOM absorption at 443 nm was >10 times that of total particulate absorption between 12 and 50 km offshore (0.28-0.69 m-1 versus 0.027-0.062 m-1) and up to 10 times the CDOM absorption measured in the previous summer (low discharge). Phytoplankton chlorophyll-specific absorption in the blue increased with distance from shore (from <0.03 m2 mg-1 in inner shelf waters to ˜0.1 m2 mg-1 at the most seaward stations in summer) and, for similar chlorophyll concentrations, was higher in summer than in the winter-spring. These spatial and seasonal patterns in phytoplankton chlorophyll-specific absorption can be attributed to a shift in phytoplankton species composition (from predominantly diatoms inshore to a cyanobacteria-dominated assemblage midshelf in summer), pigment packaging, and higher carotenoid:chlorophyll with distance from shore.

  3. An absorption spectral study of Nd (III) with glutathione (reduced), GSH in aqueous and aquated organic solvent in presence and absence of Zn (II)

    NASA Astrophysics Data System (ADS)

    Mehta, Jignasu P.; Bhatt, Prashant N.; Misra, Sudhindra N.

    2003-02-01

    The coordination chemistry of glutathione (reduced) GSH is of great importance as it acts as an excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. We have studied two chemically dissimilar metal ions viz. Nd (III) being hard metal ion, which will prefer hard donor sites like carboxylic groups, and Zn (II) the soft metal ion more suited to peptide-NH and sulfhydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic complexation of GSH with Nd (III) and Zn (II) has been explored in aqueous and aquated organic solvents. The changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity (Tλ) parameters determined experimentally is being used to investigate the complexation of GSH. The in vivo intracellular complexation of GSH with Ca (II) in presence of Zn (II) ion has been mimicked through Nd (III)-GSH-Zn (II) absorption spectral studies in vitro.

  4. Impact of absorption in the top layer of a two layer sample on spectroscopic spectral domain interferometry of the bottom layer

    NASA Astrophysics Data System (ADS)

    Fleischhauer, F.; Feuchter, T.; Leick, L.; Rajendram, R.; Podoleanu, A.

    2018-03-01

    Spectroscopic spectral domain interferometry and spectroscopic optical coherence tomography combine depth information with spectrally-resolved localised absorption data. These additional data can improve diagnostics by giving access to functional information of the investigated sample. One possible application is measuring oxygenation levels at the retina for earlier detection of several eye diseases. Here measurements with different hollow glass tube phantoms are shown to measure the impact of a superficial absorbing layer on the precision of reconstructed attenuation spectra of a deeper layer. Measurements show that a superficial absorber has no impact on the reconstructed absorption spectrum of the deeper absorber. Even when diluting the concentration of the deeper absorber so far that an incorrect absorption maximum is obtained, still no influence of the superficially placed absorber is identified.

  5. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  6. Characterization of aerosol scattering and spectral absorption by unique methods: a polar/imaging nephelometer and spectral reflectance measurements of aerosol samples collected on filters

    NASA Astrophysics Data System (ADS)

    Dolgos, Gergely; Martins, J. Vanderlei; Remer, Lorraine A.; Correia, Alexandre L.; Tabacniks, Manfredo; Lima, Adriana R.

    2010-02-01

    Characterization of aerosol scattering and absorption properties is essential to accurate radiative transfer calculations in the atmosphere. Applications of this work include remote sensing of aerosols, corrections for aerosol distortions in satellite imagery of the surface, global climate models, and atmospheric beam propagation. Here we demonstrate successful instrument development at the Laboratory for Aerosols, Clouds and Optics at UMBC that better characterizes aerosol scattering phase matrix using an imaging polar nephelometer (LACO-I-Neph) and enables measurement of spectral aerosol absorption from 200 nm to 2500 nm. The LACO-I-Neph measures the scattering phase function from 1.5° to 178.5° scattering angle with sufficient sensitivity to match theoretical expectations of Rayleigh scattering of various gases. Previous measurements either lack a sufficiently wide range of measured scattering angles or their sensitivity is too low and therefore the required sample amount is prohibitively high for in situ measurements. The LACO-I-Neph also returns expected characterization of the linear polarization signal of Rayleigh scattering. Previous work demonstrated the ability of measuring spectral absorption of aerosol particles using a reflectance technique characterization of aerosol samples collected on Nuclepore filters. This first generation methodology yielded absorption measurements from 350 nm to 2500 nm. Here we demonstrate the possibility of extending this wavelength range into the deep UV, to 200 nm. This extended UV region holds much promise in identifying and characterizing aerosol types and species. The second generation, deep UV, procedure requires careful choice of filter substrates. Here the choice of substrates is explored and preliminary results are provided.

  7. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  8. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  9. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  10. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.

  11. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.

    PubMed

    Delahaye, T; Maxwell, S E; Reed, Z D; Lin, H; Hodges, J T; Sung, K; Devi, V M; Warneke, T; Spietz, P; Tran, H

    2016-06-27

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2 ν 3 band of 12 CH 4 . Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol -1 and 12 μmol mol -1 . All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  12. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    PubMed Central

    Delahaye, T.; Maxwell, S.E.; Reed, Z.D.; Lin, H.; Hodges, J.T.; Sung, K.; Devi, V.M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-01-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa – 1013 hPa with methane molar fractions between 1 μmol mol−1 and 12 μmol mol−1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations. PMID:27551656

  13. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    PubMed

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  14. Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Chou, Nee-Yin; Sachse, Glen W.

    1987-01-01

    A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.

  15. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A.; Jumper, Chanelle C.

    We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to amore » simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.« less

  16. Two-photon absorption spectra of luminescent conducting polymers measured over wide spectral range

    NASA Astrophysics Data System (ADS)

    Meyer, Ron K.; Liess, Martin; Benner, Robert E.; Gellermann, Werner; Vardeny, Z. Valy; Ozaki, Masanori; Yoshino, Katsumi; Ding, Yi W.; Barton, Thomas J.

    1997-12-01

    We report the two-photon absorption (TPA) spectra of poly(2,5-dibutoxy-p-phenylene acetylene) (PPA-DBO), poly(2,5-dioctyloxy-p-phenylene vinylene) (PPV-DOO), and poly(3-hexylthiophene) in the spectral range extending from 576 nm to 846 nm. Using the Z-scan technique on the polymers in solution, we measured a strong two-photon allowed transition in all three materials which we attribute to the mAg essential state. In the case of PPA-DBO and PPV-DOO, TPA peaks were coincident with dispersion in the nonlinear refractive indices as detected by reduced aperture Z scan. In all three polymers this peak occurs at approximately 1.3 the bandgap energy. The excitonic nature of the excited electronic states in PPA-DBO is indicated by the lack of a TPA band at or near the 1Bu exciton position. Saturation was observed in the nonlinear index of refraction near spectral peaks, as well as an apparent reverse Kramers- Kronig effect.

  17. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  18. Spectral studies of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Blissett, R. J.

    1980-01-01

    The conventional "indirect" method of reduction and data analysis of spectral data from non-dispersive X-ray detectors, by the fitting of assumed spectral models, is examined. The limitations of this procedure are presented, and alternative schemes are considered in which the derived spectra are not biased to an astrophysical source model. A new method is developed in detail to directly restore incident photon spectra from the detected count histograms. This Spectral Restoration Technique allows an increase in resolution, to a degree dependent on the statistical precision of the data. This is illustrated by numerical simulations. Proportional counter data from Ariel 5 are analysed using this technique. The results obtained for the sources Cas A and the Crab Nebula are consistent with previous analyses and show that increases in resolution of up to a factor three are possible in practice. The source Cyg X-3 is closely examined. Complex spectral variability is found, with the continuum and iron-line emission modulated with the 4.8 hour period of the source. The data suggest multi-component emission in the source. Comparing separate Ariel 5 observations and published data from other experiments, a correlation between the spectral shape and source intensity is evident. The source behaviour is discussed with reference to proposed source models. Data acquired by the low-energy detectors on-board HEAO-1 are analysed using the Spectral Restoration Technique. This treatment explicitly demonstrates the existence of oxygen K-absorption edges in the soft X-ray spectra of the Crab Nebula and Sco X-1. These results are considered with reference to current theories of the interstellar medium. The thesis commences with a review of cosmic X-ray sources and the mechanisms responsible for their spectral signatures, and continues with a discussion of the instruments appropriate for spectral studies in X-ray astronomy.

  19. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  20. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters.

    PubMed

    Lin, Junfang; Cao, Wenxi; Wang, Guifeng; Hu, Shuibo

    2013-06-20

    Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data.

  1. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    PubMed

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  3. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  4. Spectral line shapes of collision-induced light scattering (CILS) and collision-induced absorption (CIA) using isotropic intermolecular potential for H2-Ar

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.

    2017-10-01

    Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.

  5. Gravity-induced absorption changes in Phycomyces blakesleeanus during parabolic flights: first spectral approach in the visible.

    PubMed

    Schmidt, Werner

    2006-12-01

    Gravity-induced absorption changes as experienced during a series of parabolas on the Airbus 300 Zero-G have been measured previously pointwise on the basis of dual-wavelength spectroscopy. Only the two wavelengths of 460 and 665 nm as generated by light-emitting diodes have been utilised during our first two parabolic-flight campaigns. In order to gain complete spectral information throughout the wavelength range from 400 to 900 nm, a miniaturized rapid scan spectrophotometer was designed. The difference of spectra taken at 0 g and 1.8 g presents the first gravity-induced absorption change spectrum measured on wild-type Phycomyces blakesleeanus sporangiophores, exhibiting a broad positive hump in the visible range and negative values in the near infrared with an isosbestic point near 735 nm. The control experiment performed with the stiff mutant A909 of Phycomyces blakesleeanus does not show this structure. These results are in agreement with those obtained with an array spectrophotometer. In analogy to the more thoroughly understood so-called light-induced absorption changes, we assume that gravity-induced absorption changes reflect redox changes of electron transport components such as flavins and cytochromes localised within the plasma membrane.

  6. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  7. Spectral purity study for IPDA lidar measurement of CO2

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Liu, Dong; Xie, Chen-Bo; Tan, Min; Deng, Qian; Xu, Ji-Wei; Tian, Xiao-Min; Wang, Zhen-Zhu; Wang, Bang-Xin; Wang, Ying-Jian

    2018-02-01

    A high sensitivity and global covered observation of carbon dioxide (CO2) is expected by space-borne integrated path differential absorption (IPDA) lidar which has been designed as the next generation measurement. The stringent precision of space-borne CO2 data, for example 1ppm or better, is required to address the largest number of carbon cycle science questions. Spectral purity, which is defined as the ratio of effective absorbed energy to the total energy transmitted, is one of the most important system parameters of IPDA lidar which directly influences the precision of CO2. Due to the column averaged dry air mixing ratio of CO2 is inferred from comparison of the two echo pulse signals, the laser output usually accompanied by an unexpected spectrally broadband background radiation would posing significant systematic error. In this study, the spectral energy density line shape and spectral impurity line shape are modeled as Lorentz line shape for the simulation, and the latter is assumed as an unabsorbed component by CO2. An error equation is deduced according to IPDA detecting theory for calculating the system error caused by spectral impurity. For a spectral purity of 99%, the induced error could reach up to 8.97 ppm.

  8. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  9. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spectral Studies of Iron Coordination in Hemeprotein Complexes

    PubMed Central

    Brill, Arthur S.; Sandberg, Howard E.

    1968-01-01

    In order to evaluate the feasibility of observing the spectral behavior of protein groups in the coordination sphere of the iron in hemeproteins, criteria are developed to determine whether or not the application of difference absorption spectroscopy to the study of complex formation will be successful. Absolute absorption spectra, 300-1100 mμ, from bacterial catalase complexes are displayed, and the infrared bands correlated with magnetic susceptibility values of similar complexes of other hemeproteins. Dissociation constants for the formation of cyanide and azide complexes of metmyoglobin, methemoglobin, bacterial catalase, and horseradish peroxidase are given. Difference spectra, 210-280 mμ, are displayed for cyanide and azide complexes of these hemeproteins. A band at 235-241 mμ is found in the difference spectra of all low-spin vs. high-spin complexes. The factors which favor the assignment of this band to a transition involving a histidine residue are presented. PMID:5699802

  11. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  12. Solar Spectral Irradiance and Climate

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  13. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  14. On the Influence of the Sample Absorptivity when Studying the Thermal Degradation of Materials

    PubMed Central

    Boulet, Pascal; Brissinger, Damien; Collin, Anthony; Acem, Zoubir; Parent, Gilles

    2015-01-01

    The change in absorptivity during the degradation process of materials is discussed, and its influence as one of the involved parameters in the degradation models is studied. Three materials with very different behaviors are used for the demonstration of its role: a carbon composite material, which is opaque, almost grey, a plywood slab, which is opaque and spectral-dependent and a clear PMMA slab, which is semitransparent. Data are analyzed for virgin and degraded materials at different steps of thermal degradation. It is seen that absorptivity and emissivity often reach high values in the range of 0.90–0.95 with a near-grey behavior after significant thermal aggression, but depending on the materials of interest, some significant evolution may be first observed, especially during the early stages of the degradation. Supplementary inaccuracy can come from the heterogeneity of the incident flux on the slab. As a whole, discrepancies up to 20% can be observed on the absorbed flux depending on the degradation time, mainly because of the spectral variations of the absorption and up to 10% more, depending on the position on the slab. Simple models with a constant and unique value of absorptivity may then lead to inaccuracies in the evaluation of the radiative flux absorption, with possible consequences on the pyrolysis analysis, especially for properties related to the early step of the degradation process, like the time to ignition, for example. PMID:28793512

  15. On the Influence of the Sample Absorptivity when Studying the Thermal Degradation of Materials.

    PubMed

    Boulet, Pascal; Brissinger, Damien; Collin, Anthony; Acem, Zoubir; Parent, Gilles

    2015-08-21

    The change in absorptivity during the degradation process of materials is discussed, and its influence as one of the involved parameters in the degradation models is studied. Three materials with very different behaviors are used for the demonstration of its role: a carbon composite material, which is opaque, almost grey, a plywood slab, which is opaque and spectral-dependent and a clear PMMA slab, which is semitransparent. Data are analyzed for virgin and degraded materials at different steps of thermal degradation. It is seen that absorptivity and emissivity often reach high values in the range of 0.90-0.95 with a near-grey behavior after significant thermal aggression, but depending on the materials of interest, some significant evolution may be first observed, especially during the early stages of the degradation. Supplementary inaccuracy can come from the heterogeneity of the incident flux on the slab. As a whole, discrepancies up to 20% can be observed on the absorbed flux depending on the degradation time, mainly because of the spectral variations of the absorption and up to 10% more, depending on the position on the slab. Simple models with a constant and unique value of absorptivity may then lead to inaccuracies in the evaluation of the radiative flux absorption, with possible consequences on the pyrolysis analysis, especially for properties related to the early step of the degradation process, like the time to ignition, for example.

  16. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers

    NASA Astrophysics Data System (ADS)

    Wu, Wenpeng; Cao, Zexing; Zhao, Yi

    2012-03-01

    The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.

  18. Spectral K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.

    2014-05-01

    We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.

  19. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  20. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Aaron, David; Mishra, N.; Shrestha, A.K.

    2013-01-01

    Cross-calibration of satellite sensors permits the quantitative comparison of measurements obtained from different Earth Observing (EO) systems. Cross-calibration studies usually use simultaneous or near-simultaneous observations from several spaceborne sensors to develop band-by-band relationships through regression analysis. The investigation described in this paper focuses on evaluation of the uncertainties inherent in the cross-calibration process, including contributions due to different spectral responses, spectral resolution, spectral filter shift, geometric misregistrations, and spatial resolutions. The hyperspectral data from the Environmental Satellite SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY and the EO-1 Hyperion, along with the relative spectral responses (RSRs) from the Landsat 7 Enhanced Thematic Mapper (TM) Plus and the Terra Moderate Resolution Imaging Spectroradiometer sensors, were used for the spectral uncertainty study. The data from Landsat 5 TM over five representative land cover types (desert, rangeland, grassland, deciduous forest, and coniferous forest) were used for the geometric misregistrations and spatial-resolution study. The spectral resolution uncertainty was found to be within 0.25%, spectral filter shift within 2.5%, geometric misregistrations within 0.35%, and spatial-resolution effects within 0.1% for the Libya 4 site. The one-sigma uncertainties presented in this paper are uncorrelated, and therefore, the uncertainties can be summed orthogonally. Furthermore, an overall total uncertainty was developed. In general, the results suggested that the spectral uncertainty is more dominant compared to other uncertainties presented in this paper. Therefore, the effect of the sensor RSR differences needs to be quantified and compensated to avoid large uncertainties in cross-calibration results.

  1. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  2. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  3. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  4. Laser-induced plasma characterization through self-absorption quantification

    NASA Astrophysics Data System (ADS)

    Hou, JiaJia; Zhang, Lei; Zhao, Yang; Yan, Xingyu; Ma, Weiguang; Dong, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2018-07-01

    A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and absolute species number density can be deduced directly. Since there is no spectral intensity involved in the calculation, the analysis results are independent of the self-absorption effects and the additional spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for application and the precision of this method are also discussed. Experimental results of aluminum-lithium alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast plasma characteristics diagnostics.

  5. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  6. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  7. Phytoplankton Pigment Communities Can be Modeled Using Unique Relationships With Spectral Absorption Signatures in a Dynamic Coastal Environment

    NASA Astrophysics Data System (ADS)

    Catlett, D.; Siegel, D. A.

    2018-01-01

    Understanding the roles of phytoplankton community composition in the functioning of marine ecosystems and ocean biogeochemical cycles is important for many ocean science problems of societal relevance. Remote sensing currently offers the only feasible method for continuously assessing phytoplankton community structure on regional to global scales. However, methods are presently hindered by the limited spectral resolution of most satellite sensors and by uncertainties associated with deriving quantitative indices of phytoplankton community structure from phytoplankton pigment concentrations. Here we analyze a data set of concurrent phytoplankton pigment concentrations and phytoplankton absorption coefficient spectra from the Santa Barbara Channel, California, to develop novel optical oceanographic models for retrieving metrics of phytoplankton community composition. Cluster and Empirical Orthogonal Function analyses of phytoplankton pigment concentrations are used to define up to five phytoplankton pigment communities as a representation of phytoplankton functional types. Unique statistical relationships are found between phytoplankton pigment communities and absorption features isolated using spectral derivative analysis and are the basis of predictive models. Model performance is substantially better for phytoplankton pigment community indices compared with determinations of the contributions of individual pigments or taxa to chlorophyll a. These results highlight the application of data-driven chemotaxonomic approaches for developing and validating bio-optical algorithms and illustrate the potential and limitations for retrieving phytoplankton community composition from hyperspectral satellite ocean color observations.

  8. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective absorption processes as the origin of puzzling spectral line polarization from the Sun.

    PubMed

    Trujillo Bueno, J; Landi Degl'Innocenti, E; Collados, M; Merenda, L; Manso Sainz, R

    2002-01-24

    Magnetic fields play a key role in most astrophysical systems, from the Sun to active galactic nuclei. They can be studied through their effects on atomic energy levels, which produce polarized spectral lines. In particular, anisotropic radiation 'pumping' processes (which send electrons to higher atomic levels) induce population imbalances that are modified by weak magnetic fields. Here we report peculiarly polarized light in the He I 10,830-A multiplet observed in a coronal filament located at the centre of the solar disk. We show that the polarized light arises from selective absorption from the ground level of the triplet system of helium, and that it implies the presence of magnetic fields of the order of a few gauss that are highly inclined with respect to the solar radius vector. This disproves the common belief that population imbalances in long-lived atomic levels are insignificant in the presence of inclined fields of the order of a few gauss, and opens up a new diagnostic window for the investigation of solar magnetic fields.

  10. Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method

    PubMed Central

    Chen, Hongtao; Digman, Michelle A.

    2015-01-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346

  11. Spectral properties of gaseous uranium hexafluoride at high temperature

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1980-01-01

    A study to determine relative spectral emission and spectral absorption data for UF6-argon mixtures at elevated temperatures is discussed. These spectral data are required to assist in the theoretical analysis of radiation transport in the nuclear fuel-buffer gas region of a plasma core reactor. Relative emission measurements were made for UF6-argon mixtures over a range of temperatures from 650 to 1900 K and in the wavelength range from 600 to 5000 nanometers. All emission results were determined for a total pressure of 1.0 atm. Uranium hexafluoride partial pressures varied from about 3.5 to 12.7 mm Hg. Absorption measurements were attempted at 600, 625, 650 and 675 nanometers for a temperature of 1000 K. The uranium partial pressure for these determinations was 25 mm Hg. The results exhibit appreciable emission for hot UF6-argon mixtures at wavelengths between 600 and 1800 nanometers and no measurable absorption. The equipment used to evaluate the spectral properties of the UF6-argon mixtures included a plasma torch-optical plenum assembly, the monochromator, and the UF6 transfer system. Each is described.

  12. Spectral and photometric study of the symbiotic nova RS ophiuchus in quiet phase

    NASA Astrophysics Data System (ADS)

    Kondratyeva, L.; Rspaev, F.; Krugov, M.; Serebryanskiy, A.

    2017-07-01

    The results of spectral and photometric study of the recurrent Nova RS Ophiuchus are presented and discussed. Observations were carried out in 2009-2016. During these eight years the fluxes of HI and FeII emission lines have slightly decreased by a factor of 3 - 4. Hα and Hβ exhibit double-peaked profiles with a central absorption. The ratio of the blue and red peaks intensities(V/R) varies from 0.3 to 1.0 for Hβ and from 0.4 to 0.7 for Hα. Possible correlations between changes of the ratio and other spectral parameters were investigated. Dependence of V/R on the radial velocity of absorbtion component is found out.

  13. Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates

    DTIC Science & Technology

    2013-01-01

    1(a). By taking the ratio of the spectral absorption efficiency of the microwire to the corresponding volumetri - cally equivalent thin film, an...of D¼ 983 nm. For further comparison, the theoretical spectral absorption efficiency for a volumetri - cally equivalent (t¼ 983p/4 nm) thin film, Qabs

  14. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region.

    PubMed

    Alyabyeva, L N; Zhukova, E S; Belkin, M A; Gorshunov, B P

    2017-08-04

    We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm -1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

  15. Study on structural and spectral properties of isobavachalcone and 4-hydroxyderricin by computational method

    NASA Astrophysics Data System (ADS)

    Rong, Yuzhi; Wu, Jinhong; Liu, Xing; Zhao, Bo; Wang, Zhengwu

    Isobavachalcone and 4-hydroxyderricin, two major chalcone constituents isolated from the roots of Angelica keiskei KOIDZUMI, exhibit numerous biological activities. Quantum chemical methods have been employed to investigate their structural and spectral properties. The ground state structures were optimized using density functional B3LYP method with 6-311G (d, p) basis set in both gas and solvent phases. Based on the optimized geometries, the harmonic vibrational frequency, the 1H and 13C nuclear magnetic resonance (NMR) chemical shift using the GIAO method were calculated at the same level of theory, with the aim of verifying the experimental values. Results reveal that B3LYP has been a good method to study their vibrational spectroscopic and NMR spectral properties of the two chalcones. The electronic absorption spectra were calculated using the time-dependent density functional theory (TDDFT) method. The solvent polarity effects were considered and calculated using the polarizable continuum model (PCM). Results also show that substitutions of different electron donating groups can alter the absorption properties and shift the spectra to a higher wavelength region.

  16. Decomposition of Spectral Signatures of Coloured Dissolved Organic Matter Absorption and its Spatial Distribution Along Southeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muhamed Ashraf, P.; Souda, V. P.; Minu, P.

    2016-02-01

    The process of photosynthesis involves the conversion of inorganic carbon into organic carbon and the light availability is the crucial factor affecting photosynthesis in case 2 waters. Coloured dissolved organic matter (CDOM) is a major competitor for light apart from suspended sediments and phytoplankton. The objective was 1) to understand the spatial, vertical and seasonal variability of CDOM by decomposing spectral signatures of absorption in the UV region and to identify the source of CDOM in the study area. The study was carried out for the period 2013 May to 2014 December on monthly basis. Samples from 9 spatial stations, covering estuarine, barmouth and marine region were collected along coastal waters off Kochi, Southeastern Arabian Sea. Two spectral range from 200nm to 400nm were selected for the study, ie. between 275-295 and 350-400. Slope between 275-295nm (S275-295) showed no variation spatially and seasonally except for estuarine station. But slope between 350-400nm (S350-400) exhibited considerable variations spatially, seasonally and vertically. Lower values of ratio between S275-295 and S350-400 in surface waters during monsoon season indicated presence of CDOM with heavy molecular weight of terrigenous origin. Premonsoon and postmonsoon seasons had higher ratio indicating presence of CDOM with lighter molecular weight. Autocthonous origin and degradation of terrigenous matter produces CDOM with light molecular weight. The ratio is found to be increasing from estuary to offshore stations. Hence it is inferred that, the chemical nature of CDOM is affected by both physical and biological components in dynamically unstable case 2 coastal waters. The results presented here shows difference in spectral slope to estimate optical properties of CDOM which is relevant for the description of underwater optics and to the development of ocean colour remote sensing algorithms in the region.

  17. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    NASA Astrophysics Data System (ADS)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., <300 nm). In preparation for anticipated future hyperspectral satellite missions, we take the first step here of exploring global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  18. Spectral Changes of Erythrosin B Luminescence Upon Binding to Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Sablin, N. V.; Gerasimova, M. A.; Nemtseva, E. V.

    2016-04-01

    Changes in absorption, fluorescence, phosphorescence, and delayed fluorescence spectra of erythrosin B are studied in the presence of bovine serum albumin at room temperature. Spectral and chronoscopic characteristics of the observed photophysical processes are defined. The binding of erythrosin B with the protein followed by spectral changes is demonstrated. Absorption and fluorescence spectra of the dye in the bound state are described, the binding mechanism is analyzed. The binding parameters of the dye-protein complex are estimated.

  19. Contrast-enhanced spectral mammography with a photon-counting detector.

    PubMed

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  20. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared - Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Reichert, Andreas; Rettinger, Markus; Sussmann, Ralf

    2016-09-01

    Quantitative knowledge of water vapor absorption is crucial for accurate climate simulations. An open science question in this context concerns the strength of the water vapor continuum in the near infrared (NIR) at atmospheric temperatures, which is still to be quantified by measurements. This issue can be addressed with radiative closure experiments using solar absorption spectra. However, the spectra used for water vapor continuum quantification have to be radiometrically calibrated. We present for the first time a method that yields sufficient calibration accuracy for NIR water vapor continuum quantification in an atmospheric closure experiment. Our method combines the Langley method with spectral radiance measurements of a high-temperature blackbody calibration source (< 2000 K). The calibration scheme is demonstrated in the spectral range 2500 to 7800 cm-1, but minor modifications to the method enable calibration also throughout the remainder of the NIR spectral range. The resulting uncertainty (2σ) excluding the contribution due to inaccuracies in the extra-atmospheric solar spectrum (ESS) is below 1 % in window regions and up to 1.7 % within absorption bands. The overall radiometric accuracy of the calibration depends on the ESS uncertainty, on which at present no firm consensus has been reached in the NIR. However, as is shown in the companion publication Reichert and Sussmann (2016), ESS uncertainty is only of minor importance for the specific aim of this study, i.e., the quantification of the water vapor continuum in a closure experiment. The calibration uncertainty estimate is substantiated by the investigation of calibration self-consistency, which yields compatible results within the estimated errors for 91.1 % of the 2500 to 7800 cm-1 range. Additionally, a comparison of a set of calibrated spectra to radiative transfer model calculations yields consistent results within the estimated errors for 97.7 % of the spectral range.

  1. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1981-01-01

    Near-infrared spectral reflectance data are presented for systematic variations in weight percent of two component mixtures of ferromagnesium and iron oxide minerals used to study the dark materials on Mars. Olivine spectral features are greatly reduced in contrast by admixture of other phases but remain distinctive even for low olivine contents. Clinopyroxene and orthopyroxene mixtures show resolved pyroxene absorptions near 2 microns. Limonite greatly modifies pyroxene and olivine reflectance, but does not fully eliminate distinctive spectral characteristics. Using only spectral data in the 1 micron region, it is difficult to differentiate orthopyroxene and limonite in a mixture. All composite mineral absorptions were either weaker than or intermediate in strength to the end-member absorptions and have bandwidths greater than or equal to those for the end members. In general, spectral properties in an intimate mixture combine in a complex, nonadditive manner, with features demonstrating a regular but usually nonlinear variation as a function of end-member phase proportions.

  2. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  3. Spectral and Fluorescent Studies of the Interaction of an Anionic Oxacarbocyanine Dye with Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2017-01-01

    The influence of the formation of noncovalent intermolecular complexes with bovine serum albumin (BSA) on the spectral and fluorescent properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) was studied. Binding of OCC to BSA increased significantly the dye fluorescence. Changes in the absorption and fluorescence spectra of OCC upon interaction with BSA argued in favor of a shift of the dye cis-trans equilibrium in the complex. The effects of adding albumin-denaturing compounds (urea, sodium dodecyl sulfate) on the spectral and fluorescent properties of the dye in the OCC-BSA complex were studied. It was concluded that OCC can act as a probe for albumins and can be used to study protein denaturing.

  4. Model Order Reduction Algorithm for Estimating the Absorption Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Beeumen, Roel; Williams-Young, David B.; Kasper, Joseph M.

    The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator’s eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comesmore » at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect

  5. Influence of synchrotron self-absorption on 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Gu, Jun-Hua; Wang, Jingying; Xu, Haiguang

    2012-08-01

    The presence of spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources could break down the spectral smoothness feature. This leads to the premise that the bright radio foreground can be successfully removed in 21-cm experiments that search for the epoch of reionization (EoR). We present a quantitative estimate of the effect of the spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources on the measurement of the angular power spectrum of the low-frequency sky. We incorporate a phenomenological model, which is characterized by the fraction (f) of radio sources with turnover frequencies in the range of 100-1000 MHz and by a broken power law for the spectral transition around the turnover frequencies νm, into simulated radio sources over a small sky area of 10° × 10°. We compare statistically the changes in their residual maps with and without the inclusion of the synchrotron self-absorption of extragalactic radio sources after the bright sources of S150 MHz ≥100 mJy are excised. Furthermore, the best-fitting polynomials in the frequency domain on each pixel are subtracted. It has been shown that the effect of synchrotron self-absorption on the detection of the EoR depends sensitively on the spectral profiles of the radio sources around the turnover frequencies νm. A hard transition model, described by the broken power law with the turnover of spectral index at νm, would leave pronounced imprints on the residual background and would therefore cause serious confusion with the cosmic EoR signal. However, the spectral signatures on the angular power spectrum of the extragalactic foreground, generated by a soft transition model in which the rising and falling power laws of the spectral distribution around νm are connected through a smooth transition spanning ≥200 MHz in a characteristic width, can be fitted and consequently subtracted by the use of polynomials to an acceptable

  6. Spectral distribution of solar radiation

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.; Richmond, J.

    1980-01-01

    Available quantitative data on solar total and spectral irradiance are examined in the context of utilization of solar irradiance for terrestrial applications of solar energy. The extraterrestrial solar total and spectral irradiance values are also reviewed. Computed values of solar spectral irradiance at ground level for different air mass values and various levels of atmospheric pollution or turbidity are presented. Wavelengths are given for computation of solar, absorptance, transmittance and reflectance by the 100 selected-ordinate method and by the 50 selected-ordinate method for air mass 1.5 and 2 solar spectral irradiance for the four levels of atmospheric pollution.

  7. Accurately Measuring the Color of the Ocean on Earth and from Space: Uncertainties Revisited and A Report from the Community-Led Spectral Absorption Workshop to Update and Revise the NASA Inherent Optical Properties Protocol

    NASA Technical Reports Server (NTRS)

    Neeley, Aimee Renee

    2014-01-01

    The color of the ocean (apparent optical properties or AOPs) is determined by the spectral scattering and absorption of light by its dissolved and particulate constituents.The absorption and scattering properties of the water column are the so-called inherent optical properties.

  8. Synthesis and spectral studies of heterocyclic azo dye complexes with some transition metals

    NASA Astrophysics Data System (ADS)

    Jarad, A. J.; Majeed, I. Y.; Hussein, A. O.

    2018-05-01

    6-(2-benzathiazolyl azo) -3,5-dimethylphenol was formed by grouping the 2-benzothiazole diazonium chloride with 3,5-dimethylphenol. Azo ligand(L) was resolved on the origin by 1H and 13CNMR, FTIR and UV-Vis spectral analysis. Complexation of tridentate ligand (L) with Co2+, Ni2+, Cu2+ and Zn2+ in aqueous of ethyl alcohol with a 1:2 metal:ligand, and at ideal pH.. The formation of metal chelates are assigned using flame atomic absorption, FTIR and UV-Vis spectral analysis, other than conductivity and magnetic estates. The nature of the metal chelates were carried out by mole ratio and continuous variation mechanism, Beer’s law followed the rate (0.0001 - 3×0.0001 M) concentration. High molar absorptivity for the complex solutions were observed. On the origin data an octahedral geometry were described for the metal chelates. Biological activity of the ready compounds were assayed.

  9. Theoretical study on electronic excitation spectra: A matrix form of numerical algorithm for spectral shift

    NASA Astrophysics Data System (ADS)

    Ming, Mei-Jun; Xu, Long-Kun; Wang, Fan; Bi, Ting-Jun; Li, Xiang-Yuan

    2017-07-01

    In this work, a matrix form of numerical algorithm for spectral shift is presented based on the novel nonequilibrium solvation model that is established by introducing the constrained equilibrium manipulation. This form is convenient for the development of codes for numerical solution. By means of the integral equation formulation polarizable continuum model (IEF-PCM), a subroutine has been implemented to compute spectral shift numerically. Here, the spectral shifts of absorption spectra for several popular chromophores, N,N-diethyl-p-nitroaniline (DEPNA), methylenecyclopropene (MCP), acrolein (ACL) and p-nitroaniline (PNA) were investigated in different solvents with various polarities. The computed spectral shifts can explain the available experimental findings reasonably. Discussions were made on the contributions of solute geometry distortion, electrostatic polarization and other non-electrostatic interactions to spectral shift.

  10. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  11. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  12. Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range for the geographic classification of Italian exravirgin olive oils

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.

    2004-03-01

    Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.

  13. Online Spectral Fit Tool for Analyzing Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Penttilä, A.; Kohout, T.

    2015-11-01

    The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.

  14. Remote Sensing of Non-Aerosol (anomalous) Absorption in Cloud Free Atmosphere

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Dubovik, Oleg; Smirnov, Alexander; Holben, Brent N.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The interaction of sunlight with atmospheric gases, aerosols and clouds is fundamental to the understanding of climate and its variation. Several studies questioned our understanding of atmospheric absorption of sunlight in cloudy or in cloud free atmospheres. Uncertainty in instruments' accuracy and in the analysis methods makes this problem difficult to resolve. Here we use several years of measurements of sky and sun spectral brightness by selected instruments of the Aerosol Robotic Network (AERONET), that have known and high measurement accuracy. The measurements taken in several locations around the world show that in the atmospheric windows 0.44, 0.06, 0.86 and 1.02 microns the only significant absorbers in cloud free atmosphere is aerosol and ozone. This conclusions is reached using a method developed to distinguish between absorption associated with the presence of aerosol and absorption that is not related to the presence of aerosol. Non-aerosol absorption, defined as spectrally independent or smoothly variable, was found to have an optical thickness smaller than 0.002 corresponding to absorption of sunlight less than 1W/sq m, or essentially zero.

  15. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  16. Collison-Induced Absorption of Oxygen Molecule as Studied by High Sensitivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kashihara, Wataru; Shoji, Atsushi; Kawai, Akio

    2017-06-01

    Oxygen dimol is transiently generated when two oxygen molecules collide. At this short period, the electron clouds of molecules are distorted and some forbidden transition electronic transitions become partially allowed. This transition is called CIA (Collision-induced absorption). There are several CIA bands appearing in the spectral region from UV to near IR. Absorption of solar radiation by oxygen dimol is a small but significant part of the total budget of incoming shortwave radiation. However, a theory predicting the lineshape of CIA is still under developing. In this study, we measured CIA band around 630 nm that is assigned to optical transition, a^{1}Δ_{g}(v=0):a^{1}Δ_{g}(v=0)-X^{3}Σ_{g}^{-}(v=0):X^{3}Σ_{g}^{-}(v=0) of oxygen dimol. CRDS(Cavity Ring-down Spectroscopy) was employed to measure weak absorption CIA band of oxygen. Laser beam around 630 nm was generated by a dye laser that was pumped by a YAG Laser. Multiple reflection of the probe light was performed within a vacuum chamber that was equipped with two high reflective mirrors. We discuss the measured line shape of CIA on the basis of collision pair model.

  17. Absorption Cross-Sections of Ozone in the Ultraviolet and Visible Spectral Regions: Status report 2015

    NASA Technical Reports Server (NTRS)

    Orphal, Johannes; Staehelin, Johannes; Tamminen, Johanna; Braathen, Geir; De Backer, Marie-Renee; Bais, Alkiviadis; Balis, Dimitris; Barbe, Alain; Bhartia, Pawan K.; Birk, Manfred; hide

    2016-01-01

    The activity Absorption Cross-Sections of Ozone (ACSO) started in 2008 as a joint initiative of the International Ozone Commission (IO3C), the World Meteorological Organization (WMO) and the IGACO (Integrated Global Atmospheric Chemistry Observations) O3/UV subgroup to study, evaluate, and recommend the most suitable ozone absorption cross-section laboratory data to be used in atmospheric ozone measurements. The evaluation was basically restricted to ozone absorption cross-sections in the UV range with particular focus on the Huggins band. Up until now, the data of Bass and Paur published in 1985 (BP, 1985) are still officially recommended for such measurements. During the last decade it became obvious that BP (1985) cross-section data have deficits for use in advanced space-borne ozone measurements. At the same time, it was recognized that the origin of systematic differences in ground-based measurements of ozone required further investigation, in particular whether the BP (1985) cross-section data might contribute to these differences. In ACSO, different sets of laboratory ozone absorption cross-section data (including their dependence on temperature) of the group of Reims (France) (Brion et al., 1993, 1998, 1992, 1995, abbreviated as BDM, 1995) and those of Serdyuchenko et al. (2014), and Gorshelev et al. (2014), (abbreviated as SER, 2014) were examined for use in atmospheric ozone measurements in the Huggins band. In conclusion, ACSO recommends:(a) The spectroscopic data of BP (1985) should no longer be used for retrieval of atmospheric ozone measurements.(b) For retrieval of ground-based instruments of total ozone and ozone profile measurements by the Umkehr method performed by Brewer and Dobson instruments data of SER (2014) are recommended to be used. When SER (2014) is used, the difference between total ozone measurements of Brewer and Dobson instruments are very small and the difference between Dobson measurements at AD and CD wavelength pairs are

  18. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  19. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-08

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  20. Modified thermal-optical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon.

    PubMed

    Hadley, Odelle L; Corrigan, Craig E; Kirchstetter, Thomas W

    2008-11-15

    This study presents a method for analyzing the black carbon (BC) mass loading on a quartz fiber filter using a modified thermal-optical analysis method, wherein light transmitted through the sample is measured over a spectral region instead of at a single wavelength. Evolution of the spectral light transmission signal depends on the relative amounts of light-absorbing BC and char, the latter of which forms when organic carbon in the sample pyrolyzes during heating. Absorption selectivities of BC and char are found to be distinct and are used to apportion the amount of light attenuated by each component in the sample. Light attenuation is converted to mass concentration on the basis of derived mass attenuation efficiencies (MAEs) of BC and char. The fractions of attenuation due to each component are scaled by their individual MAE values and added together as the total mass of light absorbing carbon (LAC). An iterative algorithm is used to find the MAE values for both BC and char that provide the best fit to the carbon mass remaining on the filter (derived from direct measurements of thermally evolved CO2) at temperatures higher than 480 degrees C. This method was applied to measure the BC concentration in precipitation samples collected in northern California. The uncertainty in the measured BC concentration of samples that contained a high concentration of organics susceptible to char ranged from 12% to 100%, depending on the mass loading of BC on the filter. The lower detection limit for this method was approximately 0.35 microg of BC, and the uncertainty approached 20% for BC mass loading greater than 1.0 microg of BC.

  1. Measurements of scene spectral radiance variability

    NASA Astrophysics Data System (ADS)

    Seeley, Juliette A.; Wack, Edward C.; Mooney, Daniel L.; Muldoon, Michael; Shey, Shen; Upham, Carolyn A.; Harvey, John M.; Czerwinski, Richard N.; Jordan, Michael P.; Vallières, Alexandre; Chamberland, Martin

    2006-05-01

    Detection performance of LWIR passive standoff chemical agent sensors is strongly influenced by various scene parameters, such as atmospheric conditions, temperature contrast, concentration-path length product (CL), agent absorption coefficient, and scene spectral variability. Although temperature contrast, CL, and agent absorption coefficient affect the detected signal in a predictable manner, fluctuations in background scene spectral radiance have less intuitive consequences. The spectral nature of the scene is not problematic in and of itself; instead it is spatial and temporal fluctuations in the scene spectral radiance that cannot be entirely corrected for with data processing. In addition, the consequence of such variability is a function of the spectral signature of the agent that is being detected and is thus different for each agent. To bracket the performance of background-limited (low sensor NEDN), passive standoff chemical sensors in the range of relevant conditions, assessment of real scene data is necessary1. Currently, such data is not widely available2. To begin to span the range of relevant scene conditions, we have acquired high fidelity scene spectral radiance measurements with a Telops FTIR imaging spectrometer 3. We have acquired data in a variety of indoor and outdoor locations at different times of day and year. Some locations include indoor office environments, airports, urban and suburban scenes, waterways, and forest. We report agent-dependent clutter measurements for three of these backgrounds.

  2. Study on the mechanism of human blood glucose concentration measuring using mid-infrared spectral analysis technology

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    2016-10-01

    All forms of diabetes increase the risk of long-term complications. Blood glucose monitoring is of great importance for controlling diabetes procedure, preventing the complications and improving the patient's life quality. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. The mid-infrared spectral region contains strong characteristic and well-defined absorption bands. Therefore, mid-infrared provides an opportunity for monitoring blood glucose invasively with only a few discrete bonds. Although the blood glucose concentration measurement using mid-infrared spectroscopy has a lot of advantages, the disadvantage is also obvious. The absorption in this infrared region is fundamental molecular group vibration. Absorption intensity is very strong, especially for biological molecules. In this paper, it figures out that the osmosis rate of glucose has a certain relationship with the blood glucose concentration. Therefore, blood glucose concentration could be measured indirectly by measuring the glucose exudate in epidermis layer. Human oral glucose tolerance tests were carried out to verify the correlation of glucose exudation in shallow layer of epidermis layer and blood glucose concentration. As it has been explained above, the mid-infrared spectral region contains well-defined absorption bands, the intensity of absorption peak around 1123 cm-1 was selected to measure the glucose and that around 1170 cm-1 was selected as reference. Ratio of absorption peak intensity was recorded for each set of measurement. The effect and importance of the cleaning the finger to be measured before spectrum measuring are discussed and also verified by experiment.

  3. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  4. Spectral Units on Europa and Ganymede

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Nelson, M. L.; Clark, R. N.; Johnson, T. V.; Matson, D. L.; Johnson, R. E.; Boring, J.

    1985-01-01

    Comparisons of Europa and Ganymede multispectral data show that Ganymede is less spectrally variable than Europa. Four major spectral units dominate Ganymede, corresponding to the ancient cratered terrain and the grooved terrain in the leading and trailing hemispheres. A hemispheric asymmetry in UV absorption definitely exists on Ganymede, although it is not so strong as that on Europa. Comparison of normalized spectra for the four major units shows that the sense of the asymmetry (more absoption toward shorter wavelengths on the trailing hemisphere) is also the same on the two bodies. This hemispheric asymmetry is interpreted as evidence of alteration of the surface by magnetospheric bombardment or micrometorite bombardment. It is concluded that the pattern observed represents a steady state involving both of these exogenic modifying agents. The spectral changes which could be produced by these two processes are grain size alteration and changes in composition. The spectral effects of variation in water ice grain size are fairly well known. Laboratory experiments are being conducted to study the spectral effects of sulfur irradiation on water ice.

  5. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  6. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  7. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  8. Spectral reflectance properties of minerals exposed to simulated Mars surface conditions

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Craig, M. A.; Kruzelecky, R. V.; Jamroz, W. R.; Scott, A.; Hawthorne, F. C.; Mertzman, S. A.

    2008-05-01

    A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H 2O, with some structural groups showing more rapid H 2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe 3+- and H 2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe 3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in C sbnd H related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.

  9. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  10. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  11. Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.

    PubMed

    Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong

    2017-09-12

    The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.

  12. Laser Atmospheric Absorption Studies.

    DTIC Science & Technology

    1977-05-01

    A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure

  13. [Application of hyper-spectral remote sensing technology in environmental protection].

    PubMed

    Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An

    2013-12-01

    Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.

  14. The absorption budget of fresh biomass burning aerosol from realistic laboratory fires

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Adler, G. A.; Franchin, A.; Lamb, K.; Manfred, K.; Middlebrook, A. M.; Selimovic, V.; Schwarz, J. P.; Washenfelder, R. A.; Womack, C.; Yokelson, R. J.

    2017-12-01

    Wildfires are expected to increase globally due to climate change. The smoke from these wildfires has a highly uncertain radiative effect, largely due to the lack of detailed understanding of its optical properties. As part of the NOAA FIREX project, we have measured the optical properties of smoke primarily from laboratory burning of North American fuels at the Missoula Fire Sciences Laboratory. Here, we present a budget of the aerosol absorption from a portion of the laboratory fires. The total aerosol absorption was measured with photoacoustic spectrometers (PAS) at four wavelengths (405 nm, 532 nm, 660 nm, 870 nm) spanning the visible spectral region. The aerosol absorption is attributed to black carbon which absorbs broadly across the visible and ultraviolet (UV) spectral region and brown carbon (BrC) which absorbs in the blue and UV spectral regions. Then aerosol absorption measurements are compared with measurements of refractory black carbon (rBC) concentration by laser induced incandescence (SP2) and measurements of BrC concentration from a particle-into-liquid sampler coupled to a liquid absorption cell (BrC-PILS). Periodically, a thermodenuder was inserted upstream of all of the instruments to constrain the relationship between aerosol volatility and absorption. We synthesize these measurements to constrain the various contributors to total absorption including effects of lensing on rBC absorption, and of BrC that is not volatilized in the thermodenuder.

  15. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    NASA Astrophysics Data System (ADS)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  16. Spectral Clustering of Hermean craters hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, Alice; Pajola, Maurizio; Cremonese, Gabriele; Carli, Cristian; Marzo, Giuseppe; Roush, Ted

    2017-04-01

    m, while the interior of Dominici crater shows almost no absorption between 0.558 and 0.828 μm, but a possible absorption towards the IR is still evident. This detection is similar to what was described in Vilas et al. (2016), even if it is not located in the crater center as previously reported. The application of the clustering technique provides results similar to those reported in Vilas et al. (2016) and permits a deeper detailed study of the terrain spectral differences such as the discrimination of areas with a possible diagnostic absorption indicative of sulfides (e.g. MgS as suggested by Vilas et al., 2016). In addition, we were able to separate possible intermediate terrains that can be defined as "spectral transition" terrains, likely a mixture between the previously mentioned terrains (MgS, Vilas et al., 2016), or new compositional units. The next step is to choose other targets to apply the same clustering technique in order to characterize the different crater hollows presented on Hermean surface.

  17. The Copernicus ultraviolet spectral atlas of Sirius

    NASA Technical Reports Server (NTRS)

    Rogerson, John B., Jr.

    1987-01-01

    A near-ultraviolet spectral atlas for the A1 V star Alpha CMa (Sirius) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 1649 to 3170 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs, and line identifications for the absorption features have been tabulated.

  18. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatchmore » Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.« less

  19. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  20. Solar absorption by elemental and brown carbon determined from spectral observations.

    PubMed

    Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V

    2012-10-23

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.

  1. Spectral radiation analyses of the GOES solar illuminated hexagonal cell scan mirror back

    NASA Technical Reports Server (NTRS)

    Fantano, Louis G.

    1993-01-01

    A ray tracing analytical tool has been developed for the simulation of spectral radiation exchange in complex systems. Algorithms are used to account for heat source spectral energy, surface directional radiation properties, and surface spectral absorptivity properties. This tool has been used to calculate the effective solar absorptivity of the geostationary operational environmental satellites (GOES) scan mirror in the calibration position. The development and design of Sounder and Imager instruments on board GOES is reviewed and the problem of calculating the effective solar absorptivity associated with the GOES hexagonal cell configuration is presented. The analytical methodology based on the Monte Carlo ray tracing technique is described and results are presented and verified by experimental measurements for selected solar incidence angles.

  2. Spectral reflectance properties (0.4-2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes

    USGS Publications Warehouse

    Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.-Ming; Mars, J.C.

    2003-01-01

    Diffuse reflectance spectra of 15 mineral species commonly associated with sulphide-bearing mine wastes show diagnostic absorption bands related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl. Many of these absorption bands are relatively broad and overlapping; however, spectral analysis methods, including continuum removal and derivative analysis, permit most of the minerals to be distinguished. Key spectral differences between the minerals are illustrated in a series of plots showing major absorption band centres and other spectral feature positions. Because secondary iron minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of mineral distributions promises to have important application to mine waste remediation studies.

  3. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  4. Near-infrared light absorption by brown carbon in the ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  5. Multivariate Analysis of Solar Spectral Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  6. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  7. Laboratory Study of Aliphatic Organic Spectral Signatures and Applications to Ceres and Primitive Asteroids

    NASA Astrophysics Data System (ADS)

    Kaplan, H. H.; Milliken, R.

    2017-12-01

    Aliphatic organics were recently discovered on the surface of Ceres with Dawn's Visible and InfraRed (VIR) mapping spectrometer, which has implications for prebiotic chemistry of Ceres and other asteroids. An absorption in the spectrum at 3.4 µm was used to identify and provide initial estimates of the amount of organic material. We have studied the 3.4 µm absorption in reflectance spectra of bulk rock and meteorite powders and isolated organic materials in the NASA RELAB facility at Brown University to determine how organic composition and abundance affects absorption strength. Reflectance spectra of insoluble organic matter (IOM) extracted from carbonaceous chondrites were measured from 0.35 - 25 µm. These IOM have known elemental (H, C, N, O) and isotopic compositions that were compared with spectral properties. Bulk meteorites were measured as chips and particulates over the same wavelength range. Despite overall low reflectance values (albedo <0.01), the 3.4 µm absorption is observed for some IOM samples, specifically those with a H/C ratio greater than 0.4. The absorption strength (band depth) increases with increasing H/C ratio, which corroborates similar findings in our previous study of sedimentary rocks and isolated kerogens. The absorption strength in the bulk meteorites reflects both H/C of the IOM and the concentration of IOM in the inorganic (mineral) matrix. Overlapping absorptions from carbonates and phyllosilicates (OH/H2O) can also influence the aliphatic organic bands in bulk rocks and meteorites. This laboratory work provides a foundation that can be used to constrain the composition of Ceres' aliphatic organic matter using band depth as a proxy for H/C. Reflectance spectra collected for this work will also be used to model the Dawn VIR data and obtain abundance and H/C estimates assuming that the organic material on Ceres' surface is similar to carbonaceous chondrite IOM. These spectra and findings can aid interpretation of reflectance data

  8. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  9. Comparative 4f-4f absorption spectral study for the interactions of Nd(III) with some amino acids: Preliminary thermodynamics and kinetic studies of interaction of Nd(III):glycine with Ca(II)

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Bendangsenla, N.; David Singh, Th.; Sumitra, Ch.; Rajmuhon Singh, N.; Indira Devi, M.

    2012-02-01

    Spectral analysis of Nd(III) complexes with some amino acids viz.; glycine, L-alanine, L-phenylalanine and L-aspartic acid in the presence and absence of Ca 2+ was carried out in some organic solvents; CH 3OH, CH 3CN, DMF and dioxane using comparative absorption spectra of 4f-4f transitions. The study was carried out by evaluating various energy interaction parameters like Slator-Condon ( Fk), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding parameter ( b1/2), percent-covalency ( δ) by applying partial and multiple regression analysis. The values of oscillator strength ( Pobs) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been calculated. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( Pobs) and Tλ values, reveal the mode of binding with the different ligands. Kinetic studies for the complexation of Nd(III):glycine:Ca(II) have also been discussed at different temperatures in DMF medium and from it the values of activation energy ( Ea) and thermodynamic parameters like Δ H°, Δ S° and Δ G° for the complexation are evaluated.

  10. The Copernicus ultraviolet spectral atlas of Vega

    NASA Technical Reports Server (NTRS)

    Rogerson, John B., Jr.

    1989-01-01

    A near-ultraviolet spectral atlas for the A0 V star Alpha Lyr (Vega) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 2000 to 3187 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs with a normalized continuum, and an identification table for the absorption features has been prepared.

  11. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  12. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  13. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    PubMed

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific

  14. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  15. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  16. Application of high-resolution continuum source flame atomic absorption spectrometry to reveal, evaluate and overcome certain spectral effects in Pb determination of unleaded gasoline

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał

    2017-06-01

    scattering. For LS FAAS, the determination of Pb using the 283 nm line, a 0.1 nm bandpass and a fuel lean flame is strongly recommended. The analysis of certified reference materials, recovery studies and the analysis of real samples with low Pb content supported the satisfactory accuracy of Pb determination in automotive or aviation gasoline when the recommended analytical variants are applied. The studies in this work shed new light on spectral phenomena in air-acetylene flames. The structured background due to absorption by the OH molecules must be taken into account during Pb determination in other materials as well as in some other elemental determinations, especially at low absorbance levels. The usefulness of HR-CS FAAS for revealing and investigating a structured background was demonstrated. HR-CS FAAS does not reveal fully corrected spectral effects with a continuous character, which can be found in LS FAAS.

  17. Feasibility study of electron transfer quantum well infrared photodetectors for spectral tuning in the long-wave infrared band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto

    An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less

  18. Spectral analysis of the structure of ultradispersed diamonds

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  19. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  20. Study on ice cloud optical thickness retrieval with MODIS IR spectral bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Jun

    2005-01-01

    The operational Moderate-Resolution Imaging Spectroradiometer (MODIS) products for cloud properties such as cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), cloud optical thickness (COT), and cloud phase (CP) have been available for users globally. An approach to retrieve COT is investigated using MODIS infrared (IR) window spectral bands (8.5 mm, 11mm, and 12 mm). The COT retrieval from MODIS IR bands has the potential to provide microphysical properties with high spatial resolution during night. The results are compared with those from operational MODIS products derived from the visible (VIS) and near-infrared (NIR) bands during day. Sensitivity of COT to MODIS spectral brightness temperature (BT) and BT difference (BTD) values is studied. A look-up table is created from the cloudy radiative transfer model accounting for the cloud absorption and scattering for the cloud microphysical property retrieval. The potential applications and limitations are also discussed. This algorithm can be applied to the future imager systems such as Visible/Infrared Imager/Radiometer Suite (VIIRS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-R.

  1. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  2. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  3. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  4. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    PubMed

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  5. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  6. Detailed Spectral Analysis of the 260 ks XMM-Newton Data of 1E 1207.4-5209 and Significance of a 2.1 keV Absorption Feature

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Chonko, James C.; Hailey, Charles J.

    2005-10-01

    We have reanalyzed the 260 ks XMM-Newton observation of 1E 1207.4-5209. There are several significant improvements over previous work. First, a much broader range of physically plausible spectral models was used. Second, we have used a more rigorous statistical analysis. The standard F-distribution was not employed, but rather the exact finite statistics F-distribution was determined by Monte Carlo simulations. This approach was motivated by the recent work of Protassov and coworkers and Freeman and coworkers. They demonstrated that the standard F-distribution is not even asymptotically correct when applied to assess the significance of additional absorption features in a spectrum. With our improved analysis we do not find a third and fourth spectral feature in 1E 1207.4-5209 but only the two broad absorption features previously reported. Two additional statistical tests, one line model dependent and the other line model independent, confirmed our modified F-test analysis. For all physically plausible continuum models in which the weak residuals are strong enough to fit, the residuals occur at the instrument Au M edge. As a sanity check we confirmed that the residuals are consistent in strength and position with the instrument Au M residuals observed in 3C 273.

  7. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  8. All-optical laser spectral narrowing and line fixing at atomic absorption transition by injection competition and gain knock-down techniques

    NASA Astrophysics Data System (ADS)

    Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.

    2008-12-01

    We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the

  9. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  10. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  11. O2 on ganymede: Spectral characteristics and plasma formation mechanisms

    USGS Publications Warehouse

    Calvin, W.M.; Johnson, R.E.; Spencer, J.R.

    1996-01-01

    Weak absorption features in the visible reflectance spectrum of Jupiter's satellite Ganymede have been correlated to those observed in the spectrum of molecular oxygen. We examine the spectral characteristics of these absorption features in all phases of O2 and conclude that the molecular oxygen is most likely present at densities similar to the liquid or solid ??-phase. The contribution of O2 to spectral features observed on Ganymede in the near-infrared wavelength region affects the previous estimates of photon pathlength in ice. The concentration of the visible absorption features on the trailing hemisphere of Ganymede suggests an origin due to bombardment by magneto-spheric ions. We derive an approximate O2 formation rate from this mechanism and consider the state of O2 within the surface.

  12. Red and near-infrared spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Obrien, H. W.; Munis, R. H.

    1975-01-01

    The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.

  13. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  14. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  15. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  16. Equivalent Black Carbon measurements and spectral analysis of absorption coefficient during a biomass burning episode in the city of Bogotá, Colombia.

    NASA Astrophysics Data System (ADS)

    Quirama, M.; Morales, R.

    2016-12-01

    Light-absorbing carbonaceous aerosol is recognized as a significant short lived climate pollutant that can contribute to direct and indirect radiative forcing. In urban environments, black carbon is an important contributor to the deterioration of local air quality. In this study, we report measurements of equivalent Black Carbon performed during the months of January, February, and March 2016 in the city of Bogotá, Colombia. During this period, a persistent condition of atmospheric stability lead to high concentrations of particulate matter throughout the city. During the month of February, the city was further impacted by a series of small-scale forest fires that took place on hills neighboring the city center. Equivalent Black Carbon (eBC) concentrations were monitored before, during, and after a mayor forest fire episode with a 7-wavelength Aethalometer. The monitoring instruments were located at a traffic impacted site, 18.3 km from the forest fire. To evaluate the contribution of biomass burning to the light-absorbing aerosol particle concentration, spectral analysis of the absorption coefficient of the sampled aerosol particles was performed. When the biomass burning plume directly impacted the monitoring station during the night of February 4, eBC concentrations of up to 40 µg/m3 were observed at nighttime. This concentration was significantly higher than average nighttime concentrations of eBC, observed to be 4 µg/m3 at the site. However, during the period most intensely affected by the biomass burning plume, the angstrom exponent computed between the 450nm and the 970 nm channel, was found to be close to 1. Angstrom exponent close to 1 is an indication that the contribution from traffic generated black carbon is dominant compared to the contribution of biomass burning. The data set collected during this period suggests that despite the significant contribution of the fresh biomass burning plume to the particulate matter concentration in the city, the

  17. Relationships between visual field sensitivity and spectral absorption properties of the neuroretinal rim in glaucoma by multispectral imaging.

    PubMed

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H; Gautam, Ramesh; Henson, David B

    2011-11-07

    To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570-610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. The decibel VF sensitivity scale showed significant relationships between superior-inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior-inferior-nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG.

  18. Relationships between Visual Field Sensitivity and Spectral Absorption Properties of the Neuroretinal Rim in Glaucoma by Multispectral Imaging

    PubMed Central

    Denniss, Jonathan; Schiessl, Ingo; Nourrit, Vincent; Fenerty, Cecilia H.; Gautam, Ramesh; Henson, David B.

    2011-01-01

    Purpose. To investigate the relationship between neuroretinal rim (NRR) differential light absorption (DLA, a measure of spectral absorption properties) and visual field (VF) sensitivity in primary open-angle glaucoma (POAG). Methods. Patients diagnosed with (n = 22) or suspected of having (n = 7) POAG were imaged with a multispectral system incorporating a modified digital fundus camera, 250-W tungsten-halogen lamp, and fast-tuneable liquid crystal filter. Five images were captured sequentially within 1.0 second at wavelengths selected according to absorption properties of hemoglobin (range, 570–610 nm), and a Beer-Lambert law model was used to produce DLA maps of residual NRR from the images. Patients also underwent VF testing. Differences in NRR DLA in vertically opposing 180° and 45° sectors either side of the horizontal midline were compared with corresponding differences in VF sensitivity on both decibel and linear scales by Spearman's rank correlation. Results. The decibel VF sensitivity scale showed significant relationships between superior–inferior NRR DLA difference and sensitivity differences between corresponding VF areas in 180° NRR sectors (Spearman ρ = 0.68; P < 0.0001), superior-/inferior-temporal 45° NRR sectors (ρ = 0.57; P < 0.002), and superior-/inferior-nasal 45° NRR sectors (ρ = 0.59; P < 0.001). Using the linear VF sensitivity scale significant relationships were found for 180° NRR sectors (ρ = 0.62; P < 0.0002) and superior–inferior–nasal 45° NRR sectors (ρ = 0.53; P < 0.002). No significant difference was found between correlations using the linear or decibel VF sensitivity scales. Conclusions. Residual NRR DLA is related to VF sensitivity in POAG. Multispectral imaging may provide clinically important information for the assessment and management of POAG. PMID:21980002

  19. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less

  20. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  1. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  2. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem

    USGS Publications Warehouse

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.

    2004-01-01

    A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.

  3. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  4. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  5. Biomass Burning Dominates Brown Carbon Absorption in the Rural Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Brock, C. A.; Brown, S. S.; Guo, H.; Weber, R. J. J.; Xu, L.; Ng, N. L.; Stone, E. A.; Edgerton, E. S.; Baumann, K.; Hu, W.; Palm, B. B.; Jimenez, J. L.; Fry, J.; Ayres, B. R.; Draper, D.; Allen, H.

    2014-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Brown carbon has a wavelength-dependent absorption that increases in the UV spectral region, and its major atmospheric sources include biomass burning, anthropogenic combustion of fossil fuels, and secondary organic aerosol. The rural Southeastern U.S. is influenced by high isoprene concentrations and varying concentrations of biomass burning aerosol, making it an ideal place to compare the relative contributions of these two sources to the brown carbon absorption budget. During the Southern Oxidant and Aerosol Study in summer 2013, we deployed a new field instrument that uses cavity enhanced spectroscopy with a broadband light source to measure aerosol optical extinction as a function of wavelength. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We combine these data with direct absorption measurements of water-soluble organic carbon obtained from a novel UV/VIS-WSOC instrument, and with aerosol composition measurements. We examine these data sets to determine: 1) the optical closure between measured dry aerosol extinction and values calculated from aerosol composition and size distribution; 2) the magnitude of brown and black carbon absorption; 3) the relative contributions of biomass burning, anthropogenic, and secondary organic aerosol contributions to brown carbon absorption in the Southeast U.S. during the summer. We conclude that biomass burning is a major contributor to optical absorption by organic aerosol in the rural southeastern U.S.

  6. Solar Spectral Radiative Forcing During the Southern African Regional Science Initiative

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Pommier, J.; Bergstrom, R.; Gore, W.; Howard, S.; Rabbette, M.; Schmid, B.; Hobbs, P. V.; Tsay, S. C.

    2003-01-01

    During the dry season component of the Southern African Regional Science Initiative (SAFARI) in late winter 2000, the net solar spectral irradiance was measured at flight levels throughout biomass burning haze layers. From these measurements, the flux divergence, fractional absorption, instantaneous heating rate, and absorption efficiency were derived. Two cases are examined: on 24 August 2000 off the coast of Mozambique in the vicinity of Inhaca Island and on 6 September 2000 in a very thick continental haze layer over Mongu, Zambia. The measured absolute absorption was substantially higher for the case over Mongu where the measured midvisible optical depth exceeded unity. Instantaneous heating from aerosol absorption was 4 K d(sup -1) over Mongu, Zambia and 1.5 K d(sup -1) near Inhaca Island, Mozambique. However, the spectral absorption efficiency was nearly identical for both cases. Although the observations over Inhaca Island preceded the river of smoke from the southern African continent by nearly 2 weeks, the evidence here suggests a continental influence in the lower tropospheric aerosol far from source regions of burning.

  7. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  8. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  9. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-05

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Li, Zhanqing; Kim, Jhoon; Koo, Ja-Ho; Go, Sujung; Irie, Hitoshi; Labow, Gordon; Eck, Thomas F.; Holben, Brent N.; Herman, Jay; Loughman, Robert P.; Spinei, Elena; Lee, Seoung Soo; Khatri, Pradeep; Campanelli, Monica

    2018-04-01

    Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI) and future (e.g., TROPOMI, TEMPO, GEMS, and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR, and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nm) through VIS to NIR wavelengths (870 nm).

  11. THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov

    Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less

  12. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.

    PubMed

    Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-05-01

    In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.

  13. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  14. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  15. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    PubMed Central

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro

    2012-01-01

    Abstract. Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed. PMID:22734767

  16. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  17. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Hellmig, Ortwin; Baev, Valery M.

    2018-04-01

    A broadband tunable Tm/Ho-doped fiber laser is developed for sensitive in situ measurements of intracavity absorption spectra in the spectral range of 4780-5560 cm-1. This spectral range includes an atmospheric transmission window enabling sensitive measurements of various species. The spectral bandwidth of laser emission varies from 20 to 60 cm-1 and is well suitable for multicomponent spectroscopy. The sensitivity achieved in cw operation corresponds to an effective absorption path length of L eff = 20 km, with a spectral noise of less than 1%. The spectroscopic system is applied for measurements of absorption spectra of H2O, NH3 and for simultaneous in situ detection of three isotopes of CO2 in human breath, which is important for medical diagnostics procedures.

  18. AIS radiometry and the problem of contamination from mixed spectral orders

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Adams, S.; Alley, R. E.; Hoover, G.; Schultz, S.

    1988-01-01

    The spectral radiance of test areas under solar illumination is ascertained in view of Airborne Imaging Spectrometer (AIS) data from Mono Lake, CA, establishing an atmospheric correction method for major absorbers on the basis of the spectrometric data themselves. The apparent low contrast of all atmospheric absorption bands leads to a study of contamination from overlapping spectral orders in the AIS data; this contamination is found unambiguously above 1500 nm with a magnitude that is a factor of 1.5-2.0 greater than the expected uncontaminated signal alone.

  19. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    USGS Publications Warehouse

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains

  20. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  1. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  2. A high throughput spectral image microscopy system

    NASA Astrophysics Data System (ADS)

    Gesley, M.; Puri, R.

    2018-01-01

    A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.

  3. A study of aerosol absorption and height retrievals with a hyperspectral (UV to NIR) passive sensor

    NASA Astrophysics Data System (ADS)

    Gasso, S.

    2017-12-01

    With the deployment of the first sensor (TOMS, in 1978) with capabilities to detect aerosol absorption (AA) from space, there has been a continuous evolution in hardware and algorithms used to measured this property. Although with TOMS and its more advanced successors (such as OMI) made significant progress in globally characterizing AA , there is room for improvement especially by taking advantage of sensors with extended spectral coverage (UV to NIR) and high spatial resolution (<1 km). While such unique sensor does not exist yet, the collocation of observations from different platforms that jointly fulfill those characteristics (e.g. A-Train, S-NPP) confirm that it is possible to fully retrieve all AA parameters that modulate absorption in the upwelling radiance (AOD, SSA and aerosol layer height). However, such combined approaches still have some drawbacks such as the difficulty to account for cloud contamination. The upcoming deployment of satellite detectors with the desired features all in one sensor (PACE, TropOMI, GEMS) prompt a revision of the AA retrieval technique used in past approaches. In particular,the TropOMI mission, a hyperspectral UV-to-NIR sensor with moderate ( 5km nadir pixel) spatial resolution to be launched in Fall 2017. In addition , the sensor will include sensing capabilities for the wavelength range of the Oxygen bands A and B at very high wavelength resolution. This study will be centered on the aerosol detection capabilities of TropOMI. Because the spectral range covered, it is theoretically possible to simultaneously retrieve the aerosol optical depth, the single scattering albedo and aerosol mean height without assuming any of them as it was the case with previous retrieval approaches. Specifically, we intend to present a theoretical study based on simulated radiances at selected UV, VIS and near-IR bands (including the Oxygen bands) and evaluate the sensitivity of this sensor to different levels of aerosol concentration, height

  4. Method to analyze remotely sensed spectral data

    DOEpatents

    Stork, Christopher L [Albuquerque, NM; Van Benthem, Mark H [Middletown, DE

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  5. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  6. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region.

    PubMed

    Stramski, Dariusz; Reynolds, Rick A; Kaczmarek, Sławomir; Uitz, Julia; Zheng, Guangming

    2015-08-01

    Spectrophotometric measurement of particulate matter retained on filters is the most common and practical method for routine determination of the spectral light absorption coefficient of aquatic particles, ap(λ), at high spectral resolution over a broad spectral range. The use of differing geometrical measurement configurations and large variations in the reported correction for pathlength amplification induced by the particle/filter matrix have hindered adoption of an established measurement protocol. We describe results of dedicated laboratory experiments with a diversity of particulate sample types to examine variation in the pathlength amplification factor for three filter measurement geometries; the filter in the transmittance configuration (T), the filter in the transmittance-reflectance configuration (T-R), and the filter placed inside an integrating sphere (IS). Relationships between optical density measured on suspensions (ODs) and filters (ODf) within the visible portion of the spectrum were evaluated for the formulation of pathlength amplification correction, with power functions providing the best functional representation of the relationship for all three geometries. Whereas the largest uncertainties occur in the T method, the IS method provided the least sample-to-sample variability and the smallest uncertainties in the relationship between ODs and ODf. For six different samples measured with 1 nm resolution within the light wavelength range from 400 to 700 nm, a median error of 7.1% is observed for predicted values of ODs using the IS method. The relationships established for the three filter-pad methods are applicable to historical and ongoing measurements; for future work, the use of the IS method is recommended whenever feasible.

  7. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  8. Underresolved absorption spectroscopy of OH radicals in flames using broadband UV LEDs

    NASA Astrophysics Data System (ADS)

    White, Logan; Gamba, Mirko

    2018-04-01

    A broadband absorption spectroscopy diagnostic based on underresolution of the spectral absorption lines is evaluated for the inference of species mole fraction and temperature in combustion systems from spectral fitting. The approach uses spectrally broadband UV light emitting diodes and leverages low resolution, small form factor spectrometers. Through this combination, the method can be used to develop high precision measurement sensors. The challenges of underresolved spectroscopy are explored and addressed using spectral derivative fitting, which is found to generate measurements with high precision and accuracy. The diagnostic is demonstrated with experimental measurements of gas temperature and OH mole fraction in atmospheric air/methane premixed laminar flat flames. Measurements exhibit high precision, good agreement with 1-D flame simulations, and high repeatability. A newly developed model of uncertainty in underresolved spectroscopy is applied to estimate two-dimensional confidence regions for the measurements. The results of the uncertainty analysis indicate that the errors in the outputs of the spectral fitting procedure are correlated. The implications of the correlation between uncertainties for measurement interpretation are discussed.

  9. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  10. Absorption line indices in the UV. I. Empirical and theoretical stellar population models

    NASA Astrophysics Data System (ADS)

    Maraston, C.; Nieves Colmenárez, L.; Bender, R.; Thomas, D.

    2009-01-01

    Aims: Stellar absorption lines in the optical (e.g. the Lick system) have been extensively studied and constitute an important stellar population diagnostic for galaxies in the local universe and up to moderate redshifts. Proceeding towards higher look-back times, galaxies are younger and the ultraviolet becomes the relevant spectral region where the dominant stellar populations shine. A comprehensive study of ultraviolet absorption lines of stellar population models is however still lacking. With this in mind, we study absorption line indices in the far and mid-ultraviolet in order to determine age and metallicity indicators for UV-bright stellar populations in the local universe as well as at high redshift. Methods: We explore empirical and theoretical spectral libraries and use evolutionary population synthesis to compute synthetic line indices of stellar population models. From the empirical side, we exploit the IUE-low resolution library of stellar spectra and system of absorption lines, from which we derive analytical functions (fitting functions) describing the strength of stellar line indices as a function of gravity, temperature and metallicity. The fitting functions are entered into an evolutionary population synthesis code in order to compute the integrated line indices of stellar populations models. The same line indices are also directly evaluated on theoretical spectral energy distributions of stellar population models based on Kurucz high-resolution synthetic spectra, In order to select indices that can be used as age and/or metallicity indicators for distant galaxies and globular clusters, we compare the models to data of template globular clusters from the Magellanic Clouds with independently known ages and metallicities. Results: We provide synthetic line indices in the wavelength range ~1200 Å to ~3000 Å for stellar populations of various ages and metallicities.This adds several new indices to the already well-studied CIV and SiIV absorptions

  11. Measurements of near-IR water vapor absorption at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Liu, X.; Li, H.; Jeffries, J. B.; Hanson, R. K.

    2007-03-01

    Tunable diode lasers (TDLs) are used to measure high resolution (0.1 cm-1), near-infrared (NIR) water vapor absorption spectra at 700 K and pressures up to 30 atm within a high-pressure and -temperature optical cell in a high-uniformity tube furnace. Both direct absorption and wavelength modulation with second harmonic detection (WMS-2f) spectra are obtained for 6 cm-1 regions near 7204 cm-1 and 7435 cm-1. Direct absorption measurements at 700 K and 10 atm are compared with simulations using spectral parameters from HITRAN and a hybrid database combining HITRAN with measured spectral constants for transitions in the two target spectral regions. The hybrid database reduces RMS error between the simulation and the measurements by 45% for the 7204 cm-1 region and 28% for the 7435 cm-1 region. At pressures above 10 atm, the breakdown of the impact approximation inherent to the Lorentzian line shape model becomes apparent in the direct absorption spectra, and measured results are in agreement with model results and trends at elevated temperatures reported in the literature. The wavelength-modulation spectra are shown to be less affected by the breakdown of the impact approximation and measurements agree well with the hybrid database predictions to higher pressures (30 atm).

  12. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaodong; Pan, Ming; Hou, Liwei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantummore » efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.« less

  13. Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging

    DTIC Science & Technology

    2005-07-01

    position. This indicates the polarization preservation nature of Cybesin. Time Resolved Fluorescence Intensity of Cybesin 60000 Perpendicular 3000 0...absorption than that of normal tissue at water absorption peaks indicating cancer tissue has less water content than that of normal tissue; (5) preliminary...rectum-and-membrane tissues.’ This indicates that our proposed approach of imaging a prostate gland through rectum using spectral polarization imaging

  14. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  15. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  16. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption. © 2011 American Chemical Society

  17. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  18. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  19. Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical property

    NASA Technical Reports Server (NTRS)

    Baret, Frederic; Vanderbilt, Vern C.; Steven, Michael D.; Jacquemoud, Stephane

    1993-01-01

    The spectral variation of canopy reflectance is mostly governed by the absorption properties of the elements, hence the leaves, since their intrinsic scattering properties show very little spectral variation. The relationship between canopy reflectance and leaf reflectance measured at the red edge over sugar beet canopies was used to simulate canopy reflectance from leaf reflectance spectra measured over the whole spectral domain. The results show that the spectral analogies found allows accurate reconstruction of canopy reflectance spectra. Explicit assumptions about the very low spectral variation of leaf intrinsic scattering properties are thus indirectly justified. The sensitivity of canopy reflectance (rho(sub c)) to leaf optical properties can then be investigated from concurrent spectral variations of canopy (delta rho(sub c)/delta lambda) and leaf reflectance (delta rho(sub l)/delta lambda): (delta rho(sub c))/(delta rho(sub l)) = ((delta rho(sub c))/(delta lambda) ((delta rho( sub l))/(delta lambda))(sup -1)). This expression is strictly valid only when the optical properties of the soil background or the other vegetation elements such as bark are either spectrally flat or do not contribute significantly to canopy reflectance. Simulations using the SAIL and PROSPECT models demonstrate that the sensitivity of canopy reflectance to leaf reflectance is significant for large vegetation cover fractions in spectral domains where absorption is low. In these conditions, multiple, scattering enhances the leaf absorption features by a factor that can be greater than 2.0. To override the limitations of the SAIL model for the description of the canopy architecture, we tested the previous findings on experimental data. Concurrent canopy and leaf reflectance spectra were measured for a range of sugar beet canopies. The results show good agreement with the theoretical findings. Conclusions are drawn about the applicability of these findings, with particular attention to

  20. Collision-induced Absorption in the Infrared: A Data Base for Modelling Planetary and Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1998-01-01

    Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.

  1. Io's Thermal Regions and Non-SO2 Spectral Features

    NASA Technical Reports Server (NTRS)

    Smythe, W. D.; Soderblom, L. A.; Lopes, R. M. C.

    2003-01-01

    Several absorptions have been identified in the Galileo NIMS spectra of Io that are not related to SO2. [1,2]. These absorptions have band centers at 2.97, 3.15, 3.85, and 3.91 microns. There are also broad absorptions in the regions 1-1.3 and 3- 3.4 microns. Patterning noise in wavelength registration, arising from the pushbroom imaging and grating motion of the NIMS instrument have previously inhibited reliable mapping of weak absorptions. Recent improvements in techniques to remove the coherent pattern noise from the NIMS dataset have been made by Soderblom. This greatly improves the signal to noise ratio and enables mapping of weak spectral signatures such as the 3.15 micron absorption on Io.

  2. Terrestrial solar spectral modeling. [SOLTRAN, BRITE, and FLASH codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, R.E.

    The utility of accurate computer codes for calculating the solar spectral irradiance under various atmospheric conditions was recognized. New absorption and extraterrestrial spectral data are introduced. Progress is made in radiative transfer modeling outside of the solar community, especially for space and military applications. Three rigorous radiative transfer codes SOLTRAN, BRITE, and FLASH are employed. The SOLTRAN and BRITE codes are described and results from their use are presented.

  3. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows

    NASA Astrophysics Data System (ADS)

    Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.

    2017-11-01

    In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.

  4. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  5. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-07-08

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  6. Electromagnetic-radiation absorption by water.

    PubMed

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  7. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  8. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  9. Spectral properties of ice-particulate mixtures and implications for remote sensing. 1. Intimate mixtures.

    USGS Publications Warehouse

    Clark, R.N.; Lucey, P.G.

    1984-01-01

    The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors

  10. Creating semiconductor metafilms with designer absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate thatmore » near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.« less

  11. Aerosol Absorption Measurements from LANDSAT and CIMEL

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.

    1999-01-01

    Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  12. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    PubMed

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  13. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  14. Project STOP (Spectral Thermal Optimization Program)

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  15. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    NASA Astrophysics Data System (ADS)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  16. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  17. Aerosol Absorption Effects in the TOMS UV Algorithm

    NASA Technical Reports Server (NTRS)

    Torres, O.; Krotkov, N.; Bhartia, P. K.

    2004-01-01

    The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.

  18. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data

    USGS Publications Warehouse

    Kokaly, Raymond F.; Despain, Don G.; Clark, Roger N.; Livo, K. Eric

    2003-01-01

    Knowledge of the distribution of vegetation on the landscape can be used to investigate ecosystem functioning. The sizes and movements of animal populations can be linked to resources provided by different plant species. This paper demonstrates the application of imaging spectroscopy to the study of vegetation in Yellowstone National Park (Yellowstone) using spectral feature analysis of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data, acquired on August 7, 1996, were calibrated to surface reflectance using a radiative transfer model and field reflectance measurements of a ground calibration site. A spectral library of canopy reflectance signatures was created by averaging pixels of the calibrated AVIRIS data over areas of known forest and nonforest vegetation cover types in Yellowstone. Using continuum removal and least squares fitting algorithms in the US Geological Survey's Tetracorder expert system, the distributions of these vegetation types were determined by comparing the absorption features of vegetation in the spectral library with the spectra from the AVIRIS data. The 0.68 μm chlorophyll absorption feature and leaf water absorption features, centered near 0.98 and 1.20 μm, were analyzed. Nonforest cover types of sagebrush, grasslands, willows, sedges, and other wetland vegetation were mapped in the Lamar Valley of Yellowstone. Conifer cover types of lodgepole pine, whitebark pine, Douglas fir, and mixed Engelmann spruce/subalpine fir forests were spectrally discriminated and their distributions mapped in the AVIRIS images. In the Mount Washburn area of Yellowstone, a comparison of the AVIRIS map of forest cover types to a map derived from air photos resulted in an overall agreement of 74.1% (kappa statistic=0.62).

  19. Spectral identification of minerals using imaging spectrometry data: Evaluating the effects of signal to noise and spectral resolution using the tricorder algorithm

    NASA Technical Reports Server (NTRS)

    Swayze, Gregg A.; Clark, Roger N.

    1995-01-01

    The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.

  20. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  1. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Study of absorption and IR-emission of Er3+, Dy3+, Tm3+ doped high-purity tellurite glasses

    NASA Astrophysics Data System (ADS)

    Motorin, S. E.; Dorofeev, V. V.; Galagan, B. I.; Sverchkov, S. E.; Koltashev, V. V.; Denker, B. I.

    2018-04-01

    A study of high-purity TeO2-ZnO based tellurite glasses doped with Er3+, Dy3+ or Tm3+ that could be used as laser media in the 2-3 μm spectral range is presented. The glasses are prepared by melting the oxides mixture inside a silica glass reactor in an atmosphere of purified oxygen. The low level of hydroxyl groups absorption allowed to measure correctly the luminescence decay characteristics of the dopants. The rare-earth ions absorption bands, the luminescence spectra and kinetic characteristics of emission from the levels 4I11/2, 4I13/2 of Er3+, 6H13/2 of Dy3+ and 3H4, 3H5, 3F4 of Tm3+ ions are investigated. The results confirm the high potential of tellurite glasses as an active media for bulk, planar waveguide and fiber lasers.

  3. Classification by diagnosing all absorption features (CDAF) for the most abundant minerals in airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Mobasheri, Mohammad Reza; Ghamary-Asl, Mohsen

    2011-12-01

    Imaging through hyperspectral technology is a powerful tool that can be used to spectrally identify and spatially map materials based on their specific absorption characteristics in electromagnetic spectrum. A robust method called Tetracorder has shown its effectiveness at material identification and mapping, using a set of algorithms within an expert system decision-making framework. In this study, using some stages of Tetracorder, a technique called classification by diagnosing all absorption features (CDAF) is introduced. This technique enables one to assign a class to the most abundant mineral in each pixel with high accuracy. The technique is based on the derivation of information from reflectance spectra of the image. This can be done through extraction of spectral absorption features of any minerals from their respected laboratory-measured reflectance spectra, and comparing it with those extracted from the pixels in the image. The CDAF technique has been executed on the AVIRIS image where the results show an overall accuracy of better than 96%.

  4. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  5. Spectral and non-spectral interferences in the determination of thallium in environmental materials using electrothermal atomization and vaporization techniques—a case study

    NASA Astrophysics Data System (ADS)

    Vale, Maria Goreti R.; Welz, Bernhard

    2002-12-01

    The literature on the determination of Tl in environmental samples using electrothermal atomization (ETA) and vaporization (ETV) techniques has been reviewed with special attention devoted to potential interferences and their control. Chloride interference, which is due to the formation of the volatile monochloride in the condensed phase, is the most frequently observed problem. Due to its high dissociation energy (88 kcal/mol), TlCl is difficult to dissociate in the gas phase and is easily lost. The best means of controlling this interference in ETA is atomization under isothermal conditions according to the stabilized temperature platform furnace concept, and the use of reduced palladium as a modifier. An alternative approach appears to be the 'fast furnace' concept, wherein both the use of a modifier and the pyrolysis stage are omitted. This concept requires an efficient background correction system, and high-resolution continuum-source atomic absorption spectrometry (HR-CS AAS) appears to offer the best results. This chloride interference can also cause significant problems when ETV techniques are used. Among the spectral interferences found in the determination of thallium are those due to Pd, the most efficient modifier, and Fe, which is frequently found at high concentrations in environmental samples. Both interferences are due to nearby atomic lines, and are observed only when deuterium background correction and relatively high atomization temperatures are used. A more serious spectral interference is that due to the molecular absorption spectrum of SO 2, which has a maximum around the Tl line and exhibits a pronounced rotational fine structure. HR-CS AAS again showed the best performance in coping with this interference.

  6. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  7. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: potential for development of a breath analyzer.

    PubMed

    Wang, Chuji; Scherrer, Susan T; Hossain, Delwar

    2004-07-01

    We report a study on the cavity ringdown spectroscopy of acetone in both the ultraviolet (UV) and the near-infrared (NIR) spectral regions to explore the potential for development of a breath analyzer for disease diagnostics. The ringdown spectrum of acetone in the UV (282.4-285.0 nm) region is recorded and the spectrum is in good agreement with those obtained by other spectral techniques reported in the literature. The absorption cross-section of the C-H stretching overtone of acetone in the NIR (1632.7-1672.2 nm) is reported for the first time and the maximum absorption cross-section located at 1666.7 nm is 1.2 x 10(-21) cm(2). A novel, compact, atmospheric cavity with a cavity length of 10 cm has been constructed and implemented to investigate the technical feasibility of the potential instrument size, optical configuration, and detection sensitivity. The detection limit of such a mini cavity employing ringdown mirrors of reflectivity of 99.85% at 266 nm, where acetone has the strongest absorption, is approximately 1.5 ppmv based on the standard 3 criteria. No real breath gas samples are used in the present study. Discussions on the detection sensitivity and background spectral interferences for the instrument development are presented. This study demonstrates the potential of developing a portable, sensitive breath analyzer for medical applications using the cavity ringdown spectral technique.

  8. Terahertz spectral detection of potassium sorbate in milk powder

    NASA Astrophysics Data System (ADS)

    Li, Pengpeng; Zhang, Yuan; Ge, Hongyi

    2017-02-01

    The spectral characteristics of potassium sorbate in milk powder in the range of 0.2 2.0 THz have been measured with THz time-domain spectroscopy(THz-TDS). Its absorption and refraction spectra are obtained at room temperature in the nitrogen atmosphere. The results showed that potassium sorbate at 0.98 THz obvious characteristic absorption peak. The simple linear regression(SLR) model was taken to analyze the content of potassium sorbate in milk powder. The results showed that the absorption coefficient increases as the mixture potassium sorbate increases. The research is important to food quality and safety testing.

  9. Absorption in Sport: A Cross-Validation Study

    PubMed Central

    Koehn, Stefan; Stavrou, Nektarios A. M.; Cogley, Jeremy; Morris, Tony; Mosek, Erez; Watt, Anthony P.

    2017-01-01

    Absorption has been identified as readiness for experiences of deep involvement in the task. Conceptually, absorption is a key psychological construct, incorporating experiential, cognitive, and motivational components. Although, no operationalization of the construct has been provided to facilitate research in this area, the purpose of this research was the development and examination of the psychometric properties of a sport-specific measure of absorption that evolved from the use of the modified Tellegen Absorption Scale (MODTAS; Jamieson, 2005) in mainstream psychology. The study aimed to provide evidence of the psychometric properties, reliability, and validity of the Measure of Absorption in Sport Contexts (MASCs). The psychometric examination included a calibration sample from Scotland and a cross-validation sample from Australia using a cross-sectional design. The item pool was developed based on existing items from the modified Tellegen Absorption Scale (Jamieson, 2005). The MODTAS items were reworded and translated into a sport context. The Scottish sample consisted of 292 participants and the Australian sample of 314 participants. Congeneric model testing and confirmatory factor analysis for both samples and multi-group invariance testing across samples was used. In the cross-validation sample the MASC subscales showed acceptable internal consistency and construct reliability (≥0.70). Excellent fit indices were found for the final 18-item, six-factor measure in the cross-validation sample, χ(120)2 = 197.486, p < 0.001; CFI = 0.957; TLI = 0.945; RMSEA = 0.045; SRMR = 0.044. Multi-group invariance testing revealed no differences in item meaning, except for two items. The MASC and the Dispositional Flow Scale-2 showed moderate-to-strong positive correlations in both samples, r = 0.38, p < 0.001 and r = 0.42, p < 0.001, supporting the external validity of the MASC. This article provides initial evidence in support of the psychometric properties

  10. Impact of Chromophoric dissolved organic matter on light absorption in lake water on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Hamre, Børge; Frette, Øyvind; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Jakob J.

    2017-02-01

    Ground-based measurements of optical properties are rare for water in lakes on the Tibetan Plateau (TP). We analyzed the spectral absorption of Chromophoric Dissolved Organic Matter (CDOM) for water samples from Lake Namtso (LN) on the TP. The mean value of the spectral slope S280-500 for CDOM absorption was found to be 0.036 nm-1, whereas the corresponding mean value for S350-500 was found to be 0.015 nm-1, implying that when comparing spectral slope values with published values, the wavelength range used for deriving them should be considered.

  11. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.

    PubMed

    Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z

    2013-10-01

    Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectral characterization of surface emissivities in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Niclòs, Raquel; Mira, Maria; Valor, Enric; Caselles, Diego; García-Santos, Vicente; Caselles, Vicente; Sánchez, Juan M.

    2015-04-01

    Thermal infrared (TIR) remote sensing trends to hyperspectral sensors on board satellites in the last decades, e.g., the current EOS-MODIS and EOS-ASTER and future missions like HyspIRI, ECOSTRESS, THIRSTY and MISTIGRI. This study aims to characterize spectrally the emissive properties of several surfaces, mostly soils. A spectrometer ranging from 2 to 16 μm, D&P Model 102, has been used to measure samples with singular spectral features, e.g. a sandy soil rich in gypsum sampled in White Sands (New Mexico, USA), salt samples, powdered quartz, and powdered calcite. These samples were chosen for their role in the assessment of thermal emissivity of soils, e.g., the calcite and quartz contents are key variables for modeling TIR emissivities of bare soils, along with soil moisture and organic matter. Additionally, the existence of large areas in the world with abundance of these materials, some of them used for calibration/validation activities of satellite sensors and products, makes the chosen samples interesting. White Sands is the world's largest gypsum dune field encompassing 400 km^2; the salt samples characterize the Salar of Uyuni (Bolivia), the largest salt flat in the world (up to 10,000 km^2), as well as the Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea, or the evaporation lagoons in Aigües-Mortes (France); and quartz is omnipresent in most of the arid regions of the world such as the Algodones Dunes or Kelso Dunes (California, USA), with areas around 700 km2 and 120 km^2, respectively. Measurements of target leaving radiance, hemispherical radiance reflected by a diffuse reflectance panel, and the radiance from a black body at different temperatures were taken to obtain thermal spectra with the D&P spectrometer. The good consistency observed between our measurements and laboratory spectra of similar samples (ASTER and MODIS spectral libraries) indicated the validity of the measurement protocol. Further, our study showed the

  13. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    NASA Technical Reports Server (NTRS)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  14. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    PubMed

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  15. Atmospheric solar absorption measurements in the 9 to 11 mu m region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground-based measurements of atmospheric solar absorption spectra in the 8 to 12 microns spectral range. The performance and operating characteristics of this Tunable Infrared Heterodyne Radiometer (TIHR) are discussed along with atmospheric solar absorption spectra of HNO3, O3, CO2, and H2O in the 9 to 11 microns spectral region.

  16. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  17. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  18. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less

  19. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  20. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  1. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. © 2014 WILEY Periodicals, Inc.

  2. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Kalogerakis, Konstantinos S.; Oza, A. U.; Marschall, J.; Wong, M. H.

    2006-09-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning") [2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  3. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Oza, A. U.; Marschall, J.; Wong, M. H.; Kalogerakis, K. S.

    2006-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning")[2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  4. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  5. Interference between extrinsic and intrinsic losses in x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Hedin, L.; Rehr, J. J.; Bardyszewski, W.

    2002-02-01

    The interference between extrinsic and intrinsic losses in x-ray absorption fine structure (XAFS) is treated within a Green's-function formalism, without explicit reference to final states. The approach makes use of a quasiboson representation of excitations and perturbation theory in the interaction potential between electrons and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an energy-dependent satellite in the spectral function. The x-ray absorption spectra (XAS) is then given by a convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function. The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.

  6. Visible and near-IR spectral reflectance of geologically important materials: A short review

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1982-01-01

    Examples of reflectance spectra are presented and discussed for various mineral groups including pyroxenes, olivene, phylosilicates, amphiboles, feldspars, oxides and hydroxides, carbonates, and mixtures of minerals. The physical sources of some spectral features are also reviewed such as charge transfer and conduction bands, crystal field absorptions, and vibrational absorptions.

  7. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; hide

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  8. USGS Digital Spectral Library splib06a

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b

  9. Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides.

    PubMed

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2012-03-08

    The mechanism of two-photon excitation of a peripheral light-harvesting complex LH2 (B800-850) from purple bacterium Rhodobacter sphaeroides was explained on the basis of femtosecond transient absorption data. Fast bleaching of the B850 absorption band was measured under two-photon excitation by 1350 nm femtosecond pulses, showing fast subpicosecond arrival of excitation energy to B850 circular aggregates. Any spectral changes connected with the B800 absorption band of B800-BChl molecules were absent. A similar picture was observed under one-photon excitation of the LH2 complex by 675 nm femtosecond pulses. We believe these effects may be attributed to direct excitation of high-energy excitonic states of a B850 circular aggregate or its vibrational manifold in accordance with the model of Abe [Chem. Phys. 2001, 264, 355-363].

  10. Chemical and spectral behavior of nitric acid in aqueous sulfuric acid solutions: Absorption spectrum and molar absorption coefficient of nitronium ion

    NASA Astrophysics Data System (ADS)

    Ershov, Boris G.; Panich, Nadezhda M.

    2018-01-01

    The chemical species formed from nitric acid in aqueous solutions of sulfuric acid (up to 18.0 mol L- 1) were studied by optical spectroscopy method. The concentration region of nitronium ion formation was identified and NO2+ ion absorption spectrum was measured (λmax ≤ 190 nm and ε190 = 1040 ± 50 mol- 1 L cm- 1).

  11. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  12. Facility for assessing spectral normal emittance of solid materials at high temperature.

    PubMed

    Mercatelli, Luca; Meucci, Marco; Sani, Elisa

    2015-10-10

    Spectral emittance is a key topic in the study of new compositions, depositions, and mechanical machining of materials for solar absorption and for renewable energies in general. The present work reports on the realization and testing of a new experimental facility for the measurement of directional spectral emittance in the range of 2.5-20 μm. Our setup provides emittance spectral information in a completely controlled environment at medium-high temperatures up to 1200 K. We describe the layout and first tests on the device, comparing the results obtained for hafnium carbide and tantalum diboride ultrarefractory ceramic samples to previous quasi-monochromatic measurements carried out in the PROMES-CNRS (PROcedes, Materiaux et Energie Solaire- Centre National de la Recherche Scientifique, France) solar furnace, obtaining a good agreement. Finally, to assess the reliability of the widely used approach of estimating the spectral emittance from room-temperature reflectance spectrum, we compared the calculation in the 2.5-17 μm spectral range to the experimental high-temperature spectral emittance, obtaining that the spectral trend of calculated and measured curves is similar but the calculated emittance underestimates the measured value.

  13. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  14. Observer model optimization of a spectral mammography system

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  15. Multiple Absorption Components in the Post-Periastron He I P Cygni Absorption Troughs of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; Damineli, Augusto; Gull, Ted; Moffat, Anthony; Groh, Jose; St.-Jean, Lucas; Walter, Frederick M.; Teodoro, Mairan; Madura, Tom; Corcoran, Michael; hide

    2015-01-01

    We have obtained more than 100 high spectral resolution (R approx. 90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 4550-7500A region. We increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached, and resumed observations in October. We note that since mid-October, we have observed unusual multiple absorption components in the P Cygni troughs of the He I lines (4714, 5876, 6678, and 7065; 4921 and 5015 are blended with Fe II). In particular, we note that these components extend to -700 km/s, well beyond the terminal wind speed of the primary. These absorptions are likely related to clumps and turbulence in the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, A&A, 519, 9) in the He I 10830A transition and our pre-periastron observations (Richardson et al. 2014, ATel #6336). In these cases, we suspect that we look along an arm of the shock cone and that we see a fast absorption change from the other collision region shortly after periastron. Further, high spectral resolution data are highly encouraged, especially for resolving powers greater than 50,000. These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216, 2012B-0194, and 2013b-0328. We thank Emily MacPherson (Yale) for her efforts in scheduling the observations that we have and will obtain in the coming weeks and months.

  16. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  17. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  18. Terahertz Absorption and Circular Dichroism Spectroscopy of Solvated Biopolymers

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Plaxco, Kevin; Allen, S. James

    2006-03-01

    Biopolymers are expected to exhibit broad spectral features in the terahertz frequency range, corresponding to their functionally relevant, global and sub-global collective vibrational modes with ˜ picosecond timescale. Recent advances in terahertz technology have stimulated researchers to employ terahertz absorption spectroscopy to directly probe these postulated collective modes. However, these pioneering studies have been limited to dry and, at best, moist samples. Successful isolation of low frequency vibrational activities of solvated biopolymers in their natural water environment has remained elusive, due to the overwhelming attenuation of the terahertz radiation by water. Here we have developed a terahertz absorption and circular dichroism spectrometer suitable for studying biopolymers in biologically relevant water solutions. We have precisely isolated, for the first time, the terahertz absorption of solvated prototypical proteins, Bovine Serum Albumin and Lysozyme, and made important direct comparison to the existing molecular dynamic simulations and normal mode calculations. We have also successfully demonstrated the magnetic circular dichroism in semiconductors, and placed upper bounds on the terahertz circular dichroism signatures of prototypical proteins in water solution.

  19. Studies on absorption coefficient near edge of multi elements

    NASA Astrophysics Data System (ADS)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  20. Effects of alkyl spacer group length on Vis-NIR absorption behavior in FTC-like guest-host EO polymers

    NASA Astrophysics Data System (ADS)

    Barto, Richard R., Jr.; Bedworth, Peter V.; Epstein, Joseph A.; Ermer, Susan P.; Taylor, Rebecca E.; Frank, Curtis W.

    2003-07-01

    Spectral absorption behavior of a series of FTC-like dyes of varying shape incorporated into amorphous polycarbonate (APC) is characterized by photothermal deflection spectroscopy. Previous Monte Carlo calculations by Dalton and Robinson predict a strong dependence of the macroscopic nonlinear optical susceptibility on the chromophore waist:length aspect ratio in electric field-poled films. This dependence arises from London interactions between chromophores, which are expected to influence the absorption characteristics of the composite both by changing the local polarity of the medium and through dipole interactions. It is expected that these interactions will play a role in the absorption characteristics of unpoled films as well. Of particular interest are the spectral characteristics of the red edge of the main dye electronic absorption peak, and the fine structure in the near-IR, dominated by overtones of fundamental C-H stretching and bending modes. The spectral structure in these key regions can be influenced by inter- and intramolecular interactions and conformational changes in the dye. The near-IR structure, in turn, will dictate absorption loss in optical devices prepared from these materials at key transmission wavelengths (1.3 and 1.55 um). In this study, a homologous series of spacer lengths, ranging from ethyl to hexyl, attached to an FTC-like NLO chromophore, LMCO-46M, is characterized by a combination of photothermal deflection spectroscopy (PDS) and UV-Vis spectroscopy to examine the effects of the molecular environment on near-IR loss at 1090 nm, 1300 nm and 1550 nm.

  1. The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

    NASA Astrophysics Data System (ADS)

    Traven, G.; Matijevič, G.; Zwitter, T.; Žerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; De Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; Da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.

    2017-02-01

    Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited (V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort to discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, Hα/Hβ emission, Hα/Hβ emission superimposed on absorption, Hα/Hβ P-Cygni, Hα/Hβ inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.

  2. Spectral characteristics of ortho, meta and para dihydroxy benzenes in different solvents, pH and beta-cyclodextrin.

    PubMed

    Stalin, T; Devi, R Anitha; Rajendiran, N

    2005-09-01

    Spectral characteristics of ortho, meta and para dihydroxy benzenes (DHB's) have been studied in different solvents, pH and beta-cyclodextrin. Solvent study shows that: (i) the interaction of OH group with the aromatic ring is less than that of amino group both in the ground and excited states, (ii) in absorption, the charge transfer interaction of OH group in para position is larger than ortho and meta positions. pH studies reveals that DHB's are more acidic than phenol. The higher pK(a) value of oDHB (monoanion-dianion) indicates that the formed monoanion is more stabilized by intramolecular hydrogen bonding. DHB's forms a 1:1 inclusion complex with beta-CD. In beta-CD medium, absorption spectra of DHB's mono and dianions shows unusual blue shifts, whereas in the excited state, the spectral characteristics of DHB's follow the same trend in both aqueous and beta-CD medium.

  3. Spectral Mapping at Asteroid 101955 Bennu

    NASA Astrophysics Data System (ADS)

    Clark, Beth Ellen; Hamilton, Victoria E.; Emery, Joshua P.; Hawley, C. Luke; Howell, Ellen S.; Lauretta, Dante; Simon, Amy A.; Christensen, Philip R.; Reuter, Dennis

    2017-10-01

    The OSIRIS-REx Asteroid Sample Return mission was launched in September 2016. The main science surveys of asteroid 101955 Bennu start in March 2019. Science instruments include a Visible-InfraRed Spectrometer (OVIRS) and a Thermal Emission Spectrometer (OTES) that will produce observations that will be co-registered to the tessellated shape model of Bennu (the fundamental unit of which is a triangular facet). One task of the science team is to synthesize the results in real time during proximity operations to contribute to selection of the sampling site. Hence, we will be focused on quickly producing spectral maps for: (1) mineral abundances; (2) band strengths of minerals and chemicals (including a search for the subtle ~5% absorption feature produced by organics in meteorites); and (3) temperature and thermal inertia values. In sum, we will be producing on the order of ~60 spectral maps of Bennu’s surface composition and thermophysical properties. Due to overlapping surface spots, simulations of our spectral maps show there may be an opportunity to perform spectral super-resolution. We have a large parameter space of choices available in creating spectral maps of Bennu, including: (a) mean facet size (shape model resolution), (b) percentage of overlap between subsequent spot measurements, (c) the number of spectral spots measured per facet, and (d) the mathematical algorithm used to combine the overlapping spots (or bin them on a per-facet basis). Projection effects -- caused by irregular sampling of an irregularly shaped object with circular spectrometer fields-of-view and then mapping these circles onto triangular facets -- can be intense. To prepare for prox ops, we are simulating multiple mineralogical “truth worlds” of Bennu to study the projection effects that result from our planned methods of spectral mapping. This presentation addresses: Can we combine the three planned global surveys of the asteroid (to be obtained at different phase angles) to

  4. Comparisons of Spectral Aerosol Single Scattering Albedo in Seoul, South Korea

    NASA Technical Reports Server (NTRS)

    Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Loughman, Robert P.; Spinei, Elena; Campanelli, Monica; Li, Zhanqing; Go, Sujung; Labow, Gordon; hide

    2018-01-01

    Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI (Ozone Monitoring Instrument)) and future (e.g., TROPOMI (TROPOspheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of POllution), GEMS (Geostationary Environment Monitoring Spectrometer) and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET (AEROsol robotic NETwork) in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET (SKY radiometer NETwork) networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR (MultiFilter Rotating Shadowband Radiometer), and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nanometers) through VIS to NIR wavelengths (870 nanometers).

  5. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    PubMed

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface Measurements of Solar Spectral Radiative Flux in the Cloud-Free Atmosphere

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Goetz, A. F. H.; Bergstrom, R.; Beal, D.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Recent studies (Charlock, et al.; Kato, et. al) have indicated a potential discrepancy between measured solar irradiance in the cloud-free atmosphere and model derived downwelling solar irradiance. These conclusions were based primarily on broadband integrated solar flux. Extinction (both absorption and scattering) phenomena, however, typically have spectral characteristics that would be present in moderate resolution (e.g., 10 nm) spectra, indicating the need for such measurements to thoroughly investigate the cause of any discrepancies. The 1996 Department of Energy Atmospheric Radiation Measurement Program (ARM) Intensive Observation Period (IOP), held simultaneously with the NASA Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) Program, provided an opportunity for two simultaneous but independent measurements of moderate resolution solar spectral downwelling irradiance at the surface. The instruments were the NASA Ames Solar Spectral Flux Radiometer and the Analytical Spectral Devices, Inc., FieldSpecT-FR. Spectral and band integrated quantities from both sets of measurements will be presented, along with estimates of the downwelling solar irradiance from band model and line by line calculations, in an effort to determine the compatibility between measured and calculated solar irradiance in the cloud-free atmosphere.

  7. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) II: Spectral Homogeneity Among Hungaria Family Asteroids

    NASA Astrophysics Data System (ADS)

    Lucas, Michael P.; Emery, Joshua; Pinilla-Alonso, Noemi; Lindsay, Sean S.; MacLennan, Eric M.; Cartwright, Richard; Reddy, Vishnu; Sanchez, Juan A.; Thomas, Cristina A.; Lorenzi, Vania

    2017-10-01

    Spectral observations of asteroid family members provide valuable information regarding parent body interiors, the source regions of near-Earth asteroids, and the link between meteorites and their parent bodies. Hungaria family asteroids constitute the closest samples to the Earth from a collisional family (~1.94 AU), permitting observations of smaller fragments than accessible for Main Belt families. We have carried out a ground-based observational campaign - Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) - to record reflectance spectra of these preserved samples from the inner-most primordial asteroid belt. During HARTSS phase one (Lucas et al. [2017]. Icarus 291, 268-287) we found that ~80% of the background population is comprised of stony S-complex asteroids that exhibit considerable spectral and mineralogical diversity. In HARTSS phase two, we turn our attention to family members and hypothesize that the Hungaria collisional family is homogeneous. We test this hypothesis through taxonomic classification, albedo estimates, and spectral properties.During phase two of HARTSS we acquired near-infrared (NIR) spectra of 50 new Hungarias (19 family; 31 background) with SpeX/IRTF and NICS/TNG. We analyzed X-type family spectra for NIR color indices (0.85-J J-K), and a subtle ~0.9 µm absorption feature that may be attributed to Fe-poor orthopyroxene. Surviving fragments of an asteroid collisional family typically exhibit similar taxonomies, albedos, and spectral properties. Spectral analysis of X-type Hungaria family members and independently calculated WISE albedo determinations for 428 Hungaria asteroids is consistent with this scenario. Furthermore, ~1/4 of the background population exhibit similar spectral properties and albedos to family X-types.Spectral observations of 92 Hungaria region asteroids acquired during both phases of HARTSS uncover a compositionally heterogeneous background and spectral homogeneity down to ~2 km for collisional family

  8. Temperature-dependent spectral linewidths of terahertz Bloch oscillations in biased semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Unuma, Takeya; Matsuda, Aleph

    2018-04-01

    We investigate temperature-dependent spectral linewidths of Bloch oscillations in biased semiconductor superlattices experimentally and theoretically. The spectral linewidth in a GaAs-based superlattice determined by terahertz emission spectroscopy becomes larger gradually as temperature increases from 80 to 320 K. This behavior can be quantitatively reproduced by a microscopic theory of the spectral linewidth that has been extended to treat the phonon scattering and interface roughness scattering of electrons on a Wannier-Stark ladder. A detailed comparison between the terahertz measurements and theoretical simulations reveals that the LO phonon absorption process governs the increase in the spectral linewidth with increasing temperature.

  9. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  10. Airborne spectroradiometry: The application of AIS data to detecting subtle mineral absorption features

    NASA Technical Reports Server (NTRS)

    Cocks, T. D.; Green, A. A.

    1986-01-01

    Analysis of Airborne Imaging Spectrometer (AIS) data acquired in Australia has revealed a number of operational problems. Horizontal striping in AIS imagery and spectral distortions due to order overlap were investigated. Horizontal striping, caused by grating position errors can be removed with little or no effect on spectral details. Order overlap remains a problem that seriously compromises identification of subtle mineral absorption features within AIS spectra. A spectrometric model of the AIS was developed to assist in identifying spurious spectral features, and will be used in efforts to restore the spectral integrity of the data.

  11. Understanding the Theory and Practice of Molecular Spectroscopy: The Effects of Spectral Bandwidth

    ERIC Educational Resources Information Center

    Hirayama, Satoshi; Steer, Ronald P.

    2010-01-01

    The near-UV spectrum of benzene is used to illustrate the effects of variations in instrument spectral bandwidth on absorbance and molar absorptivity measurements and on the independence of values of quantities such as the oscillator strength that are based on integrated absorptivity. Excel-based computer simulations are provided that help develop…

  12. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotso, H. F.; Dobrovitski, V. V.

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  13. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE PAGES

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  14. Doppler-free satellites of resonances of electromagnetically induced transparency and absorption on the D 2 lines of alkali metals

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Sarkisyan, D.; Staedter, D.; Akulshin, A. M.

    2006-11-01

    The peculiarities of intra-Doppler structures that are observed in the atomic absorption spectrum of alkali metals with the help of two independent lasers have been studied. These structures accompany ultranarrow coherent resonances of electromagnetically induced transparency and absorption. With the D 2 line of rubidium taken as an example, it is shown that, in the scheme of unidirectional waves, the maximum number of satellite resonances caused by optical pumping selective with respect to the atomic velocity is equal to seven, while only six resonances are observed in the traditional scheme of saturated absorption with counterpropagating waves of the same frequency. The spectral position of the resonances and their polarity depend on the frequency of the saturating radiation, while their number and relative amplitude depend also on the experimental geometry. These features are of general character and should show themselves in the absorption spectrum on the D 2 lines of all alkali metals. An explanation of these features is given. The calculated spectral separations between the resonances are compared to the experimental ones, and their possible application is discussed.

  15. Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K

    NASA Astrophysics Data System (ADS)

    Axson, J. L.; Washenfelder, R. A.; Kahan, T. F.; Young, C. J.; Vaida, V.; Brown, S. S.

    2011-11-01

    We report the ozone absolute absorption cross section between 350-470 nm, the minimum between the Huggins and Chappuis bands, where the ozone cross section is less than 10-22 cm2. Ozone spectra were acquired using an incoherent broadband cavity enhanced absorption spectrometer, with three channels centered at 365, 405, and 455 nm. The accuracy of the measured cross section is 4-30%, with the greatest uncertainty near the minimum absorption at 375-390 nm. Previous measurements vary by more than an order of magnitude in this spectral region. The measurements reported here provide much greater spectral coverage than the most recent measurements. The effect of O3 concentration and water vapor partial pressure were investigated, however there were no observable changes in the absorption spectrum most likely due to the low optical density of the complex.

  16. Io: Near-Infrared Absorptions Not Attributable to SO2

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; Clark, R. N.; Soderblom, L. A.; Carlson, R. W.; Kamp, L. W.; Galileo NIMS Team

    2001-11-01

    The Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft imaged the leading side of Jupiter's satellite Io at full spectral resolution and with triple Nyquist spatial sampling during the fifteenth orbital encounter (E15). New despiking and "dejittering" algorithms have been applied to this high S/N observation (15INHRSPEC01A). Spectral absorption features not attributable to SO2 are found between 3.0-3.4 microns and near 4.65 microns. The patterns of the spatial distributions of both absorbers differ from that of the omnipresent SO2. The broad 3.0-3.4 micron absorption is most pronounced in polar regions. Preliminary work suggests that the 4.65 micron feature may be associated with an unidentified sulfate mineral, while the 3.0-3.4 micron feature may result from the presence of more than one absorbing material. Hydrogen-bearing species are likely candidates. For example, H2O ice provides a good match for the absorption near 3.2 microns, but the absorption is shifted to wavelengths longer than that in pure H2O ice. If only one absorber is present, then hydrogen bonding of small numbers of H2O molecules could perhaps account for the shift. The absorption is weak; if H20 related, optical path lengths of a fraction of a micron are indicated. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Resonant indirect optical absorption in germanium

    NASA Astrophysics Data System (ADS)

    Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.

    2017-09-01

    The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.

  18. ACTIM: an EDA initiated study on spectral active imaging

    NASA Astrophysics Data System (ADS)

    Steinvall, O.; Renhorn, I.; Ahlberg, J.; Larsson, H.; Letalick, D.; Repasi, E.; Lutzmann, P.; Anstett, G.; Hamoir, D.; Hespel, L.; Boucher, Y.

    2010-10-01

    This paper will describe ongoing work from an EDA initiated study on Active Imaging with emphasis of using multi or broadband spectral lasers and receivers. Present laser based imaging and mapping systems are mostly based on a fixed frequency lasers. On the other hand great progress has recently occurred in passive multi- and hyperspectral imaging with applications ranging from environmental monitoring and geology to mapping, military surveillance, and reconnaissance. Data bases on spectral signatures allow the possibility to discriminate between different materials in the scene. Present multi- and hyperspectral sensors mainly operate in the visible and short wavelength region (0.4-2.5 μm) and rely on the solar radiation giving shortcoming due to shadows, clouds, illumination angles and lack of night operation. Active spectral imaging however will largely overcome these difficulties by a complete control of the illumination. Active illumination enables spectral night and low-light operation beside a robust way of obtaining polarization and high resolution 2D/3D information. Recent development of broadband lasers and advanced imaging 3D focal plane arrays has led to new opportunities for advanced spectral and polarization imaging with high range resolution. Fusing the knowledge of ladar and passive spectral imaging will result in new capabilities in the field of EO-sensing to be shown in the study. We will present an overview of technology, systems and applications for active spectral imaging and propose future activities in connection with some prioritized applications.

  19. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  20. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  1. Theory and Simulation of Exoplanetary Atmospheric Haze: Giant Spectral Line Broadening

    NASA Astrophysics Data System (ADS)

    Sadeghpour, Hossein; Felfeli, Zineb; Kharchenko, Vasili; Babb, James; Vrinceanu, Daniel

    2018-01-01

    Prominent spectral features in observed transmission spectra of exoplanets are obscured. Atmospheric haze is the leading candidate for the flattening of spectral transmission of expolanetray occultation, but also for solar system planets, Earth and cometary atmospheres. Such spectra which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad absorption where strong absorption lines from sodium or potassium and water are predicted to exist. In this work, we develop a detailed atomistic theoretical model, taking into account interaction between an atomic or molecular radiator with dust and haze particulates. Our model considers a realistic structure of haze particulates from small seed particles up to sub-micron irregularly shaped aggregates. This theory of interaction between haze and radiator particles allows to consider nearly all realistic structure, size and chemical composition of haze particulates. The computed shift and broadening of emission spectra will include both quasi-static (mean field) and collisional (pressure) shift and broadening. Our spectral calculations will be verified with available laboratory experimental data on spectra of alkali atoms in liquid droplet, solid ice, dust and dense gaseous environments. The simplicity, elegance and generality of the proposed model makes it amenable to a broad community of users in astrophysics and chemistry. The verified models can be used for analysis of emission and absorption spectra of alkali atoms from exoplanets, solar system planets, satellites and comets.

  2. A Developed Spectral Identification Tree for Mineral Mapping using Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Gan, Fuping; Wang, Runsheng; Yan, Bokun; Shang, Kun

    2016-04-01

    The relationship between the spectral features and the composition of minerals are the basis of mineral identification using hyperspectral data. The reflectance spectrum of minerals results from the systematic combination of several modes of interaction between electromagnetic energy and mineral particles in the form of reflection and absorption. Minerals tend to have absorbing features at specific wavelengths with a characteristic shape, which can be used as diagnostic indicators for identification. The spectral identification tree (SIT) method for mineral identification is developed in our research to map minerals accurately and applied in some typical mineral deposits in China. The SIT method is based on the diagnostic absorption features of minerals through comparing and statistically analyzing characteristic spectral data of minerals. We establish several levels of identification rules for the type, group and species of minerals using IF-THEN rule according to the spectral identification criteria so that the developed SIT can be further used to map minerals at different levels of detail from mineral type to mineral species. Identifiable minerals can be grouped into six types: Fe2+-bearing, Fe3+-bearing, Mn2+-bearing, Al-OH-bearing, Mg-OH-bearing and carbonate minerals. Each type can be further divided into several mineral groups. Each group contains several mineral species or specific minerals. A mineral spectral series, therefore, can be constructed as "type-group-species-specific mineral (mineral variety)" for mineral spectral identification. It is noted that the mineral classification is based mainly on spectral reflectance characteristics of minerals which may not be consistent with the classification in mineralogy. We applied the developed SIT method to the datasets acquired at the Eastern Tianshan Mountains of Xinjiang (HyMap data) and the Qulong district of Xizang (Hyperion data). In Xinjiang, the two major classes of Al-OH and Mg-OH minerals were

  3. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-07-01

    We investigate the limitations of statistical absorption measurements with the Sloan Digital Sky Survey (SDSS) optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about 1 per cent. We show that these features originate from inaccuracy in the fitting of modelled F-star spectra used for flux calibration. The best-fitting models for those stars are found to systematically overestimate the strength of metal lines and underestimate that of Lithium. We also identify the existence of artefacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature is solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  4. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-04-01

    We investigate the limitations of statistical absorption measurements with the SDSS optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about one percent. We show that these features originate from inaccuracy in the fitting of modeled F-star spectra used for flux calibration. The best-fit models for those stars are found to systematically over-estimate the strength of metal lines and under-estimate that of Lithium. We also identify the existence of artifacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest-frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature are solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  5. Radiant energy absorption studies for laser propulsion. [gas dynamics

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.

    1975-01-01

    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.

  6. Laboratory absorption spectra of molecules at interstellar cloud temperatures - First measurements on CO at about 97 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Yoshino, K.; Stark, G.; Ito, K.; Stevens, M. H.

    1991-01-01

    In the 91-100 nm spectral region, where absorption of photons by interstellar CO usually leads to dissociation, laboratory spectra obtained at 295 K show that most CO bands are both overlapped and perturbed. Reliable band oscillator strengths cannot be extracted from such spectra. As a consequence, synthetic extreme-ultraviolet absorption spectra for CO at the low temperatures that prevail in interstellar clouds are uncertain. A supersonic expansion technique has been used to cool CO to 30 K and three bands in the 97-nm region have been studied with high spectral resolution. The measured spectrum at 30 K is in reasonable agreement with some published modeled spectra, but the ratios of integrated cross sections are somewhat different from those determined from low resolution spectra obtained at 295 K, in which the bands are blended.

  7. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  8. Oil droplets of bird eyes: microlenses acting as spectral filters

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.

    2014-01-01

    An important component of the cone photoreceptors of bird eyes is the oil droplets located in front of the visual-pigment-containing outer segments. The droplets vary in colour and are transparent, clear, pale or rather intensely yellow or red owing to various concentrations of carotenoid pigments. Quantitative modelling of the filter characteristics using known carotenoid pigment spectra indicates that the pigments’ absorption spectra are modified by the high concentrations that are present in the yellow and red droplets. The high carotenoid concentrations not only cause strong spectral filtering but also a distinctly increased refractive index at longer wavelengths. The oil droplets therefore act as powerful spherical microlenses, effectively channelling the spectrally filtered light into the photoreceptor's outer segment, possibly thereby compensating for the light loss caused by the spectral filtering. The spectral filtering causes narrow-band photoreceptor spectral sensitivities, which are well suited for spectral discrimination, especially in birds that have feathers coloured by carotenoid pigments. PMID:24395968

  9. Using GIS servers and interactive maps in spectral data sharing and administration: Case study of Ahvaz Spectral Geodatabase Platform (ASGP)

    NASA Astrophysics Data System (ADS)

    Karami, Mojtaba; Rangzan, Kazem; Saberi, Azim

    2013-10-01

    With emergence of air-borne and space-borne hyperspectral sensors, spectroscopic measurements are gaining more importance in remote sensing. Therefore, the number of available spectral reference data is constantly increasing. This rapid increase often exhibits a poor data management, which leads to ultimate isolation of data on disk storages. Spectral data without precise description of the target, methods, environment, and sampling geometry cannot be used by other researchers. Moreover, existing spectral data (in case it accompanied with good documentation) become virtually invisible or unreachable for researchers. Providing documentation and a data-sharing framework for spectral data, in which researchers are able to search for or share spectral data and documentation, would definitely improve the data lifetime. Relational Database Management Systems (RDBMS) are main candidates for spectral data management and their efficiency is proven by many studies and applications to date. In this study, a new approach to spectral data administration is presented based on spatial identity of spectral samples. This method benefits from scalability and performance of RDBMS for storage of spectral data, but uses GIS servers to provide users with interactive maps as an interface to the system. The spectral files, photographs and descriptive data are considered as belongings of a geospatial object. A spectral processing unit is responsible for evaluation of metadata quality and performing routine spectral processing tasks for newly-added data. As a result, by using internet browser software the users would be able to visually examine availability of data and/or search for data based on descriptive attributes associated to it. The proposed system is scalable and besides giving the users good sense of what data are available in the database, it facilitates participation of spectral reference data in producing geoinformation.

  10. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    PubMed

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo

    2017-11-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere

  12. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  13. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  14. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  15. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  16. Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes

    PubMed Central

    Boscencu, Rica; Oliveira, Anabela Sousa; Ferreira, Diana P.; Ferreira, Luís Filipe Vieira

    2012-01-01

    Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Zn(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Cu(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin and Cu(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation. PMID:22942693

  17. Constraints on the Compositions of Phobos and Deimos from Mineral Absorptions

    NASA Technical Reports Server (NTRS)

    Fraeman, A. A.; Murchie, S. L.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.

    2013-01-01

    The compositions of Phobos and Deimos have remained controversial despite multiple Earth- and space-based observations acquired during the last 40 years. Phobos is composed of at least two spectral units that are both dark yet distinct at visible to near infrared wavelenghts; a spectrally red-sloped "red" unit covers most of the moon and a less red-sloped "blue" unit is present in the ejecta of the approximately 9-km diameter impact crater Stickney [1,2]. Deimos is similar spectrally to Phobos' "red" unit [2]. Here we report results from mapping mineral absorptions on Phobos and Deimos using visible/near infrared observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We find evidence for an absorption feature at 0.65 m in the Phobos red unit and Deimos that is reproducible in observations from other instruments. The phase responsible is uncertain but may be a Fe-bearing phyllosilicate and/or graphite, consistent with the notion that Phobos and Deimos have compositions similar to CM carbonaceous chondrites [3].

  18. Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang

    2016-12-01

    We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.

  19. Broadband Spectral Modeling of the Extreme Gigahertz-peaked Spectrum Radio Source PKS B0008-421

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Ekers, R. D.; Tingay, S. J.; Wayth, R. B.; Morgan, J.; Bernardi, G.; Bell, M. E.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kudrayvtseva, N.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Srivani, K. S.; Subrahmanyan, R.; Udaya Shankar, N.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-08-01

    We present broadband observations and spectral modeling of PKS B0008-421 and identify it as an extreme gigahertz-peaked spectrum (GPS) source. PKS B0008-421 is characterized by the steepest known spectral slope below the turnover, close to the theoretical limit of synchrotron self-absorption, and the smallest known spectral width of any GPS source. Spectral coverage of the source spans from 0.118 to 22 GHz, which includes data from the Murchison Widefield Array and the wide bandpass receivers on the Australia Telescope Compact Array. We have implemented a Bayesian inference model fitting routine to fit the data with internal free-free absorption (FFA), single- and double-component FFA in an external homogeneous medium, FFA in an external inhomogeneous medium, or single- and double-component synchrotron self-absorption models, all with and without a high-frequency exponential break. We find that without the inclusion of a high-frequency break these models cannot accurately fit the data, with significant deviations above and below the peak in the radio spectrum. The addition of a high-frequency break provides acceptable spectral fits for the inhomogeneous FFA and double-component synchrotron self-absorption models, with the inhomogeneous FFA model statistically favored. The requirement of a high-frequency spectral break implies that the source has ceased injecting fresh particles. Additional support for the inhomogeneous FFA model as being responsible for the turnover in the spectrum is given by the consistency between the physical parameters derived from the model fit and the implications of the exponential spectral break, such as the necessity of the source being surrounded by a dense ambient medium to maintain the peak frequency near the gigahertz region. This implies that PKS B0008-421 should display an internal H i column density greater than 1020 cm-2. The discovery of PKS B0008-421 suggests that the next generation of low radio frequency surveys could reveal a

  20. The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traven, G.; Zwitter, T.; Žerjal, M.

    Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited ( V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort tomore » discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE ( t -distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, H α /H β emission, H α /H β emission superimposed on absorption, H α /H β P-Cygni, H α /H β inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.« less

  1. Growth and spectral-luminescent study of SrMoO4 crystals doped with Tm3+ ions

    NASA Astrophysics Data System (ADS)

    Dunaeva, E. E.; Zverev, P. G.; Doroshenko, M. E.; Nekhoroshikh, A. V.; Ivleva, L. I.; Osiko, V. V.

    2016-03-01

    SrMoO4 crystals doped with Tm3+ ions have been produced from a melt using the Czochralski method; their spectral-luminescent characteristics have been studied, and laser radiation has been generated at the wavelength of 1.94 μm using laser-diode excitation. The high absorption section at the wavelength of 795 nm, the fairly high luminescence section, the long lifetime at the upper laser level 3F4 of 1.5 ms, and a wide luminescence band allow one to hope for developing efficient tunable Tm3+: SrMoO4 crystal lasers with diode pumping in the range of 1.7-2.0 μm, which are capable of implementing SRS self-transformation of radiation into the middle IR band.

  2. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  3. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects

    PubMed Central

    Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242

  4. Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity

    NASA Astrophysics Data System (ADS)

    Pogosyan, S. I.; Durgaryan, A. M.; Konyukhov, I. V.; Chivkunova, O. B.; Merzlyak, M. N.

    2009-12-01

    A device for integrating cavity absorption measurements (ICAM) with an internal diameter of 80 mm suitable for field research is described. The spectral features of the light absorption by some cyanobacteria, green algae, and diatoms in the integrating sphere were studied and the dependences of the absorption on the cell concentration were determined in comparison with the conventional measurements in a 1-cm cuvette. The sensitivity of the chlorophyll estimation with the ICAM reached 0.2-0.5 mg m-3. The results of the ICAM application for the direct analysis of the natural phytoplankton and dissolved organic (“yellow“) matter in the Black Sea and the Sea of Japan are described.

  5. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  6. Ultraviolet absorption cross-sections of hot carbon dioxide

    NASA Astrophysics Data System (ADS)

    Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.

    2004-12-01

    The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.

  7. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  8. Spectral model for clear sky atmospheric longwave radiation

    NASA Astrophysics Data System (ADS)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  9. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline

  10. Trojan Asteroids: Spectral Groups, Volatiles, and Rotational Variation

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Takir, D.; Stamper, N. G.; Lucas, M. P.

    2017-12-01

    Trojan asteroids comprise a substantial population of primitive bodies confined to Jupiter's stable Lagrange regions. ecause they likely became trapped in these orbits at the end of the initial phase of planetary formation and subsequent migration, the compositions of Trojans provide unique perspectives on chemical and dynamical processes that shaped the Solar System. Ices and organics are of particular interest for understanding Trojan histories. Published near-infrared (0.7 to 4.0 mm) spectra of Trojans show no absorption bands due to H2O or organics. However, if the Trojan asteroids formed at or beyond their present heliocentric distance of 5.2 AU and never spent significant amounts of time closer to the Sun, they should contain H2O ice. Two VNIR spectral groups exist within the Trojans: 2/3 of large Trojans form a cluster with very red (D-type-like) spectral slopes, while the other 1/3 cluster around less-red (P-type-like) slopes. Visible colors of smaller Trojans suggest that the ratio of red to less-red Trojans decreases with decreasing size, from which Wong and Brown (2015; AJ 150:174) suggest that the interiors of all Trojans are represented by the less-red spectral group. In order to further test the hypothesis that Trojans contain H­2O ice and complex organics and to test the result from visible colors that the spectral group ratio changes with size, we have measured near-infrared (0.8 - 2.5 μm) spectra of small ( 35 to 75 km) Trojans from both swarms using the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). We have also measured 2 - 4 μm spectra of several Trojans to search for spectral signatures of H2O and organics. We confirm that the two spectral groups persist to smaller sizes, and we still detect no absorption features that would be diagnostic of composition. The spectrum of two large Trojans show evidence of spectral slope variations with rotation, but spectra of several others do not. We will present the new spectra and

  11. A Study of the Skin Absorption of Ethylbenzene in Man

    PubMed Central

    Dutkiewicz, Tadeusz; Tyras, Halina

    1967-01-01

    The absorption of ethylbenzene through the skin of the hand and the forearm in men was investigated experimentally. Both the absorption of liquid ethylbenzene and the absorption from aqueous solutions were studied. The rate of absorption of liquid ethylbenzene was 22 to 33 mg./cm.2/hr, and the rates from aqueous solutions were 118 and 215 μg./cm.2/hr from mean concentrations of 112 and 156 mg./litre. The mandelic acid excreted in urine was equivalent to about 4·6% of the absorbed dose—much less than after lung absorption. Urinary mandelic acid does not provide a reliable index of absorption when there is simultaneous skin and lung exposure. PMID:6073092

  12. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Sander, Rolf; Keller-Rudek, Hannelore; Moortgat, Geert; Sörensen, Rüdiger

    2014-05-01

    Measurements from satellites can be used to obtain global concentration maps of atmospheric trace constituents. Critical parameters needed in the analysis of the satellite data are the absorption cross sections of the observed molecules. Here, we present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of more than 5000 absorption cross section and quantum yield data files in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at http://www.uv-vis-spectral-atlas-mainz.org. It has been completely overhauled and now appears with improved browse and search options, based on PostgreSQL, Django and Python database software. The web pages are continuously updated.

  13. Absorption and fluorescence properties of colored dissolved organic matter in the Ross Sea during austral summer

    NASA Astrophysics Data System (ADS)

    D'Sa, E. J.; Kim, H. C.; Ha, S. Y.

    2016-12-01

    Colored dissolved organic matter (CDOM) spectral absorption and excitation-emission matrix (EEMs) fluorescence with parallel factor analysis (PARAFAC) were examined in the Ross Sea during a survey conducted on board the R/V Araon in the austral summer of 14/15. CDOM absorption at 355 nm ranged from 0.06 to 1.14 m-1 while spectral slope S calculated between 275-295 nm wavelength ranged from 18.83 to 33.32 µm-1 with water masses playing an important role in its variability. Spectral slope S decreased with increasing CDOM absorption indicating the strong role of photo-oxidation on CDOM abundance during the summer. PARAFAC analysis of EEM data identified two humic-like (terrestrial and marine-like) and a protein-like (tryptophan-like) component. The two humic-like components were well correlated with little variability spatially and across the water column ( 0-100 m) likely indicating more refractory material. The protein-like fluorescent component was relatively quite variable supporting the autochthonous production of this fluorescent component in the highly productive Ross Sea waters.

  14. Asteroid spectral reflectivities.

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Mccord, T. B.; Johnson, T. V.

    1973-01-01

    We measured spectral reflectivities (0.3-1.1 micron) for 32 asteroids. There are at least 14 different curve types. Common types are: (a) reddish curves with 10% absorptions near 0.95 micron or beyond 1.0 micron, due to Fe(2+) in minerals such as pyroxenes; (b) flat curves in the visible and near-IR with sharp decreases in the UV and (c) flat curves even into the UV. Several asteroids show probable color variations with rotation, especially 6 Hebe. A sample of 102 asteroids with reliably known colors is derived from the reflectivities and from earlier colorimetry. Several correlations of colors and spectral curve types with orbital and physical parameters are examined: (1) asteroids with large aphelia have flat reflectivities while those with small perihelia are mostly reddish, (2) curve types show evidence for clustering on an a vs e plot, with 0.95 micron bands occuring mainly for Mars-approaching asteroids, (3) no strong correlation exists between color and either proper eccentricity or proper inclination.

  15. Improving Optical Absorption Models for Harsh Planetary Atmospheres: Laboratory Spectroscopy at Venus Surface Conditions

    NASA Astrophysics Data System (ADS)

    Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian

    2018-06-01

    Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.

  16. Studies on Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534

  17. Information content in spectral dependencies of optical unit volume parameters under action of He-Ne laser on blood

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.

    1995-01-01

    Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.

  18. Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K

    NASA Astrophysics Data System (ADS)

    Axson, J. L.; Washenfelder, R. A.; Kahan, T. F.; Young, C. J.; Vaida, V.; Brown, S. S.

    2011-08-01

    We report the ozone absolute absorption cross section between 350-470 nm, the minimum between the Huggins and Chappuis bands, where the ozone cross section is less than 10-22 cm2. Ozone spectra were acquired using an incoherent broadband cavity enhanced absorption spectrometer, with three channels centered at 365, 405, and 455 nm. The accuracy of the measured cross section is 2 %. Previous measurements vary by more than an order of magnitude in this spectral region. The measurements reported here provide much greater spectral coverage than the most recent measurements. We report a minimum absorption cross section of 3.4×10-24 cm2 at 381.8 nm, which is 22 % lower than the previously reported value. The effect of O3 concentration and water vapor partial pressure were investigated, however there were no observable changes in the absorption spectrum most likely due to the low optical density of the complex.

  19. [Development of photothermal microactuator based on spectral analysis of photothermal expansion material].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2009-11-01

    The spectral characteristic of materials is the key factor of the photothermal microactuator's performance. The present article introduces the operating principle, and analyzes the relationship between the material spectral characteristic and its expansion. As the photothermal microactuator is an innovative microactuator based on photothermal expansion that absorbs the laser energy and converts it into internal energy to realize the microdrive, the optimal photothermal expansion material with proper absorption spectrum characteristic matching the spectrum of light driving source needs to be found. The reflection and absorption spectra of four types of polymeric material, including PVC, HDPE, LDPE and PET, were obtained by using the single integrating sphere method. The results indicate that the reflection spectrum of the dyed high-density polyethylene (HDPE) is of double-peak structure in visible band, and there is strong absorption within the range of 600-690 nm, which means it would match the light driving source quite well in the broad spectral range. Therefore, HDPE was chosen as the photothermal expansion material. In order to check out the feasibility and performance of the photothermal microactuactor based on HDPE, a prototyping microactuator 1 500 mm in length and 30 mm in thickness was manufactured by using an excimer laser micromachining system. With a laser diode (10 mW/650 nm) as the external power source to activate the microactuator, performance measurement experiments were carried out by using a self-produced video movement measurement system with a CCD-coupled microscope. The experiment results demonstrate that the deflection of the microactuator reaches 18.7 mm at 10 mW of laser power, showing that the characteristics of spectral absorption and light-heat transition are quite well at 650 nm. This novel photothermal microactuator has simple structure, adjustable displacement output, and more mobility, and can be controlled remotely, so it will be

  20. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  1. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as themore » state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to

  2. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  3. Absorption, fluorescence and second harmonic generation in Cr3+-doped BiB3O6 glasses

    NASA Astrophysics Data System (ADS)

    Kuznik, W.; Fuks-Janczarek, I.; Wojciechowski, A.; Kityk, I. V.; Kiisk, V.; Majchrowski, A.; Jaroszewicz, L. R.; Brik, M. G.; Nagy, G. U. L.

    2015-06-01

    Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr3+ energy levels, crystal field strength Dq, Racah parameters B and C) was performed. A weak photostimulated second harmonic generation signal was found to increase drastically due to poling by proton implantation in the investigated sample.

  4. Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code

    NASA Astrophysics Data System (ADS)

    Phillips, William; Russwurm, George M.

    1999-02-01

    This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.

  5. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  6. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  7. Spectral modeling of radiation in combustion systems

    NASA Astrophysics Data System (ADS)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  8. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions.

    PubMed

    Beaujuge, Pierre M; Amb, Chad M; Reynolds, John R

    2010-11-16

    With the development of light-harvesting organic materials for solar cell applications and molecular systems with fine-tuned colors for nonemissive electrochromic devices (e.g., smart windows, e-papers), a number of technical challenges remain to be overcome. Over the years, the concept of "spectral engineering" (tailoring the complex interplay between molecular physics and the various optical phenomena occurring across the electromagnetic spectrum) has become increasingly relevant in the field of π-conjugated organic polymers. Within the spectral engineering toolbox, the "donor-acceptor" approach uses alternating electron-rich and electron-deficient moieties along a π-conjugated backbone. This approach has proved especially valuable in the synthesis of dual-band and broadly absorbing chromophores with useful photovoltaic and electrochromic properties. In this Account, we highlight and provide insight into a present controversy surrounding the origin of the dual band of absorption sometimes encountered in semiconducting polymers structured using the "donor-acceptor" approach. Based on empirical evidence, we provide some schematic representations to describe the possible mechanisms governing the evolution of the two-band spectral absorption observed on varying the relative composition of electron-rich and electron-deficient substituents along the π-conjugated backbone. In parallel, we draw attention to the choice of the method employed to estimate and compare the absorption coefficients of polymer chromophores exhibiting distinct repeat unit lengths, and containing various extents of solubilizing side-chains along their backbone. Finally, we discuss the common assumption that "donor-acceptor" systems should have systematically lower absorption coefficients than their "all-donor" counterparts. The proposed models point toward important theoretical parameters which could be further explored at the macromolecular level to help researchers take full advantage of the

  9. Spectral variability of plagioclase-mafic mixtures (3): Quantitative analysis applying the MGM algorithm

    NASA Astrophysics Data System (ADS)

    Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria

    2015-07-01

    Among the techniques to detect planet's mineralogical composition remote sensing, visible and near-infrared (VNIR) reflectance spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine (OL) or pyroxene (PX). Although OL, PX and their mixtures have been widely studied, plagioclase (PL), considered a spectroscopically transparent mineral, has been poorly analyzed. In this work we quantitatively investigate the influence of plagioclase absorption band on the absorption bands of Fe, Mg minerals using the Modified Gaussian Model - MGM (Sunshine, J.M. et al. [1990]. J. Geophys. Res. 95, 6955-6966). We consider three plagioclase compositions of varying FeO wt.% contents and five mafic end-members (1) 56% orthopyroxene and 44% clinopyroxene, (2) 28% olivine and 72% orthopyroxene, (3) 30% orthopyroxene and 70% olivine, (4) 100% olivine and (5) 100% orthopyroxene, at two different particle sizes. The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). In particular, we show the variation of the plagioclase and composite (plagioclase-olivine) band spectral parameters versus the volumetric iron content related to the plagioclase abundance in mixtures. Generally, increasing the vol. FeO% due to the PL: (1) 1250 nm band deepens with linear trend in mixtures with pyroxenes, while it decreases in mixtures with olivine, with trend shifting from parabolic to linear increasing the olivine content in end-member; (2) 1250 nm band center moves towards longer wavelengths with linear trend in pyroxene-rich mixtures and parabolic trend in olivine-rich mixtures; and (3) 1250 nm band clearly widens with linear trend in olivine-free mixtures, while the widening is only slight in olivine-rich mixtures. We also outline how spectral parameters can be ambiguous leading to an

  10. Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.

    PubMed

    Helseth, Lars Egil

    2012-02-13

    The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.

  11. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    NASA Astrophysics Data System (ADS)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  12. Cross-phase modulation-induced spectral broadening in silicon waveguides.

    PubMed

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Schröder, Jochen; Eggleton, Benjamin J

    2016-01-11

    We analytically and experimentally investigate cross-phase modulation (XPM) in silicon waveguides. In contrast to the well known result in pure Kerr media, the spectral broadening ratio of XPM to self-phase modulation is not two in the presence of either two-photon absorption (TPA) or free carriers. The physical origin of this change is different for each effect. In the case of TPA, this nonlinear absorption attenuates and slightly modifies the pulse shape due to differential absorption in the pulse peak and wings. When free carriers are present two different mechanisms modify the dynamics. First, free-carrier absorption performs a similar role to TPA, but is additionally asymmetric due to the delayed free-carrier response. Second, free-carrier dispersion induces an asymmetric blue phase shift which competes directly with the symmetric Kerr-induced XPM red shift. We confirm this analysis with pump-probe experiments in a silicon photonic crystal waveguide.

  13. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2015-06-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances might be the causes of the diversity of water quality parameters in Hulun Buir plateau. CDOM absorption in river waters was significantly lower than terminal waters (p < 0.01). Analysis of ratio of absorption at 250-365 nm (E250 : 365), specific UV absorbance (SUVA254), and spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.

  14. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  15. Propagation of spectral characterization errors of imaging spectrometers at level-1 and its correction within a level-2 recalibration scheme

    NASA Astrophysics Data System (ADS)

    Vicent, Jorge; Alonso, Luis; Sabater, Neus; Miesch, Christophe; Kraft, Stefan; Moreno, Jose

    2015-09-01

    The uncertainties in the knowledge of the Instrument Spectral Response Function (ISRF), barycenter of the spectral channels and bandwidth / spectral sampling (spectral resolution) are important error sources in the processing of satellite imaging spectrometers within narrow atmospheric absorption bands. The exhaustive laboratory spectral characterization is a costly engineering process that differs from the instrument configuration in-flight given the harsh space environment and harmful launching phase. The retrieval schemes at Level-2 commonly assume a Gaussian ISRF, leading to uncorrected spectral stray-light effects and wrong characterization and correction of the spectral shift and smile. These effects produce inaccurate atmospherically corrected data and are propagated to the final Level-2 mission products. Within ESA's FLEX satellite mission activities, the impact of the ISRF knowledge error and spectral calibration at Level-1 products and its propagation to Level-2 retrieved chlorophyll fluorescence has been analyzed. A spectral recalibration scheme has been implemented at Level-2 reducing the errors in Level-1 products below the 10% error in retrieved fluorescence within the oxygen absorption bands enhancing the quality of the retrieved products. The work presented here shows how the minimization of the spectral calibration errors requires an effort both for the laboratory characterization and for the implementation of specific algorithms at Level-2.

  16. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  17. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  18. Chemometric analysis of correlations between electronic absorption characteristics and structural and/or physicochemical parameters for ampholytic substances of biological and pharmaceutical relevance.

    PubMed

    Judycka-Proma, U; Bober, L; Gajewicz, A; Puzyn, T; Błażejowski, J

    2015-03-05

    Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH=2.5 and pH=7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  20. Applicability of spectral indices on thickness identification of oil slick

    NASA Astrophysics Data System (ADS)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  1. Designed microstructure based on color filter and metallic nanoslit for multiband spectral compatible control

    NASA Astrophysics Data System (ADS)

    Zhan, Zhigang; Han, Yuge

    2018-01-01

    Controlling the spectral characteristics by regulating the geometry of microstructure has become an effective method to meet the requirements of various applications. To mediate the spectral characteristics, metallic subwavelength slits with different structures and color filters consisting of diverse materials were discussed, and then a designed microstructure composed of color filter and metallic slits, which were surrounded by grooves, was put forward for a compatible effect of controlling the spectral characteristics. Afterward, the spectral characteristics of the proposed structure were simulated by finite-difference time-domain method in the wavelength range of 300 to 10,000 nm. Additionally, the effects of geometric parameters on the spectral characteristics were studied. The results show that the presented microstructure can reflect a monochromatic color at the wavelength of 600 nm and its reflectance is ˜40%. The average absorptance near the wavelength of 1060 nm is more than 95%, and the average reflectance in the infrared band exceeds 80%. In conclusion, the compatible spectrum control in three bands (i.e., visible, near-infrared, and mid-infrared) was realized.

  2. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  3. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  4. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  5. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  6. Two-photon absorption resonance in 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP)

    NASA Astrophysics Data System (ADS)

    Miniewicz, Andrzej; Delysse, Stéphane; Nunzi, Jean-Michel; Kajzar, François

    1998-04-01

    A two-photon absorption spectrum of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) in tetrahydrofuran solution has been studied by the Kerr ellipsometry technique. The spectral shape and amplitude of the imaginary part of the dominant molecular hyperpolarizability term Im( γXXXX) is compared with the relevant linear absorption spectrum within a simple two-level model. Agreement between the measured γXXXX=2.0×10 -48 m 5 V -2 and calculated γXXXX=(1.2-1.5)×10 -48 m 5 V -2 two-photon absorption molecular hyperpolarizabilties in the vicinity of the two-photon resonance transition is satisfactory.

  7. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  8. Energy absorption studied to reduce aircraft crash forces

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The NASA/FAA aircraft safety reseach programs for general aviation aircraft are discussed. Energy absorption of aircraft subflooring and redesign of interior flooring are being studied. The testing of energy absorbing configurations is described. The three NASA advanced concepts performed at neary the maximum possible amount of energy absorption, and one of two minimum modifications concepts performed well. Planned full scale tests are described. Airplane seat concepts are being considered.

  9. Estimation of the molar absorption coefficient of copper salicylate within the spectral range 300-350 nm

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2017-12-01

    Additional absorption was detected in absorption spectra within the range 300-350 nm after addition of copper sulfate CuSO4(aq) to a solution of sodium salicylate NaНSal (рН = 7.8). The additional maximum absorption was observed at 320 nm. Assuming that the additional absorption depends on the formation of copper salicylate CuSal, the molar absorption coefficient εCuSal of this complex was determined to be (3.8 ± 0.02) · 103 М- 1 сm- 1. This value is almost equal to that of monoanion HSal-, εHSal - = (3.6 ± 0.04) · 103 М- 1 сm- 1, and is 2.5 times as much as εFe3 + HSal - = (1.55 ± 0.05) · 103 М- 1 сm- 1 for iron salicylate. The difference in εCuSal and εFe3 + HSal - is due to the difference in the initial electron states of Cu2 + and Fe3 + ions that have the d9 and d5 configurations, respectively.

  10. [Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake].

    PubMed

    Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin

    2010-05-01

    Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.

  11. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

    NASA Astrophysics Data System (ADS)

    Gan, Ruting; Guo, Zhenning; Lin, Jieben

    2015-09-01

    To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

  12. Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun

    2018-01-01

    Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.

  13. Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea

    NASA Astrophysics Data System (ADS)

    Kheireddine, Malika; Ouhssain, Mustapha; Calleja, Maria Ll.; Morán, Xosé Anxelu G.; Sarma, Y. V. B.; Tiwari, Surya P.; Jones, Burton H.

    2018-03-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) is a major variable used in developing robust bio-optical models and understanding biogeochemical processes. Over the last decade, the optical properties of CDOM in the open sea have been intensely studied. However, their variations in clear water are poorly documented, particularly in the Red Sea, owing to the absence of in situ measurements. We performed several cruises in the Red Sea to investigate the spatial distribution of the absorption coefficient of CDOM. The spectral absorption coefficients were determined from 400 nm to 740 nm using a WETLabs ac-s hyper-spectral spectrophotometer. In general, we found a latitudinal gradient in the CDOM absorption coefficient at 443 nm (aCDOM(443)) from south to north that is likely influenced by the exchange of water through the strait of Bab-el-Mandeb and the thermohaline circulation of the Red Sea. However, high aCDOM(443) values were observed in the northern Red Sea due to the existence of a sub-mesoscale feature that may induce an increase in phytoplankton production and lead to CDOM production. The aCDOM(443) covaried with the chlorophyll a concentration ([Chl a],) despite a high scatter. Furthermore, the aCDOM(443) for a given [Chl a] concentration was higher than those predicted by global ocean bio-optical models. This study advances our understanding of CDOM concentration in the Red Sea and may help improve the accuracy of the algorithms used to obtain CDOM absorption from ocean color.

  14. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  15. Spectral radiative properties of a living human body

    NASA Astrophysics Data System (ADS)

    Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.

    1986-09-01

    Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.

  16. Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  17. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  18. Free Carrier Induced Spectral Shift for GaAs Filled Metallic Hole Arrays

    DTIC Science & Technology

    2012-03-13

    Bahae , G. I . Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside, “Limitation due to three-photon absorption on the useful spectral range...Free carrier induced spectral shift for GaAs filled metallic hole arrays Jingyu Zhang 1,2,* , Bin Xiang 3 , Mansoor Sheik- Bahae 4 , and S. R. J...OCIS codes: (310.6628) Subwavelength structures;(190.4350) Nonlinear optics at surfaces References and links 1. J. M. Luther, P. K. I . Jain, T. Ewers

  19. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  20. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  1. Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Yang; Yuan, Zong-Heng; Li, Xiao-Nan; Wu, Jun; Zhang, Wen-Tao; Ye, Song

    2015-07-01

    Noble metal nanoantenna could effectively enhance light absorption and increase detection sensitivity. In this paper, we propose a periodic Ag diamond nanoantenna array to increase the absorption of thin-film solar cells and to improve the detection sensitivity via localized surface plasmon resonance. The effect of nanoantenna arrays on the absorption enhancement is theoretically investigated using the finite difference time domain (FDTD) method with manipulating the spectral response by geometrical parameters of nanoantennas. A maximum absorption enhancement factor of 1.51 has been achieved in this study. In addition, the relation between resonant wavelength (intensity reflectivity) and refractive index is discussed in detail. When detecting the environmental index using resonant wavelengths, a maximum detection sensitivity of about 837 nm/RIU (refractive index unit) and a resolution of about 10-3 RIU can be achieved. Moreover, when using the reflectivity, the sensitivity can be as high as 0.93 AU/RIU. Furthermore, we also have theoretically studied the effectiveness of nanoantennas in distinguishing chemical reagents, solution concentrations, and solution allocation ratios by detecting refractive index. From the results presented in this paper, we conclude that this work might be useful for biosensor detection and other types of detections. Project supported by the International Scientific and Technological Cooperation Projects of Guizhou Province, China (Grant No. 20117035) and the Program for Innovative Research Team of Guilin University of Electronic Technology, China (Grant No. IRTGUET).

  2. Toroidal Optical Microresonators as Single-Particle Absorption Spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.

    Single-particle and single-molecule measurements are invaluable tools for characterizing structural and energetic properties of molecules and nanomaterials. Photothermal microscopy in particular is an ultrasensitive technique capable of single-molecule resolution. In this thesis I introduce a new form of photothermal spectroscopy involving toroidal optical microresonators as detectors and a pair of non-interacting lasers as pump and probe for performing single-target absorption spectroscopy. The first three chapters will discuss the motivation, design principles, underlying theory, and fabrication process for the microresonator absorption spectrometer. With an early version of the spectrometer, I demonstrate photothermal mapping and all-optical tuning with toroids of different geometries in Chapter 4. In Chapter 5, I discuss photothermal mapping and measurement of the absolute absorption cross-sections of individual carbon nanotubes. For the next generation of measurements I incorporate all of the advances described in Chapter 2, including a double-modulation technique to improve detection limits and a tunable pump laser for spectral measurements on single gold nanoparticles. In Chapter 6 I observe sharp Fano resonances in the spectra of gold nanoparticles and describe them with a theoretical model. I continued to study this photonic-plasmonic hybrid system in Chapter 7 and explore the thermal tuning of the Fano resonance phase while quantifying the Fisher information. The new method of photothermal single-particle absorption spectroscopy that I will discuss in this thesis has reached record detection limits for microresonator sensing and is within striking distance of becoming the first single-molecule room-temperature absorption spectrometer.

  3. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  4. Results of ACTIM: an EDA study on spectral laser imaging

    NASA Astrophysics Data System (ADS)

    Hamoir, Dominique; Hespel, Laurent; Déliot, Philippe; Boucher, Yannick; Steinvall, Ove; Ahlberg, Jörgen; Larsson, Hakan; Letalick, Dietmar; Lutzmann, Peter; Repasi, Endre; Ritt, Gunnar

    2011-11-01

    The European Defence Agency (EDA) launched the Active Imaging (ACTIM) study to investigate the potential of active imaging, especially that of spectral laser imaging. The work included a literature survey, the identification of promising military applications, system analyses, a roadmap and recommendations. Passive multi- and hyper-spectral imaging allows discriminating between materials. But the measured radiance in the sensor is difficult to relate to spectral reflectance due to the dependence on e.g. solar angle, clouds, shadows... In turn, active spectral imaging offers a complete control of the illumination, thus eliminating these effects. In addition it allows observing details at long ranges, seeing through degraded atmospheric conditions, penetrating obscurants (foliage, camouflage...) or retrieving polarization information. When 3D, it is suited to producing numerical terrain models and to performing geometry-based identification. Hence fusing the knowledge of ladar and passive spectral imaging will result in new capabilities. We have identified three main application areas for active imaging, and for spectral active imaging in particular: (1) long range observation for identification, (2) mid-range mapping for reconnaissance, (3) shorter range perception for threat detection. We present the system analyses that have been performed for confirming the interests, limitations and requirements of spectral active imaging in these three prioritized applications.

  5. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr; Ferrier, Alban

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase ofmore » up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.« less

  6. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  7. Unveiling the Diffuse, Neutral Interstellar Medium: Absorption Spectroscopy of Galactic Hydrogen

    NASA Astrophysics Data System (ADS)

    Murray, Claire Elizabeth

    The formation of stars and evolution of galaxies depends on the cycle of interstellar matter between supernova-expelled plasma and molecule-rich gas. At the center of this cycle is multiphase neutral hydrogen (HI), whose physical conditions provide key ingredients to theoretical models. However, constraints for HI properties require measurements of gas emission and absorption which have been severely limited by previous observational capabilities. In this thesis, I present the largest survey of Galactic HI absorption ever undertaken with the Karl G. Jansky Very Large Array (VLA). The survey, 21 cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), is a statistical study of HI in all phases using direct absorption measurements. Leveraging novel calibration techniques, I demonstrate the capability of the VLA to detect a significant sample of 21 cm absorption lines from warm, diffuse HI. To maximize observational sensitivity, I stack the 21-SPONGE spectra and detect a pervasive signature of the warm neutral medium in absorption. The inferred excitation (or spin) temperature is consistent with existing estimates, yet higher than predictions from theoretical models of collisional HI excitation. This suggests that radiative feedback via resonant scattering of Lyalpha photons, known as the Wouthuysen-Field effect, is influential with important implications for cosmological 21 cm observations. Next, I compare 21-SPONGE with synthetic HI spectra from 3D numerical simulations using a new, objective decomposition and radiative transfer tool. I quantify the recovery of HI structures and their properties by Gaussian-fitted 21 cm spectral lines for the first time. I find that 21 cm absorption line shapes are sensitive to simulated physics, and demonstrate that my analysis method is a powerful tool for diagnosing neutral ISM conditions. Finally, I compare properties inferred from synthetic spectra with "true" simulation results to construct a bias correction

  8. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  9. Absorptivity of semiconductors used in the production of solar cell panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosyachenko, L. A., E-mail: lakos@chv.ukrpack.net; Grushko, E. V.; Mikityuk, T. I.

    The dependence of the absorptivity of semiconductors on the thickness of the absorbing layer is studied for crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS), and copper gallium diselenide (CuGaSe{sub 2}, CGS). The calculations are performed with consideration for the spectral distribution of AM1.5 standard solar radiation and the absorption coefficients of the materials. It is shown that, in the region of wavelengths {lambda} = {lambda}{sub g} = hc/E{sub g}, almost total absorption of the photons in AM1.5 solar radiation is attained in c-Si at the thickness d = 7-8 mm, in a-Simore » at d = 30-60 {mu}m, in CdTe at d = 20-30 {mu}m, and in CIS and CGS at d = 3-4 {mu}m. The results differ from previously reported data for these materials (especially for c-Si). In previous publications, the thickness needed for the semiconductor to absorb solar radiation completely was identified with the effective light penetration depth at a certain wavelength in the region of fundamental absorption for the semiconductor.« less

  10. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples

    PubMed Central

    Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei

    2017-01-01

    Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160

  11. [Study on the arc spectral information for welding quality diagnosis].

    PubMed

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  12. Weak absorptions in high density planetary atmospheres measured by the cavity ring down technique.

    NASA Astrophysics Data System (ADS)

    Snels, M.; Stefani, S.; Piccioni, G.

    2014-04-01

    High density planetary atmospheres are characterized by a high opacity due to the strong absorbers. Howevere usually several transparency windows exist which allow to study the lower part of the atmosphere as well as the surface emission. The weak absorptions occurring in these transparency windows are mostly due to trace species and to continuum absorption of the major absorber(s). A good example is the atmosphere of Venus, where carbondioxide causes a high opacity throughout most of the infrared wavelengths, but also has some transparency spectral windows in the near infrared, allowing the study of low lying clouds , trace species such as water vapor and in some cases the surface emission. The cavity ring down (CRD) technique has shown to be a good tool for studying weak absorptions. Here we present a CRD apparatus which can be operated at high pressures (up to 40 bar) with a sensitivity which allows to measure attenuations up to 2x10-8 cm-1. This instrument has been used to measure the carbon dioxide absorption at pressures up to 40 bar and has been also used to measure attenuation due to Rayleigh scattering at 1.18 μm.

  13. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    NASA Astrophysics Data System (ADS)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  14. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    We studied adaptation to spectral light distribution in undisturbed benthic communities of cyanobacterial mats growing in hypersaline ponds at Guerrero Negro, Baja California, Mexico. Microscale measurements of oxygen photosynthesis and action spectra were performed with microelectrodes; spectral radiance was measured with fiber-optic microprobes. The spatial resolution of all measurements was 0.1 mm, and the spectral resolution was 10 to 15 nm. Light attenuation spectra showed absorption predominantly by chlorophyll a (Chl a) (430 and 670 nm), phycocyanin (620 nm), and carotenoids (440 to 500 nm). Blue light (450 nm) was attenuated 10-fold more strongly than red light (600 nm). The action spectra of the surface film of diatoms accordingly showed activity over the whole spectrum, with maxima for Chl a and carotenoids. The underlying dense Microcoleus population showed almost exclusively activity dependent upon light harvesting by phycobilins at 550 to 660 nm. Maximum activity was at 580 and 650 nm, indicating absorption by phycoerythrin and phycocyanin as well as by allophycocyanin. Very little Chl a-dependent activity could be detected in the cyanobacterial action spectrum, even with additional 600-nm light to excite photosystem II. The depth distribution of photosynthesis showed detectable activity down to a depth of 0.8 to 2.5 mm, where the downwelling radiant flux at 600 nm was reduced to 0.2 to 0.6% of the surface flux.

  15. Absorption dips at low X-ray energies in Cygnus X-1. [observed with Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Murdin, P. G.

    1976-01-01

    Absorbing material in Cygnus X-1 jitters near the line joining the two stars, out of the orbital plane is described. Three looks with the Copernicus satellite at Cygnus X-1 have produced four examples of absorption dips (decreases in the 2 to 7 keV flux from Cygnus X-1 with an increase of spectral hardness consistent with photoelectric absorption).

  16. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    PubMed

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  17. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  18. The Anomalous Influence of Spectral Resolution on Pulsed THz Time Domain Spectroscopy under Real Conditions

    PubMed Central

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2017-01-01

    We have studied the spectral resolution influence on the accuracy of the substance detection and identification at using a broadband THz pulse measured under real conditions (at a distance of more than 3 m from a THz emitter in ambient air with a relative humidity of about 50%). We show that increasing spectral resolution leads to manifestation of small-scale perturbations (random fluctuations) in the signal spectrum caused by the influence of the environment or the sample structure. Decreasing the spectral resolution allows us to exclude from consideration this small-scale modulation of the signal as well as to detect the water vapor absorption frequencies. This fact is important in practice because it allows us to increase the signal processing rate. In order to increase the detection reliability, it is advisable to decrease the spectral resolution up to values of not more than 40% of the corresponding spectral line bandwidth. The method of spectral dynamics analysis together with the integral correlation criteria is used for the substance detection and identification. Neutral substances such as chocolate and cookies are used as the samples in the physical experiment. PMID:29231895

  19. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  20. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  1. THE VIEWING ANGLES OF BROAD ABSORPTION LINE VERSUS UNABSORBED QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2012-06-10

    It was recently shown that there is a significant difference in the radio spectral index distributions of broad absorption line (BAL) quasars and unabsorbed quasars, with an overabundance of BAL quasars with steeper radio spectra. This result suggests that source orientation does play into the presence or absence of BAL features. In this paper, we provide more quantitative analysis of this result based on Monte Carlo simulations. While the relationship between viewing angle and spectral index does indeed contain a lot of scatter, the spectral index distributions are different enough to overcome that intrinsic variation. Utilizing two different models ofmore » the relationship between spectral index and viewing angle, the simulations indicate that the difference in spectral index distributions can be explained by allowing BAL quasar viewing angles to extend about 10 Degree-Sign farther from the radio jet axis than non-BAL sources, though both can be seen at small angles. These results show that orientation cannot be the only factor determining whether BAL features are present, but it does play a role.« less

  2. Multimodal Spectral Imaging of Cells Using a Transmission Diffraction Grating on a Light Microscope

    PubMed Central

    Isailovic, Dragan; Xu, Yang; Copus, Tyler; Saraswat, Suraj; Nauli, Surya M.

    2011-01-01

    A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were spatially separated by the fluorescence spectra of the fluorophores present in them, providing detailed multi-colored spectral images of cells. Additionally, the grating-based spectral microscope enabled measurement of scattering and absorption spectra of unlabeled cells and stained tissue sections using darkfield and brightfield or DIC spectral microscopy, respectively. The presented spectral imaging methodology provides a readily affordable approach for multimodal spectral characterization of biological cells and other specimens. PMID:21639978

  3. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph;more » (iii) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.« less

  4. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    2017-09-01

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (I) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (II) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (III) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (IV) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (VI) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.

  5. Spectroscopy by joint spectral and time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2015-03-01

    We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.

  6. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  7. Spectral Variability of the Herbig Ae/Be Star HD 37806

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Pavlovskiy, S. E.; Kozlova, O. V.; Beskrovnaya, N. G.; Alekseev, I. Yu.; Valyavin, G. G.

    2018-03-01

    Results are reported from a spectroscopic study of the Herbig Ae/Be star HD 37806 from 2009 through 2017 using high resolution spectrographs at the Crimean Astrophysical Observatory and the OAN SPM Observatory in Mexico. 72 spectra of this object near the Hα, Hβ, HeI 5876 and D NaI lines are analyzed. The following results were obtained: 1. The type of spectral profile of the Hα line can change from P Cyg III to double emission and vice versa over a time scale on the order of a month. 2. Narrow absorption components are observed in the profiles of the Hα and D NaI lines with radial velocities that vary over a characteristic time on the order of a day. 3. On some days, the profiles of the Hβ, HeI 5876, and D NaI lines show signs of accretion of matter to the star with a characteristic lifetime of a few days. A possible interpretation of these phenomena was considered. The transformation of the Hα profile may be related to a change in the outer latitudinal width of the boundary of the wind zone. The narrow variable absorption lines may be caused by the rotation of local azimuthal inhomogeneities in the wind zone owing to the interaction of the disk with the star's magnetosphere in a propeller regime. Several current theoretical papers that predict the formation of similar inhomogeneous wind structures were examined. It is suggested that the episodes with signs of accretion in the spectral line profiles cannot be a consequence of the modulation of these profiles by the star's rotation but are more likely caused by sudden, brief changes in the accretion rate. These spectral observations of HD 37806 should be continued in a search for cyclical variability in the spectral parameters in order to identify direct signs of magnetospheric accretion and detect possible binary behavior in this object.

  8. [Spectral properties of light migration in apple fruit tissue].

    PubMed

    Sun, Teng-Fei; Zhang, Teng-Teng; Zheng, Tian-Tian; Cao, Zeng-Hui; Zhang, Jun

    2013-11-01

    The present paper simulates laser wavelength 632 and 750 nm Gaussian beam migration in apple fruit tissue using Monte-Carlo method, and researches the spectral properties of absorption and scattering. It was shown that the special energy distribution characteristics of Gaussian beam influenced the diffusion of the laser in the tissue, the reflection, absorption and transmittance of 750 nm by tissue are lower, there are more photons interacting with tissue within the tissue, and they can more clearly reflect the information within the tissue. So, the transmission characteristics of the infrared light were relatively strong in biology tissue, which was convenient for researching biology tissue.

  9. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  10. Studying soil properties using visible and near infrared spectral analysis

    NASA Astrophysics Data System (ADS)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  11. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  12. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  13. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  14. Iodine Absorption Cells Purity Testing.

    PubMed

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-06

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

  15. Iodine Absorption Cells Purity Testing

    PubMed Central

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-01

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834

  16. Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4'-Dimethylamino-2,5-dihydroxychalcone

    NASA Astrophysics Data System (ADS)

    Xu, Zhicheng; Bai, Guan; Dong, Chuan

    2005-12-01

    The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert-Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.

  17. Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4'-dimethylamino-2,5-dihydroxychalcone.

    PubMed

    Xu, Zhicheng; Bai, Guan; Dong, Chuan

    2005-12-01

    The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert-Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.

  18. [Study on the effect of solar spectra on the retrieval of atmospheric CO2 concentration using high resolution absorption spectra].

    PubMed

    Hu, Zhen-Hua; Huang, Teng; Wang, Ying-Ping; Ding, Lei; Zheng, Hai-Yang; Fang, Li

    2011-06-01

    Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere.

  19. Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.

    2014-06-01

    A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.

  20. Stochastic Parameterization for Light Absorption by Internally Mixed BC/dust in Snow Grains for Application to Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, K. N.; Takano, Y.; He, Cenlin

    2014-06-27

    A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less

  1. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    NASA Astrophysics Data System (ADS)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  2. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  3. Absorption spectral analysis of 4f-4f transitions for the complexation of Pr(III) and Nd(III) with thiosemicarbazide in absence and presence of Zn(II) in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Anita, K.; Rajmuhon Singh, N.

    2011-10-01

    The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.

  4. Using spectral information in forensic imaging.

    PubMed

    Miskelly, Gordon M; Wagner, John H

    2005-12-20

    Improved detection of forensic evidence by combining narrow band photographic images taken at a range of wavelengths is dependent on the substance of interest having a significantly different spectrum from the underlying substrate. While some natural substances such as blood have distinctive spectral features which are readily distinguished from common colorants, this is not true for visualization agents commonly used in forensic science. We now show that it is possible to select reagents with narrow spectral features that lead to increased visibility using digital cameras and computer image enhancement programs even if their coloration is much less intense to the unaided eye than traditional reagents. The concept is illustrated by visualising latent fingermarks on paper with the zinc complex of Ruhemann's Purple, cyanoacrylate-fumed fingerprints with Eu(tta)(3)(phen), and soil prints with 2,6-bis(benzimidazol-2-yl)-4-[4'-(dimethylamino)phenyl]pyridine [BBIDMAPP]. In each case background correction is performed at one or two wavelengths bracketing the narrow absorption or emission band of these compounds. However, compounds with sharp spectral features would also lead to improved detection using more advanced algorithms such as principal component analysis.

  5. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    PubMed

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-29

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σ p and σ m ). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.

  6. Thin film optical coatings for the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  7. LED-Absorption-QEPAS Sensor for Biogas Plants

    PubMed Central

    Köhring, Michael; Böttger, Stefan; Willer, Ulrike; Schade, Wolfgang

    2015-01-01

    A new sensor for methane and carbon dioxide concentration measurements in biogas plants is presented. LEDs in the mid infrared spectral region are implemented as low cost light source. The combination of quartz-enhanced photoacoustic spectroscopy with an absorption path leads to a sensor setup suitable for the harsh application environment. The sensor system contains an electronics unit and the two gas sensors; it was designed to work as standalone device and was tested in a biogas plant for several weeks. Gas concentration dependent measurements show a precision better than 1% in a range between 40% and 60% target gas concentration for both sensors. Concentration dependent measurements with different background gases show a considerable decrease in cross sensitivity against the major components of biogas in direct comparison to common absorption based sensors. PMID:26007746

  8. Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2016-02-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances were the likely causes of the diversity of water quality parameters. CDOM absorption in river waters was significantly lower than terminal lakes. Analysis of the ratio of absorption at 250 to 365 nm (E250 : 365), specific ultraviolet (UV) absorbance (SUVA254), and the spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance, and landscape features of the Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC

  9. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  10. Apparatus for experimental investigation of aerodynamic radiation with absorption by ablation products

    NASA Technical Reports Server (NTRS)

    Wells, W. L.; Snow, W. L.

    1977-01-01

    A description is given and calibration procedures are presented for an apparatus that is used to simulate aerodynamic radiant heating during planetary entry. The primary function of the apparatus is to simulate the spectral distribution of shock layer radiation and to determine absorption effects of simulated ablation products which are injected into the stagnation region flow field. An electric arc heater is used to heat gas mixtures that represent the planetary atmospheres of interest. Spectral measurements are made with a vacuum ultraviolet scanning monochromator.

  11. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pettersson, Håkan

    2018-05-01

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire (NW) arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) NWs, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InP DBRs, an unselective 78% absorption efficiency (72% for NWs without DBRs) is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50°. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work, we calculated optical spectra for InP NWs, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in NWs offers great potential for high-performance photovoltaic applications.

  12. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude

  13. Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus.

    PubMed

    Mosk, Virginia; Thomas, Nicole; Hart, Nathan S; Partridge, Julian C; Beazley, Lyn D; Shand, Julia

    2007-01-01

    The Syngnathidae are specialized diurnal feeders that are known to possess a retinal fovea and use independent eye movements to locate, track, and strike individual planktonic prey items. In this study, we have investigated the spectral sensitivities of three syngnathid species: a pipefish and two seahorses. We used spectrophotometry to measure the spectral transmission properties of ocular lenses and microspectrophotometry to measure the spectral absorption characteristics of visual pigments in the retinal photoreceptors. The pipefish, Stigmatopora argus, together with the seahorse Hippocampus subelongatus, is found in "green-water" temperate coastal seagrass habitats, whereas the second seahorse, H. barbouri, originates from a "blue-water" tropical coral reef habitat. All species were found to possess short wavelength absorbing pigment(s) in their lenses, with the 50% cut-off point of S. argus and H. subelongatus at 429 and 425 nm respectively, whereas that of H. barbouri was located at 409 nm. Microspectrophotometry of the photoreceptors revealed that the rods of all three species contained visual pigment with the wavelength of maximum absorption (lambda(max)) at approximately 500 nm. The visual pigment complement of the cones varied between the species: all possessed single cones with a lambda(max) close to 460 nm but H. barbouri also possessed an additional class of single cone with lambda(max) at 430 nm. Three classes of visual pigment were found in the double cones, the lambda(max) being approximately 520, 537, and 560 nm in the two seahorses and 520, 537, and 580 nm in the pipefish. The spectral sensitivities of the syngnathids investigated here do not appear to conform to generally accepted trends for fishes inhabiting different spectral environments. The influence of the specialized feeding regime of the syngnathids is discussed in relation to our findings that ultra-violet sensitivity is apparently not necessary for zooplanktivory in certain habitats.

  14. Theory of spectral radiance of pollutants at sea

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Remote measurement of soluble pollutants that change the color of the water in the sea is reported. The sensor is a spectral radiometer that flies over the polluted area and compares its spectral radiance to that of surrounding clean seawater. A quantitative analysis of the concentration of pollutants using the measured radiance of the sea compared to laboratory measurements of reflection and transmission spectra of the pollutants is presented. The quantities involved are defined and means for measuring them are described. The equations for remote sensing with a low-flying aircraft, in which case the absorption and radiance of intervening air is negligible are derived. High-flying aircraft and satellites, in which case the radiance of intervening air is the major problem are applied.

  15. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    NASA Astrophysics Data System (ADS)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  16. [Analysis of the mineral elements of Lactuca sativa under the condition of different spectral components].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei

    2013-08-01

    Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.

  17. Nanostructures formed by cyclodextrin covered procainamide through supramolecular self assembly - Spectral and molecular modeling study

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Mohandoss, T.; Sankaranarayanan, R. K.

    2015-02-01

    Inclusion complexation behavior of procainamide (PCA) with two cyclodextrins (α-CD and β-CD) were analyzed by absorption, fluorescence, scanning electron microscope (SEM), transmission electron microscope (TEM), Raman image, FT-IR, differential scanning colorimeter (DSC), Powder X ray diffraction (XRD) and 1H NMR. Blue shift was observed in β-CD whereas no significant spectral shift observed in α-CD. The inclusion complex formation results suggest that water molecules also present in the inside of the CD cavity. The present study revealed that the phenyl ring of the PCA drug is entrapped in the CD cavity. Cyclodextrin studies show that PCA forms 1:2 inclusion complex with α-CD and β-CD. PCA:α-CD complex form nano-sized particles (46 nm) and PCA:β-CD complex form self-assembled to micro-sized tubular structures. The shape-shifting of 2D nanosheets into 1D microtubes by simple rolling mechanism were analysed by micro-Raman and TEM images. Thermodynamic parameters (ΔH, ΔG and ΔS) of inclusion process were determined from semiempirical PM3 calculations.

  18. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.

  19. Retrieval of methanol absorption parameters at terahertz frequencies using multispectral fitting

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Xu, Li-Hong; Giles, Robert H.; Goyette, Thomas M.

    2015-12-01

    A high-resolution broadband study of the methanol absorption spectrum was performed at 1.480-1.495 THz. The transmittance was recorded under both self- and air-broadening conditions for multiple pressures at a resolution of 500 kHz. A multispectral fitting analysis was then performed. The transition frequency, absolute intensity, self- and air-broadening coefficients, and self- and air-induced pressure shifts were retrieved for 221 absorption lines using the multispectral fitting routine. Observed in the data were two different series of transitions, both a b-type Q-branch with K = - 7 ← - 6 and an a-type R-branch with J = 31 ← 30 . The retrieved frequency position values were compared with values from spectral databases and trends within the different series were identified. An analysis of the precision of the fitting routine was also performed.

  20. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  1. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  2. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  3. Mid-infrared Laser Absorption Diagnostics for Detonation Studies

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    Detonation-based engines represent a challenging application for diagnostics due to the wide range of thermodynamic conditions involved (T~500-3000 K, P~2-60 atm) and the short time scales of change (~10- 6 to 10- 4 sec) associated with such systems. Non-intrusive laser absorption diagnostics can provide high time-resolution and have been employed extensively in shock tube kinetics experiments (P~1-20 atm), offering high potential for application in detonation environments with modest utilization to date [1-4]. Limiting factors in designing effective tunable laser absorption sensors for detonation engines can be divided into two sets of challenges: high-pressure, high-temperature absorption spectroscopy and harsh thermo-mechanical environments. The present work, conducted in a high-pressure shock tube and operating detonation combustor, addresses both sets of difficulties, with the objective of developing time-resolved, in-situ temperature and concentration sensors for detonation studies.

  4. Molecular application of spectral photoacoustic imaging in pancreatic cancer pathology

    NASA Astrophysics Data System (ADS)

    Lakshman, Minalini; Hupple, Clinton; Lohse, Ines; Hedley, David; Needles, Andrew; Theodoropoulos, Catherine

    2012-12-01

    Spectral imaging is an advanced photo-acoustic (PA) mode that can discern optical absorption of contrast agent(s) in the tissue micro-environment. This advancement is made possible by precise control of optical wavelength using a tunable pulsed laser, ranging from 680-970 nm. Differential optical absorption of blood oxygenation states makes spectral imaging of hemoglobin ideal to investigate remodeling of the tumor microenvironment- a molecular change that renders resistance to standard cancer treatment. Approach: Photo-acoustic imaging was performed on the Vevo® LAZR system (VisualSonics) at 5-20 Hz. Deep abdominal imaging was accomplished with a LZ250D probe at a center frequency of 21MHz and an axial resolution of 75 μm. The tumor model was generated in an immune compromised mouse by surgical implantation of primary patient derived tumors, in the pancreas. Results: Spectral imaging for oxygen saturation at 750 nm and 850 nm characterized this tumor with a poorly oxygenated core surrounded by a well oxygenated periphery. Multispectral imaging identified a sub region in the core with a four-fold signal exclusively at 750 and 800 nm. A co-registered 2D image of this region was shown to be echogenic and calcification was suspected. Perfusion imaging with contrast enhanced ultrasound using microbubbles (Vevo MicroMarker® contrast agents, VisualSonics) identified functional vessels towards this sub region. Histology confirmed calcification and vascularization in the tumor core. Taken together, non-invasive characterization of the tumor microenvironment using photo-acoustics rendered spectral imaging a sensitive tool to monitor molecular changes representative of progression of pancreatic cancer that kills within 6 months of diagnosis.

  5. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  6. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  7. Spectral reflectance properties (0.4-2.5 um) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulfate-hydrate minerals associated with sulfide-bearing mine waste

    USGS Publications Warehouse

    Crowley, J.K.; Williams, D.E.; Hammarstrom1, J.M.; Piatak, N.; Mars, J.C.; Chou, I-Ming

    2006-01-01

    Fifteen Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate mineral species commonly associated with sulphide bearing mine wastes were characterized by using X-ray powder diffraction and scanning electron microscope methods. Diffuse reflectance spectra of the samples show diagnostic absorption features related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl ions. Such spectral features enable field and remote sensing based studies of the mineral distributions. Because secondary minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of these minerals promises to have important applications to mine waste remediation studies. This report releases digital (ascii) spectra (spectral_data_files.zip) of the fifteen mineral samples to facilitate usage of the data with spectral libraries and spectral analysis software. The spectral data are provided in a two-column format listing wavelength (in micrometers) and reflectance, respectively.

  8. Dimensionality-varied convolutional neural network for spectral-spatial classification of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Liu, Wanjun; Liang, Xuejian; Qu, Haicheng

    2017-11-01

    Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.

  9. A theoretical study of microwave beam absorption by a Rectenna

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.; Thorn, D. C.

    1980-01-01

    The results of a theoretical study of microwave beam absorption by a rectenna is given. Total absorption of power beam is shown to be theoretically possible. Several improvements in the rectenna design are indicated as a result of analytic modeling. The nature of rectenna scattering and atmospheric effects is discussed.

  10. A theoretical study of microwave beam absorption by a rectenna

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.; Thorn, D. C.

    1981-01-01

    The results of a theoretical study of microwave beam absorption by a Rectenna are given. Total absorption of the power beam is shown to be theoretically possible. Several improvements in the Rectenna design are indicated as a result of analytic modeling. The nature of Rectenna scattering and atmospheric effects are discussed.

  11. The Spectral Shift Function and Spectral Flow

    NASA Astrophysics Data System (ADS)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  12. Quasars Probing Quasars. X. The Quasar Pair Spectral Database

    NASA Astrophysics Data System (ADS)

    Findlay, Joseph R.; Prochaska, J. Xavier; Hennawi, Joseph F.; Fumagalli, Michele; Myers, Adam D.; Bartle, Stephanie; Chehade, Ben; DiPompeo, Michael A.; Shanks, Tom; Lau, Marie Wingyee; Rubin, Kate H. R.

    2018-06-01

    The rare close projection of two quasars on the sky provides the opportunity to study the host galaxy environment of a foreground quasar in absorption against the continuum emission of a background quasar. For over a decade the “Quasars probing quasars” series has utilized this technique to further the understanding of galaxy formation and evolution in the presence of a quasar at z > 2, resolving scales as small as a galactic disk and from bound gas in the circumgalactic medium to the diffuse environs of intergalactic space. Presented here is the public release of the quasar pair spectral database utilized in these studies. In addition to projected pairs at z > 2, the database also includes quasar pair members at z < 2, gravitational lens candidates, and quasars closely separated in redshift that are useful for small-scale clustering studies. In total, the database catalogs 5627 distinct objects, with 4083 lying within 5‧ of at least one other source. A spectral library contains 3582 optical and near-infrared spectra for 3028 of the cataloged sources. As well as reporting on 54 newly discovered quasar pairs, we outline the key contributions made by this series over the last 10 years, summarize the imaging and spectroscopic data used for target selection, discuss the target selection methodologies, describe the database content, and explore some avenues for future work. Full documentation for the spectral database, including download instructions, is supplied at http://specdb.readthedocs.io/en/latest/.

  13. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  14. Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars

    2008-01-01

    We present the first ground-based detection of sodium absorption in the transmission spectrum of an extrasolar planet. Absorption due to the atmosphere of the extrasolar planet HD 189733b is detected in both lines of the Na I doublet. High spectral resolution observations were taken of 11 transits with the High Resolution Spectrograph (HRS) on the 9.2 m Hobby-Eberly Telescope (HET). The Na I absorption in the transmission spectrum due to HD 189733b is (- 67.2 +/- 20.7) × 10-5 deeper in the "narrow" spectral band that encompasses both lines relative to adjacent bands. The 1 σ error includes both random and systematic errors, and the detection is >3 σ. This amount of relative absorption in Na I for HD 189733b is ~3 times larger than that detected for HD 209458b by Charbonneau et al. (2002) and indicates that these two hot Jupiters may have significantly different atmospheric properties. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  15. Re-evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths > 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.

  16. Uncertainty budgets for liquid waveguide CDOM absorption measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Utschig, Christian; McKee, David

    2017-08-01

    Long path length liquid waveguide capillary cell (LWCC) systems using simple spectrometers to determine the spectral absorption by colored dissolved organic matter (CDOM) have previously been shown to have better measurement sensitivity compared to high-end spectrophotometers using 10 cm cuvettes. Information on the magnitude of measurement uncertainties for LWCC systems, however, has remained scarce. Cross-comparison of three different LWCC systems with three different path lengths (50, 100, and 250 cm) and two different cladding materials enabled quantification of measurement precision and accuracy, revealing strong wavelength dependency in both parameters. Stable pumping of the sample through the capillary cell was found to improve measurement precision over measurements made with the sample kept stationary. Results from the 50 and 100 cm LWCC systems, with higher refractive index cladding, showed systematic artifacts including small but unphysical negative offsets and high-frequency spectral perturbations due to limited performance of the salinity correction. In comparison, the newer 250 cm LWCC with lower refractive index cladding returned small positive offsets that may be physically correct. After null correction of measurements at 700 nm, overall agreement of CDOM absorption data at 440 nm was found to be within 5% root mean square percentage error.

  17. Development of an analytical-numerical model to predict radiant emission or absorption

    NASA Technical Reports Server (NTRS)

    Wallace, Tim L.

    1994-01-01

    The development of an analytical-numerical model to predict radiant emission or absorption is discussed. A voigt profile is assumed to predict the spectral qualities of a singlet atomic transition line for atomic species of interest to the OPAD program. The present state of this model is described in each progress report required under contract. Model and code development is guided by experimental data where available. When completed, the model will be used to provide estimates of specie erosion rates from spectral data collected from rocket exhaust plumes or other sources.

  18. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  19. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  20. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  1. Ultra-sensitive probe of spectral line structure and detection of isotopic oxygen

    NASA Astrophysics Data System (ADS)

    Garner, Richard M.; Dharamsi, A. N.; Khan, M. Amir

    2018-01-01

    We discuss a new method of investigating and obtaining quantitative behavior of higher harmonic (> 2f) wavelength modulation spectroscopy (WMS) based on the signal structure. It is shown that the spectral structure of higher harmonic WMS signals, quantified by the number of zero crossings and turnings points, can have increased sensitivity to ambient conditions or line-broadening effects from changes in temperature, pressure, or optical depth. The structure of WMS signals, characterized by combinations of signal magnitude and spectral locations of turning points and zero crossings, provides a unique scale that quantifies lineshape parameters and, thus, useful in optimization of measurements obtained from multi-harmonic WMS signals. We demonstrate this by detecting weaker rotational-vibrational transitions of isotopic atmospheric oxygen (16O18O) in the near-infrared region where higher harmonic WMS signals are more sensitive contrary to their signal-to-noise ratio considerations. The proposed approach based on spectral structure provides the ability to investigate and quantify signals not only at linecenter but also in the wing region of the absorption profile. This formulation is particularly useful in tunable diode laser spectroscopy and ultra-precision laser-based sensors where absorption signal profile carries information of quantities of interest, e.g., concentration, velocity, or gas collision dynamics, etc.

  2. The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1992-01-01

    The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.

  3. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  4. Hydrogen peroxide vapor cross sections: A flow cell study using laser absorption in the near infrared

    NASA Astrophysics Data System (ADS)

    Rhodes, B. L.; Ronney, P. D.; DeSain, J. D.

    2018-01-01

    The absorption spectra of vapors of concentrated hydrogen peroxide/water mixtures (without a carrier gas) were characterized at wavelengths from 1390 to 1470 nm utilizing a near-infrared diode laser. Low pressures were employed to examine these spectral features near the Doppler-broadened limit. An advantageous portion of the spectra near 1420 nm containing several distinct H2O2 peaks and one well-known H2O peak (for calibration) was identified and the cross-sections of these peaks determined. These cross section values can be employed to measure vapor-phase concentrations of H2O2 in propulsion, atmospheric chemistry, and sterilization applications.

  5. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  6. Evaluation of Dust Absorption and Radiative Forcing of Climate Using Satellite and Ground Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    1999-01-01

    Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.

  7. A Comparison Between Spectral Properties of ULXs and Luminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Colbert, E. J. M.; Roberts, T. P.

    2004-05-01

    What is special about the 1039 erg s-1 limit that is used to define the ULX class? We investigate this question by analyzing Chandra X-ray spectra of 71 X-ray bright point sources from nearby galaxies. Fifty-one of these sources are ULXs (LX(0.3-8.0 keV) ≥ 1039 erg s-1), and 20 sources (our comparison sample) are less-luminous X-ray binaries with LX(0.3-8.0 keV) = 1038-39 erg s-1. Our sample objects were selected from the Chandra archive to have ≥1000 counts and thus represent the highest quality spectra in the Chandra archives for extragalactic X-ray binaries and ULXs. We fit the spectra with one-component models (e.g., cold absorption with power-law, or cold absorption with multi-colored disk blackbody) and two-component models (e.g. absorption with both a power-law and a multi colored disk blackbody). A crude measure of the spectral states of the sources are determined observationally by calibrating the strength of the disk (blackbody) and coronal (power-law) components. These results are then use to determine if spectral properties of the ULXs are statistically distinct from those of the comparison objects, which are assumed to be ``normal'' black-hole X-ray binaries.

  8. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  9. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  10. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  11. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  12. Examination of Spectral Transformations on Spectral Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  13. The New MODIS-Terra, and the Proposed COBRA Mission: First Global Aerosol Distribution and Properties Over Land and Ocean, and Plans to Measure Global Black Carbon Absorption Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine; Martins, Vanderlei; Schoeberl, Mark; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct, the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse (mainly natural) aerosol particles. New methods to derive the aerosol absorption of sunlight are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. However MODIS or any present satellite sensor cannot measure absorption by Black Carbon over the oceans, a critical component in studying climate change and human health. For this purpose we propose the COBRA mission that observes the ocean at glint and off glint simultaneously measuring the spectral polarized light and deriving precisely the aerosol absorption.

  14. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  15. Implication of Spectral Characteristic of Chlorite Based on Spectrums SWIR in Nuri Deposit of Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Z.

    2017-12-01

    This contribution reports the spectral characterization of chlorite in Nuri deposit of Tibet. Nuri Cu polymetallic deposit locates in south rim of Eastern of Gangdise in Tibet. It is presented for large metallogenic scale and special mineralized combination. The study area is underlain extensively by lower Cretaceous rocks of Bima Formation, upper Cretaceous to Paleogene Danshiting Formation and the Quaternary Aeolian Sand. Intrusive bodies, which mainly are quartz diorite, granodiorite, monzonitic granitite, moyite, granite porphyry and so on, feature growth gigantic composite granitic batholith. Distribution of Chlorite is very significant for range and degree of influence of hydrothermal alteration in magmatic hydrothermal deposit. From measuring the spectral of rock and mineral using SVC portable spectrograph, it derived consequence of exists some main altered mineral chlorite. The spectra of chlorite show the absorption features at 1390, 2000, 2250, 2340nm which reflect either O-H stretching vibrations and/or Fe-OH and Mg-OH bending vibrations. Chlorite with Mg-rich shows a strong band at 2324 with a shoulder at 2245nm. The iron-rich chlorite has two absorption features which occur at 2356 and 2256nm. From 110 samples containing chlorite which measured in situ using SVC portable spectrometer, the secondary characteristic absorption wavelengths of chlorite were extracted using TSG software and the diagnosis absorption characteristic of chlorite near 2250nm wavelength is from 2232 to 2266nm. According to the absorption characteristics wavelength position near 2250nm, the samples containing chlorite divided into four categories, i.e. Mg-chlorite whose wavelength less than 2245nm, MgFe-chlorite whose wavelength between 2245 and 2250nm, FeMg-chlorite whose wavelength between 2250 and 2258nm, and Fe-chlorite whose wavelength greater than 2258nm. And then chemical composition of chlorite is analyzed by electron probe with JXA-8230 device which shows that the Fe and

  16. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  17. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  18. Sound absorption study on acoustic panel from kapok fiber and egg tray

    NASA Astrophysics Data System (ADS)

    Kaamin, Masiri; Mahir, Nurul Syazwani Mohd; Kadir, Aslila Abd; Hamid, Nor Baizura; Mokhtar, Mardiha; Ngadiman, Norhayati

    2017-12-01

    Noise also known as a sound, especially one that is loud or unpleasant or that causes disruption. The level of noise can be reduced by using sound absorption panel. Currently, the market produces sound absorption panel, which use synthetic fibers that can cause harmful effects to the health of consumers. An awareness of using natural fibers from natural materials gets attention of some parties to use it as a sound absorbing material. Therefore, this study was conducted to investigate the potential of sound absorption panel using egg trays and kapok fibers. The test involved in this study was impedance tube test which aims to get sound absorption coefficient (SAC). The results showed that there was good sound absorption at low frequency from 0 Hz up to 900 Hz where the maximum absorption coefficient was 0.950 while the maximum absorption at high frequencies was 0.799. Through the noise reduction coefficient (NRC), the material produced NRC of 0.57 indicates that the materials are very absorbing. In addition, the reverberation room test was carried out to get the value of reverberation time (RT) in unit seconds. Overall this panel showed good results at low frequencies between 0 Hz up to 1500 Hz. In that range of frequency, the maximum reverberation time for the panel was 3.784 seconds compared to the maximum reverberation time for an empty room was 5.798 seconds. This study indicated that kapok fiber and egg tray as the material of absorption panel has a potential as environmental and cheap products in absorbing sound at low frequency.

  19. Norcyanine dyes with benzo[c,d]indolium moiety: Spectral sensitivity with pH change for fluorescence pH imaging in living cells.

    PubMed

    Guan, Li; Liu, Qi; Zhang, Borui; Wang, Lanying

    2017-01-01

    Fluorescence pH imaging in living cells is a rapidly expanding research direction, however, it relies on the development of pH-sensitive fluorescent imaging agents. Here four norcyanine dyes with benzo[c,d]indolium moiety, exhibiting high spectral sensitivity with pH changes, were synthesized for fluorescence pH imaging in living cells, and characterized by 1 H NMR, 13 C NMR, IR, UV-Vis and HRMS. The investigation of their spectral properties in methanol and water showed that the absorption and emission maxima were in the region 488-618nm and 583-651nm, respectively, and four dyes exhibited high photostability. The pH spectral titrations showed that selective dye D1 had pH-dependent absorption spectral changes within the pH range of 2.4 to 9.4, and high fluorescent spectral sensitivity at pH5.0-8.0, with a pK a of 5.0. A cell association study indicated that dye D1 exhibited no or mild cytotoxicity at the application dose and duration, and could be accumulated in cells and mainly distributed in the cytoplasm, giving red fluorescence imaging. In particular, dye D1 could achieve pH-dependent fluorescence imaging in living cells with the increase of pH from 3.0 to 8.0, at excitation wavelength of 543nm and receiving wavelength of 655-755nm, which was valuable for studying the weak acidic, neutral and weak alkaline biological tissue compartments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K

    NASA Astrophysics Data System (ADS)

    Schulz, C.; Koch, J. D.; Davidson, D. F.; Jeffries, J. B.; Hanson, R. K.

    2002-03-01

    Spectrally resolved UV absorption cross-sections between 190 and 320 nm were measured in shock-heated CO 2 between 880 and 3050 K and H 2O between 1230 and 2860 K. Absorption spectra were acquired with 10 μs time resolution using a unique kinetic spectrograph, thereby enabling comparisons with time-dependent chemical kinetic modeling of post-shock thermal decomposition and chemical reactions. Although room temperature CO 2 is transparent (σ<10 -22 cm2) at wavelengths longer than 200 nm, hot CO 2 has significant absorption (σ>10 -20 cm2) extending to wavelengths longer than 300 nm. The temperature dependence of CO 2 absorption strongly suggests sharply increased transition probabilities from excited vibrational levels.

  1. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission: Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1984-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  2. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission - Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1985-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  3. Absorption enhancement studies of clopidogrel hydrogen sulphate in rat everted gut sacs.

    PubMed

    Lassoued, Mohamed Ali; Sfar, Souad; Bouraoui, Abderrahman; Khemiss, Fathia

    2012-04-01

    Clopidogrel, a thienopyridine antiplatelet agent, is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These two factors are responsible for its incomplete intestinal absorption. In this study, we have attempted to enhance the absorption of clopidogrel by improving its solubility and by inhibiting intestinal P-gp activity.   Solubility enhancement was achieved by preparing solid dispersions. Quinidine and naringin were selected as P-gp inhibitors, whilst tartaric acid was selected as the intestinal absorption enhancer. Absorption studies were performed using the everted gut sac model prepared from rat jejunum. The determination of clopidogrel was performed by high performance liquid chromatography. We noticed an enhancement of clopidogrel absorption by improving its solubility or by inhibiting the P-gp activity. The greatest results were obtained for solid dispersions in the presence of P-gp inhibitors at their highest concentrations, with an absorption improvement of 3.41- and 3.91-fold for naringin (15mg/kg) and quinidine (200µm), respectively. However, no clopidogrel absorption enhancement occurred in the presence of tartaric acid. Naringin, a natural compound which has no undesirable side effects as compared with quinidine, could be used as a pharmaceutical excipient in the presence of clopidogrel solid dispersions to increase clopidogrel intestinal absorption and therefore its oral bioavailability. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  4. Terahertz spectral unmixing based method for identifying gastric cancer

    NASA Astrophysics Data System (ADS)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  5. High-Resolution Spectral Measurement of High Temperature CO2 and H2O.

    DTIC Science & Technology

    1980-12-01

    a major constituent which critically controls the infrared radiative transfer in the telluric atmosphere. Their absorption bands are distributed over... movement to prevent cracking. Also, the continuous Q = s/) spectrum spectral coverage filament ceramic fiber, brand AB-312 manufactured by resolution the 3M

  6. Studies in man of phenytoin absorption and its implications.

    PubMed Central

    Gibberd, F B; Webley, M

    1975-01-01

    The absorption of phenytoin was studied in man. It is concluded that phenytoin absorbed from the intestine is recirculated via the bile, so that blood levels do not accurately reflect absorption. Phenytoin is loosely bound to serum proteins and is found in red cells in concentrations similar to those in plasma. It is rapidly lost from the blood stream after intravenous administration, which is an important factor to be considered in the treatment of status epilepticus. PMID:1151402

  7. A resonant absorption line in the ASCA spectrum of NGC 985?

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Fiore, F.; Brandt, N.; Reynolds, C. S.

    1999-01-01

    We present timing and spectral analyses of the ASCA observation of the Seyfert 1 galaxy NGC 985. The 0.6-10keV spectrum of this source is complex: large residuals are evident below 1keV when fitting the spectrum with a power-law model. Fitting a warm absorber model to the 0.6-2.5keV spectrum gives α=1.12+/-0.04, LogNWAH=21.97+/-0.08 and LogU=0.06+/-0.09, but the residuals continue to show a deficit of counts between 0.9 and 1keV. Adding an absorption line improves the fit, and the energy of the line is consistent with that of Kα NeIX-X resonant absorption lines. Hence, we confirm the presence of an ionized absorber along the line of sight to this source and interpret the further 1keV spectral feature as the first detection of a strong resonant absorption line associated with this system. The extrapolation of this model above 2.5keV produces large positive residuals above 3-4keV. Fitting the data with a broken power law plus warm absorber model gives an acceptable χ2 and Δα~0.5. A narrow iron line at 6.4keV (quasar frame) of equivalent width 138+64-110eV is also present in the ASCA data.

  8. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  9. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates

    USGS Publications Warehouse

    Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Traina, S.J.; Anderson, J.E.; Lyon, J.G.

    2002-01-01

    The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T1??? 6A1 crystal field transition (900-1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.

  10. Spectral mapping tools from the earth sciences applied to spectral microscopy data.

    PubMed

    Harris, A Thomas

    2006-08-01

    Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique

  11. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  12. Nonlinear Terahertz Absorption of Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2016-04-13

    Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.

  13. Spectacle and SpecViz: New Spectral Analysis and Visualization Tools

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas; Peeples, Molly; JDADF Developers

    2018-01-01

    A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user

  14. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  15. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  16. Absorption spectroscopy at the ultimate quantum limit from single-photon states

    NASA Astrophysics Data System (ADS)

    Whittaker, R.; Erven, C.; Neville, A.; Berry, M.; O'Brien, J. L.; Cable, H.; Matthews, J. C. F.

    2017-02-01

    Absorption spectroscopy is routinely used to characterise chemical and biological samples. For the state-of-the-art in laser absorption spectroscopy, precision is theoretically limited by shot-noise due to the fundamental Poisson-distribution of photon number in laser radiation. In practice, the shot-noise limit can only be achieved when all other sources of noise are eliminated. Here, we use wavelength-correlated and tuneable photon pairs to demonstrate how absorption spectroscopy can be performed with precision beyond the shot-noise limit and near the ultimate quantum limit by using the optimal probe for absorption measurement—single photons. We present a practically realisable scheme, which we characterise both the precision and accuracy of by measuring the response of a control feature. We demonstrate that the technique can successfully probe liquid samples and using two spectrally similar types of haemoglobin we show that obtaining a given precision in resolution requires fewer heralded single probe photons compared to using an idealised laser.

  17. Spectral characterization of guanine C4-OH adduct: a radiation and quantum chemical study.

    PubMed

    Phadatare, Suvarna D; Sharma, Kiran Kumar K; Rao, B S M; Naumov, S; Sharma, Geeta K

    2011-11-24

    The reaction of hydroxyl radical ((•)OH) with guanine was investigated under restricted pH condition (pH 4.6) using pulse radiolysis technique. The time-resolved optical transient absorption spectra showed two peaks centered at 300 and 330 nm at 4 μs after the pulse which exhibited different reactivity toward molecular oxygen (O(2)). The peak at 300 nm was found to be relatively more stable than the peak at 330 nm. The peak corresponding to 330 nm decayed within 20 μs having a first order rate constant 4-7 × 10(4) s(-1) and was pH dependent. On longer time scale, the species decayed by a bimolecular process. The presence of O(2) did not affect its decay rate constant. The (•)OH reacts with guanine at pH 4.6 with a diffusion-controlled second order rate constant of ≥1 × 10(10) mol(-1) dm(3) s(-1). The reaction of Br(2)(•-), O(2)(•-), and 2-hydroxy-2-propyl radical with guanine was also investigated to differentiate among the one-electron oxidized, one-electron reduced species of guanine and the guanine-OH adducts formed in the reaction of (•)OH at pH 4.6. On the basis of the spectral characteristics and reactivity toward O(2), two guanine-OH adduct species were identified (i) the C4-OH adduct species absorbing at 330 nm which has not been reported so far and (ii) the C8-OH adduct species absorbing at 300 nm in agreement with the known literature absorption features. Quantum chemical calculations using BHandHLYP with 6-31+G(d,p) basis set and excited state calculations using TDDFT for all possible transients complement the assignment of the observed spectral peak at 330 nm to the C4-OH adduct of guanine. Furthermore, steady state radiolysis revealed the formation of 8-hydroxy-guanine whose precursor is known to be the C8-OH adduct species. © 2011 American Chemical Society

  18. Structural study of aggregated β-carotene by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  19. Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Alston, W. N.; Buisson, D. J. K.; Fabian, A. C.; Jiang, J.; Kara, E.; Lohfink, A.; Pinto, C.; Reynolds, C. S.

    2017-08-01

    We present an analysis of the long-term X-ray variability of the extreme narrow-line Seyfert 1 galaxy IRAS 13224-3809 using principal component analysis (PCA) and fractional excess variability (Fvar) spectra to identify model-independent spectral components. We identify a series of variability peaks in both the first PCA component and Fvar spectrum which correspond to the strongest predicted absorption lines from the ultrafast outflow (UFO) discovered by Parker et al. (2017). We also find higher order PCA components, which correspond to variability of the soft excess and reflection features. The subtle differences between RMS and PCA results argue that the observed flux-dependence of the absorption is due to increased ionization of the gas, rather than changes in column density or covering fraction. This result demonstrates that we can detect outflows from variability alone and that variability studies of UFOs are an extremely promising avenue for future research.

  20. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.