Science.gov

Sample records for absorption spectrometer co2las

  1. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  2. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  3. JPL Carbon Dioxide Laser Absorption Spectrometer Data Processing Results for the 2010 Flight Campaign

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Spiers, Gary D.; Menzie, Robert T.; Christensen, Lance E.

    2011-01-01

    As a precursor to and validation of the core technology necessary for NASA's Active Sensing of CO2 Emissions over Nights, Days,and Seasons (ASCENDS) mission, we flew JPL's Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) in a campaign of five flights onboard NASA's DC-8 Airborne Laboratory in July 2010. This is the latest in a series of annual flight campaigns that began in 2006, and our first on the DC-8 aircraft.

  4. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  5. Advanced Airborne CO2 LAS System

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M. G.; McGregor, D. P.; Erxleben, W. H.; Browell, E. V.; Harrison, F. W.

    2009-12-01

    A unique airborne Laser Absorption Spectroscopy (LAS) system has been developed by ITT Space Systems, LLC to address the needs of the National Research Council Decadal Survey Tier 2 mission for Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS). This instrument has undergone multiple airborne field tests in cooperation with our partners at NASA Langley Research Center (LaRC). The instrument was built largely with off-the-shelf components and uses high reliability telecom components, including lasers, modulators and fiber amplifiers as the transmitter. Multiple wavelengths are transmitted simultaneously from a single collimator and the return signal is collected by a simple 8” telescope that is fiber coupled to a HgCdTe APD. The analog signal is sampled with a high resolution scope card housed in a National Instruments PXI chassis and the digitized signal is then passed through our custom-built software-based lock-in processing system which allows separation of the signals from the individual wavelengths. The separated signals are then used in the standard Differential Absorption Lidar (DIAL) relations to determine the integrated column differential optical depth. This presentation will give a detailed overview of this multi-frequency, single-beam, synchronous lock-in LAS instrument including the basic methodology of the measurement. Recent improvements in the lock-in methodology designed to eliminate the effects of multi- path fading and frequency dependence of the electronic components will also be discussed.

  6. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  7. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  8. A wide spectral range photoacoustic aerosol absorption spectrometer.

    PubMed

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-01

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter. PMID:23035870

  9. Modular Total Absorption Spectrometer at the HRIBF (ORNL, Oak Ridge)

    SciTech Connect

    Wolińska-Cichocka, M.; Rykaczewski, K.P.; Fijałkowska, A.; Karny, M.; Grzywacz, R.K.; Gross, C.J.; Johnson, J.W.; Rasco, B.C.; Zganjar, E.F.

    2014-06-15

    The Modular Total Absorption Spectrometer (MTAS) array has been designed, constructed, characterized, and applied to the decay studies of {sup 238}U fission products at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. A MTAS commissioning run was performed in January 2012 at the mass separator on-line to the HRIBF Tandem accelerator. Preliminary results of MTAS data confirm known decay patterns of {sup 142}Ba and {sup 142}La deduced from an earlier study using a total absorption spectrometer technique.

  10. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  11. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  12. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light. PMID:23387142

  13. A decay total absorption spectrometer for DESPEC at FAIR

    NASA Astrophysics Data System (ADS)

    Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Pizá, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyák, Zs.; Regan, P.; Simpson, J.; Smith, A. J.; Strachan, J.

    2015-12-01

    This paper presents the design of a total absorption γ-ray spectrometer for the determination of β-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on NaI(Tl) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 × 15 × 25cm3 crystals for the NaI(Tl) option and one hundred and twenty-eight 5.5 × 5.5 × 11cm3 crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring β-delayed neutron emitters, was investigated by means of Monte Carlo simulations.

  14. The parameters of the full absorption neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Filchenkov, V. V.; Konin, A. D.; Rudenko, A. I.

    1990-09-01

    The methods of obtaining the parameters of the full absorption neutron spectrometer constructed in JINR [V.P. Dzhelepov et al., Nucl. Instr. and Meth. A269 (1988) 634] (full scintillator volume V=24 1) and used in experiments studying the muon catalysis process are considered. These parameters have been obtained from the analysis of pulse-height distributions measured with γ-sources of different energies and with neutrons selected from the 238PuBe spectrum using the TOF method. A value of σ FWHM=0.09(1+ {1}/{√E e( MeV) } has been obtained for the pulse-height resolution. It is two times better than that obtained for a detector [G. Dietze and H. Klein, Nucl. Instr. and Meth. 193 (1982) 549] of smaller size. The threshold energy for n-γ separation Eγthr≅50keV, which corresponds to the best results obtained with small detectors.

  15. Airborne & Ground-based measurements of atmospheric CO2 using the 1.57-μm laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Miyamoto, Y.; Morino, I.; Uchino, O.; Asai, K.

    2009-12-01

    Greenhouse gases observing satellite (GOSAT) started the measurement of global CO2 abundances to reveal its continental inventory using two passive remote sensors. The goal that the sensor needs to be done is to achieve an 1% relative accuracy in order to reduce uncertainties of CO2 budget. Nevertheless, in the future global CO2 monitoring, more accurate measurement of global tropospheric CO2 abundances with the monthly regional scale are required to improve the knowledge of CO2 exchanges among the land, ocean, and atmosphere. In order to fulfill demands, a laser remote sensor, such as DIAL or laser absorption spectrometer (LAS), is a potential candidate of future space-based missions. Nowadays, those technologies are required to demonstrate an accuracy of the few-ppm level through airborne & ground-based measurements. We developed the prototype of the 1.57um LAS for a step of the next missions and perform it at the ground-based and airborne platform to show the properly validated performance in the framework of GOSAT validation. Our CO2 LAS is consisted of all optical fiber circuits & compact receiving /transmitting optics to achieve the portable, flexible and rigid system. The optical sources of on- and off-line are distributed feedback lasers, which are tuned at the strong and weak position of the R12 line in the (30012<-00001) absorption band. Their fiber coupled outputs are sinusoidal amplitude modulated by each EO devices with kHz rate and combined and amplified using an erbium doped fiber amplifier. Scattered signals from the hard target are collected by the 11cm receiving telescope and detected and stored into the laptop computer. After that, we evaluated the atmospheric CO2 density using the meteorological parameters and ratio between the on- and off-line signals. The resultant of the ground-based measurement of 3km optical length indicated that the statistical error of the path averaged atmospheric CO2 density is less than 2.8ppm with 25 minutes averaging

  16. DUVAS (derivative uv-absorption spectrometer): instrument description and operating manual

    SciTech Connect

    Hawthorne, A.R.; Dougherty, J.M.; Metcalfe, C.E.

    1980-11-01

    DUVAS is a real-time, field-portable spectrometer capable of monitoring a variety of aromatic organic vapors and inorganic gases at sub-ppM concentrations. The instrument is a prototype, microcomputer-controlled, derivative ultraviolet (UV) absorption spectrometer (DUVAS) developed primarily for area monitoring at coal conversion facilities, although other important occupational and environmental monitoring applications for compounds such as SO/sub 2/, NO/sub x/, NH/sub 3/, and HCHO are also being pursued.

  17. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  18. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  19. Sensitive absorption measurements in bulk material and coatings using a photothermal and a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K.

    2014-02-01

    Bulk and surface absorption in lithium triborate (LBO) and lithium niobate (LiNbO3) are measured using two sensitive measurement techniques, a photoacoustic spectrometer (PAS) and a photothermal common-path interferometer (PCI). As pump light sources, optical parametric oscillators are employed, covering the wavelength ranges 212 - 2500 nm (PAS) and 1460 - 1900 nm and 2460 - 3900 nm (PCI). The spectrometers are used to measure absorption spectra of optical materials across this wide spectral range and to compare the methods in the shared wavelength regime.

  20. Spectral calibration for infrared hyperspectral imaging Fourier transform spectrometer based on absorption peaks

    NASA Astrophysics Data System (ADS)

    Li, YaSheng; Chen, Yan; Liao, Ningfang; Lyu, Hang; He, Shufang; Wan, Lifang

    2015-08-01

    A new calibration method for infrared hyperspectral imaging Fourier transform spectrometer is presented. Two kinds of common materials as Polypropylene (PP) and Polyethylene Terephthalate (PET) films which have special absorption peaks in the infrared band were used in the calibration experiment. As the wavelengths at the sharp absorption peaks of the films are known, an infrared imaging spectrometer can be calibrated on spectra with two or three peaks. With high precision and stability, this method simplifies the calibration work. It is especially appropriate for the measuring condition with a lack of calibration equipment or with inconvenience to calibrate the multiple light sources outdoors.

  1. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  2. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-12-31

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  3. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  4. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  5. AIR QUALITY MONITORING IN ATLANTA WITH THE DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER

    EPA Science Inventory

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. ver path 1 (1099 m) and path 2 (1824 m), ozone (O3), sulfur dioxide (SO2), nitrogen d...

  6. Search for molecular absorptions with the Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1995-01-01

    The objective of this research was a search for water molecules in the gas phase in molecular clouds. Water should be among the most abundant gases in the clouds and is of fundamental importance in gas chemistry, cloud cooling, shock wave chemistry, and gas-grain interactions of interstellar dust. Detection of water in Comet Halley in the 2.7 micron v(3) band in 1986 had shown that airborne H2O observations are feasible (ground-based observations of H2O are impossible because of the massive water content of the atmosphere). We planned to observe the v(3) band in interstellar clouds where a number of lines of this band should be in absorption. The search for H2O commenced in 1988 with a two flight program on the KAO. this resulted in a detection of interstellar H2O with S/N of 2-4 in the v(3) 1(01)-2(02) line at 3801.42/cm. A subsequent flight series of two flights in 1989 resulted in confirmation to the 3801.42/cm line detection and the detection of altogether four strong lines in the 000-001 v(3) vibration-rotation band of H2O.

  7. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  8. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B.

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  9. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOEpatents

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  10. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  11. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  12. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  13. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy.

    PubMed

    Hager, J D; Lanier, N E; Kline, J L; Flippo, K A; Bruns, H C; Schneider, M; Saculla, M; McCarville, T

    2014-11-01

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO2 foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured. PMID:25430177

  14. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  15. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant. PMID:19650504

  16. Infrared absorption of gaseous CH2BrOO detected with a step-scan Fourier-transform absorption spectrometer.

    PubMed

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-10-28

    CH2BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH2Br2 and O2. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm(-1) are assigned to ν4 (CH2-wagging), ν6 (O-O stretching), ν7 (CH2-rocking mixed with C-O stretching), and ν8 (C-O stretching mixed with CH2-rocking) modes of syn-CH2BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ν7 and ν8 indicate that hot bands involving the torsional (ν12) mode are also present, with transitions 7(0)(1)12(v)(v) and 8(0)(1)12(v)(v), v = 1-10. The most intense band (ν4) of anti-CH2BrOO near 1277 cm(-1) might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH2BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments. PMID:25362294

  17. Double tungsten coil atomic absorption spectrometer based on an acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Jora, M. Z.; Nóbrega, J. A.; Rohwedder, J. J. R.; Pasquini, C.

    2015-01-01

    An atomic absorption spectrometer based on a quartz acousto-optic tunable filter (AOTF) monochromator operating in the 271-453 nm range, is described. The instrument was tailored to study the formation and evolution of electrothermal atomic cloud induced either by one or two tungsten coils. The spectrometer also includes a fast response programmable photomultiplier module for data acquisition, and a power supply capable of driving two parallel tungsten coils independently. The atomization cell herein described was manufactured in PTFE and presents a new design with reduced size. Synchronization between the instant of power delivering to start the atomization process and the detection was achieved, allowing for monitoring the atomization and thermal events synchronously and in real time. Absorption signals can be sampled at a rate of a few milliseconds, compatible with the fast phenomena that occur with electrothermal metallic atomizers. The instrument performance was preliminarily evaluated by monitoring the absorption of radiation of atomic clouds produced by standard solutions containing chromium or lead. Its quantitative performance was evaluated by using Cr aqueous solutions, resulting in detection limits as low as 0.24 μg L- 1, and a relative standard deviation of 3%.

  18. Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Calvin, Wendy M.; Seznec, Olivier

    1988-01-01

    Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis.

  19. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures. PMID:27409013

  20. First Results from the Modular Total Absorption Spectrometer at the HRIBF

    SciTech Connect

    Fijałkowska, A.; Karny, M.; Rykaczewski, K.P.; Wolińska-Cichocka, M.; Grzywacz, R.; Gross, C.J.; Johnson, J.W.; Rasco, B.C.; Zganjar, E.F.; Stracener, D.W.; Jost, C.; Goetz, K.C.; Goans, R.; Spejewski, E.; Cartegni, L.; Madurga, M.; Miernik, K.; Miller, D.; Padgett, S.W.; Paulauskas, S.V.; and others

    2014-06-15

    A Modular Total Absorption Spectrometer constructed at the Holifield Radioactive Ion Beam Facility has been applied to decay studies of over 20 {sup 238}U fission products. The measurements were focused on nuclei identified as important for decay heat analysis during a nuclear fuel cycle. Preliminary results on the average electromagnetic (EM) energy release in the β decay of {sup 89}Kr and {sup 139}Xe isotopes yielded values of 2446 keV and 1126 keV, respectively. It represents an increase of over 35% and 20%, respectively, when compared to the average EM energies deduced using the ENSDF database.

  1. Measurement of fission products β decay properties using a total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Agramunt, J.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Estévez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2013-12-01

    In a nuclear reactor, the β decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyväskylä with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented.

  2. First Results from the Modular Total Absorption Spectrometer at the HRIBF

    NASA Astrophysics Data System (ADS)

    Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Wolińska-Cichocka, M.; Grzywacz, R.; Gross, C. J.; Johnson, J. W.; Rasco, B. C.; Zganjar, E. F.; Stracener, D. W.; Jost, C.; Goetz, K. C.; Goans, R.; Spejewski, E.; Cartegni, L.; Madurga, M.; Miernik, K.; Miller, D.; Padgett, S. W.; Paulauskas, S. V.; Al-Shudifat, M.; Hamilton, J. H.; Ramayya, A. V.

    2014-06-01

    A Modular Total Absorption Spectrometer constructed at the Holifield Radioactive Ion Beam Facility has been applied to decay studies of over 20 238U fission products. The measurements were focused on nuclei identified as important for decay heat analysis during a nuclear fuel cycle. Preliminary results on the average electromagnetic (EM) energy release in the β decay of 89Kr and 139Xe isotopes yielded values of 2446 keV and 1126 keV, respectively. It represents an increase of over 35% and 20%, respectively, when compared to the average EM energies deduced using the ENSDF database.

  3. Multielement continuum-source atomic-absorption spectrometry with an echelle-spectrometer/image-dissector system.

    PubMed

    Masters, R; Hsiech, C; Pardue, H L

    1989-01-01

    The continued development of the echelle-spectrometer/image-dissector system for multielement determination by continuum-source atomic-absorption spectrometry is presented. Modifications of the instruments include the use of a 20-groove/mm echelle grating blazed at 76 degrees , and the removal of the magnetic shield from the image dissector. The spectral range is from 300 to 430 nm and the observed resolution is better than 0.005 nm at 400 nm. Calibration curves are linear up to an absorbance of 0.2, and absorption sensitivities are up to 4-fold better than with the previous design. Fundamental characteristics of the detector limit the application of the instrument to sequential single-element quantifications with the electrothermal atomizer, and to sequential multielement quantification with the flame atomizer. The further development of the instrument for simultaneous multielement qualification is discussed. PMID:18964682

  4. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    SciTech Connect

    Langridge, Justin M.; Shillings, Alexander J. L.; Jones, Roderic L.; Ball, Stephen M.

    2008-12-15

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modes of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO{sub 2} (versus a laser broadband cavity ringdown spectrometer) and for H{sub 2}O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+{delta} absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO{sub 3} as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1{sigma} detection limit

  5. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  6. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  7. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements

    NASA Astrophysics Data System (ADS)

    Lin, H.; Reed, Z. D.; Sironneau, V. T.; Hodges, J. T.

    2015-08-01

    We present a cavity ring-down spectrometer which was developed for near-infrared measurements of laser absorption by atmospheric greenhouse gases. This system has several important attributes that make it possible to conduct broad spectral surveys and to determine line-by-line parameters with wide dynamic range, and high spectral resolution, sensitivity and accuracy. We demonstrate a noise-equivalent absorption coefficient of 4×10-12 cm-1 Hz-1/2 and a signal-to-noise ratio of 1.5×106:1 in an absorption spectrum of carbon monoxide. We also present high-resolution measurements of trace methane in air spanning more than 1.2 THz and having a frequency axing with an uncertainty less than 100 kHz. Finally, we discuss how this system enables stringent tests of advanced line shape models. To illustrate, we measured an air-broadened carbon dioxide transition over a wide pressure range and analyzed these data with a multi-spectrum fit of the partially correlated, quadratic speed-dependent Nelkin-Ghatak profile. We obtained a quality-of-fit parameter in the multispectrum fit equal to 36,000, thus quantifying small-but-measurable limitations of the model profile. This analysis showed that the line shape depends upon collisional narrowing, speed dependent effects and partial correlations between velocity- and phase-changing collisions.

  8. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  9. Difference-Frequency-Based Tunable Absorption Spectrometer for Detection of Atmospheric Formaldehyde

    NASA Astrophysics Data System (ADS)

    Lancaster, David G.; Fried, Alan; Wert, Bryan; Henry, Bruce; Tittel, Frank K.

    2000-08-01

    High-sensitivity detection of formaldehyde (CH 2 O) at 3.5315 m (2831.64 cm 1 ) is reported with a diode-laser-pumped, fiber-coupled, periodically poled LiNbO 3 spectroscopic source. This source replaced the Pb salt diode laser Dewar assembly of an existing tunable diode-laser absorption spectrometer designed for ultrasensitive detection of CH 2 O. Spectra are recorded with 2 f -modulation spectroscopy and zero-air rapid background subtraction. Initial measurements reported here, determined from multiple measurements of a flowing 7.7 parts per billion by volume (ppbv, parts in 10 9 ) CH 2 O in air mixture, indicate replicate precisions as low as 0.24 ppbv.

  10. Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde

    NASA Technical Reports Server (NTRS)

    Lancaster, D. G.; Fried, A.; Wert, B.; Henry, B.; Tittel, F. K.

    2000-01-01

    High-sensitivity detection of formaldehyde (CH2O) at 3.5315 micrometers (2831.64 cm-1) is reported with a diode-laser-pumped, fiber-coupled, periodically poled LiNbO3 spectroscopic source. This source replaced the Pb-salt diode laser Dewar assembly of an existing tunable diode-laser absorption spectrometer designed for ultrasensitive detection of CH2O. Spectra are recorded with 2f-modulation spectroscopy and zero-air rapid background subtraction. Initial measurements reported here, determined from multiple measurements of a flowing 7.7 parts per billion by volume (ppbv, parts in 10(9)) CH2O in air mixture, indicate replicate precisions as low as 0.24 ppbv.

  11. Results of fission products β decay properties measurement performed with a total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Agramunt, J.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Estévez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2014-03-01

    β-decay properties of fission products are very important for applied reactor physics, for instance to estimate the decay heat released immediately after the reactor shutdown and to estimate the bar ν flux emitted. An accurate estimation of the decay heat and the bar ν emitted flux from reactors, are necessary for purposes such as reactors operation safety and non-proliferation. In order to improve the precision in the prediction for these quantities, the bias due to the Pandemonium effect affecting some important fission product data has to be corrected. New measurements of fission products β-decay, not sensitive to this effect, have been performed with a Total Absorption Spectrometer (TAS) at the JYFL facility of Jyväskylä. An overview of the TAS technique and first results from the 2009 campaign will be presented.

  12. Further developments of capillary absorption spectrometers using small hollow-waveguide fibers

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Kriesel, Jason M.

    2014-05-01

    Our objective is to enhance quantification of stable carbon and oxygen isotope ratios to better than 1‰ relative isotope precision for sample sizes < 1 pico-mole. A newer variant Capillary Absorption Spectrometer (CAS) is described using a proprietary linear-taper hollow waveguide in conjunction with wavelength and frequency modulation techniques of tunable laser absorption spectrometry. Previous work used circular capillaries with uniform 1 mm ID to measure 13C/12C ratios with ≥ 20 pico-mole samples to ≤ 10 ppm (1‰ precision against standards) [1]. While performing fairly well, it generated residual modal noise due to multipath propagation in the hollow-waveguides (HWGs). This system has been utilized with laser ablation-catalytic combustion techniques to analyze small resolution (~ 25 μm spot diameter) laser ablation events on solids. Using smaller ID capillary waveguides could improve detection limits and spatial resolutions. Reducing an IR compatible hollow waveguide’s inner diameter (ID) to < 300 μm, reduces modal noise significantly for mid-IR operation, but feedback noise with high gain semiconductor lasers can become problematic. A proprietary linear-taper small waveguide (mean ID = 0.35 mm, L = 1 m) was tested to understand whether modal noise and optical feedback effects could be simultaneously reduced. We see better mode filtering and, significant reductions of feedback noise under favorable coupling of a multi-spatial mode QC laser to the smaller ID of the linear-tapered HWG. We demonstrate that better modal coupling operation is consistent with Liouville’s theorem, where greater suppression of feedback from spurious scatter within the HWG occurs by injecting the laser into the smaller ID port. Our progress on developing lighter weight, potentially fieldable alternatives to Isotope Ratio Mass Spectrometers (IRMS) with a small volume (≤ 0.1 cm3) CAS system will be discussed and compared to other competitive systems.

  13. Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements

    NASA Astrophysics Data System (ADS)

    Wert, B. P.; Fried, A.; Rauenbuehler, S.; Walega, J.; Henry, B.

    2003-06-01

    A tunable diode laser absorption spectrometer (TDLAS) was modified for high-precision and high-time-resolution formaldehyde (CH2O) measurements. This enhanced system was deployed in both the clean and polluted troposphere, as part of aircraft missions (TOPSE 2000, TexAQS 2000, and TRACE-P 2001) and ground-based missions (SOS 1999). Measurements of very constant ambient CH2O concentrations were used to determine instrument precisions, which were stable under normal operating conditions, with the exception of brief aircraft cabin pressure changes. Precisions of 15-50 pptv (1σ) were typically achieved for 1 min of averaging, corresponding to absorptions of 0.5-1.7 × 10-6, 3-5 times better than the previous version of the instrument (1998). Responsible modifications included improved temperature and pressure control of instrument components and the use of more stable optical mounts. During the TexAQS 2000 aircraft mission (polluted continental troposphere), measurements of 1 s time resolution were reported. Instrument accuracy was validated by calibration cross checks, interference tests, sample transmission tests, and field comparisons with a DOAS system.

  14. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  15. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  16. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  17. A doubly curved elliptical crystal spectrometer for the study of localized x-ray absorption in hot plasmas

    NASA Astrophysics Data System (ADS)

    Cahill, Adam D.; Hoyt, Cad L.; Pikuz, Sergei A.; Shelkovenko, Tania; Hammer, David A.

    2014-10-01

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here the foundational work in the design and development of this spectrometer along with initial results obtained with an aluminum x-pinch as the object plasma.

  18. A doubly curved elliptical crystal spectrometer for the study of localized x-ray absorption in hot plasmas

    SciTech Connect

    Cahill, Adam D. Hoyt, Cad L.; Pikuz, Sergei A.; Shelkovenko, Tania; Hammer, David A.

    2014-10-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here the foundational work in the design and development of this spectrometer along with initial results obtained with an aluminum x-pinch as the object plasma.

  19. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  20. Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Sewell, Scott; Henry, Bruce; Wert, Bryan P.; Gilpin, Tim; Drummond, James R.

    1997-03-01

    We describe here a sensitive tunable diode laser absorption spectrometer (TDLAS) which was employed for ambient measurements of formaldehyde (HCHO) during the 1993 Idaho Hill/Fritz Peak Photochemistry Experiment. This system incorporated many new features and approaches including a novel astigmatic Herriott sampling cell which achieves a 100-m pathlength in a 3-L volume. We also describe procedures and tests carried out to ensure high accuracy, including the verification of HCHO standards by means of four techniques. During the field campaign, ambient HCHO measurements were acquired with an average 1σ measurement precision of 0.17 ppbv employing 1-5 min integration times. When combined with a maximum systematic uncertainty of 10%, ambient HCHO concentrations around 1.5 ppbv were measured with an average total (random plus systematic) 1σ uncertainty of 15% during the field campaign. In the intervening 2 years since the field experiment, additional features have been implemented for continuous unattended operation and improved performance. Rapid background subtraction now routinely allows HCHO measurements to be acquired with replicate precisions of 0.040 to 0.056 ppbv employing a 5-min integration period. This corresponds to routine minimum detectable absorbances of 1.2 to 1.6×10-6 in an actual mobile laboratory field environment.

  1. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  2. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  3. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  4. First experiment with the NUSTAR/FAIR Decay Total Absorption γ -Ray Spectrometer (DTAS) at the IGISOL IV facility

    NASA Astrophysics Data System (ADS)

    Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Äystö, J.; Briz, J. A.; Cano-Ott, D.; Cucoanes, A.; Eronen, T.; Estienne, M.; Fallot, M.; Fraile, L. M.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Hakala, J.; Jokinen, A.; Jordan, D.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Lebois, M.; Martinez, T.; Monserrate, M.; Montaner-Pizá, A.; Moore, I.; Nácher, E.; Orrigo, S.; Penttilä, H.; Podolyak, Zs.; Pohjalainen, I.; Porta, A.; Regan, P.; Reinikainen, J.; Reponen, M.; Rinta-Antila, S.; Rubio, B.; Rytkönen, K.; Shiba, T.; Sonnenschein, V.; Sonzogni, A. A.; Valencia, E.; Vedia, V.; Voss, A.; Wilson, J. N.; Zakari-Issoufou, A.-A.

    2016-06-01

    The new Decay Total Absorption Spectrometer (DTAS) has been commissioned with low energy radioactive beams at the upgraded IGISOL IV facility. The DTAS is a segmented detector composed of up to 18 NaI(Tl) crystals and it will be a key instrument in the DESPEC experiment at FAIR. In this document we report on the experimental setup and the first measurements performed with DTAS at IGISOL. The detector was characterized by means of MC simulations, and this allowed us to calculate the response function of the spectrometer and analyse the first cases of interest.

  5. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2015-10-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  6. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  7. Mapping of methane from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; MatJafri, M. Z.

    2012-11-01

    Among all the greenhouse gases, methane is the most dynamic and abundant greenhouse gas in the atmosphere. The global concentrations of atmospheric methane has increased more than doubled since pre-industrial times, with a current globally-averaged mixing ratio of ~ 1750 ppbv. Due to its high growth rate, methane brings significant effects on climate and atmospheric chemistry. There has a significant gap for variables between anthropogenic and natural sources and sinks of methane. Satellite observation of methane has been identified that it can provide the precise and accurate data globally, which sensitive to the small regional biases. We present measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) included on the European environmental satellite ENVISAT, launched on 1st of March 2002. Main objective of this study is to examine the methane distribution over Peninsular Malaysia using SCIAMACHY level-3 data. They are derived from the near-infrared nadir observations of the SCIAMACHY at the University of Bremen through scientific WFM-DOAS retrieval algorithm version 2.0.2.Maps of time averaged (yearly, tri-monthly) methane was generated and analyzed over Peninsular Malaysia for the year 2003 using PCI Geomatica 10.3 image processing software. The maps show dry-air column averaged mixing ratios of methane (denoted XCH4). It was retrieved using the interpolation technique. The concentration changes within boundary layer at all altitude levels are equally sensitive through the SCIAMACHY near-infrared nadir observations. Hence, we can make observation of methane at surface source region. The results successfully identify the area with highest and lowest concentration of methane at Peninsular Malaysia using SCIAMACHY data. Therefore, the study is suitable to examine the distribution of methane at tropical region.

  8. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  9. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  10. Modeling the Performance of a Spaceborne Laser Absorption Spectrometer for Atmospheric CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Nehrir, A. R.; Dobler, J. T.; Moore, B.; Refaat, T.; Kooi, S. A.

    2013-12-01

    Accurate global observations of atmospheric carbon dioxide (CO2) with a laser-based space mission, such as the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission, are crucial to improving our understanding of global CO2 sources and sinks. This study focuses on modeling of the performance of a spaceborne laser absorption spectrometer (LAS) system for CO2 column measurements. The model accounts for all of the fundamental physics of the instrument subsystems and components and the influences of measurement environments. The characteristics of simulated LAS systems and their components are based on existing technologies and the implementation of operational systems. The modeled instrument is specifically assumed to be an Intensity-Modulated Continuous-Wave (IM-CW) LAS system like the Exelis airborne Multifunctional Fiber Laser Lidar (MFLL) operating in the 1.57 um CO2 absorption band. Environmental effects such as gas absorption, solar radiation, scattering of aerosols and thin clouds, atmospheric turbulence, and surface reflection are also considered in the model. The modeled results are presented statistically from simulation ensembles of multiple model runs to accurately represent the random nature of all of the noise sources and uncertainties related to the LAS instruments and the measurement environments. Model simulations demonstrate very good agreement when compared to prior airborne and ground based MFLL measurements. The model predicted lidar return powers for various calibrated surface targets show good agreement with those measured by the MFLL instrument during ground tests at NASA Langley Research Center in the summer of 2012. The difference between modeled and measured signal-to-noise ratios (SNR) of the LAS CO2 column optical depths (Tau_d) for the summer 2011 flight campaign on board the NASA DC-8 over Railroad Valley (RRV), NV is generally within 20%. The simulations for spaceborne Tau_d measurements over RRV indicate

  11. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  12. Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Burrows, John P.; Schneider, Wolfgang

    1991-01-01

    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well.

  13. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  14. Methods for Retrievals of CO2 Mixing Ratios from JPL Laser Absorption Spectrometer Flights During a Summer 2011 Campaign

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2013-01-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.

  15. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  16. Continuous measurements of stable carbon isotopes in CO2 with a near-IR laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Tanaka, Kotaro; Kojima, Ryota; Takahashi, Kenshi; Tonokura, Kenichi

    2013-09-01

    A near-IR laser absorption spectrometer using a technique of wavelength modulation spectroscopy is used to measure stable carbon isotope ratios of ambient CO2 (δ13C) via the absorption lines 12CO2 R(17) (2ν1 + ν12 - ν12 + ν3) at 4978.205 cm-1 and 13CO2 P(16) (ν1 + 2ν2 + ν3) at 4978.023 cm-1. The isotope ratios are measured with a reproducibility of 0.02‰ (1σ) in a 130-s integration time over a 12-h period. The humidity effect on δ13C values has been evaluated in laboratory experiments. The δ13C values of CO2 in ambient air were measured continuously over 8 days and agreed well with those from isotope ratio mass spectrometry of canister samples. The spectrometer is thus capable of real-time, in situ measurements of stable carbon isotope ratios of CO2 under ambient conditions.

  17. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  18. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  19. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign. PMID:21556111

  20. LONG PATH DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER AND EPA-APPROVED FIXED POINT METHODS INTERCOMPARISON

    EPA Science Inventory

    Differential optical absorption spectrometry (DOAS) has been used by a number of investigators over the past 10 years to measure a wide range of gaseous air pollutants. ecently OPSIS AB, Lund, Sweden, has developed and made commercially available DOAS instrument that has a number...

  1. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  2. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R. A.; Murphy, J. G.; Pattey, E.; van Haarlem, R.; O'Brien, J. M.; Herndon, S. C.

    2009-12-01

    A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically cooled Mercury Cadmium Telluride (HgCdTe) infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering ammonia-free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS) during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of ammonia with sample tubing was investigated at mixing ratios ranging from 30-1000 ppb. Humidity was seen to worsen the ammonia time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation with 1 min time resolution (R2=0.93) between the two instruments at the beginning of the study, when regular background subtraction was applied to the QC

  3. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R. A.; Murphy, J. G.; Pattey, E.; van Haarlem, R.; O'Brien, J. M.; Herndon, S. C.

    2010-03-01

    A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of ammonia (NH3) has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically-cooled Mercury Cadmium Telluride (HgCdTe) infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of NH3 to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering NH3-free background air and calibration gas standards. The level of noise in this instrument has been found to be 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS) during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of NH3 with sample tubing was investigated at mixing ratios ranging from 30-1000 ppb. Humidity was seen to worsen the NH3 time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence-based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an NH3 gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation at 1 min time resolution (R2 = 0.93) between the two instruments at the beginning of the study, when regular background subtraction was applied to the QC-TILDAS. An overall good

  4. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for Measurements of Atmospheric Ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R.; Murphy, J. G.; van Haarlem, R.; Pattey, E.; O'Brien, J.

    2009-05-01

    A compact, fast response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC- TILDAS) for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 76 m path length, 0.5 L volume multiple pass absorption cell. Detection is achieved using a thermoelectrically cooled HgCdTe infrared detector. A novel sampling technique was used, consisting of a short, heated, quartz inlet with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles and additional ports for delivering ammonia free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.3 ppb with a time resolution of 1 s. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser (TDL) absorption spectrometer during a laboratory intercomparison. Various lengths and types of sample inlet tubing material, heated and unheated, under dry and ambient humidity conditions with ammonia concentrations ranging from 10-1000 ppb were investigated. Preliminary analysis suggests the time response improves with the use of short, PFA tubing sampling lines. No significant improvement was observed when using a heated sampling line and humidity was seen to play an important role on the bi-exponential decay of ammonia. A field intercomparison of the QC-TILDAS with a modified Thermo 42C chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation

  5. Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer

    PubMed Central

    Weber, Jessie R.; Cuccia, David J.; Johnson, William R.; Bearman, Gregory H.; Durkin, Anthony J.; Hsu, Mike; Lin, Alexander; Binder, Devin K.; Wilson, Dan; Tromberg, Bruce J.

    2011-01-01

    We present an approach for rapidly and quantitatively mapping tissue absorption and scattering spectra in a wide-field, noncontact imaging geometry by combining multifrequency spatial frequency domain imaging (SFDI) with a computed-tomography imaging spectrometer (CTIS). SFDI overcomes the need to spatially scan a source, and is based on the projection and analysis of periodic structured illumination patterns. CTIS provides a throughput advantage by simultaneously diffracting multiple spectral images onto a single CCD chip to gather spectra at every pixel of the image, thus providing spatial and spectral information in a single snapshot. The spatial-spectral data set was acquired 30 times faster than with our wavelength-scanning liquid crystal tunable filter camera, even though it is not yet optimized for speed. Here we demonstrate that the combined SFDI-CTIS is capable of rapid, multispectral imaging of tissue absorption and scattering in a noncontact, nonscanning platform. The combined system was validated for 36 wavelengths between 650–1000 nm in tissue simulating phantoms over a range of tissue-like absorption and scattering properties. The average percent error for the range of absorption coefficients (μa) was less than 10% from 650–800 nm, and less than 20% from 800–1000 nm. The average percent error in reduced scattering coefficients (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu_{\\rm s}^{\\prime}\\end{equation*} \\end{document}μs′) was less than 5% from 650–700 nm and less than 3% from 700–1000 nm. The SFDI-CTIS platform was applied to a mouse model of brain injury in order to demonstrate the utility of this approach in characterizing spatially and spectrally varying tissue optical properties. PMID:21280902

  6. Infrared absorption of gaseous CH{sub 2}BrOO detected with a step-scan Fourier-transform absorption spectrometer

    SciTech Connect

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-10-28

    CH{sub 2}BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH{sub 2}Br{sub 2} and O{sub 2}. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm{sup −1} are assigned to ν{sub 4} (CH{sub 2}-wagging), ν{sub 6} (O–O stretching), ν{sub 7} (CH{sub 2}-rocking mixed with C–O stretching), and ν{sub 8} (C–O stretching mixed with CH{sub 2}-rocking) modes of syn-CH{sub 2}BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ν{sub 7} and ν{sub 8} indicate that hot bands involving the torsional (ν{sub 12}) mode are also present, with transitions 7{sub 0}{sup 1}12{sub v}{sup v} and 8{sub 0}{sup 1}12{sub v}{sup v}, v = 1–10. The most intense band (ν{sub 4}) of anti-CH{sub 2}BrOO near 1277 cm{sup −1} might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH{sub 2}BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments.

  7. Development Of A Supercontinuum Based Photoacoustic Aerosol Light Absorption And Albedo Spectrometer (PALAAS)

    NASA Astrophysics Data System (ADS)

    Arnold, Ian J.

    Aerosols are a major contributor to the global radiation budget because they modify the planetary albedo with their optical properties. These optical properties need to be measured and understood, ideally at multiple wavelengths. This thesis describes the ongoing development of a supercontinuum based multi-wavelength photoacoustic instrument to measure the light absorption and scattering coefficients of aerosols. Collimation techniques for supercontinuum sources using lens-based and off-axis parabolic mirror-based collimators were evaluated and it was determined that the off-axis mirror had superior collimation abilities for multi-spectral beams. A proof of concept supercontinuum-based photoacoustic instrument was developed using sequential measurements at multiple wavelengths. The instrument data were in good agreement with those from a commercial 3-wavelength photoacoustic instrument and the novel instrument had minimum detectable absorption and scattering coefficients of better than 4 Mm-1 and 21 Mm-1, respectively. The instrument however suffered from poor temporal resolution due to the sequential measurement and required the development of an aerosol delivery system to deliver a slowly varying aerosol concentration. In response, a spectral modulator has been developed to frequency encode different wavelength bands for simultaneous measurement with a photoacoustic instrumen.

  8. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress. PMID:26414526

  9. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  10. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  11. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  12. Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH.

    PubMed

    Armerding, W; Spiekermann, M; Walter, J; Comes, F J

    1996-07-20

    The optical design of an absorption spectrometer for in situ measurements of atmospheric trace gases is reported. The light source is a rapidly tuned and power-stabilized dye-ring laser, which is frequency doubled by an intracavity BBO crystal. The second harmonic and the fundamental are used simultaneously for measurement of OH, SO(2), CH(2)O, and naphthalene in the UV and of NO(2) in the visible. The 1.2-km absorption path is folded within a 6-m White-cell-type multiple-reflection system with an open-path setup. The absorption sensitivity of the spectrometer is better than 1 part in 10(-5) under tropospheric conditions (integration time 1 min., signal-to-noise ratio 1). PMID:21102830

  13. Development of a Transient Absorption Spectrometer for the Study of the Proton-motive Force (PMF) in Plant Thylakoid Membranes

    NASA Astrophysics Data System (ADS)

    Gardner, Jens Christopher

    A transient-absorption spectrometer to study the electric field component of the proton-motive force (PMF) has been developed. Excitation by an actinic light source (655nm) causes absorption changes of pigments in the sample at 520nm on the order of 0.1%. Using a probe light source at 520nm, the change in transmission before and after actinic excitation can be detected and quantified. Because the change in transmission is small, a high signal to noise ratio (SNR) is required. To reduce the effect of optical shot noise and front end electrical noise a high intensity source at 520nm is utilized. However, continuous high intensity light at 520nm over time can cause actinic excitation in the sample, so the 520nm probe is pulsed at high optical intensity and low duty cycle to reduce the net incident flux. The developed system includes 1) a LED driver to drive 1A current pulses through three high power probe LEDs and four high power actinic LEDs, 2) an analog front end which uses a 10mm by 10mm photodiode and a trans-impedance amplifier to detect the pulses, as well as several signal processing stages, 3) a microcontroller to generate the probe timing waveforms, digitize the detected signal, and send the data to a PC, and 4) a LabView computer interface to set input parameters, display the collected data, and save the data to a text file. Experimental verification of system peformance was performed by testing the system with and without a plant sample. The results show that the system works as expected and is capable of measuring the data required to determine the electric field component of the PMF.

  14. A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Sams, R. L.; Blake, T. A.; Newburn, M.; Moran, J.; Alexander, M. L.; Kreuzer, H.

    2012-02-01

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO2 samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 (4.34 μm). This initial CAS system can achieve relative isotopic precision of about 10 ppm 13C, or ˜1‰ (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO2 concentrations ˜400-750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to ˜2 Torr. Overall 13C/12C ratios can be calibrated to ˜2‰ accuracy with diluted CO2 standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1000 scans are co-added in ˜10 s. The CAS is meant to work directly with converted CO2 samples from a laser ablation-catalytic combustion micro-sampler to provide 13C/12C ratios of small biological isolates currently operating with spatial resolutions ˜50 μm.

  15. Intensity-Modulated Continuous-Wave Laser Absorption Spectrometer at 1.57 Micrometer for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Lin, Bing

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.

  16. Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

    NASA Astrophysics Data System (ADS)

    Levy, A.; Dorchies, F.; Fourment, C.; Harmand, M.; Hulin, S.; Santos, J. J.; Descamps, D.; Petit, S.; Bouillaud, R.

    2010-06-01

    An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.

  17. Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fadeyev, A. V.; Pozhar, V. E.

    2012-10-01

    It is discussed the reliability problem of time-optimized method for remote optical spectral analysis of gas-polluted ambient air. The method based on differential optical absorption spectroscopy (DOAS) enables fragmentary spectrum registration (FSR) and is suitable for random-spectral-access (RSA) optical spectrometers like acousto-optical (AO) ones. Here, it is proposed the algorithm based on statistical method of independent component analysis (ICA) for estimation of a correctness of absorption spectral lines selection for FSR-method. Implementations of ICA method for RSA-based real-time adaptive systems are considered. Numerical simulations are presented with use of real spectra detected by the trace gas monitoring system GAOS based on AO spectrometer.

  18. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  19. Spectroscopic Character and Spatial Distribution of Hydroxyl and Water Absorption Features Measured on the Lunar Surface by the Moon Mineralogy Mapper Imaging Spectrometer on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Pieters, C. M.; Goswami, J.; Clark, R. N.; Annadurai, M.; Boardman, J. W.; Buratti, B. J.; Combe, J.; Dyar, M. D.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R. L.; Kramer, G. Y.; Kumar, S.; Livo, K. E.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.

    2009-12-01

    The Moon Mineralogy Mapper imaging spectrometer on Chandrayaan-1 has a broad spectral range from 430 to 3000 nm. By design, the range was specified to extend to 3000 nm to allow for possible detection of trace volatile compounds that possess absorption bands near 3000 nm. Soon after acquisition and calibration of a large fraction of the lunar surface in early February 2009, absorption features in the 2700 to 3000 nm region were detected over unexpectedly large regional areas. This extraordinary discovery has withstood extensive re-analysis and falsification efforts. We have concluded these absorption features are fundamentally present in the M3 measurements and are indicators of extensive hydroxyl and water-bearing materials occurring on the surface of the Moon. Based on current analyses, these absorption features appear strongest at high latitudes, but also occur in association with several fresh feldspathic craters. Interestingly, the distribution of these absorption features are not directly correlated with existing neutron spectrometer hydrogen abundance data for the sunlight surface. This may indicate that the formation and retention of hydroxyl and water is an active process largely restricted to the upper most surface. We present the detailed spectroscopic character of these absorption features in the 2700 to 3000 nm spectral region, including selected examples through all levels of measurement processing from raw data to calibrated apparent surface reflectance. In summary we show the measured strength and latitudinal distribution of the absorptions as well as selected localized occurrences in association with fresh feldspathic craters. The presence of hydroxyl and water bearing material over extensive regions of the lunar surface provides a new and unexpected source of volatiles. Options for harvesting these elements directly from the regolith may provide an alternate supply of volatiles for long term human exploration objectives.

  20. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    PubMed

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  1. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE FOR THE CALIBRATION OF PERKIN ELMER (PE) MODEL 5100 ZL ATOMIC ABSORPTION SPECTROMETER: GRAPHITE FURNACE (NHX/SOP-171-005)

    EPA Science Inventory

    This procedure describes the calibration procedures and performance checks required to ensure the consistent performance of the Perkin Elmer (PE) Model 5100 zl atomic absorption spectrometer with graphite furnace unit as a whole. Separate calibration procedures were not required ...

  2. Measurement of Urban Air Quality by an Open-Path Quantum Cascade Laser Absorption Spectrometer in Beijing During Summer 2008

    NASA Astrophysics Data System (ADS)

    Michel, A. P.; Liu, P. Q.; Yeung, J. K.; Zhang, Y.; Baeck, M. L.; Pan, X.; Dong, H.; Wang, Z.; Smith, J. A.; Gmachl, C. F.

    2009-05-01

    The 2008 Olympic Games focused attention on the air quality of Beijing, China and served as an important test-bed for developing, deploying, and testing new technologies for analysis of air quality and regional climate in urban environments. Poor air quality in urban locations has a significant detrimental effect on the health of residents while also impacting both regional and global climate change. As a result, there exists a great need for highly sensitive trace gas sensors for studying the atmosphere of the urban environment. Open-path remote sensors are of particular interest as they can obtain data on spatial scales similar to those used in regional climate models. Quantum cascade lasers (QCLs) can be designed for operation in the mid-infrared (mid-IR) with a central wavelength anywhere between 3 to 24 μm and made tunable over a wavelength interval of over 0.1 μm. The Quantum Cascade Laser Open-Path System (QCLOPS) is a mid-infrared laser absorption spectrometer that uses a tunable, thermoelectrically cooled, pulsed Daylight Solutions Inc. QCL for measurement of trace gases. The system is aimed at applications with path lengths ranging from approximately 0.1 to 1.0 km. The system is designed to continuously monitor multiple trace gases [water vapor (H2O), ozone (O3), ammonia (NH3), and carbon dioxide (CO2)] in the lower atmosphere. A field campaign from July to September 2008 in Beijing used QCLOPS to study trace gas concentrations before, during, and after the Olympic Games in an effort to capture changes induced by emissions reduction methods. QCLOPS was deployed at the Institute of Atmospheric Physics - Chinese Academy of Sciences on the roof of a two-story building, at an approximate distance of 2 miles from the Olympic National Stadium ("The Bird's Nest.") QCLOPS operated with an open-path round trip distance of approximately 75 m. The system ran with minimal human interference, twenty-four hours per day for the full campaign period. In order to

  3. A compact tunable diode laser absorption spectrometer to monitor CO2 at 2.7 μm wavelength in hypersonic flows.

    PubMed

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703

  4. A Compact Tunable Diode Laser Absorption Spectrometer to Monitor CO2 at 2.7 μm Wavelength in Hypersonic Flows

    PubMed Central

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703

  5. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  6. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor.

    PubMed

    Pogány, Andrea; Wagner, Steven; Werhahn, Olav; Ebert, Volker

    2015-01-01

    Simultaneous detection of two analytes, carbon dioxide (CO2) and water vapor (H2O), has been realized using tunable diode laser absorption spectroscopy (TDLAS) with a single distributed feedback diode laser at 2.7 μm. The dynamic range of the spectrometer is extended from the low parts per million to the percentage range using two gas cells, a single-pass cell with 0.77 m, and a Herriott-type multipass cell with 76 m path length. Absolute measurements were carried out, i.e., amount fractions of the analytes were calculated based on previously determined spectral line parameters, without the need for an instrument calibration using gas standards. A thorough metrological characterization of the spectrometer is presented. We discuss traceability of all parameters used for amount fraction determination and provide a comprehensive uncertainty assessment. Relative expanded uncertainties (k = 2, 95% confidence level) of the measured amount fractions are shown to be in the 2-3% range for both analytes. Minimum detectable amount fractions are 0.16 μmol/mol for CO2 and 1.1 μmol/mol for H2O for 76 m path length and 5 s averaging time. This corresponds to normalized detection limits of 27 μmol/mol m Hz(-1/2) for CO2 and 221 μmol/mol m Hz(-1/2) for H2O. Precision of the spectrometer, determined using Allan variance analysis, is 3.3 nmol/mol for CO2 and 21 nmol/mol for H2O. The spectrometer has been validated using reference gas mixtures with known CO2 and H2O amount fractions. An application example of the absolute TDLAS spectrometer as a reference instrument to validate other sensors is also presented. PMID:25658222

  7. A quantum cascade laser absorption spectrometer devoted to the in situ measurement of atmospheric N2O and CH4 emission fluxes

    NASA Astrophysics Data System (ADS)

    Mappé, I.; Joly, L.; Durry, G.; Thomas, X.; Decarpenterie, T.; Cousin, J.; Dumelie, N.; Roth, E.; Chakir, A.; Grillon, P. G.

    2013-02-01

    This paper describes a Quantum Cascade Laser Absorption Spectrometer, called "QCLAS" that was developed to monitor in situ greenhouse gases like N2O and CH4, at high temporal resolution and with a high accuracy. The design of the laser sensor is reported as well as its performances in terms of precision error and field deployment capabilities. Finally, to demonstrate the efficiency and the robustness of QCLAS and its suitability for gas emission monitoring and for the determination of fluxes, we report the results from a field campaign, that took place in the Wallis and Futuna Islands in 2011, to investigate the impact of environmental intensive pig farming.

  8. Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flame.

    PubMed

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael

    2005-08-01

    Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained. PMID:15999269

  9. Atmospheric solar absorption measurements in the 9-11 micron region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground based measurements of atmospheric solar absorption spectra in the 9 to 12 micron spectral range. The performance and operating characteristics of this tunable infrared heterodyne radiometer (TIHR) is discussed along with recently measured heterodyne solar absorption spectra in the 10 to 11 micron spectral region.

  10. Improving Atmospheric Correction for Visible/Short Wave Infrared (VSWIR) Imaging Spectrometers with Iterative Fitting of Absorption By Three Phases of Water

    NASA Astrophysics Data System (ADS)

    Pennington, E. A.; Thompson, D. R.; Green, R. O.; Gao, B. C.

    2014-12-01

    Airborne imaging spectrometers like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) offer valuable insight into the Earth's terrestrial and ocean ecosystems, mineralogy, and land use. Estimating surface reflectance requires accounting for atmospheric absorption, which is sensitive to the local abundance of water vapor. Analysts typically estimate water vapor concentrations using the depths of absorption features, which can be inaccurate by up to 50% over surface features containing liquid water or ice. This can bias the retrieved water vapor maps and create atmospheric artifacts in reflectance spectra. A new retrieval method offers significant accuracy improvements over plant canopies or ice by estimating the path lengths of all three phases of water simultaneously, adjusting absorptions to best fit the measurement over a broader spectral interval. This paper assesses the remaining sources of error for the three-phase retrieval technique. We analyze retrievals for synthetic data when the 940 and 1140 nm wavelength features are fitted, for initial vapor path estimates ranging from 0 to ±50% accuracy. These tests indicate that most error comes from inaccuracy in the initial path estimate used to obtain vapor absorption coefficients. We evaluate a modified algorithm that uses multiple iterations to refine this estimate. Error is found to approach a constant value, demonstrating improved robustness to initialization conditions. We also assess the new iterative method using corrected AVIRIS data over various environments. The iterative method yields significantly better water vapor maps, reducing spurious correlations between vegetation canopy water and vapor estimates. The new iterative method offers accuracy improvements over traditional Visible/Short Wave Infrared (VSWIR) atmospheric correction methods, at modest computational cost.

  11. Atmospheric solar absorption measurements in the 9 to 11 mu m region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground-based measurements of atmospheric solar absorption spectra in the 8 to 12 microns spectral range. The performance and operating characteristics of this Tunable Infrared Heterodyne Radiometer (TIHR) are discussed along with atmospheric solar absorption spectra of HNO3, O3, CO2, and H2O in the 9 to 11 microns spectral region.

  12. Development of a Near-Ir Cavity Enhanced Absorption Spectrometer for the Detection of Atmospheric Oxidation Products and Organoamines

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily

    2014-06-01

    An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.

  13. Simple system for measuring tritium Ad/absorption using a 2. pi. counter and thermal desorption spectrometer

    SciTech Connect

    Miyake, H.; Matsuyama, M.; Watanabe, K. ); Cowgill, D.F. )

    1992-03-01

    In this paper, the authors develop a simple system using tritium tracer and thermal desorption techniques to measure the tritium adsorption and/or absorption on/in a material having typical surface conditions: namely, not cleaned surface. The tritium counting devices used were a 2{pi} counter and conventional proportional counter. With this system, the amounts of ad/absorption could be measured without exposing the samples to air after exposing them to tritium gas. The overall efficiency (F) of the 2{pi} counter was described at F = exp({minus}2.64h), where h is the distance from the sample to the detector. Ad/absorption measurements were carried out for several materials used for fabricating conventional vacuum systems. The results were, in the order of decreasing amounts of ad/absorption, as (fiber reinforced plastics(FRP)) {gt} (nickel(Ni), molybdenum disulfide(MoS{sub 2})) {gt} (stainless steel (SS304), iron(Fe), aluminum alloy(A2219)) {gt} (boron nitride(h-BN), silicon carbide (SiC), SS304 passivated by anodic oxidation layers(ASS) and that by boron nitride segregation layers (BSS)). The relative amounts were abut 100 for Ni and 0.1 for ASS and BSS, being normalized to Fe = 1.

  14. In situ ozone data for evaluation of the laser absorption spectrometer ozone remote sensor: 1979 southeastern Virginia urban plume study summer field program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.

    1980-01-01

    Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.

  15. Airborne Tunable Laser Absorption Spectrometer (ATLAS) instrument characterization: Accuracy of the AASE (Airborne Arctic Stratospheric Expedition) and AAOE (Airborne Antarctic Ozone Experiment) nitrous oxide data sets

    SciTech Connect

    Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. )

    1990-03-01

    ATLAS, the Airborne Tunable Laser Absorption Spectrometer, was used to measure nitrous oxide in the 1987 Airborne Antarctic Ozone Experiment (AAOE) and in the 1989 Airborne Arctic Stratospheric Expedition (AASE). After the AASE, a detailed study of the ATLAS characteristics was undertaken to quantify the error inherent in the in situ measurement of atmospheric N{sub 2}O. Using the latest calibration of the ATLAS (June 1989) and incorporating the recognized errors arising in the flight environment of ATLAS, the authors have established that for both the AASE and the AAOE most of the acquired N{sub 2}O data sets are accurate to {plus minus}10% (2 sigma). Data from two of the earlier AAOE flights had a larger uncertainty.

  16. Multiple γ Emission of the 137Xe 2849-2850 keV Levels Studied with the Modular Total Absorption Spectrometer (MTAS)

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Wolińska-Cichocka, M.; Goetz, K. C.; Grzywacz, R. K.; Gross, C. J.; Miernik, K.; Paulauskas, S. V.

    The Modular Total Absorption Spectrometer (MTAS) was constructed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Lab to measure true β-decay feeding patterns in neutron rich nuclei. The first measurement campaign in early 2012 involved the measurement of over 20 different nuclei, many of which are "priority one" or "priority two" as assessed in the report by the OECD's Nuclear Energy Agency. We present first results from the measurement of γ-rays from the β decay of 137Xe with the new MTAS. In this contribution, we demonstrate the ability of MTAS to distinguish the γ decay paths from two levels very close in energy, but with very different de-excitation patterns in the daughter nucleus 137Cs.

  17. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses.

    PubMed

    Landsberg, J; Romanini, D; Kerstel, E

    2014-04-01

    So far, cavity-enhanced absorption spectroscopy (CEAS) has been based on optical cavities with a high finesse F that, however, has been limited by mirror reflectivity and by cavity transmission considerations to a few times 10,000. Here, we demonstrate a compact near-infrared optical-feedback CEAS instrument for water vapor isotope ratio measurements, with F>140,000. We show that this very high finesse can be effectively exploited to improve the detection sensitivity to the full extent predicted by the increased effective path length to reach a noise equivalent absorption sensitivity of 5.7×10(-11)  cm(-1) Hz(-1/2) for a full spectrum registration (including possible effects of interference fringes and fit model inadequacies). PMID:24686607

  18. Wavelength-Dependent Optical Absorption Properties of Artificial and Atmospheric Aerosol Measured by a Multi-Wavelength Photoacoustic Spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Bozóki, Z.; Szabó, G.

    2014-12-01

    Various aspects of the photoacoustic (PA) detection method are discussed from the point of view of developing it into a routine tool for measuring the wavelength-dependent optical absorption coefficient of artificial and atmospheric aerosol. The discussion includes the issues of calibration, cross-sensitivity to gaseous molecules, background PA signal subtraction, and size-dependent particle losses within the PA system. The results in this paper are based on a recently developed four-wavelength PA system, which has operational wavelengths in the near-infrared, in the visible, and in the ultraviolet. The measured spectra of artificial and atmospheric aerosol prove the outstanding applicability of the presented PA system.

  19. Inter-comparison of 2 microm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio.

    PubMed

    Gibert, Fabien; Joly, Lilian; Xuéref-Rémy, Irène; Schmidt, Martina; Royer, Adrien; Flamant, Pierre H; Ramonet, Michel; Parvitte, Bertrand; Durry, Georges; Zéninari, Virginie

    2009-01-01

    Remote sensing and in situ instruments are presented and compared in the same location for accurate CO(2) mixing ratio measurements in the atmosphere: (1) a 2.064 microm Heterodyne DIfferential Absorption Lidar (HDIAL), (2) a field deployable infrared Laser Diode Spectrometer (LDS) using new commercial diode laser technology at 2.68 microm, (3) LICOR NDIR analyzer and (4) flasks. LDS, LICOR and flasks measurements were made in the same location, LICOR and flasks being taken as reference. Horizontal HDIAL measurements of CO(2) absorption using aerosol backscatter signal are reported. Using new spectroscopic data in the 2 microm band and meteorological sensor measurements, a mean CO(2) mixing ratio is inferred by the HDIAL in a 1 km long path above the 15m height location of the CO(2) in situ sensors. We compare HDIAL and LDS measurements with the LICOR data for 30 min of time averaging. The mean standard deviation of the HDIAL and the LDS CO(2) mixing ratio results are 3.3 ppm and 0.89 ppm, respectively. The bias of the HDIAL and the LDS measurements are -0.54 ppm and -0.99 ppm, respectively. PMID:18718810

  20. Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite.

    PubMed

    Kameyama, Shumpei; Imaki, Masaharu; Hirano, Yoshihito; Ueno, Shinichi; Kawakami, Shuji; Sakaizawa, Daisuke; Kimura, Toshiyoshi; Nakajima, Masakatsu

    2011-05-10

    A feasibility study is carried out on a 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO(2)concentration from a satellite. The studies are performed for wavelength selection and both systematic and random error analyses. The systematic error in the differential absorption optical depth (DAOD) is mainly caused by the temperature estimation error, surface pressure estimation error, altitude estimation error, and ON wavelength instability. The systematic errors caused by unwanted backscattering from background aerosols and dust aerosols can be reduced to less than 0.26% by using a modulation frequency of around 200 kHz, when backscatter coefficients of these unwanted backscattering have a simple profile on altitude. The influence of backscattering from cirrus clouds is much larger than that of dust aerosols. The transmission power required to reduce the random error in the DAOD to 0.26% is determined by the signal-to-noise ratio and the carrier-to-noise ratio calculations. For a satellite altitude of 400 km and receiving aperture diameter of 1 m, the required transmission power is approximately 18 W and 70 W when albedo is 0.31 and 0.08, respectively; the total measurement time in this case is 4 s, which corresponds to a horizontal resolution of 28 km. PMID:21556107

  1. Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer

    NASA Astrophysics Data System (ADS)

    Gleisner, Heike; Welz, Bernhard; Einax, Jürgen W.

    2010-09-01

    The determination of fluorine using the molecular absorption of gallium mono-fluoride (GaF) at the 211.248 nm rotational line has been optimized using a commercially available high-resolution continuum source atomic absorption spectrometer with a transversely heated graphite tube furnace. The electron excitation spectrum of GaF was generated by adding 500 μg Ga per injection into the graphite tube as molecule forming reagent. Best results were obtained by applying Zr as a permanent modifier and a mixed Pd/Zr modifier, thermally pretreated before each sample injection together with the Ga reagent at 1100 °C. The use of sodium acetate and Ru(III) nitrosyl nitrate as additional modifiers injected together with the sample further improved the performance. This way a maximum pyrolysis temperature of 550 °C could be used, and the optimum molecule forming temperature was 1550 °C. Several drinking water samples, a mineral water sample, and two certified reference materials were analyzed using the standard calibration technique; the absence of potential matrix effects was verified by measuring different dilutions and spiking with known fluorine mass. The results were in good agreement with the certified values and those measured by ion selective electrode; the recovery rate for the spiking experiments was between 97% and 106%. The results show that there was no matrix influence for that kind of samples containing relatively high concentrations of Ca, Mg and chloride, which are known to cause interference in GaF molecule absorption. The limit of detection and the characteristic mass of the method were 5.2 and 7.4 pg F, respectively, and were both about a factor of two better than recently published values.

  2. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE FOR MAINTENANCE OF PERKIN ELMER (PE) MODEL ZL5100 PC ATOMIC ABSORPTION SPECTROMETER: GRAPHITE FURNACE (NHX/SOP-171-006)

    EPA Science Inventory

    This procedure describes maintenance practices for the Perkin Elmer (PE) Model ZL5100 PC atomic absorption spectrometer with graphite furnace. It was required that the procedure be performed daily by the instrument operator during periods of analysis and recorded in the instrumen...

  3. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yu. N.; Solodov, A. A.; Solodov, A. M.; Petrova, T. M.; Naumenko, O. V.

    2016-07-01

    A description of the spectroscopic complex at V.E. Zuev Institute of Atmospheric Optics, SB RAS, operating in a wide spectral range with high threshold sensitivity to the absorption coefficient is presented. Measurements of weak lines and nonselective spectra of CO2 and H2O were performed based on the built setup. As new application of this setup, positions and intensities of 152 weak lines of H2O were measured between 2400 and 2560 cm-1 with threshold sensitivity of 8.6×10-10 cm-1, and compared with available calculated and experimental data. Essential deviations between the new intensity measurements and calculated data accepted in HITRAN 2012 and GEISA 2015 forthcoming release are found.

  4. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media

    NASA Astrophysics Data System (ADS)

    Foschum, F.; Jäger, M.; Kienle, A.

    2011-10-01

    We describe a fully automated setup which is based on measurements of the spatially resolved reflectance for the determination of the reduced scattering and absorption coefficients in semi-infinite turbid media. The sample is illuminated with a xenon light source in combination with a monochromator enabling the scan of the wavelength from 450 nm to 950 nm. Reflected light from the sample is detected with a CCD camera providing a high spatial resolution. The essential steps for signal processing including, e.g., the consideration of the optical transfer function and the correct treatment of the background subtraction, are presented. The solutions of the diffusion theory and of the radiative transfer theory are investigated regarding the exact detection and illumination geometry. Systematic errors caused by using the different theories for fitting the optical parameters are characterized. The system was validated using liquid phantoms which contain Intralipid 20% and ink, and the measurement range of the system is specified. Further, we carefully characterized the optical properties of Intralipid 20% in the wavelength range between 450 nm and 950 nm.

  5. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2015-08-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We present details of the mid-IR Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure is presented. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  6. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M. R.; Allen, G.; Percival, C.; Gallagher, M. W.; Bauguitte, S.; O'Shea, S.; Muller, J.; Zahniser, M. S.; Pyle, J. A.; Palmer, P. I.

    2015-12-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  7. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Le Breton, Michael; Allen, Grant; Percival, Carl; Gallagher, Martin; Bauguitte, Stephane; O'Shea, Sebastian; Muller, Jennifer; Zahniser, Mark; Pyle, John; Palmer, Paul

    2016-04-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  8. The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2016-01-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1σ uncertainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  9. Infrared absorption of gaseous benzoylperoxy radical C6H5C(O)OO recorded with a step-scan Fourier-transform spectrometer.

    PubMed

    Golec, Barbara; Chen, Jin-Dah; Lee, Yuan-Pern

    2011-12-14

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of benzoyl radical, C(6)H(5)CO, with O(2). C(6)H(5)CO was produced either from photolysis of acetophenone, C(6)H(5)C(O)CH(3), at 248 nm, or from photolysis of a mixture of benzaldehyde, C(6)H(5)CHO, and Cl(2) at 355 nm. Two intense bands near 1830 and 1226 cm(-1) are assigned to the C=O stretching (ν(6)) and the C-C stretching mixed with C-H deformation (ν(13)) modes, and two weaker bands near 1187 and 1108 cm(-1) are assigned to the ν(14) (C-H deformation) and ν(16) (O-O stretching /C-H deformation) modes of C(6)H(5)C(O)OO, the benzoylperoxy radical. These observed vibrational wave numbers and relative infrared intensities agree with those reported for syn-C(6)H(5)C(O)OO isolated in solid Ar and values predicted for syn-C(6)H(5)C(O)OO with the B3LYP/cc-pVTZ method. The simulated rotational contours of the two intense bands based on rotational parameters predicted with the B3LYP∕cc-pVTZ method fit satisfactorily with experimental results. PMID:22168689

  10. Differential optical absorption spectrometer measurement of NO 2, SO 2, O 3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan

    NASA Astrophysics Data System (ADS)

    Chiu, Kong Hwa; Sree, Usha; Hong Tseng, Sen; Wu, Chien-Hou; Lo, Jiunn-Guang

    UV-differential optical absorption spectrometer (DOAS) technique is considered as a promising technique to detect gaseous pollutants and was applied to conduct one-week continuous measurements in the Chinese Petroleum (CPC) refinery plant located in Lin Yuan industrial park of Kaohsiung, Southern Taiwan. With the combination of local meteorological information, including solar radiation, wind direction and speed, the results showed that the concentrations of aromatic compounds and formaldehyde (HCHO) were higher at night while the values of ozone, NO 2 and SO 2 were high during the day. The major source of aromatics was the aromatic extraction unit in the refinery while NO 2 and SO 2 were mainly emitted from chimneys with not very high average concentrations. Formaldehyde concentration was above 50 ppbv during night. There exists an apparent correlation between the variation of ground-level ozone concentration and photochemical reactions. The results indicate that in addition to benzene and toluene, ozone is a deleterious pollutant. The commercial DOAS system provides reliable information on distribution patterns of major air pollutants depending on their concentration levels in ambient air.

  11. β - γ and β-neutron- γ emission in mass A=137 Decay Chain Studied with the Modular Total Absorption Spectrometer (MTAS)

    NASA Astrophysics Data System (ADS)

    Rasco, Charles; Fijałkowska, Aleksandra; Karny, Marek; Rykaczewski, Krzysztof; Wolińska-Cichocka, Marzena; Grzywacz, Robert

    2013-10-01

    The Modular Total Absorption Spectrometer (MTAS) is a detector made up of 19 separate hexagon modules of NaI which results in over a ton of NaI in the MTAS detector. MTAS was designed to capture as much of the electromagnetic energy release in β-decays as possible. MTAS was constructed at the Holifield Radioactive Ion Beam Facility and measured over 20 decay products of 238U fission products in its inaugural measurement campaign in January 2012. The measurements were focused on nuclei identified as important for decay heat analysis of the nuclear fuel cycle. Silicon detectors placed at the center of MTAS to provide β triggers, make for extremely clean signals in MTAS. Preliminary results on the average electromagnetic energy release in the β decay of 137Xe and 137I isotopes will be presented. These isotopes are among the priority 1 cases listed by the NEA. The 137I also has a beta -neutron decay branch that is detected in MTAS. Neutron detection in a large NaI detector will also be discussed. This work was supported by the US DOE by award no. DE-FG02-96ER40978 and by US DOE, Office of Nuclear Physics.

  12. Infrared absorption of gaseous benzoylperoxy radical C6H5C(O)OO recorded with a step-scan Fourier-transform spectrometer

    NASA Astrophysics Data System (ADS)

    Golec, Barbara; Chen, Jin-Dah; Lee, Yuan-Pern

    2011-12-01

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of benzoyl radical, C6H5CO, with O2. C6H5CO was produced either from photolysis of acetophenone, C6H5C(O)CH3, at 248 nm, or from photolysis of a mixture of benzaldehyde, C6H5CHO, and Cl2 at 355 nm. Two intense bands near 1830 and 1226 cm-1 are assigned to the C=O stretching (ν6) and the C-C stretching mixed with C-H deformation (ν13) modes, and two weaker bands near 1187 and 1108 cm-1 are assigned to the ν14 (C-H deformation) and ν16 (O-O stretching /C-H deformation) modes of C6H5C(O)OO, the benzoylperoxy radical. These observed vibrational wave numbers and relative infrared intensities agree with those reported for syn-C6H5C(O)OO isolated in solid Ar and values predicted for syn-C6H5C(O)OO with the B3LYP/cc-pVTZ method. The simulated rotational contours of the two intense bands based on rotational parameters predicted with the B3LYP/cc-pVTZ method fit satisfactorily with experimental results.

  13. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  14. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV-VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions.

  15. Infrared absorption of gaseous benzoyl radical C6H5CO recorded with a step-scan Fourier-transform spectrometer.

    PubMed

    Lin, Shu-Yu; Lee, Yuan-Pern

    2012-06-21

    A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the gaseous transient species benzoyl radical, C(6)H(5)CO. C(6)H(5)CO was produced either from photolysis of acetophenone, C(6)H(5)C(O)CH(3), at 248 nm or in reactions of phenyl radical (C(6)H(5)) with CO; C(6)H(5) was produced on photolysis of C(6)H(5)Br at 248 nm. One intense band at 1838 ± 1 cm(-1), one weak band at 1131 ± 3 cm(-1), and two extremely weak bands at 1438 ± 5 and 1590 ± 10 cm(-1) are assigned to the C═O stretching (ν(6)), the C-C stretching mixed with C-H deformation (ν(15)), the out-of-phase C(1)C(2)C(3)/C(5)C(6)C(1) symmetric stretching (ν(10)), and the in-phase C(1)C(2)C(3)/C(4)C(5)C(6) antisymmetric stretching (ν(7)) modes of C(6)H(5)CO, respectively. These observed vibrational wavenumbers and relative IR intensities agree with those reported for C(6)H(5)CO isolated in solid Ar and with values predicted for C(6)H(5)CO with the B3LYP/aug-cc-pVDZ method. The rotational contours of the two bands near 1838 and 1131 cm(-1) simulated according to rotational parameters predicted with the B3LYP/aug-cc-pVDZ method fit satisfactorily with the experimental results. Additional products BrCO, C(6)H(5)C(O)Br, and C(6)H(5)C(O)C(6)H(5) were identified in the C(6)H(5)Br/CO/N(2) experiments; the kinetics involving C(6)H(5)CO and C(6)H(5)C(O)Br are discussed. PMID:22369517

  16. Column Path Length Measurements Using a Multi-Frequency, Intensity-Modulated Continuous-Wave (IM-CW) Laser Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Harrison, F. W.; Lin, B.; Browell, E. V.; Dobler, J.; McGregor, D.; Kooi, S. A.; Collins, J. E.

    2012-12-01

    Accurate understanding of carbon balance in the environment is critical to projections of the future evolution of the Earth's climate. As a result, the NRC Decadal Survey (DS) of Earth Science and Applications from Space identified Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as a mid-term (Tier II) mission. The active space remote measurement of the column CO2 mixing ratio (XCO2) for the ASCENDS mission requires the simultaneous measurement of the CO2 and O2 number density and the column path length over which they are measured in order to derive the average XCO2 column. This paper presents methods for measuring the path lengths of the CO2 and O2 measurements that are inherent to the Multi-Functional Fiber Laser Lidar (MFLL), a laser absorption spectrometer (LAS) system under development for the ASCENDS mission. The MFLL is a multi-frequency intensity-modulated continuous-wave (IM-CW) LAS operating near 1.57 and 1.26 μm that uses a range-encoded modulation technique to minimize bias from thin clouds in the CO2 and O2 column measurements while simultaneously measuring the path length to the surface and to intervening cloud layers. This paper discusses the latest MFLL ground and flight test results. During these tests, range-encoded modulation techniques were demonstrated for path length measurements and the MFLL remote CO2 column measurements were evaluated against in situ CO2 measurements. This paper describes the encoding techniques employed, presents an approach for obtaining column path length measurements during CO2 retrievals, and presents the accuracy and precision of the technique. Measurement of path length meeting ASCENDS requirements of approximately 2-m precision were obtained in ground testing and demonstrated during flights over Railroad Valley, NV.

  17. Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO

    NASA Astrophysics Data System (ADS)

    Kasyutich, V. L.; Holdsworth, R. J.; Martin, P. A.

    2008-08-01

    We describe the performance of two mid-infrared laser spectrometers for carbon monoxide, nitrous oxide and nitric oxide detection. The first spectrometer for CO and N2O detection around 2203 cm-1 is based upon all-diode laser difference frequency generation (DFG) in a quasi-phase matched periodically-poled lithium niobate (PPLN) crystal using two continuous-wave room-temperature distributed feedback diode lasers at 859 and 1059 nm. We also report on the performance of a mid-infrared spectrometer for NO detection at ˜ 1900 cm-1 based upon a thermoelectrically-cooled continuous-wave distributed feedback quantum cascade laser (QCL). Both spectrometers had a single-pass optical cell and a thermoelectrically cooled HgCdZnTe photovoltaic detector. Typical minimum detection limits of 2.8 ppmv for CO, 0.6 ppmv for N2O and 2.7 ppmv for NO have been demonstrated for a 100 averaged spectra acquired within 1.25 s and a cell base length of 21 cm at ˜ 100 Torr. Noise-equivalent absorptions of 10-5 and 10-4 Hz-1/2 are typically demonstrated for the QCL and the DFG based spectrometers, respectively.

  18. Methods-comparison measurements during the Carbonaceous-Species Methods Comparison Study, Glendora, California, August 1986: tunable-diode laser absorption spectrometer measurements of HCHO, H/sub 2/O/sub 2/ and HNO/sub 3/. Final report

    SciTech Connect

    Mackay, G.I.; Schiff, H.I.

    1987-10-21

    As part of the Carbonaceous-Species Methods Comparison Study at Citrus College, Glendora CA, on August 11-21, 1986, Unisearch Associates participated in methods evaluation studies for formaldehyde (HCHO), hydrogen peroxide (H/sub 2/O/sub 2/) and nitric acid (HNO/sub 3/). These three species play important roles in photochemistry of urban and rural air, and their measurements provide sensitive tests for current acid deposition and urban smog models. Two tunable diode laser absorption spectrometers (TDLAS) were used in the methods evaluation study.

  19. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  20. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  1. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  2. A All-Vacuum High Resolution Fourier Transform Spectrometer with Absorption Pathlengths up to 352 M: Acetylene Spectrum at 1.4-1.7 Microns.

    NASA Astrophysics Data System (ADS)

    Keppler, Karen Ann

    1995-01-01

    The spectra of acetylene (C_2H _2) and of water vapor have been recorded at room temperature with Doppler- or pressure -broadening-limited resolution at pathlengths up to 352m. The spectra were obtained with the combination of a FTIR (Fourier Transform Infrared) spectrometer, evacuated transfer optics, and a multipass cell of 4m base length. The measurements were performed at the Justus-Liebig-Universitat in Giessen, Germany, using the FTIR spectrometer at that university, the multipass cell assembled at The Ohio State University, and the vacuum transfer optics designed by the author. The regions in which the spectra were recorded are 5900-7150 cm^{-1} and 1850-6600 cm^{-1}. Calibration difficulties pertaining to the determination of the absolute accuracy of the data have been resolved, and molecular parameters have been extracted for the HCCH data. These calibration problems were not documented in earlier studies using high resolution Fourier transform spectrometers. For this reason, the dissertation addresses this matter in somewhat greater detail. This work contains a description of the technology used to obtain the data, and a description of the calibration of the spectra to make them suitable for future use as secondary wavenumber calibration standards. The bands detected for the first time in this study have been reported, and updated energy level diagrams for HCCH and H^{13}CCH have been included. The molecular parameters obtained from the HCCH spectra have been presented. The appendices include, among others, the basic observational data, a spectral map and associated wavenumber lists of HCCH, and a description of the weighting scheme developed by the author for Fourier Transform spectra.

  3. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  4. The Use of a Microprocessor-Controlled, Video Output Atomic Absorption Spectrometer as an Educational Tool in a Two-Year Technical Curriculum.

    ERIC Educational Resources Information Center

    Kerfoot, Henry B.

    Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…

  5. XMM-Newton/Reflection Grating Spectrometer detection of the missing interstellar O VII Kα absorption line in the spectrum of Cyg X-2

    NASA Astrophysics Data System (ADS)

    Cabot, Samuel H. C.; Wang, Q. Daniel; Yao, Yangsen

    2013-05-01

    The hot interstellar medium is an important part of the Galactic ecosystem and can be effectively characterized through X-ray absorption line spectroscopy. However, in a study of the hot medium using the accreting neutron star X-ray binary, Cyg X-2, as a background light source, a mystery came about when the putatively strong O VII Kα line was not detected in Chandra grating observations, while other normally weaker lines such as O VII Kβ as well as O VI and O VIII Kα are clearly present. We have investigated the grating spectra of Cyg X-2 from 10 XMM-Newton observations, in search of the missing line. We detect it consistently in nine of these observations, but the line is absent in the remaining one observation or is inconsistent with the detection in others at a ˜4σ confidence level. This absence of the line resembles that seen in the Chandra observations. Similarly, the O VI Kα line is found to disappear occasionally, but not in concert with the variation of the O VII Kα line. All these variations are most likely due to the presence of changing O VII and O VI Kα emission lines of Cyg X-2, which are blurred together with the absorption ones in the X-ray spectra. A re-examination of the Chandra grating data indeed shows evidence for a narrow emission line slightly off the O VI Kα absorption line. We further show that narrow N V emission lines with varying centroids and fluxes are present in far-ultraviolet spectra from the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. These results provide new constraints on the accretion around the neutron star and on the X-ray-heating of the stellar companion. The understanding of these physical processes is also important to the fidelity of using such local X-ray binaries for interstellar absorption line spectroscopy.

  6. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  7. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  8. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Witinski, M.; Allen, N. T.; Demusz, J. N.; Rivero, M.; Tuozzolo, C.; Anderson, J. G.

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT/LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons, in

  9. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere.

    PubMed

    Sargent, M R; Sayres, D S; Smith, J B; Witinski, M; Allen, N T; Demusz, J N; Rivero, M; Tuozzolo, C; Anderson, J G

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT∕LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT∕LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons

  10. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  11. SPECIES: a versatile spectrometer based on optical-feedback cavity-enhanced absorption for in situ balloon-borne and airborne measurements

    NASA Astrophysics Data System (ADS)

    Jacquet, Patrick; Catoire, Valery; Robert, Claude; Chartier, Michel; Huret, Nathalie; Desbois, Thibault; Marocco, Nicola; Kassi, Samir; Kerstel, Eric; Romanini, Daniele

    2015-04-01

    Over the last twenty years, thanks to significant technological advances in measurement techniques, our understanding of the chemistry and dynamics of the upper troposphere and stratosphere has progressed significantly. However some key questions remain unsolved, and new ones arise in the changing climate context. The full recovery of the ozone layer and the delay of recovery, the impact of the climate change on the stratosphere and the role of this one as a feedback are almost unknown. To address these challenges, one needs instruments able to measure a wide variety of trace gas species simultaneously with a wide vertical range. In this context, LPC2E and LIPHY are developing a new balloon-borne and airborne instrument: SPECIES (SPECtromètre Infrarouge à lasErs in Situ, i.e. in-Situ Infrared lasEr SPECtrometer). Based on the Optical Feedback Cavity Enhanced Spectroscopy technique, combined with mid-infrared quantum cascade lasers, this instrument will offer unprecedented performances in terms of the vertical extent of the measurements, from ground to the middle stratosphere, and the number of molecular species simultaneously measured with sub-ppb detection limits (among others: NO, N2O, HNO3, H2O2, HCl, HOCl, CH3Cl, COF2, HCHO, HCOOH, O3, NH3 NO2, H2O, OCS, SO2). Due to high frequency measurement (>0.5 Hz) it shall offer very high spatial resolution (a few meters).

  12. A Vacuum Ultraviolet Absorption Array Spectrometer as a Selective Detector for Comprehensive Two-Dimensional Gas Chromatography: Concept and First Results.

    PubMed

    Gröger, Thomas; Gruber, Beate; Harrison, Dale; Saraji-Bozorgzad, Mohammad; Mthembu, Makhosazana; Sutherland, Aimée; Zimmermann, Ralf

    2016-03-15

    Fast and selective detectors are very interesting for comprehensive two-dimensional gas chromatography (GC × GC). This is particularly true if the detector system can provide additional spectroscopic information on the compound structure and/or functionality. Other than mass spectrometry (MS), only optical spectroscopic detectors are able to provide selective spectral information. However, until present the application of optical spectroscopy technologies as universal detectors for GC × GC has been restricted mainly due to physical limitations such as insufficient acquisition speed or high detection limits. A recently developed simultaneous-detection spectrometer working in the vacuum ultraviolet (VUV) region of 125-240 nm overcomes these limitations and meets all the criteria of a universal detector for GC × GC. Peak shape and chromatographic resolution is preserved and unique spectral information, complementary to mass spectrometry data, is gained. The power of this detector is quickly recognized as it has the ability to discriminate between isomeric compounds or difficult to separate structurally related isobaric species; thus, it provides additional selectivity. A further promising feature of this detector is the data analysis concept of spectral filtering, which is accomplished by targeting special electronic transitions that allows for a fast screening of GC × GC chromatograms for designated compound classes. PMID:26810390

  13. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  14. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  15. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments. PMID:26974792

  16. Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers.

    PubMed

    Wassenaar, Leonard I; Coplen, Tyler B; Aggarwal, Pradeep K

    2014-01-21

    The measurement of δ(2)H and δ(18)O in water samples by laser absorption spectroscopy (LAS) are adopted increasingly in hydrologic and environmental studies. Although LAS instrumentation is easy to use, its incorporation into laboratory operations is not as easy, owing to extensive offline data manipulation required for outlier detection, derivation and application of algorithms to correct for between-sample memory, correcting for linear and nonlinear instrumental drift, VSMOW-SLAP scale normalization, and in maintaining long-term QA/QC audits. Here we propose a series of standardized water-isotope LAS performance tests and routine sample analysis templates, recommended procedural guidelines, and new data processing software (LIMS for Lasers) that altogether enables new and current LAS users to achieve and sustain long-term δ(2)H and δ(18)O accuracy and precision for these important isotopic assays. PMID:24328223

  17. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  18. A two-laser beam technique for improving the sensitivity of low frequency open path tunable diode laser absorption spectrometer (OP-TDLAS) measurements

    NASA Astrophysics Data System (ADS)

    Mohammad, Israa L.; Anderson, Gary T.; Chen, Youhua

    2013-09-01

    Open path tunable diode-laser absorption spectroscopy (OP-TDLAS) is a promising technique to detect low concentrations of possible biogenic gases on Mars. This technique finds the concentration of a gas by measuring the amount of laser light absorbed by gaseous molecules at a specific wavelength. One of the major factors limiting sensitivity in the TDLAS systems operating at low modulation frequencies is 1/f noise. 1/f noise is minimized in many spectroscopy systems by the use of high frequency modulation techniques. However, these techniques require complex instruments that include reference cells and other devices for calibration, making them relatively large and bulky. We are developing a spectroscopy system for space applications that requires small, low mass and low power instrumentation, making the high frequency techniques unsuitable. This paper explores a new technique using two-laser beam to reduce the affect of 1/f noise and increase the signal strength for measurements made at lower frequencies. The two lasers are excited at slightly different frequencies. An algorithm is used to estimate the noise in the second harmonic from the combined spectra of both lasers. This noise is subtracted from the signal to give a more accurate measurement of gas concentration. The error in estimation of 1/f noise is negligible as it corresponds to noise level made at much higher frequencies. Simulation results using ammonia gas and two lasers operating at 500 and 510 Hz respectively shows that this technique is able to decrease the error in estimation of gas concentration to 1/6 its normal value.

  19. A two-laser beam technique for improving the sensitivity of low frequency open path tunable diode laser absorption spectrometer (OP-TDLAS) measurements

    NASA Astrophysics Data System (ADS)

    Mohammad, Isra'a. Lateef

    Open path tunable diode-laser absorption spectroscopy (OP-TDLAS) is a promising technique that is proposed for detecting low concentrations of possible biogenic gases on Mars. This technique determines the concentration of a gas by measuring the amount of laser light absorbed by molecules at a specific wavelength that is characteristic of those molecules. One of the major factors limiting sensitivity in the OP-TDLAS systems is noise. At low modulation frequencies, 1/f noise usually dominates. This 1/f noise is minimized in many spectroscopy systems by use of high frequency techniques. However, these methods use complex instruments that include reference cells and other devices for calibration, making them relatively large and bulky. We have built a spectroscopy system for space applications that requires small, low mass and low power instrumentation, making the high frequency techniques unsuitable. This work explores a new technique that uses a two-laser beam to reduce the affect of 1/f noise and increase the signal strength for measurements made at lower frequencies. The two lasers are excited at slightly different frequencies. An algorithm is used to estimate the total noise in the second harmonic from the combined spectra of both lasers. This noise is subtracted from the signal to give a more accurate measurement of gas concentration. The error in estimation of 1/f noise is negligible as it corresponds to noise level made at much higher frequencies. Experimental results using ammonia gas and two lasers operating at 500 and 510 Hz respectively shows that this technique reduces the effect of 1/f noise by 1/3 its normal value. Furthermore, the error in estimation of gas concentration is also reduced.

  20. Multiaperture Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, Rudolf A.; Pagano, Robert J.; O'Callaghan, Fred G.

    1991-01-01

    Proposed multiaperture spectrometer containing single grating provides high spectral resolution over broad spectrum. Produces parallel line images, each of which highly spectrally resolved display of intensity vs. wavelength in wavelength band of one of orders of spectrum produced by grating. Advantages; convenient two-dimensional spectral image, fewer components, and greater efficiency.

  1. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  2. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  3. Infrared absorption of methanethiol clusters (CH3SH)n, n = 2-5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization

    NASA Astrophysics Data System (ADS)

    Fu, Lung; Han, Hui-Ling; Lee, Yuan-Pern

    2012-12-01

    We investigated IR spectra in the CH- and SH-stretching regions of size-selected methanethiol clusters, (CH3SH)n with n = 2-5, in a pulsed supersonic jet using infrared (IR)-vacuum ultraviolet (VUV) ionization. VUV emission at 132.50 nm served as the source of ionization in a time-of-flight mass spectrometer. Clusters were dissociated with light from a tunable IR laser before ionization. The variations in intensity of methanethiol cluster ions (CH3SH)n+ were monitored as the IR laser light was tuned across the range 2470-3100 cm-1. In the SH-stretching region, the spectrum of (CH3SH)2 shows a weak band near 2601 cm-1, red-shifted only 7 cm-1 from that of the monomer. In contrast, all spectra of (CH3SH)n, n = 3-5, show a broad band near 2567 cm-1 with much greater intensity. In the CH-stretching region, absorption bands of (CH3SH)2 are located near 2865, 2890, 2944, and 3010 cm-1, red-shifted by 3-5 cm-1 from those of CH3SH. These red shifts increase slightly for larger clusters and bands near 2856, 2884, 2938, and 3005 cm-1 were observed for (CH3SH)5. These spectral results indicate that the S-H...S hydrogen bond plays an important role in clusters with n = 3-5, but not in (CH3SH)2, in agreement with theoretical predictions. The absence of a band near 2608 cm-1 that corresponds to absorption of the non-hydrogen-bonded SH moiety and the large width of observed feature near 2567 cm-1 indicate that the dominant stable structures of (CH3SH)n, n = 3-5, have a cyclic hydrogen-bonded framework.

  4. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  5. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  6. Study of the CH2I + O2 Reaction with a Step-Scan Fourier-Transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH2OO and DIOXIRANE(?)

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-06-01

    The Criegee intermediates are carbonyl oxides that play key roles in ozonolysis of unsaturated organic compounds. This mechanism was first proposed by Criegee in 1949, but the first direct observation of the simplest Criegee intermediate CH2OO in the gaseous phase has been reported only recently using photoionization mass spectrometry. Our group has reported the low-resolution IR spectra of CH2OO, produced from the reaction of CH2I + O2, with a second-generation step-scan Fourier-transfom IR absorption spectrometer. The spectral assignments were based on comparison of observed vibrational wavenumbers and rotational contours with theoretical predictions. Here, we report the IR absorption spectra of CH2OO at a resolution of 0.32 wn, showing partially rotationally-resolved structures. The origins of the νb{3}, νb{4}, νb{6}, and νb{8} vibrational modes of CH2OO are determined to be 1434.1, 1285.7, 909.2, and 847.3 wn, respectively. With the analysis of the vibration-rotational spectra, we provide a definitive assignment of these bands to CH2OO. The observed vibrational wavenumbers indicate a zwitterionic contribution to this singlet biradical showing a strengthened C-O bond and a weakened O-O bond. This zwitterionic character results to an extremely rapid self reaction via a cyclic dimer to form 2H2CO + O2 (1Δg). Another group of weak transient IR bands centered at 1231.5, 1213.3, and 899.8 wn are also observed. These bands might be contributed from dioxirane, which was postulated to be another important intermediate that might be isomerized from the Criegee intermediate in the reaction of O3 with 1-alkenes. O. Welz, J. D. Savee, D. L. Osborn, S. S.Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012). Y.-T. Su, Y.-H. Huang, H. A.Witek, and Y.-P. Lee, Science 340, 174 (2013).

  7. Application of a long-path differential optical absorption spectrometer (LP-DOAS) on the measurements of NO(2), SO(2), O(3), and HNO(2) in Gwangju, Korea.

    PubMed

    Lee, Jeongsoon; Kim, Ki-Hyun; Kim, Young J; Lee, Jaihoon

    2008-03-01

    A differential optical absorption spectrometer (DOAS) technique has been applied to monitor airborne trace pollutants including NO(2), SO(2), O(3), and HNO(2) in the ultraviolet (UV) region (290-350 nm) over a 1.5 km beam path (two ways) during an intensive measurement campaign held at Gwangju, Korea (March 2002). Their mean mixing ratios (and standard deviations) were computed as 11.3 (8.8), 1.9 (1.7), 17.1 (19.3), and 0.5 (0.4)ppbv, respectively. As a means to evaluate the performance of the long-path DOAS (LP-DOAS) system with conventional point monitoring systems (PMS), correlation analysis was conducted between the two data sets. These data sets were then inspected to account for the influence of the environmental conditions on the correlation strength between the two systems, especially with respect to light level and wind speed. To facilitate the comparison, correlation analyses were conducted after dividing the data sets for those parameters into several classes. The strength of the correlations between DOAS and meteorological parameters was also examined to evaluate their effects on the DOAS performance. It was found that, among the four pollutant species, O(3) is the most sensitive to changes in meteorological conditions in relation with atmospheric mixing conditions. The overall results of our study indicate that open-path monitoring techniques can be used to effectively diagnose air quality and be substituted for the conventional point monitoring methods with the proper consideration of those parameters affecting the DOAS sensitivity (e.g., light level and wind speed). PMID:17335958

  8. Development of an airborne three-channel LED-based broadband cavity enhanced absorption spectrometer: towards an improved understanding of nighttime chemistry of NO3 and N2O5 in northwest Europe

    NASA Astrophysics Data System (ADS)

    Ouyang, Bin

    2015-04-01

    A three-channel cavity-enhanced absorption spectrometer capable of covering a broad UV-vis spectrum range has been developed in Cambridge for deployment on board the UK FAAM BAe-146 atmospheric research aircraft for measuring in situ concentrations of important atmospheric absorbers such as NO3, N2O5, NO2, IO and H2O and also aerosol extinction. So far this instrument has been deployed in two aircraft campaigns (the ROle of Nighttime chemistry in controlling the Oxidative Capacity of the atmOsphere, RONOCO, during July 2010 and January 2011; and the Coordinated Airborne Studies in the Tropics, CAST, during February 2014) with focuses on measuring NO2/NO3/N2O5 (for RONOCO) and IO (for CAST). In this talk, I will start by briefly presenting the working principle, design consideration, sensitivity test as well as intercomparison results of this novel aircraft instrument. I will then move on to present recent results from the analysis of the RONOCO campaign data, to illustrate the spatial and temporal variability of nighttime chemistry processes revealed by the high-resolution NO3 and N2O5 data collected. Significant improvements were made towards a better understanding of the oxidation of reactive VOCs by NO3 and O3 and the contribution of peroxy radicals (HO2 and RO2, of which only HO2 was successfully measured) to NO3 direct losses, and towards determining factors (organics and nitrate components of the aerosol particles, and relative humidity) that greatly influence the rate of N2O5 uptake by aerosol particles as well as directly probing the role of cloud, rain and ice scavenging in removing N2O5, in this typical northwest European environment.

  9. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF THE PERKIN-ELMER ZEEMAN/5000 SYSTEM ATOMIC ABSORPTION SPECTROMETER (BCO-L-6.0)

    EPA Science Inventory

    The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...

  10. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  11. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  12. Cryogenic Neutron Spectrometer Development

    SciTech Connect

    Niedermayr, T; Hau, I D; Friedrich, S; Burger, A; Roy, U N; Bell, Z W

    2006-03-08

    Cryogenic microcalorimeter detectors operating at temperatures around {approx}0.1 K have been developed for the last two decades, driven mostly by the need for ultra-high energy resolution (<0.1%) in X-ray astrophysics and dark matter searches [1]. The Advanced Detector Group at Lawrence Livermore National Laboratory has developed different cryogenic detector technologies for applications ranging from X-ray astrophysics to nuclear science and non-proliferation. In particular, we have adapted cryogenic detector technologies for ultra-high energy resolution gamma-spectroscopy [2] and, more recently, fast-neutron spectroscopy [3]. Microcalorimeters are essentially ultra-sensitive thermometers that measure the energy of the radiation from the increase in temperature upon absorption. They consist of a sensitive superconducting thermometer operated at the transition between its superconducting and its normal state, where its resistance changes very rapidly with temperature such that even the minute energies deposited by single radiation quanta are sufficient to be detectable with high precision. The energy resolution of microcalorimeters is fundamentally limited by thermal fluctuations to {Delta}E{sub FWHM} {approx} 2.355 (k{sub B}T{sup 2}C{sub abs}){sup 1/2}, and thus allows an energy below 1 keV for neutron spectrometers for an operating temperature of T {approx} 0.1 K . The {Delta}E{sub FWHM} does not depend on the energy of the incident photon or particle. This expression is equivalent to the familiar (F{var_epsilon}E{sub {gamma}}){sup 1/2} considering that an absorber at temperature T contains a total energy C{sub abs}T, and the associated fluctuation are due to variations in uncorrelated (F=1) phonons ({var_epsilon} = k{sub B}T) dominated by the background energy C{sub abs}T >> E{gamma}. The rationale behind developing a cryogenic neutron spectrometer is the very high energy resolution combined with the high efficiency. Additionally, the response function is simple

  13. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  14. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION, AND MAINTENANCE OF THE PERKIN-ELMER 5100 PC ATOMIC ABSORPTION SPECTROMETER (BCO-L-5.1)

    EPA Science Inventory

    The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5100 PC Atomic Absorption Spectrophotometer (PE 5100). These procedures are used for the determination of the target trace metal, as in soil, house dust, f...

  15. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF THE PERKIN-ELMER 1100B ATOMIC ABSORPTION SPECTROMETER (BCO-L-5.1)

    EPA Science Inventory

    The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5100 PC Atomic Absorption Spectrophotometer (PE 5100). These procedures are used for the determination of the target trace metal, as in soil, house dust, f...

  16. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  17. Differential Moessbauer spectrometer

    SciTech Connect

    Kurinyi, Yu.A.; Grotov, Yu.D.

    1988-07-01

    A spectrometer is described that permits hardware differentiation of spectra with respect to the energy of gamma radiation, specimen temperature, etc. Differentiation is performed by secondary modulation of source motion with subsequent phase-sensitive detection at the harmonics. The spectrometer is CAMAC-compatible and permits simultaneous measurement of the first four harmonics.

  18. Adaptive Tunable Laser Spectrometer for Space Applications

    NASA Technical Reports Server (NTRS)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  19. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  20. The Berkeley tunable far infrared laser spectrometers

    NASA Technical Reports Server (NTRS)

    Blake, G. A.; Laughlin, K. B.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.

    1991-01-01

    A detailed description is presented for a tunable far infrared laser spectrometer based on frequency mixing of an optically pumped molecular gas laser with tunable microwave radiation in a Schottky point contact diode. The system has been operated on over 30 laser lines in the range 10-100/cm and exhibits a maximum absorption sensitivity near one part in a million. Each laser line can be tuned by + or - 110 GHz with first-order sidebands.

  1. Brewster-Plate Spoiler for Laser Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, C. R.

    1986-01-01

    Oscillating Brewster plate reduces effects of unwanted interference fringes on absorption-spectroscopic measurements obtained with tuned diode lasers. Plate modulates optical-path length past several resonance peaks causing interference fringes to pass by rapidly and become blurred. Thus, fringe effects averaged out over time. Technique used at other wavelengths from ultraviolet to infrared and in spectrometers with short or long optical paths, including those with retroreflectors or multipass cells.

  2. Compact, self-contained optical spectrometer

    SciTech Connect

    Baird, W.; Nogar, N.S.

    1995-11-01

    We describe the construction and performance of a self-contained, battery-operated, hand-held optical spectrometer. This unit contains an on-board optical excitation source, miniaturized monochromator, CCD detector, Peltier cooler, LCD display module, and microprocessor control. We demonstrate capabilities for qualitative fluorescence determinations and semiquantitative fluorescence and absorption measurements. Resolution is {lambda}/{delta}{lambda}{approx_equal}1200 at 434 nm. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  3. The SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  4. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  5. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  6. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  7. The SLIM spectrometer.

    PubMed

    Cantrell, Kevin M; Ingle, James D

    2003-01-01

    A new spectrometer, here denoted the SLIM (simple, low-power, inexpensive, microcontroller-based) spectrometer, was developed that exploits the small size and low cost of solid-state electronic devices. In this device, light-emitting diodes (LED), single-chip integrated circuit photodetectors, embedded microcontrollers, and batteries replace traditional optoelectronic components, computers, and power supplies. This approach results in complete customizable spectrometers that are considerably less expensive and smaller than traditional instrumentation. The performance of the SLIM spectrometer, configured with a flow cell, was evaluated and compared to that of a commercial spectrophotometer. Thionine was the analyte, and the detection limit was approximately 0.2 microM with a 1.5-mm-path length flow cell. Nonlinearity due to the broad emission profile of the LED light sources is discussed. PMID:12530815

  8. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  9. The imaging spectrometer approach

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1982-01-01

    Two important sensor design drivers are the requirement for spatial registration of the spectral components and the implementation of the advanced multispectral capability, including spectral band width, number of bands and programmability. The dispersive approach, fundamental to the imaging spectrometer concept, achieves these capabilities by utilizing a spectrometer to disperse the spectral content while preserving the spatial identity of the information in the cross-track direction. Area array detectors in the spectrometer focal plane detect and store the spatial and multispectral content for each line of the image. The choice of spectral bands, image IFOV and swath width is implemented by programmed readout of the focal plane. These choices in conjunction with data compression are used to match the output data rate with the telemetry link capability. Progress in the key technologies of optics, focal plane detector arrays, onboard processing, and focal plane cooling supports the viability of the imaging spectrometer approach.

  10. Microbolometer imaging spectrometer.

    PubMed

    Johnson, William R; Hook, Simon J; Shoen, Steven M

    2012-03-01

    Newly developed, high-performance, long-wave- and mid-wave-IR Dyson spectrometers offer a compact, low-distortion, broadband, imaging spectrometer design. The design is further accentuated when coupled to microbolometer array technology. This novel coupling allows radiometric and spectral measurements of high-temperature targets. It also serves to be unique since it allows for the system to be aligned warm. This eliminates the need for cryogenic temperature cycling. Proof of concept results are shown for a spectrometer with a 7.5 to 12.0 μm spectral range and approximately 20 nm per spectral band (~200 bands). Results presented in this Letter show performance for remote hot targets (>200 °C) using an engineering grade spectrometer and IR commercial lens assembly. PMID:22378399

  11. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  12. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  13. Multilaser Herriott Cell for Planetary Tunable Laser Spectrometers

    NASA Technical Reports Server (NTRS)

    Tarsitano, Christopher G.; Webster, Christopher R.

    2007-01-01

    Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.

  14. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  15. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  16. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  17. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  18. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  19. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  20. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  1. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  2. Cyclotrons as mass spectrometers

    SciTech Connect

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  3. Remote measurements of actinide species in aqueous solutions using an optical fiber photoacoustic spectrometer

    SciTech Connect

    Russo, R.E. ); Robouch, P.B.; Silva, R.J. )

    1990-09-26

    A photoacoustic spectrometer, equipped with an 85 meter optical fiber, was used to perform absorption measurements of lanthanide and actinide samples, located in a glovebox. The spectrometer was tested using aqueous solutions of praseodymium and americium ions; the sensitivity for remote measurements was found to be similar to that achieved in the laboratory without the fiber. 14 refs., 3 figs.

  4. Analysis of aircraft spectrometer data with logarithmic residuals

    NASA Technical Reports Server (NTRS)

    Green, A. A.; Craig, M. D.

    1985-01-01

    Spectra from airborne systems must be analyzed in terms of their mineral-related absorption features. Methods for removing backgrounds and extracting these features one at a time from reflectance spectra are discussed. Methods for converting radiance spectra into a form similar to reflectance spectra so that the feature extraction procedures can be implemented on aircraft spectrometer data are also discussed.

  5. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  6. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    SciTech Connect

    Dubey, M; Springston, S; Koontz, A; Aiken, A

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  7. Smartphone spectrometer for colorimetric biosensing.

    PubMed

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles. PMID:27163736

  8. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  9. Simulation of the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Konki, J.; Greenlees, P. T.; Hauschild, K.; Herzberg, R.-D.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.

    2015-06-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations.

  10. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  11. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  12. The Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  13. Ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Inventor); Clay, D. R.; Goldstein, B. E.; Goldstein, R.

    1984-01-01

    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling.

  14. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  15. The Cryogenic Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

    1995-01-01

    The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

  16. Spherical electrostatic electron spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, T.-S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N.

    1982-06-01

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Mössbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  17. Frequency Scale Correction of Fourier Spectrometers in the Visible

    NASA Astrophysics Data System (ADS)

    Serdyukov, V. I.

    2016-05-01

    It has been found that when visible molecular absorption spectra are recorded with the IFS-125M Fourier spectrometer, a shift in the frequency scale is observed which increases nonlinearly toward higher frequencies. It is proposed that the frequency scale be corrected using absorption lines of iodine vapor and water, beginning with calibration of the wavelength scale where the correction function is linear to a good approximation, followed by conversion of the calibration to a wave number scale. The error in determining the wave numbers of the absorption lines does not exceed ±0.003 cm-1.

  18. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  19. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  20. Comb-locked Lamb-dip spectrometer

    PubMed Central

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-01-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10−11 cm−1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10−23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed. PMID:27263858

  1. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  2. Comb-locked Lamb-dip spectrometer.

    PubMed

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-01-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm(2), which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10(-11) cm(-1) absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10(-23) cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed. PMID:27263858

  3. Comb-locked Lamb-dip spectrometer

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10‑11 cm‑1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10‑23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  4. Astronomical Fourier spectrometer.

    PubMed

    Connes, P; Michel, G

    1975-09-01

    A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8-3.5 microm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given. PMID:20154966

  5. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  6. Automated transportable mass spectrometer

    NASA Astrophysics Data System (ADS)

    Echo, M. W.

    1981-09-01

    The need was identified for a mass spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of special nuclear material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromograph (GC) portions of a Hewlett-Packard Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software.

  7. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  8. Metrology for terahertz time-domain spectrometers

    NASA Astrophysics Data System (ADS)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  9. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The FTS is a compact interferometer with the capability to passively sense the Earth's surface and atmosperic radiation emissions and absorptions. It's a powerful, yet highly versatile instrument, being developed by technologists at NASA Langley Research Center, in partnership with other NASA centers, universities and industry.Using advanced materials, the FTS will be more compact and much lighter than current interferometers.

  10. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  11. Improved multisphere spectrometer system

    SciTech Connect

    Shonka, J.J.; Schwahn, S.O.; Rogers, P.E.; Misko, C.J.

    1991-01-01

    Shonka Research Associated undertook a research program to improve the capabilities and ease of use of the Bonner sphere spectrometer system. Two key elements formed the heart of this research: replacement of the lithium iodide (LiI(Eu)) detector normally used in the spectrometer system with a spherical boron triflouride (BF{sub 3}) proportional counter and exploitation of an optimized set of nested polyethylene spheres, including boron-loaded spherical shells. Use of a spherical BF{sub 3} detector offers many advantages over the LiI(Eu) crystal. The BF{sub 3} detectors are insensitive to gamma radiation. Lack of gamma sensitivity permits acquiring data with simple electronics and allows determination of neutron spectra and dose in lower neutron-to-gamma ratio fields, including background terrestrial radiation fields. The importance of the lack of gamma sensitivity is underscored by the pending changes in neutron quality factors. The nearly perfect spherical symmetry offers advantages for BF{sub 3} over LiI(Eu) detectors as well. A light pipe, which perturbs measurements, is not needed. The bare BF{sub 3} detector response is not affected by the moderation of neutrons as is the case of the organic light pipe used with LiI(Eu). The spherical symmetry permits the use of smaller diameter shells, which add to the number of response functions.

  12. Spectrometers beyond the laboratory

    SciTech Connect

    Wadsworth, W.

    1996-11-01

    Two new types of miniature Fourier Transform Spectrometers (FTS) presently being built have enabled this technology to be taken out of the laboratory and into the field. Both designs are very rugged, use little power to run, and can be made extremely small and lightweight. They are excellent candidates for airborne use, both in aircraft and satellite applications. One, the Mcro FT, is a mass balanced linear reciprocating scan operating in the 1-2 scan per second speed range. The other, the Turbo FT, uses a rotary scan, enabling it to run at much higher speeds, from 10 to 1000 scans per second. Either type can be built in the visible, near K and thermal IR wavelength ranges, and provide spectral resolution of 1-2 wave-numbers. Results obtained in all these wavelength ranges are presented here. The rotary configuration is more suited to airborne and satellite survey type deployments, due mostly to its rapid scan rate. Either of these sensors will fit into a small, commercially available stabilized pod which can easily be attached to a helicopter or light plane. This results in a very economical flight spectrometer system. 11 figs.

  13. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  14. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  15. Prototype Neutron Energy Spectrometer

    SciTech Connect

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  16. ISS Update: Alpha Magnetic Spectrometer

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Trent Martin, Johnson Space Center project manager for the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. Questions...

  17. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  18. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  19. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  20. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  1. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  2. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  3. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.

  4. Optical fiber smartphone spectrometer.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  5. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  6. New features of an FT spectrometer using LED sources

    NASA Astrophysics Data System (ADS)

    Serdyukov, V. I.; Sinitsa, L. N.

    2016-07-01

    The efficiency of LED emitters in high resolution Fourier spectroscopy with a small multipass cell has been shown. Such aspects of Fourier spectroscopy as intensity of the light sources, their stability, and spectral range were considered. Using a 2.5 W LED emitter as a light source for the spectrometer with a 60-cm multipass cell during a 24-h measurement time and by optimizing a number of passes in the cell, we have achieved a signal-to-noise ratio of 1×105 which corresponds to a minimal detectable absorption coefficient of 6×10-9 cm-1. This made it possible to determine the parameters of water vapor lines with the intensity of 2×10-28 cm/molecule. The absorption spectra of H2O and CO2 isotopologues in the range of 10,000 to 23,000 cm-1 were recorded using high sensitivity Fourier spectrometer.

  7. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  8. Cascaded interferometric imaging spectrometer.

    PubMed

    Swinyard, Bruce; Ferlet, Marc

    2007-09-01

    We present what we believe to be a novel method for order sorting a Fabry-Perot interferometer using a Fourier transform spectrometer (FTS) in tandem. We demonstrate how the order sorting is achieved using a model instrument response as an example of an instrument working in the 5-25 microm band, although the method is generally applicable at all wavelengths. We show that an instrument of this type can be realized with a large bandwidth, a large field of view, and good transmission efficiency. These attributes make this instrument concept a useful technique in applications where true imaging spectroscopy is required, such as mapping large astronomical sources. We compare the performance of the new instrument to grating and standard FTS instruments in circumstances where the measurement is background and detector noise limited. We use a figure of merit based on the field of view and speed of detection and find that the new system has a speed advantage over a FTS with the same field of view in all circumstances. The instrument will be faster than a grating instrument with the same spectral resolution once the field of view is >13 times larger under high background conditions and >50 times larger with detector performances that match the photon noise from Zodiacal light. PMID:17805378

  9. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  10. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  11. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  12. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  13. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  14. Development of near infrared spectrometer for gem materials study

    NASA Astrophysics Data System (ADS)

    Jindata, W.; Meesiri, W.; Wongkokua, W.

    2015-07-01

    Most of gem materials can be characterized by infrared absorption spectroscopy. Normally, mid infrared absorption technique has been applied for investigating fundamental vibrational modes. However, for some gem materials, such as tourmaline, NIR is a better choice due to differentiation. Most commercial NIR spectrometers employ complicated dispersive grating or Fourier transform techniques. In this work, we developed a filter type NIR spectrometer with the availability of high efficiency and low-cost narrow bandpass NIR interference filters to be taught in a physics laboratory. The instrument was designed for transmission-mode configuration. A 50W halogen lamp was used as NIR source. There were fourteen NIR filters mounted on a rotatory wheel for wavelength selection ranging from 1000-1650 nm with steps of 50 nm. A 1.0 mm diameter of InGaAs photodiode was used as the detector for the spectrometer. Hence, transparent gem materials can be used as samples for experiment. Student can learn vibrational absorption spectroscopy as well as Beer-Lambert law from the development of this instrument.

  15. Objective Crystal Spectrometer on the SRG satellite

    NASA Astrophysics Data System (ADS)

    Christensen, Finn E.; Westergaard, N. J.; Rasmussen, Ib L.; Schnopper, Herbert W.; Wiebicke, Hans-Joachim; Halm, Ingolf; Geppert, U. R.; Borozdin, K. N.

    1994-11-01

    The flight version of the Objective Crystal Spectrometer (OXS) on the SPECTRUM-X- GAMMA satellite is presented. The spectrometer is a panel that is placed in front of one of the SODART telescopes. It is composed of an array of the three Bragg crystals, LiF(220), Si(111) and RAP(001) for high resolution spectroscopy in the energy bands that encompass the H- and He-like emission line features from the cosmically important elements Fe, S, Ar and O. An energy resolution (E/(Delta) E) of 1250 will be obtained for He-like Fe emission, > 3000 for He-like S and Ar, > 700 for He-like O. In addition, the Si crystals will be coated with a multilayer that will allow spectroscopy with an energy resolution of approximately 80 in the energy band immediately below the C-K absorption edge of 0.284 keV. All the flight crystals are available and detailed calibrations have been obtained for each crystal. They confirm our specifications for the overall performance of the OXS. An estimate of the effective area in the 4 energy windows that are available to OXS yields > 100 cm2 from 5 to 7.4 keV, > 200 cm2 from 2.3 to 4.6 keV, approximately 10 cm+2) from 0.55 to 0.81 keV and approximately 100 cm2 from 0.175 to 0.28 keV.

  16. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  17. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  18. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  19. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Video Gallery

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  20. Micromachined Slits for Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel; Kenny, James; White, Victor

    2008-01-01

    Slits for imaging spectrometers can now be fabricated to a precision much greater than previously attainable. What makes this possible is a micromachining process that involves the use of microlithographic techniques.

  1. Versatile cluster based photoelectron spectrometer

    SciTech Connect

    Knappenberger, K. L. Jr.; Jones, C. E. Jr.; Sobhy, M. A.; Castleman, A. W. Jr.

    2006-12-15

    A recently constructed cluster based photoelectron spectrometer is described. This instrumentation is unique in that it enables the kinetic energy analysis of electrons ejected from both anions and neutral clusters. This capability permits the investigation of discrete electronic levels in all charge states (anionic, neutral, and cationic). A laser vaporization plasma reactor cluster source affixed with a sublimation cell is employed to produce a variety of metal clusters, and the resulting cluster distributions are analyzed with time-of-flight mass spectrometry. The corresponding electronic structure is analyzed with a 'magnetic bottle' photoelectron spectrometer. Examples of instrument performance operating in both anion photodetachment and neutral multiphoton ionization (MPI) modes are provided. In the case of neutral MPI, the corresponding product distribution is collected with a Wiley-McLaren [Rev. Sci. Instrum. 26, 1150 (1955)] mass spectrometer mounted perpendicular to the magnetic bottle photoelectron spectrometer.

  2. Fast-neutron spectrometer developments

    NASA Technical Reports Server (NTRS)

    Moler, R. B.; Zagotta, W. E.; Baker, S. I.

    1973-01-01

    Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses.

  3. Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer

    NASA Astrophysics Data System (ADS)

    Steers, Darren; Gerrard, Carl; Hirst, Bill; Sibbett, Wilson; Padgett, Miles J.

    1999-11-01

    The ultraviolet (UV) absorption spectra of several gasoline samples are measured using a compact static Fourier-transform (FT) spectrometer. The FT-UV spectrometer is constructed from crystalline quartz Wollaston prisms and polarizers fabricated from beta barium borate to form an interferogram in the spatial domain. The interferogram is recorded with a UV-sensitive detector array and Fourier transformed to yield spectra. Investigation using principal component analysis enables the identification of important gasoline properties such as origin.

  4. The GRAVITY spectrometers: optical qualification

    NASA Astrophysics Data System (ADS)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  5. Resonance-filtered beam spectrometer

    SciTech Connect

    Brugger, R.M.; Taylor, A.D.; Olsen, C.E.; Goldstone, J.A.; Soper, A.K.

    1982-01-01

    A new inelastic neutron scattering spectrometer which operates in the range 1 eV to 15 eV has been developed at the Los Alamos pulsed spallation source WNR. Based on a nuclear resonance filtering the beam, the concept has been tested in direct, inverted and sample geometries. A number of resonance filters have been tested to determine their effectiveness. The spectrometer is described and examples of data are presented.

  6. Imaging Spectrometer for NEO Mission: Seta Instrument

    NASA Astrophysics Data System (ADS)

    de Sanctis, Maria Cristina; Filacchione, Gianrico; Capaccioni, Fabrizio; Ammannito, Eleonora; Capria, Maria Teresa; Coradini, Angioletta; Migliorini, Alessandra

    NASA, ESA and JAXA have proposed NEO Sample Return Missions to a Near Earth Object. With these missions we will have the opportunity to return for study in Earth-based laboratories a direct sample of the earliest record of how our solar system formed. The landing site and sample selection will be the most important scientific decision to make during the course of the mission. For this reason, powerful on-board remote sensing science instruments are needed to support the selection. Among these instruments, the imaging spectrometer is a key instrument, being capable to: • Characterize the mineralogical composition of the entire object; • Analyze the of the landing site and the returned sample in its own native environment; • Establish the broadest possible scientific context for the target objects within our current understanding of the solar system. Scientific Objectives: Aim of SETA experiment is to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the target with a spectral sampling of at least 20 nm and a spatial resolution of the order of meters. SETA shall be able to return a detailed determination of the mineralogical composition for the different geologic units as well as the overall surface mineralogy with a spatial resolution of the order of few meters. These compositional characterizations involve the analysis of spectral parameters that are diagnostic of the presence and composition of various mineral species and materials that may be present on the target body. Most of the interesting minerals have electronic and vibrational absorption features in their VIS-NIR reflectance spectra. Identification of these related mineral phases requires a moderate spectral resolution. The presence of organic materials may be more difficult to identify. The SETA design is based on a pushbroom imaging spectrometer operating in the 400-3300 nm range, using a 2D array HgCdTe detector. This kind of instrument allows a simultaneous

  7. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  8. An attenuated total reflectance far-UV spectrometer

    NASA Astrophysics Data System (ADS)

    Higashi, Noboru; Ikehata, Akifumi; Ozaki, Yukihiro

    2007-10-01

    An ultraviolet spectrometer based on attenuated total reflection (ATR) has been developed and tested for liquid water (light and heavy water) in the wavelength range from 140to300nm, which includes the far ultraviolet (FUV) region. One of the principal limitations of FUV transmission spectra is the strong absorption of the solvent itself. High absorptivity of the n →σ* transition in water molecule has thus far prevented meaningful spectral measurements of aqueous solutions in the wavelength region under 170nm. Our technique uses the evanescent wave created through total reflection when light is passed through an internal reflection element (IRE) in contact with the sample. Since the evanescent field is used as an optical path length, the method allows spectral measurements favorably comparable with that of transmittance method with a shorter path length than the wavelength of FUV light. In this study, we have designed an original miniature IRE probe made of sapphire that allows detection of the whole n →σ* transition absorption band of water down to 140nm. The obtained ATR-FUV spectra closely match calculations based on the Fresnel formula. It is also confirmed that this spectrometer is equally effective for spectral measurements of nonaqueous solvents with significant absorptivities in the FUV region.

  9. Evaluating Field Spectrometer Performance with Transmission Standards: Examples from the USGS Spectral Library and Research Databases

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Kokaly, R. F.; Swayze, G. A.; Livo, K. E.

    2015-12-01

    Collection of spectroscopic data has expanded with the development of field-portable spectrometers. The most commonly available spectrometers span one or several wavelength ranges: the visible (VIS) and near-infrared (NIR) region from approximately 400 to 1000 nm, and the shortwave infrared (SWIR) region from approximately 1000-2500 nm. Basic characteristics of spectrometer performance are the wavelength position and bandpass of each channel. Bandpass can vary across the wavelength coverage of an instrument, due to spectrometer design and detector materials. Spectrometer specifications can differ from one instrument to the next for a given model and between manufacturers. The USGS Spectroscopy Lab in Denver has developed a simple method to evaluate field spectrometer wavelength accuracy and bandpass values using transmission measurements of materials with intense, narrow absorption features, including Mylar* plastic, praseodymium-doped glass, and National Institute of Standards and Technology Standard Reference Material 2035. The evaluation procedure has been applied in laboratory and field settings for 19 years and used to detect deviations from cited manufacturer specifications. Tracking of USGS spectrometers with transmission standards has revealed several instances of wavelength shifts due to wear in spectrometer components. Since shifts in channel wavelengths and differences in bandpass between instruments can impact the use of field spectrometer data to calibrate and analyze imaging spectrometer data, field protocols to measure wavelength standards can limit data loss due to spectrometer degradation. In this paper, the evaluation procedure will be described and examples of observed wavelength shifts during a spectrometer field season will be presented. The impact of changing wavelength and bandpass characteristics on spectral measurements will be demonstrated and implications for spectral libraries will be discussed. *Any use of trade, firm, or product names

  10. Design of onboard calibration unit of space-borne imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Ming; Ding, Shitao; Xiao, Dazhou

    2014-11-01

    The onboard calibration unit is an important part of the space-borne imaging spectrometer and used for the onboard radiometric calibration and spectral calibration of the spectrometer. An imaging spectrometer used in marine satellite is given as an example and its onboard calibration unit is introduced. The onboard calibration unit is in the front of the optical path of the spectrometer, with the sun as the light source, the space qualified PTFE diffusers are used for the onboard radiometric calibration, and the space qualified PTFE diffuser doped with rare earth elements is used for the onboard spectral calibration. The components of the calibration unit are introduced. For the main radiometric calibration diffuser and the redundant radiometric calibration diffuser, the BDRF test results in component level are introduced. Considering the effects of the assembly error and the stray light after the assembly of the spectrometer, the BDRF test method of the radiometric calibration diffuser in system level is introduced. The test results of the directional hemispherical reflectance of the radiometric calibration diffusers and the spectral calibration diffuser are given and the wavelengths of the absorption peaks of the spectral calibration diffuser are obtained. According to the measurement signal of the spectrometer while the onboard spectral calibration, the wavelengths of the absorption peaks of the spectral calibration diffuser which can be used for the onboard spectral calibration are determined. The onboard calibration unit can satisfy the onboard calibration requirements of the spectrometer.

  11. COMPAS: Compositional mineralogy with a photoacoustic spectrometer

    NASA Technical Reports Server (NTRS)

    Smith, W. Hayden

    1992-01-01

    There is an important need for an in situ method of mineral and rock identification and quantification that provides true absorption spectra for a wide spectral range for lunar lander/rover missions. Many common minerals such as feldspars, magnetite, ilmenite, and amorphous fine solids or glasses, can exhibit flat spectral reflectances in the 400-2500 nm spectral region that render inaccurate or difficult their spectral detection and quantitative analysis. Ideal rock and mineral spectra are, of course, pure absorption spectra that are independent of the spectral effects of scattering, particle size, and distribution that can result in a suppression or distortion of their spectral features. This ideal seldom pertains to real samples. Since sample preparation is difficult and may fundamentally alter the observed diffuse spectral reflectance, an in situ spectral measurement method for rocks and minerals on the Moon, insensitive to the sample morphology, would be invaluable. Photoacoustic spectroscopy is a well-established technique appropriate for this task that has been widely applied in condensed-phase spectral studies of complex, highly light scattering, unprepared samples of everything from coal to whole blood, including rock and mineral characterization. A Compositional Mineralogy Photoacoustic Spectrometer, or COMPAS, can enable in situ spectral measurement of rocks and minerals, bypassing the major limitations of diffuse reflectance spectroscopy. COMPAS spectral capabilities for rock and mineral samples will be incorporated into an instrument prototype specifically for lunar measurements, compatible with rover capabilities.

  12. Fieldable Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Hatchell, Brian K.; Harper, Warren W.; Schultz, John F.

    2004-10-01

    The infrared sensors group at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. To support these vital missions, PNNL is developing frequency-modulation techniques for remote probing over long optical paths by means of differential-absorption light detecting and ranging (LIDAR). This technique can easily monitor large areas, or volumes, that could only be accomplished with a large network of point sensors. Recently, PNNL began development of a rugged frequency-modulation differential-abosrption LIDAR (FM-DIAL) system to conduct field experiments. To provide environmentla protection for the system and facilitate field deployments and operations, a large, well insulated, temperature controlled trailer was specified and acquired. The trailer was outfitted with a shock-mounted optical bench, an electronics rack, a liquid nitrogen Dewar, and a power generator. A computer-controlled gimbal-mounted mirror was added to allow the telescope beam to be accurately pointed in both the vertical and horizontal plane. This turned out to be the most complicated addition, and is described in detail. This paper provides an overview of the FM-DIAL system and illustrates innovative solutions developed to overcome several alignment and stability issues encountered in the field.

  13. Recovery of Atmospheric Water Vapor Total Column Abundance from Imaging Spectrometer Data Around 940 nm - Sensitivity Analysis and Application to Airborne Visible/Infrared Imaging Spectrometer (AVIRI

    NASA Technical Reports Server (NTRS)

    Carrere, V.; Conel, J. E.

    1993-01-01

    Twosimple techniques to retrieve path precipitable water fromthe Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high spectral resolution radiance data (Continuum Interpolated Band Ratio, CIBR, and Narrow/Wide Ratio, N/W), using the 940 nm water absorption band, are compared.

  14. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1988-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  15. Imaging spectrometers for remote sensing from space

    NASA Technical Reports Server (NTRS)

    Chrisp, M. P.; Breckinridge, J. B.; Macenka, S. A.; Page, N. A.

    1986-01-01

    Three imaging spectrometers and two camera systems for remote sensing are described. Two of the imaging spectrometers are versions of the Visible and Infrared Mapping Spectrometer (VIMS) for Mars Observer and the Comet Rendezvous Asteroid Flyby (CRAF) mission. The other spectrometer is the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is currently under construction. The optical imaging systems are the wide angle and narrow angle cameras for the CRAF mission.

  16. A Novel MOEMS NIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Zhihai, Zhang; Xiangxia, Mo; Yuanjun, Guo; Wei, Wang

    In order to detect luminous intensity of light signal in NIR (Near-infrared) wavelength range, a novel MOEMS(Micro-Opto-Electro-Mechanical Systems) NIR spectrometer is proposed in the paper. It uses DMD (Digital Micro-mirror Device) to band filter the input spectrum. The merits of DMD are small size, low price and high scan speed. Especially, when DMD acts as a Hadamard Transform encoding mask, the SNR (signal-to-noise-ratio) can be improved by multiplexing the light intensities. The structure and the theory of this spectrometer are analyzed. The Hadamard-S matrix and mask of 63-order and 127-order are designed. The output spectrum of the new spectrometer coincides with experimental result of Shimadzu spectrometer. The resolution of the new spectrometer is 19 nm over the spectral range between 900∼1700 nm while single scan time is only 2.4S. The SNR is 44.67:1. The size of optical path is 70mm × 130 mm, and it has a weight less than 1Kg. It can meet the requirement of real time measurement and portable application.

  17. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  18. Mobile spectrometer measures radar backscatter

    NASA Technical Reports Server (NTRS)

    Gogineni, S.; Moore, R. K.; Onstott, R. G.; Kim, Y. S.; Bushnell, D.

    1984-01-01

    The present article is concerned with a helicopter-borne spectrometer (Heloscat), which has been developed to permit high-quality scattering measurements from a mobile platform at remote sites. The term 'spectrometer' referes to a class of scatterometers. The term 'scatterometer' is employed to denote a specialized radar for measuring scattering coefficients as a function of angle. A spectrometer, on the other hand, is a scatterometer which can measure backscatter at several frequencies. The Heloscat system is discussed, taking into account two antennas, RF hardware, and an externally mounted pendulum for angle encoding. A dual-antenna configuration is used for cross-polarized measurements, while a single-antenna system is used for like-polarized measurements. Attention is also given to oscillator characteristics, efficient data handling, and aspects of calibration.

  19. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  20. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  1. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, G.; Lehmann, F.; Richter, R.; Tank, V.

    1989-12-01

    An airborne/spaceborne sensor concept developed for scientific observations in remote sensing of the earth surface is presented. The spectrometer design is based on a fast scanning Fourier spectrometer using a rotating retroreflector. The spectrometer covers the 3-13-micron band with a spectral resolution of 5/cm. The measured signal is an interferogramm, while derived quantities are spectral emissivity, spectral radiance, and surface temperature. The optical system consists of an aperture-filling plane tilting mirror to provide off-nadir observation and calibration modes. The collecting mirror focal length and the detector area yield an instantaneous field of view of 1.2 mrad, noise equivalent temperature resolution of 0.004 K, and a noise equivalent change in emissivity of 0.0006. The simulation results of signal-to-noise performance of the TIPS are presented and discussed.

  2. Multichannel Spectrometer of Time Distribution

    NASA Astrophysics Data System (ADS)

    Akindinova, E. V.; Babenko, A. G.; Vakhtel, V. M.; Evseev, N. A.; Rabotkin, V. A.; Kharitonova, D. D.

    2015-06-01

    For research and control of characteristics of radiation fluxes, radioactive sources in particular, for example, in paper [1], a spectrometer and methods of data measurement and processing based on the multichannel counter of time intervals of accident events appearance (impulses of particle detector) MC-2A (SPC "ASPECT") were created. The spectrometer has four independent channels of registration of time intervals of impulses appearance and correspondent amplitude and spectrometric channels for control along the energy spectra of the operation stationarity of paths of each of the channels from the detector to the amplifier. The registration of alpha-radiation is carried out by the semiconductor detectors with energy resolution of 16-30 keV. Using a spectrometer there have been taken measurements of oscillations of alpha-radiation 239-Pu flux intensity with a subsequent autocorrelative statistical analysis of the time series of readings.

  3. The GRAVITY spectrometers: thermal behaviour

    NASA Astrophysics Data System (ADS)

    Wank, Imke; Straubmeier, Christian; Wiest, Michael; Yazici, Senol; Fischer, Sebastian; Eisenhauer, Frank; Perrin, Guy S.; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY is a 2nd generation VLTI Instrument o which operates on 6 interferometric baselines by using all 4 Unit Telescopes. It will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. At the 1. Physikalische Institut of the University of Cologne, which is part of the international GRAVITY consortium, two spectrometers, one for the sciene object, and one for the fringe tracking object, have been designed, manufactured and tested. These spectrometers are two individual devices, each with own housing and interfaces. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the Beam Combiner Instrument (BCI) cryostat. The outer casings are mounted thermal isolated to the base plate by glass fiber reinforced plastic (GRP) stands, copper cooling structures conduct the cold inside the spectrometers where it is routed to components via Cu cooling stripes. The spectrometers are covered with shells made of multi insulation foil. There will be shown and compared 3 cooling installations: setups in the Cologne test dewar, in the BCI dewar and in a mock-up cad model. There are some striking differences between the setup in the 2 different dewars. In the Cologne Test dewar the spectrometers are connected to the coldplate (80K); a Cu cooling structure and the thermal isolating GRP stands are bolted to the coldplate. In the BCI dewer Cu cooling structure is connected to the bottom of the nitrogen tank (80K), the GRP stands are bolted to the base plate (240K). The period of time during the cooldown process will be analyzed.

  4. 320-channel dual phase lock-in optical spectrometer

    NASA Astrophysics Data System (ADS)

    Fodor, P. S.; Rothenberger, S.; Jevy, J.

    2005-01-01

    The development of a multiple-channel lock-in optical spectrometer (LIOS) is presented, which enables parallel phase-sensitive detection at the output of an optical spectrometer. The light intensity from a spectrally broad source is modulated at the reference frequency, and focused into a high-resolution imaging spectrometer. The height at which the light enters the spectrometer is controlled by an acousto-optic deflector, and the height information is preserved at the output focal plane. A two-dimensional InGaAs focal plane array collects light that has been dispersed in wavelength along the horizontal direction, and in time along the vertical direction. The data is demodulated using a high performance computer-based digital signal processor. This parallel approach greatly enhances (by more than 100x) the speed at which spectrally resolved lock-in data can be acquired. The noise performance of a working system optimized for the 1.3 μm wavelength range is analyzed using a laser diode light source. Time-resolved absorption traces are obtained for InAs quantum dots embedded in a GaAs matrix, and for dispersed films of PbSe nanocrystals.

  5. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  6. The Bruny Island Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Erickson, W. C.

    1997-11-01

    A radio spectrometer has been built on Bruny Island, south of Hobart, for the study of solar bursts in the rarely observed frequency range from 3 to 20 MHz. This spectrometer is an adaptive device that employs digital techniques to avoid most of the strong terrestrial interference prevalent in this frequency range. The residual interference that cannot be avoided is excised during off-line processing. As a result, successful observations are made down to the minimum frequency that can propagate through the ionosphere to the antenna. This minimum frequency depends upon the zenith distance of the Sun and it is usually between 4 and 8 MHz.

  7. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  8. Forward spectrometers at the SSC

    SciTech Connect

    Bjorken, J.D.

    1986-01-01

    Most of SSC phase space and a great deal of physics potential is in the forward/backward region (absolute value of theta < 100 mrad). Comprehensive open-geometry spectrometers are feasible and very cost effective. Examples of such devices are sketched. Because such spectrometers are very long and may operate at high ..beta.. and longer bunch spacing, they impact now on SSC interaction - region design. The data acquisition load is as heavy as for central detectors, although there may be less emphasis on speed and more emphasis on sophisticated parallel and/or distributed processing for event selection, as well as on high-capacity buffering.

  9. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  10. Mass spectrometers and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Hunton, D. E.; Trzcinski, E.; Cross, J. B.; Spangler, L. H.; Hoffbauer, M. H.; Archuleta, F. H.; Visentine, J. T.

    1987-01-01

    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized.

  11. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    SciTech Connect

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  12. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  13. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  14. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  15. A simple digital TDPAC spectrometer

    NASA Astrophysics Data System (ADS)

    Webb, T. A.; Nikkinen, Leo; Gallego, Juan; Ryan, D. H.

    2013-05-01

    We present a simplified digital time differential perturbed γ - γ angular correlation (TDPAC) spectrometer that demonstrates that such instruments can be built using primarily commercial components and with relatively modest coding effort. The system handles data rates of 70 kcps/detector with a timing resolution of better than 500 ps, and has been used with both 111In and 181Hf.

  16. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  17. Acoustically-tuned optical spectrometer

    NASA Technical Reports Server (NTRS)

    Sklar, E.

    1981-01-01

    Lens arrangement corrects for aberrations and gives resolution of 0.7 seconds of arc. In spectrometer, light from telescope is relayed by doublet lens to acoustically tuned optical filter. Selected wavelengths are relayed by triplet lens to charge coupled device camera. Intervening cylindrical lens, tilted at 12 degree angle, corrects for astigmatism and coma introduced by two element birefringent crystal in filter.

  18. IPNS-I chopper spectrometers

    SciTech Connect

    Price, D.L.; Carpenter, J.M.; Pelizzari, C.A.; Sinha, S.K.; Bresof, I.; Ostrowski, G.E.

    1982-01-01

    We briefly describe the layout and operation of the two chopper experiments at IPNS-I. The recent measurement on solid /sup 4/He by Hilleke et al. provides examples of time-of-flight data from the Low Resolution Chopper Spectrometer.

  19. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  20. Time of flight mass spectrometer

    DOEpatents

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  1. Tracking System for Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Webster, C. R.; Menzies, R. T.; Morrison, G. B.; Riccio, J. H.

    1986-01-01

    Visible laser tracking system for infrared laser spectometer keeps probe infrared laser beam aimed at moving reflector, thereby keeping reflector image and return laser beam within spectrometer field of view. System includes tracking mirror tilted by stepping motors under microprocessor control to deflect beams toward continually changing reflector position.

  2. Imaging IR spectrometer, phase 2

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

    1990-01-01

    The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

  3. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  4. Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2010-06-01

    Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.

  5. Mars ultraviolet imaging spectrometer experiment on the planet-B mission

    NASA Astrophysics Data System (ADS)

    Fukunishi, H.; Watanabe, S.; Taguchi, M.; Okano, S.; Takahashi, Y.

    1999-01-01

    An ultraviolet imaging spectrometer (UVS) has been developed for the PLANET-B spacecraft. The UVS instrument is composed of a grating spectrometer (UVS-G) and a D/H absorption cell photometer (UVS-P). The UVS-G is a flat-field type spectrometer measuring optical emissions in the FUV and MUV range between 115 nm and 310 nm with a spectral resolution of 2 - 3 nm. The UVS-P is a photometer detecting hydrogen (H) and deuterium (D) Lyman α emissions separately by an absorption cell technique. Scientific targets of the UVS experiment are the investigation of (1) hydrogen and oxygen coronas around Mars, (2) the D/H ratio in the upper atmosphere, (3) dayglow, (4) aurora and nightglow, (5) dust, clouds and ozone, and (6) the surface composition of Phobos and Deimos.

  6. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    SciTech Connect

    Yu, Zhengang; Huang, Meizhen Zou, Ye; Wang, Yang; Sun, Zhenhua; Cao, Zhuangqi

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines, the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.

  7. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  8. A star-pointing UV-visible spectrometer for remote-sensing of the stratosphere

    NASA Technical Reports Server (NTRS)

    Roscoe, Howard K.; Freshwater, Ray A.; Jones, Rod L.; Fish, Debbie J.; Harries, John E.; Wolfenden, Roger; Stone, Phillip

    1994-01-01

    We have constructed a novel instrument for ground-based remote sensing, by mounting a UV-visible spectrometer on a telescope and observing the absorption by atmospheric constituents of light from stars. Potentially, the instrument can observe stratospheric O3, NO3, NO2, and OClO.

  9. Barrel Calorimeter for the Hall D Spectrometer

    SciTech Connect

    David Urner

    1998-06-01

    The barrel calorimeter for the hall D spectrometer is discussed for standard pointing geometry and a parallel geometry using Lead Scintillating fibres as active material. A comparison with a CSI spectrometer is shown.

  10. An aerosol absorption remote sensing algorithm

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Winker, D. M.; Hu, Y.; Trepte, C. R.; Lucker, P. L.

    2013-12-01

    Aerosol absorption plays an important role in the climate by modulating atmospheric radiative forcing processes. Unfortunately aerosol absorption is very difficult to obtain via satellite remote sensing techniques. In this work we have built an algorithm to obtain aerosol absorption optical depth using both measurements from a passive O2 A-band spectrometer and an active lidar. The instrument protocols for these two satellite instruments are the O2 A-band spectrometer onboard the Orbiting Carbon Observatory (OCO-2) and the CALIOP onboard CALIPSO. The aerosol height and typing information is obtained from the CALIOP measurement. The aerosol extinction and absorption optical depths are then retrieved by fitting the forward model simulations to the O2 A-band spectrometer measurements. The forward model simulates the scattering and absorption of solar light at high spectral resolution in the O2 A-band region. The O2 and other gas absorption coefficients near 0.76 micron are calculated by either the line-by-line code (for instance, the Atmospheric Radiative Transfer Simulator) or the OCO2 ABSCO Look-Up-Table. The line parameters used are from the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/). The multiple light scattering by molecules, aerosols, and clouds is handled by the radiative transfer model based on the successive order of scattering method (Zhai et al, JQSRT, Vol. 111, pp. 1025-1040, 2010). The code is parallelized with Message Passing Interface (MPI) for better efficiency. The aerosol model is based on Shettle and Fenn (AFGL-TR 790214, 1979) with variant relative humidity. The vertical distribution of the aerosols and clouds will be read in from the CALIPSO product (http://www-calipso.larc.nasa.gov). The surface albedo is estimated by the continuum of the three bands of OCO2 payloads. Sensitivity study shows that the Gaussian quadrature (stream) number should be at least 12 to ensure the reflectance error is within 0.5% at the top of the atmosphere

  11. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  12. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  13. Electron/proton spectrometer certification documentation analyses

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1972-01-01

    A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

  14. A Johann-type X-ray emission spectrometer at the Rossendorf beamline.

    PubMed

    Kvashnina, Kristina O; Scheinost, Andreas C

    2016-05-01

    This paper gives a detailed description, including equations, of the Johann-type X-ray emission spectrometer which has been recently installed and tested at the Rossendorf beamline (ROBL) of the European Synchrotron Radiation Facility. The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle of 1 m diameter. The hard X-ray emission spectrometer (∼3.5-25 keV) operates at atmospheric pressure and covers the Bragg angles of 65°-89°. The instrument has been tested at high and intermediate incident energies, i.e. at the Zr K-edge and at the Au L3-edge, in the second experimental hutch of ROBL. The spectrometer is dedicated for studying actinides in materials and environmental samples by high-energy-resolution X-ray absorption and X-ray emission spectroscopies. PMID:27140166

  15. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  16. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  17. Stabilized HEB-QCL heterodyne spectrometer at super-terahertz

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Hayton, D. J.; Hovenier, J. N.; Cui, M.; Gao, J. R.; Klapwijk, T. M.; Shi, S. C.; Kao, T.-Y.; Hu, Q.; Reno, J. L.

    2012-09-01

    We report a new experiment on a high-resolution heterodyne spectrometer using a 3.5 THz quantum cascade laser (QCL) as local oscillator (LO) and a superconducting hot electron bolometer (HEB) as mixer by stabilizing both frequency and amplitude of the QCL. The frequency locking of the QCL is demonstrated by using a methanol molecular absorption line, a proportional-integral-derivative (PID) controller, and a direct power detector. We show that the LO locked linewidth can be as narrow as 35 KHz. The LO power to the HEB is also stabilized by means of swing-arm actuator placed in the beam path in combination of a second PID controller.

  18. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  19. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  20. Multilayer scintillation spectrometer for charged pionium detection

    NASA Astrophysics Data System (ADS)

    Krasnov, V. A.; Karnyushina, L. V.; Kuznetsov, S. N.; Kurepin, A. B.; Livanov, A. N.; Pilyar, A. V.

    2013-01-01

    The design description and characteristics of a 14-layer scintillation spectrometer for meson recording are given. The results from testing the spectrometer, calibrating it with cosmic-ray particles, and using the particle beams at energies reaching 1 GeV are presented. The spectrometer design is based on flat scintillation plates glued with wavelength-shifting optic fibers.

  1. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  2. Novel laser breakdown spectrometer for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mirov, Sergey B.; Pitt, Robert E.; Dergachev, Alex Y.; Lee, Wonwoo; Martyshkin, Dmitri V.; Mirov, Olga D.; Randolph, Jeremy J.; DeLucas, Lawrence J.; Brouillette, Christie G.; Basiev, Tasoltan T.; Orlovskii, Yurii V.; Alimov, Olimkhon K.; Vorob'ev, Ivan N.

    1999-11-01

    A novel experimental set-up using laser-induced breakdown spectroscopy (LIBS) for environmental analyses of heavy metals is described in this paper. It is based on state-of-the-art spectroscopic equipment, advanced detectors, and laser atomizers: a 0.75 m spectrometer ARC-750, intensified TE- cooled 256 X 1024 CCD camera, probe with fiber optic guide for signal transportation, and Nd:YAG laser plasma atomizers with two different methods for sample delivery. In the first method the liquid solution containing the atoms to be investigated is drawn into the chamber of the nebulizer. The mixture passes through the nozzle, accompanied by argon gas along with formed aerosol, and enters the plasma plume, which is generated by the laser spark in argon. The second method is based on direct generating of the plasma in the water jet of a continuously circulating sample. LIBS testing of samples containing Al, Cd, Cu, Fe, Pb, Zn, and Cr ions was compared with results using atomic absorption spectrophotometry. Initial indications showed good agreement between these two methods. Detection levels of less than 100 ppb were observed for copper and chromium. The described spectroscopic system exhibits high sensitivity, accumulation of luminescence spectrum in real time; and high dynamic range for concentrations detection from 100 ppb to 1000 ppm.

  3. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  4. Exploiting a Transmission Grating Spectrometer

    SciTech Connect

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  5. Concerning the Spatial Heterodyne Spectrometer.

    PubMed

    Lenzner, Matthias; Diels, Jean-Claude

    2016-01-25

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order of the effective aperture of the device. The limits of usability are shown here together with some measurements of known spectral lines. PMID:26832561

  6. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGESBeta

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  7. Temporal dispersion of a spectrometer.

    PubMed

    Visco, A; Drake, R P; Froula, D H; Glenzer, S H; Pollock, B B

    2008-10-01

    The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., full-aperture backscatter station, Thomson scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution is shown to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal resolution, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated with the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300 fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks. PMID:19044687

  8. On-chip plasmonic spectrometer.

    PubMed

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings. PMID:27472609

  9. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  10. Gamma-ray spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Peterson, L. E.; Metzger, A. E.; Trombka, J. I.

    1972-01-01

    The experiments in gamma-ray spectrometry to determine the geochemical composition of the lunar surface are reported. The theory is discussed of discrete energy lines of natural radioactivity, and the lines resulting from the bombardment of the lunar surface by high energy cosmic rays. The gamma-ray spectrometer used in lunar orbit and during transearth coast is described, and a preliminary analysis of the results is presented.

  11. Landsat swath imaging spectrometer design

    NASA Astrophysics Data System (ADS)

    Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori B.; Wilson, Daniel W.; Bender, Holly A.

    2016-01-01

    This paper describes the design of a high-throughput and high-uniformity pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution over the full visible to short-wave infrared band. The design is based on a 3200×480 element×18 μm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two Dyson-type spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Two telescope designs are shown to achieve the required swath and resolution from different altitudes. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.

  12. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, Gerhard; Lehmann, Frank; Richter, Rudolf; Tank, Volker; Boehl, R.

    1990-01-01

    The Thermal Infrared Profiling Spectrometer (TIPS) is an airborne/spaceborne sensor concept developed at DLR-Institute for Optoelectronics for scientific observations in remote sensing of the earth surface. The patented spectrometer design is based on a fast scanning Fourier spectrometer (FSM) using a rotating retroreflector to achieve the appropriate path alteration thus avoiding the usual linear movement of one of the mirrors in an conventional Michelson interferometer. The spectral band covers the 3 - 13 μm band with a spectral resolution of 5 cm-1 (50 nm at 10 μm). The measured signal is an interferogramm, derived quantities are spectral emissivity, spectral radiance and surface temperature. The optical system consists of an aperture filling plane tilting mirror to provide off-nadir observation and calibration mode. The collecting mirror focal length and the detector area yields an instantaneous field of view (ifov) of 1.2 mrad, noise equivalent temperature resolution of 0.04K (300K), and a noise equivalent change in emissivity Δɛof 6 x 10-4. Calibration is performed by two aperture filling area blackbodies at two different temperatures. An extensive simulation of signal/noise performance of the TIPS has been evaluated by means of the simulation programm SENSAT9, developed by DI.R. This simulation comprises the sensor performance, typical variations of atmospheric conditions and selected spectra from ground surfaces. Results of this simulation are discussed and a description of the sensor is presented.

  13. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  14. An expert system for geologic mapping with imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Seznec, O.; Krotkov, P. M.

    1990-01-01

    Techniques have been developed for the extraction and characterization of absorption features from visible and infrared reflectance spectra and an expert system has been designed, implemented, and successfully tested that allows automated identification of minerals based on their spectral characteristics. A suite of laboratory spectra of common minerals was analyzed and the absorption band characteristics tabulated and used to develop a generalized knowledge base for analysis of the reflectance spectra. A tree hierarchy was designed to emulate the decision process followed by an experienced analyst for analysis of laboratory and field reflectance spectra and aircraft imaging spectrometer spectra. Good results were obtained with the expert system for all three types of spectra, with the critical factor in the analysis being the signal-to-noise ratio of the spectral data.

  15. Identification of hydrothermal alteration assemblages using airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data, field and laboratory spectra and samples for X-ray diffraction analysis were collected in argillically altered Tertiary volcanic rocks in the Hot Creek Range, Nevada. From laboratory and field spectral measurements in the 2.0 to 2.4 micron range and using a spectroradiometer with a 4 nm sampling interval, the absorption band centers for kaolinite were loacted at 2.172 and 2.215 microns, for montmorillonite at 2.214 micron and for illite at 2.205. Based on these values and the criteria for resolution and separtion of spectral features, a spectral sampling interval of less than 4 nm is necessary to separate the clays. With an AIS spectral sampling interval of 9.3 nm, a spectral matching algorithm is more effective for separating kaolinite, montmorillonite, ad illite in Hot Creek Range than using the location of absorption minima alone.

  16. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  17. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1987-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  18. Microwave cavity spectrometer for process monitoring of ethylene oxide sterilization

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Gibson, C.; Samuel, A. H.; Matthews, I. P.

    1993-01-01

    This article reports a novel and simple cavity spectrometer for process monitoring of ethylene oxide sterilization, in which the source frequency, cavity resonant frequency, and gas absorption center frequency are asynchronous with respect to each other, thus, enabling sophisticated signal enhancement techniques to be employed without the need to engage the Stark effect. The operation of the device is such that the source frequency sweeps across a given range (F1 to F2) which contains one of the absorption peaks of the analyte gas (gases) of interest while the cavity resonant frequency Fr is oscillated within the profile of the absorption peak. Signal enhancement is achieved by adding a relatively small magnitude/high-frequency ``dither'' signal to the source frequency sweep pattern. The salient information of the gas absorption due to the oscillation of the resonant frequency of the cavity is carried by the ``dither'' signal and amplified and extracted by a series of tuned amplifiers and demodulators. Although the device is still at the initial design stage, a working prototype has been constructed in order to test the feasibility of the novel asynchronous modulation technique. This was achieved by successfully demonstrating that the device operates in an expected manner to within a standard error of 8.3%. It is believed that this error largely results from mechanical components. The significance of this error is greatly reduced when the spectrometer is operated in a large signal scanning mode as is the case when we apply the ``power saturation'' technique to measure the concentration of ethylene oxide in the resonant cavity. This measurement showed that there is a good linear correlation between the output signal and the concentration of ethylene oxide gas (to within a standard error of 4%).

  19. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  20. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  1. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  2. A short working distance multiple crystal x-ray spectrometer

    USGS Publications Warehouse

    Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming

    2008-01-01

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.

  3. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  4. Hydrazine Detection with a Tunable Diode Laser Spectrometer

    NASA Technical Reports Server (NTRS)

    Houseman, John; Webster, C. R.; May, R. D.; Anderson, M. S.; Margolis, J. S.; Jackson, Julie R.; Brown, Pamela R.

    1999-01-01

    Several instruments have been developed to measure low concentrations of hydrazine but none completely meet the sensitivity requirements while satisfying additional criteria such as quick response, stable calibration, interference free operation, online operation, reasonable cost, etc. A brief review is presented of the current technology including the electrochemical cell, the ion mobility spectrometer, the mass spectrometer, and the gas chromatograph. A review of the advantages and disadvantages of these instruments are presented here. The review also includes commercially unavailable technology such as the electronic nose and the Tunable Diode Laser (TDL) IR Spectrometer. It was found that the TDL could meet the majority of these criteria including fast response, minimum maintenance, portability, and reasonable cost. An experiment was conducted to demonstrate the feasibility of such a system using an existing (non-portable) instrument. A lead-salt tunable diode laser, cooled to 85 degrees Kelvin was used to record direct absorption and second-derivative spectra of Hydrazine at several pressures to study the sensitivity to low levels of Hydrazine. Spectra of NH3 and CO2 were used for wavelength identification of the scanned region. With a pathlength of 80 m, detection sensitivities of about 1 ppb were achieved for hydrazine in dry nitrogen at a cell pressure of 100 mbar. For spectroscopic detection of Hydrazine, spectral regions including strong Ammonia or Carbon Dioxide lines must be avoided. Strong Hydrazine absorption features were identified at 940/cm showing minimal contribution from Ammonia interferences as suitable candidates for Hydrazine gas detection. For the studies reported here, the particular laser diode could only cover the narrow regions near 962/cm and 965/cm where strong Ammonia interferences were expected. However, the high resolution (0.001/cm) of the TDL spectrometer allowed individual lines of Hydrazine to be identified away from

  5. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  6. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  7. The Pickup Ion Composition Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  8. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  9. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  10. Fourier-Transform Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  11. Static Fourier transform infrared spectrometer.

    PubMed

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared. PMID:27137061

  12. Automated mass spectrometer grows up

    SciTech Connect

    McInteer, B.B.; Montoya, J.G.; Stark, E.E.

    1984-01-01

    In 1980 we reported the development of an automated mass spectrometer for large scale batches of samples enriched in nitrogen-15 as ammonium salts. Since that time significant technical progress has been made in the instrument. Perhaps more significantly, administrative and institutional changes have permitted the entire effort to be transferred to the private sector from its original base at the Los Alamos National Laboratory. This has ensured the continuance of a needed service to the international scientific community as revealed by a development project at a national laboratory, and is an excellent example of beneficial technology transfer to private industry.

  13. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  14. The MAGNEX large acceptance spectrometer

    SciTech Connect

    Cavallaro, M.; Cappuzzello, F.; Cunsolo, A.; Carbone, D.; Foti, A.

    2010-03-01

    The main features of the MAGNEX large acceptance magnetic spectrometer are described. It has a quadrupole + dipole layout and a hybrid detector located at the focal plane. The aberrations due to the large angular (50 msr) and momentum (+- 13%) acceptance are reduced by an accurate hardware design and then compensated by an innovative software ray-reconstruction technique. The obtained resolution in energy, angle and mass are presented in the paper. MAGNEX has been used up to now for different experiments in nuclear physics and astrophysics confirming to be a multipurpose device.

  15. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  16. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  17. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  18. A new on-axis multimode spectrometer for the macromolecular crystallography beamlines of the Swiss Light Source

    PubMed Central

    Owen, Robin L.; Pearson, Arwen R.; Meents, Alke; Boehler, Pirmin; Thominet, Vincent; Schulze-Briese, Clemens

    2009-01-01

    X-ray crystallography at third-generation synchrotron sources permits tremendous insight into the three-dimensional structure of macromolecules. Additional information is, however, often required to aid the transition from structure to function. In situ spectroscopic methods such as UV–Vis absorption and (resonance) Raman can provide this, and can also provide a means of detecting X-ray-induced changes. Here, preliminary results are introduced from an on-axis UV–Vis absorption and Raman multimode spectrometer currently being integrated into the beamline environment at X10SA of the Swiss Light Source. The continuing development of the spectrometer is also outlined. PMID:19240329

  19. A High Precision Scanning Control System For A VUV Fourier Transform Spectrometer

    SciTech Connect

    De Oliveira, N.; Nahon, L.; Polack, F.; Joyeux, D.; Phalippou, D.; Rodier, J. C.; Vervloeet, M.

    2007-01-19

    A VUV Fourier transform spectrometer based on a wavefront division interferometer has been built. Our ultimate goal is to provide a high resolution absorption spectrometer in the 140 - 40 nm range using the new third generation French synchrotron source Soleil as the background continuum. Here, we present the design and latest performance of the instrument scanning control system. It is based on multiple reflections of a monomode, frequency-stabilized HeNe laser between two plane mirrors allowing the required sensitivity on the displacement of the interferometer mobile arm. The experimental results on the sampling precision show an rms error below 5 nm for a travel length of 7.5 mm.

  20. Engine spectrometer probe and method of use

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)

    2006-01-01

    The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.

  1. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  2. Automated mass spectrometer analysis system

    NASA Technical Reports Server (NTRS)

    Kuppermann, Aron (Inventor); Dreyer, William J. (Inventor); Giffin, Charles E. (Inventor); Boettger, Heinz G. (Inventor)

    1982-01-01

    An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatilizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vilicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.

  3. Automated mass spectrometer analysis system

    NASA Technical Reports Server (NTRS)

    Boettger, Heinz G. (Inventor); Giffin, Charles E. (Inventor); Dreyer, William J. (Inventor); Kuppermann, Aron (Inventor)

    1978-01-01

    An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vidicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.

  4. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  5. Digital Spectrometers for Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  6. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  7. [Hadamard transform spectrometer mixed pixels' unmixing method].

    PubMed

    Yan, Peng; Hu, Bing-Liang; Liu, Xue-Bin; Sun, Wei; Li, Li-Bo; Feng, Yu-Tao; Liu, Yong-Zheng

    2011-10-01

    Hadamard transform imaging spectrometer is a multi-channel digital transform spectrometer detection technology, this paper based on digital micromirror array device (DMD) of the Hadamard transform spectrometer working principle and instrument structure, obtained by the imaging sensor mixed pixel were analyzed, theory derived the solution of pixel aliasing hybrid method, simulation results show that the method is simple and effective to improve the accuracy of mixed pixel spectrum more than 10% recovery. PMID:22250574

  8. GIOVE, a shallow laboratory Ge-spectrometer with 100 μBq/kg sensitivity

    SciTech Connect

    Heusser, G.; Weber, M.; Denz, T.; Hakenmueller, J.; Hofacker, R.; Lackner, R.; Lindner, M.; Maneschg, W.; Reisfelder, M.; Simgen, H.; Schreiner, J.; Stolzenburg, D.; Strecker, H.; Westermann, J.

    2013-08-08

    A new germanium gamma spectrometer called GIOVE (Germanium spectrometer with Inner and Outer Veto) has been set up at the underground/shallow laboratory (15 m w.e.) of MPI-K. Its double plastic scintillator veto system and neutron moderation interlayer lower the background by more than one order of magnitude compared to the other existing spectrometer at this facility. The integral (40-2700 keV) background rate of about 290 counts (day kg){sup −1} is just a factor 4 to 8 above that of the GeMPI spectrometers operated at LNGS (3800 m w.e.) and thus proves that even under shallow overburden sub mBq/kg sensitivities are achievable. Extended material screening and neutron attenuation studies preceded the final design of the spectrometer. The technical realization of the spectrometer is described in detail with special emphasis on the inner veto system. For its optimisation a simulation model was developed for light collection on small low activity PMT’s under various geometrical conditions. Radon suppression is accomplished by employing a gas tight sample container and a nitrogen flushed glove-box system with an airlock. The active volume of the crystal was modelled by absorption scanning measurements and Monte Carlo simulations. The complete shield is implemented in a Geant4 based simulation framework.

  9. Asteroid 951 Gaspra Near Infrared Mapping Spectrometer Radiance Data

    NASA Astrophysics Data System (ADS)

    Granahan, J. C., Jr.

    2015-12-01

    Five radiance spectra of asteroid 951 Gaspra have been archived in the Small Bodies Node of the NASA Planetary Data System [Granahan, 2014]. The radiance spectra were created from uncalibrated Galileo spacecraft Near Infrared Mapping Spectrometer files archived in the Imaging Node of the NASA Planetary Data System. The NASA Galileo spacecraft observed asteroid 951 Gaspra on October 29, 1991 with the Near Infrared Mapping Spectrometer (NIMS) at wavelengths ranging from 0.7 - 5.2 micrometers [Carlson et al., 1992]. The five radiance spectra consist of two 17, two 100, and one 329 spectral channel data sets. They record data that was acquired by NIMS at ranges between 27232.6 to 14723.8 kilometers from asteroid 951 Gaspra. The uncalibrated NIMS data were converted into radiance spectra using calibration coefficients obtained during the Galileo mission's first Earth encounter on December 8, 1990. The archived radiance spectral data is located at the URL (Universal Record Locator): http://sbn.psi.edu/pds/resource/gaspraspec.html and contains radiance, solar, incidence over flux, and data documentation. This archived data set contains a variety of spectral signatures. These signatures include absorptions near 1.0, 2.0, 2.8, 3.4, and 4.5 micrometers. The 1.0 and 2.0 micrometer features are indicators of olivine and pyroxene on the asteroid surface. The 2.8 micrometer feature has a shape similar to the combined spectra of multiple iron bearing phyllosilicates. The 3.4 micrometer feature is in the same location as absorptions created by a carbon-hydrogen bond. The 4.5 micrometer feature, present only in the 329 channel data set, corresponds in position to absorptions detected in sulfate minerals. Carlson, R. W., et al. (1992) Bull. of the A.A.S., 24, 932. Granahan, J. C. (2014), GO-A-NIMS-3-GASPRASPEC-V1.0, NASA Planetary Data System.

  10. Panoramic Imaging Spectroscopy with the Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Mouroulis, P.; Van Gorp, B.; Green, R. O.; Borden, M.; Smith-Dryden, S. D.; Bender, H.; Sellar, R. G.; Rodriguez, J.; Wilson, D.

    2012-12-01

    In Situ imaging spectroscopy provides a way to address complex questions of geological evolution for aqueous, volcanic, and impact processes by mapping mineral composition at the spatial scale of rocks and outcrops. Spectroscopy from 500-2600 nm is an established technique for measuring the mineralogy of sedimentary and igneous rocks, outcrops, and regoliths. Minerals such as olivine, pyroxene, carbonates, clays, and sulfates exhibit absorption features that are highly diagnostic of their structure and composition in this wavelength range. Imaging spectroscopy allows for mineralogy to be mapped at geological important special scales thus allowing for the investigation of the spatial relationship between minerals and compositions and of the geologic and geochemical processes of planets, asteroids, comets, and moons. The Ultra Compact Imaging Spectrometer (UCIS) is a JPL developed imaging spectrometer suitable for inclusion on a Mars or lunar rover or asteroid lander but packaged for operation at terrestrial ambient conditions. UCIS is an Offner spectrometer using JPL e-beam gratings, HgCdTe detectors with many components having direct heritage from the Moon Mineralogy Mapper (M3). UCIS covers the wavelength range from 500-2600 nm with 10 nm sampling/resolution with a 30 deg. field of view with and instantaneous field of view 1.4 mrad (spatial sampling of 4.2 mm at 3 m.) The optical head of the instrument has a mass of < 2 kg on the mass and takes 5.2 W of power (Van Gorp et al. 2011). The instrument has completed calibration and has begun field trials. Initial trials were carried out in the JPL "Mars Yard" robotic testbed. The Mars Yard contains a large number of basaltic boulders and other rocks/soils. Additional rocks and spectrally interesting materials were place in the Mars Yard to fully assess the ability of the instrument to identify spectrally distinct material. To collect data the instrument was mounted with the spectrometer slit oriented in elevation on a

  11. A New Generation TDPAC Spectrometer

    NASA Astrophysics Data System (ADS)

    Herden, Christian H.; Alves, Mauro A.; Becker, Klaus D.; Gardner, John A.

    2004-12-01

    Time Differential gamma gamma Perturbed Angular Correlation spectroscopy has traditionally been done using scintillation detectors along with constant fraction discriminators, spectroscopy amplifiers, single channel analyzers, and time to amplitude detectors. We describe a new generation spectrometer where these electronics are replaced by high speed digital transient recorders that record the output from each scintillation detector. The energy and time-of-arrival of gamma rays in any detector can be determined accurately. Many experimental difficulties related to electronics are eliminated; the number of detectors can be increased with no increase in complexity of the apparatus; coincidences among any two detectors are measurable; and coincidences separated by as little as a ns are detectable in principle within one detector. All energies are collected, and energy windows are imposed by software filtering, permitting both high energy resolution and high data-gathering power.

  12. Airborne imaging spectrometer development tasks

    NASA Astrophysics Data System (ADS)

    Bolten, John

    The tasks that must be completed to design and build an airborne imaging spectrometer are listed. The manpower and resources required to do these tasks must be estimated by the people responsible for that work. The tasks are broken down by instrument subsystem or discipline. The instrument performance can be assessed at various stages during the development. The initial assessment should be done with the preliminary computer model. The instrument calibration facilities should be designed, but no calibration facilities are needed. The intermediate assessment can be done when the front end has been assembled. The preliminary instrument calibration facility should be available at this stage. The final assessment can only be done when the instrument is complete and ready for flight. For this, the final instrument calibration facility and the flight qualification facilities must be ready. The final assessment is discussed in each discipline under the section on integration and test.

  13. Clementine RRELAX SRAM Particle Spectrometer

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Soli, G.; Blaes, B.; Ratliff, J.; Garrett, H.

    1994-01-01

    The Clementine RRELAX radiation monitor chip consists of a p-FET total dose monitor and a 4-kbit SRAM particle spectrometer. Eight of these chips were included in the RRELAX and used to detect the passage of the Clementine (S/C) and the innerstage adapter (ISA) through the earth's radiation belts and the 21-Feb 1994 solar flare. This is the first space flight for this 1.2 micron rad-soft custom CMOS radiation monitor. This paper emphasizes results from the SRAM particle detector which showed that it a) has a detection range of five orders of magnitude relative to the 21-Feb solar flare, b) is not affected by electrons, and c) detected microflares occurring with a 26.5 day period.

  14. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  15. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  16. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  17. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  18. Spin Spectrometer at the ALS and APS

    SciTech Connect

    Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies; Morton, Simon A; Morton, Simon A; Tobin, James G; Yu, Sung Woo; Komesu, Takashi; Waddill, George D; Boyd, Peter

    2007-04-20

    A spin-resolving photoelectron spectrometer, the"Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

  19. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  20. A Mass Spectrometer Simulator in Your Computer

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  1. Apodization Control of Line Shape in Spectrometer

    NASA Technical Reports Server (NTRS)

    Pires, Antonio; Niple, Edward; Evans, Nathan L.

    1987-01-01

    Kaiser-Bessel apodization function reduces unwanted sidebands. Report discusses apodization in Fourier-transform spectrometer (FTS) for Advanced Moisture and Temperature Sounder (AMTS). Purpose of apodization in instrument to control shape of spectrum in wavenumber space to keep radiation at other wavelengths in passband of spectrometer out of AMTS wavenumber channel.

  2. Method and apparatus for enhancing laser absorption sensitivity

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R. (Inventor)

    1987-01-01

    A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.

  3. LIFTIRS, the Livermore imaging FTIR spectrometer

    SciTech Connect

    Bennett, C.L.

    1998-06-01

    The imaging FTIR spectrometer was invented 25 years ago. Only recently, however, with the development of infrared focal plane array technology and high speed microprocessors, has the imaging FTIR spectrometer become a practical instrument. Among the class of imaging spectrometer instruments, the imaging Fourier transform spectrometer enjoys a great advantage in terms of calibratibility, sensitivity, broad band coverage and resolution flexibility. Recent experience with the LIFTIRS instrument is summarized. As a concrete example of the acquisition, calibration, and comprehension of the data from an imaging Fourier transform spectrometer, the case history of a geological sample is discussed in great detail. In particular, the importance of principle component analysis to imaging spectroscopy is especially emphasized. It is shown how the various spatial/spectral constituents within a sample can be detected, located, identified and quantified. {copyright} {ital 1998 American Institute of Physics.}

  4. Compact time-of-flight mass spectrometer

    SciTech Connect

    Belov, A.S.; Kubalov, S.A.; Kuzik, V.F.; Yakushev, V.P.

    1986-02-01

    This paper describes a time-of-flight mass spectrometer developed for measuring the parameters of a pulsed hydrogen beam. The duration of an electron-beam current pulse in the ionizer of the mass spectrometer can be varied within 2-20 usec, the pulse electron current is 0.6 mA, and the electron energy is 250 eV. The time resolution of the mass spectrometer is determined by the repetition period of the electron-beam current pulses and is 40 usec. The mass spectrometer has 100% transmission in the direction of motion of molecular-beam particles. The dimension of the mass spectrometer is 7 cm in this direction. The mass resolution is sufficient for determination of the composition of the hydrogen beam.

  5. SETA-Hyperspectral Imaging Spectrometer for Marco Polo mission.

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. Cristina; Filacchione, Gianrico; Capaccioni, Fabrizio; Piccioni, Giuseppe; Ammannito, Eleonora; Capria, M. Teresa; Coradini, Angioletta; Migliorini, Alessandra; Battistelli, Enrico; Preti, Giampaolo

    2010-05-01

    The Marco Polo NEO sample return M-class mission has been selected for assessment study within the ESA Cosmic Vision 2015-2025 program. The Marco Polo mission proposes to do a sample return mission to Near Earth Asteroid. With this mission we have the opportunity to return for study in Earth-based laboratories a direct sample of the earliest record of how our solar system formed. The landing site and sample selection will be the most important scientific decision to make during the course of the entire mission. The imaging spectrometer is a key instrument being capable to characterize the mineralogical composition of the entire asteroid and to analyze the of the landing site and the returned sample in its own native environment. SETA is a Hyperspectral Imaging Spectrometer able to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the target in order to characterize the mineral properties of the surface. The spectral sampling is of at least 20 nm and the spatial resolution of the order of meter. SETA shall be able to return a detailed determination of the mineralogical composition for the different geologic units as well as the overall surface mineralogy with a spatial resolution of the order of few meters. These compositional characterizations involve the analysis of spectral parameters that are diagnostic of the presence and composition of various mineral species and materials that may be present on the target body. Most of the interesting minerals have electronic and vibrational absorption features in their VIS-NIR reflectance spectra. The SETA design is based on a pushbroom imaging spectrometer operating in the 400-3300 nm range, using a 2D array HgCdTe detector. This kind of instrument allows a simultaneous measurement of a full spectrum taken across the field of view defined by the slit's axis (samples). The second direction (lines) of the hyperspectral image shall be obtained by using the relative motion of the orbiter

  6. Advances in OLED/OPD-based spectrometer on-a-chip

    NASA Astrophysics Data System (ADS)

    Manna, Eeshita; Fungura, Fadzai; Shinar, Joseph; Shinar, Ruth

    2015-08-01

    We describe ongoing advances toward achieving an integrated all-organic spectrometer on a chip. To this end, 2-dimensional combinatorial arrays of microcavity (μc) organic light emitting diodes (OLEDs) with systematically varying optical cavity lengths were fabricated on a single chip by changing the thickness of different organic and/or spacer layers sandwiched between the two metal electrodes. The latter, one of which is semitransparent, form the cavity. The tunable and narrower emissions from the μcOLEDs serve as excitation sources of varying wavelength for monitoring light absorption or emission. For each wavelength, the light from the μcOLED is partially absorbed by the sample under study and the transmitted light (or the light emitted by an electronically excited sample) is detected by a photodetector (PD). To obtain a compact monitor, an organic PD (OPD) is fabricated and integrated with the μcOLED array. We show the potential of encompassing a broader wavelength range by using μcOLEDs based on different emitting layers. The OPD used to realize the first all-organic integrated spectrometer described here is based on P3HT:PCBM, though more sensitive OPDs we utilized in sensing applications are expected to improve the spectrometers' performance. The utility of this all-organic μcOLED/OPD spectrometer is shown for monitoring the absorption spectra of P3HT and Alexa Fluor 405 films. The results show excellent agreement with the absorption spectra obtained with a commercial Ocean Optics spectrometer.

  7. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  8. Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals

    SciTech Connect

    Netel, H

    1999-11-19

    Many areas of research rely on the detection of radiation, in the form of single photons or particles. By measuring the photons or particles coming from an object a lot can be learned about the object under study. In some cases there is a simple need to know the number of photons coming from the source. In cases like this a simple counter, like a Geiger-Mueller survey meter, will suffice. In other cases one want to know the spectral distribution of the photons coming from the source. In cases like that a spectrometer is needed that can distinguish between photons with different energies, like a diffraction or transmission grating. The work presented in this thesis focused on the development of a new generation broad band spectrometer that has a high energy resolving power, combined with a high absorption efficiency for photon energies above 10 keV and up to 500 keV. The spectrometers we are developing are based on low-temperature sensors, like superconducting tunnel junctions or transition edge sensors, that are coupled to bulk absorber crystals. We use the low-temperature sensors because they can offer a significant improvement in energy resolving power, compared to conventional spectrometers. We couple the low-temperature sensors to bulk absorber crystals to increase the absorption efficiency. In this chapter I introduce different types of radiation detectors and spectrometers and areas where they are being used. I also discuss the history and motivation of low-temperature spectrometers and show some of the impressive results that have been achieved in this field over the last few years. Finally I discuss the outline of this thesis.

  9. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  10. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  11. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  12. O3 and NO2 vertical columns using SAOZ UV-Visible spectrometer

    NASA Astrophysics Data System (ADS)

    Pazmiño, A.

    2010-12-01

    This chapter presents an overview of ground-based SAOZ spectrometer for measurements of O3 and NO2 total vertical columns. Due to instrument conception (zenith measurement in the Visible), the SAOZ is the only instrument that could measure continuously and at all latitudes up to the polar circle in winter. It can be operated in bad weather conditions (cloudy, rainy or snowing) and it has the advantage of spectral self-calibration and completely automatic mode. Differential Optical Absorption Spectroscopy technique is used allowing a self-calibration of different atmospheric constituents on the respective absorption cross-section.

  13. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  14. The LINUS UV imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Davis, D. S.; Harkins, Richard M.; Olsen, Richard C.

    2003-09-01

    We present an overview of the Naval Postgraduate School's new LINUS instrument. This is a spectral imager designed to observe atmospheric gas plumes by means of absorption spectroscopy, using background Rayleigh-scattered daylight as an illumination source. It is a pushbroom instrument, incorporating a UV-intensified digital camera, interchangeable gratings and filters, and a DC servo-controlled image scanning system. LINUS has been developed to operate across both the near-ultraviolet and the short visible wavelength portions of the spectrum in overlapping passbands. This paper provides an outline of LINUS's design, operation and capabilities, and it summarizes results from initial laboratory and field trials.

  15. The hot plasma spectrometers on Freja

    NASA Astrophysics Data System (ADS)

    Norberg, O.; Eliasson, L.

    1991-11-01

    The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures a full three dimensional distribution in the energy range 0.5 to 15000 eV/q with high mass resolution. The instruments use a particle 'imaging' detector technique based on a large diameter microchannel plate with position sensitive anode. The topics to be studied with the Freja hot plasma spectrometers include auroral particle acceleration, heating and acceleration of ionospheric ions, and the dynamics of auroral arc systems. Of special importance to the scientific objectives is the high data rate from the Freja instrumentation, the MATE and TICS spectrometers will be sampled every 10 ms, corresponding to a spatial resolution better than 70 m at ionospheric heights. The design, simulation, and calibration of the spectrometers are discussed.

  16. Handheld spectrometers: the state of the art

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  17. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, Bogdan J.

    1997-06-03

    A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.

  18. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, B.J.

    1997-06-03

    A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.

  19. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  20. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  1. Ultraviolet spectrometer observations of Uranus

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Herbert, F.; Holberg, J. B.; Hunten, D. M.; Kumar, S.; Sandel, B. R.; Shemansky, D. E.; Dessler, A. J.; Linick, S.; Springer, R.

    1986-01-01

    The Voyager 2 UV spectrometer was used to scan the Uranus atmosphere at wavelengths from 500-1700 A with a field of view of 0.1 x 0.86 deg. The temperature and composition of the upper atmosphere were determined through occultations of light from gamma Pegasi, nu Geminorum and the sun. The data indicated a substantial gas density (100 million H atoms/cu cm) at about 28,000 km from the Uranus center, suggesting that gas drag plays a significant role in ring evolution. The distributions of CH4 and C2H2 in the lower atmosphere were also estimated. An electroglow emission was detected on the sunlit side, and attributed to emissions from atomic and molecular hydrogen excited by low energy electrons. An auroral glow was also observed, and exhibited evidence of an energy input equal to that of the electroglow. Finally, estimates of the C2H2 mixing ratio and the vertical column abundance of H2 are calculated.

  2. Spectrometer design approaching the limit

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer; Wuttig, Andreas; Peschel, Thomas; Damm, Christoph; Dobschal, Hans-Jürgen

    2008-09-01

    The design limits of grating array spectral sensors are discussed. The limit of a grating spectrometer with respect to the resolution is given by the diffraction limit of the grating. To approach the limit for the visible spectral region the entrance slits should reach a width of 2 μm and larger depending on wavelength and numerical aperture. The detector pixel sizes should be in the same range, which is achieved virtually by the discussed double array arrangement with a transmissive, static slit array and detector array. A number of techniques are applied for optimizing the performance as well as for miniaturization. A sub-pixel imaging including a sub-pixel analysis based on the double array arrangement virtually reduces the detector pixel sizes down to about 20%. To avoid the imaging aberrations the spectra is imaged from different entrance positions by the entrance slit array. The throughput can be increased by using a two dimensional entrance slit array, which includes a multiplex pattern or a fixed adaptive pattern. The design example of a UV-Raman spectral sensor is presented including spectral measurements.

  3. Large Isotope Spectrometer for Astromag

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Klarmann, J.; Israel, M. H.; Garrard, T. L.; Mewaldt, R. A.; Stone, E. C.; Ormes, J. F.; Streitmatter, R. E.; Rasmussen, I. L.; Wiedenbeck, M. E.

    1990-01-01

    The Large Isotope Spectrometer for Astromag (LISA) is an experiment designed to measure the isotopic composition and energy spectra of cosmic rays for elements extending from beryllium through zinc. The overall objectives of this investigation are to study the origin and evolution of galactic matter; the acceleration, transport, and time scales of cosmic rays in the galaxy; and search for heavy antinuclei in the cosmic radiation. To achieve these objectives, the LISA experiment will make the first identifications of individual heavy cosmic ray isotopes in the energy range from about 2.5 to 4 GeV/n where relativistic time dilation effects enhance the abundances of radioactive clocks and where the effects of solar modulation and cross-section variations are minimized. It will extend high resolution measurements of individual element abundances and their energy spectra to energies of nearly 1 TeV/n, and has the potential for discovering heavy anti-nuclei which could not have been formed except in extragalactic sources.

  4. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  5. Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols.

    PubMed

    Havey, Daniel K; Bueno, Pedro A; Gillis, Keith A; Hodges, Joseph T; Mulholland, George W; van Zee, Roger D; Zachariah, Michael R

    2010-10-01

    We benchmark the performance of a photoacoustic spectrometer with a calculable cell constant in applications related to climate change measurements. As presently implemented, this spectrometer has a detection limit of 3.1 × 10(-9) W cm(-1) Hz(-1/2) for absorption by a gas and 1.5 × 10(-8) W cm(-1) Hz(-1/2) for soot particles. Nonstatistical uncertainty limited the accuracy of the instrument to ∼1%, and measurements of the concentration of CO(2) in laboratory air agreed with measurements made using a cavity ring-down spectrometer, to within 1%. Measurements of the enhanced absorption resulting from ultrathin (<5 nm), nonabsorbing coatings on nanoscale soot particles demonstrate the sensitivity of this instrument. Together, these measurements show the instrument's ability to quantitatively measure the absorption coefficient for species of interest to the climate and atmospheric science communities. Because the system constant is known, in most applications the acoustic response of this instrument need not be calibrated against a sample of known optical density, a decided advantage in field applications. Routine enhancements, such as improved processing of the photoacoustic signal and higher laser beam power, should further increase the instrument's precision and sensitivity. PMID:20804170

  6. Superconducting High Energy Resolution Gamma-ray Spectrometers

    SciTech Connect

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  7. Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS)

    PubMed Central

    Gao, Liang; Smith, R. Theodore; Tkaczyk, Tomasz S.

    2011-01-01

    We present a snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS) for eye imaging applications. The resulting system is capable of simultaneously acquiring 48 spectral channel images in the range 470 nm–650 nm with frame rate at 5.2 fps. The spatial sampling of each measured spectral scene is 350 × 350 pixels. The advantages of this snapshot device are elimination of the eye motion artifacts and pixel misregistration problems in traditional scanning-based hyperspectral retinal cameras, and real-time imaging of oxygen saturation dynamics with sub-second temporal resolution. The spectral imaging performance is demonstrated in a human retinal imaging experiment in vivo. The absorption spectral signatures of oxy-hemoglobin and macular pigments were successfully acquired by using this device. PMID:22254167

  8. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    A stratospheric ozone absorption line in the 10 microns band was measured and resolved completely, using an infrared heterodyne spectrometer with spectral resolution of 5 MHz (0.000167 cm to -1 power). The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectral line profile. The absolute total column density was 0.34 cm atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) to (7,1,7) O3 line center frequency was found to be 1043.1775 + or - 0.00033 cm to toe -1 power, or 430 + or - 10 MHz higher than the P(24) CO2 laser line frequency.

  9. Fourier transform infrared phase shift cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Rentz Dupuis, Julia

    2013-05-01

    We report on our current status towards the development of a prototype Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. Our system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time, which is proportional to the losses of the cavity including those due to molecular absorption. Our approach is a broadband and spectral range enhancement to conventional CRDS which is typically done in the near IR at a single wavelength; at the same time our approach is a sensitivity enhancement to traditional FTIR owing to the long effective path of the resonant cavity. In this paper we present a summary of the theory including performance projections and the design details of the prototype FTIR-PS-CRDS system.

  10. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.; Spears, D.

    1978-01-01

    A stratospheric ozone absorption line in the 10 micron band was measured and resolved completely, using an infrared heterodyne spectrometer with a spectral resolution of 5 MHz. The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectra line profile. The absolute total column density was 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) - (7,1,7) O3 line center frequency was found to be 1043.1772 plus or minus 0.00033 cm/1 or 420 plus or minus 10 MHz higher than the P(24) CO2 laser line frequency.

  11. Self-contained, hand-held optical spectrometer

    SciTech Connect

    Baird, W.; Nogar, N.S.

    1994-12-31

    The authors describe the design(s) and performance of a self-contained, portable (hand-held) optical spectrometer. The current instrument is based on a miniaturized monochromator, diode array detector, Peltier cooler and microprocessor control. It can be used either in absorption mode, or in a fluorescence-excitation mode (using an on-board UV penlamp). The unit contains an on-board computer, control pad and LCD display, and can write data to a demountable data key. On-board batteries allow operation for up to three hours in data acquisition mode, or up to twenty-four hours in stand-by mode. The instrument may couple to the sample either fiber-optically, or directly with a light-tight coupling unit. The authors also describe second generation instruments incorporating monolithic optical devices and/or interference filters. In general, these instruments can be made more compact, but at some cost in versatility and information content.

  12. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  13. Evaluation of Airborne Visible/Infrared Imaging Spectrometer Data of the Mountain Pass, California carbonatite complex

    NASA Technical Reports Server (NTRS)

    Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David

    1988-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.

  14. High-resolution Laue-type DuMond curved crystal spectrometer

    SciTech Connect

    Szlachetko, M.; Berset, M.; Dousse, J.-Cl.; Hoszowska, J.; Szlachetko, J.

    2013-09-15

    We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K–L{sub 2} and L{sub 2}–M{sub 3} cascading transitions with the energy of the crossover K–M{sub 3} transition as well as by considering the energy differences of the Gd Kα{sub 1} X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

  15. A cryogenically cooled, multidetector spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Bregman, J. D.

    1985-01-01

    A liquid helium-cooled, 24 detector grating spectrometer was developed and used for low resolution astronomical observations in the 5 to 14 micron spectral range. The instrument operated on the 91 cm Kuiper Airborne Observatory, the 3 m IRTF (Mauna Kea), the 3 m Shane telescope (Lick Observatory), and the 152 cm NASA and University of Arizona telescope. The detectors are discrete Si:Bi photoconductors with individual metal oxide semiconductor field effect transistor preamplifiers operating at 4 K. The system uses a liquid helium-cooled slit, order-sorter filter, collimator mirror, grating, and camera mirror arranged in a Czerny-Turner configuration with a cold stop added between the collimator mirror and the grating. The distances between components are chosen so that the collimator mirror images the secondary mirror of the telescope onto the cold stop, thus providing a very effective baffle. Scattered radiation is effectively reduced by using liquid helium-cooled, black baffles to divide the spectrometer into three separate compartments. The system noise-equivalent flux density, when used on the 152 cm telescope from 8 to 13 microns with a resolving power of 50, is 4.4 x 10 to the minus 17th power W/sq cm micron square root of Hz. The main applications are for measuring continuum radiation levels and solid state emission and absorption features in regions of star and planet formation.

  16. A cryogenically cooled, multidetector spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Bregman, J. D.

    1984-01-01

    A liquid helium-cooled, 24 detector grating spectrometer was developed and used for low resolution astronomical observations in the 5 to 14 micron spectral range. The instrument operated on the 91 cm Kuiper Airborne Observatory, the 3 m IRTF (Mauna Kea), the 3 m Shane telescope Observatory, the 3 m Shane telescope (Lick Observatory), and the 152 cm NASA and University of Arizona telescope. The detectors are discrete Si:Bi photoconductors with individual metal oxide semiconductor field effect transistor preamplifiers operating at 4 K. The system uses a liquid helium-cooled slit, order-sorter filter, collimator mirror, grating, and camera mirror arranged in a Czerny-Turner configuration with a cold stop added between the collimator mirror and the grating. The distances between components are chosen so that the collimator mirror images the secondary mirror of the telescope onto the cold stop, thus providing a very effective baffle. Scattered radiation is effectively reduced by using liquid helium-cooled, black baffles to divide the spectrometer into three separate compartments. The system noise-equivalent flux density, when used on the 152 cm telescope from 8 to 13 microns with a resolving power of 50, is 4.4 x 10 to the minus 17th power W/sq cm micron square root of Hz. The main applications are for measuring continuum radiation levels and solid state emission and absorption features in regions of star and planet formation.

  17. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  18. The high sensitivity double beta spectrometer TGV

    NASA Astrophysics Data System (ADS)

    Briancon, Ch.; Brudanin, V. B.; Egorov, V. G.; Janout, Z.; Koníček, J.; Kovalík, A.; Kovalenko, V. E.; Kubašta, J.; Pospíšil, S.; Revenko, A. V.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Štekl, I.; Timkin, V. V.; Tsupko-Sitnikov, V. V.; Vorobel, V.; Vylov, Ts.

    1996-02-01

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 × 6 mm 3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided.

  19. Mini-orange spectrometer at CIAE

    NASA Astrophysics Data System (ADS)

    Zheng, Yun; Wu, Xiao-Guang; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-08-01

    A mini-orange spectrometer used for in-beam measurements of internal conversion electrons, consisting of a Si(Li) detector and different sets of SmO5 permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at the China Institute of Atomic Energy. The working principles and configuration of the mini-orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the mini-orange spectrometer. Supported by National Natural Science Foundation of China (11305269, 11375267, 11475072, 11405274, 11205068, 11175259)

  20. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  1. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  2. Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS)

    NASA Astrophysics Data System (ADS)

    Kumer, John B.; Rairden, Richard L.; Mitchell, Keith E.; Roche, Aidan E.; Mergenthaler, John L.

    2002-11-01

    The Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS) uses relatively inexpensive off the shelf components in a small and simple package to provide ultra high spectral resolution over a limited spectral range. For example, the modest first try laboratory test setup DECTOSS we describe in this presentation achieves resolving power ~ 105 on a spectral range of about 1 nm centered near 760 nm. This ultra high spectral resolution facilitates some important atmospheric remote sensing applications including profiling cirrus and/or aerosol above bright reflective surfaces in the O2 A-band and the column measurements of CO and CO2 utilizing solar reflectance spectra. We show details of the how the use of ultra high spectral resolution in the O2 A-band improves the profiling of cirrus and aerosol. The DECTOSS utilizes a Narrow Band Spectral Filter (NBSF), a Low Resolution Etalon (LRE) and a High Resolution Etalon (HRE). Light passing through these elements is focused on to a 2 Dimensional Array Detector (2DAD). Off the shelf, solid etalons with airgap or solid spacer gap are used in this application. In its simplest application this setup utilizes a spatially uniform extended source so that spatial and spectral structure are not confused. In this presentation we'll show 2D spectral data obtained in a desktop test configuration, and in the first try laboratory test setup. These were obtained by illuminating a Lambertian screen with (1) monochromatic light, and (2) with atmospheric absorption spectra in the oxygen (O2) A-band. Extracting the 1D spectra from these data is a work in progress and we show preliminary results compared with (1) solar absorption data obtained with a large Echelle grating spectrometer, and (2) theoretical spectra. We point out areas for improvement in our laboratory test setup, and general improvements in spectral range and sensitivity that are planned for our next generation field test setup.

  3. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the

  4. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  5. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  6. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  7. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  8. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.

  9. The GIANO-TNG spectrometer

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Origlia, L.; Baffa, C.; Biliotti, C.; Bruno, P.; D'Amato, F.; Del Vecchio, C.; Falcini, G.; Gennari, S.; Ghinassi, F.; Giani, E.; Gonzalez, M.; Leone, F.; Lolli, M.; Lodi, M.; Maiolino, R.; Mannucci, F.; Marcucci, G.; Mochi, I.; Montegriffo, P.; Rossetti, E.; Scuderi, S.; Sozzi, M.

    2006-06-01

    GIANO is an infrared (0.9-2.5 μm cross-dispersed echelle spectrometer designed to achieve high resolution, high throughput, wide band coverage and very high stability for accurate radial velocity measurements. It also includes polarimetric capabilities and a low resolution mode with RS ~ 400 and complete 0.75-2.5 μm coverage. This makes it a very versatile, common user instrument which will be permanently mounted and available on the Nasmyth-B foci of the Telescopio Nazionale Galileo (TNG) located at Roque de Los Muchachos Observatory (ORM), La Palma, Spain. The project is fast-track and relies on well known, relatively standard technologies. It has been recognized as one of the top priority instrumental projects of INAF (the Italian National Institute of Astronomy) and received its first financing for the phase-A study in October 2003. Integration in the laboratory is planned to start before the end of 2006, commissioning at the telescope is foreseen within 2007 and scientific operations in 2008. One of the most important scientific goals is the search for rocky planets with habitable conditions around low-mass stars. If completed on time, GIANO will be the first and only IR instrument operating worldwide providing the combination of efficiency, spectral resolution, wavelength coverage and stability necessary for this type of research. With its unique combination of high and low resolution modes, GIANO will also be a very flexible common-user instrument ideal e.g. for quantitative spectroscopy of brown dwarfs, stars and stellar clusters as well as for the determination of the spectral energy distribution of faint/red objects such as high redshift galaxies. The expected limiting magnitudes are such that GIANO will be able to deliver good quality HR spectra of any 2MASS object and LR spectra of any object detected in the UKIDSS large area survey.

  10. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  11. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  12. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  13. AUTOMATION OF AN ULTRAVIOLET-VISIBLE SPECTROMETER

    EPA Science Inventory

    This report is an overview of the functional description and major features of an automated ultraviolet-visible spectrometer system intended for environmental measurements application. As such, it defines functional specifications and requirements which are divided into the chlor...

  14. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  15. Electronically-Scanned Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  16. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  17. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  18. Ultra High Mass Range Mass Spectrometer System

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  19. Laboratory automation of a quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, J. M.

    1983-12-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  20. Laboratory Automation of a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Thompson, J. M.

    1983-01-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  1. Ruggedized Spectrometers Are Built for Tough Jobs

    NASA Technical Reports Server (NTRS)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  2. Optical Calibration For Jefferson Lab HKS Spectrometer

    SciTech Connect

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  3. 1987 calibration of the TFTR neutron spectrometers

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  4. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  5. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  6. Commissioning Measurements of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Wierman, Kevin; Katrin Collaboration

    2013-10-01

    Beginning in May 2013, the KArlsruhe TRItium Neutrino experiment (KATRIN) collaboration began measurements to commission the 10-m diameter main spectrometer. KATRIN utilizes the spectrometer to provide magnetic adiabatic collimation and electrostatic filtering designed to analyze the tritium beta decay spectrum for contributions from the neutrino mass. In order to achieve an order-of-magnitude improvement on previous neutrino mass experiments the desired sensitivity of the apparatus must be 200 meV in the decay endpoint region. Goals of the recent measurements include identification and reduction of backgrounds and determination of the spectrometer transfer function. Backgrounds have been probed by utilizing electromagnetic field configurations to explore decays in the spectrometer, Penning traps and field emission. A 148-pixel PIN diode array is employed to detect particles exiting the spectrometer, which permits angular and radial distributions of particles to be analyzed. This has allowed for high precision comparison between measurements and simulations of expected backgrounds to be investigated in order to commission the spectrometer. This work is supported by grants from the DOE Office of Nuclear Physics and the Helmholtz Association.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  9. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  10. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  11. The JPL Field Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.; Kahle, Anne B.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) Field Emission Spectrometer (FES) was built by Designs and Prototypes based on a set of functional requirements supplied by JPL. The instrument has a spectral resolution of 6 wavenumbers (wn) and can acquire spectra from either the Mid Infrared (3-5 mu m) or the Thermal Infrared (8-12 pm) depending on whether the InSb or HgCdTe detector is installed respectively. The instrument consists of an optical head system unit and battery. The optical head which is tripod mounted includes the interferometer and detector dewar assembly. Wavelength calibration of the interferometer is achieved using a Helium-Neon laser diode. The dewar needs replenishing with liquid Nitrogen approximately every four hours. The system unit includes the controls for operation and the computer used for acquiring viewing and processing spectra. Radiometric calibration is achieved with an external temperature-controlled blackbody that mounts on the fore-optics of the instrument. The blackbody can be set at 5 C increments between 10 and 55 C. The instrument is compact and weighs about 33 kg. Both the wavelength calibration and radiometric calibration of the instrument have been evaluated. The wavelength calibration was checked by comparison of the position of water features in a spectrum of the sky with their position in the output from a high resolution atmospheric model. The results indicatethat the features in the sky spectrum are within 6-8 wn of their position ill the model spectrum. The radiometric calibration was checked by first calibrating the instrument using the external blackbody supplied with the instrument and then measuring the radiance from another external blackbody at a series of temperatures. The temperatures of these radiance spectra were then recovered by inventing Planck's law and the recovered temperatures compared lo the measured blackbody temperature. These results indicate that radiometric calibration is good to 0.5 C over the range of

  12. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  13. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  14. Spectroscopic low coherence interferometry using a supercontinuum source and an ultra broadband spectrometer

    NASA Astrophysics Data System (ADS)

    Fleischhauer, F.; Caujolle, S.; Feutcher, T.; Rajendram, R.; Leick, L.; Podoleanu, A.

    2016-03-01

    Spectroscopic optical coherence tomography (SOCT) combines the imaging capability of optical coherence tomography with spectroscopic absorption information. SOCT requires a large bandwidth combined with a broadband spectrometer, due to the processing of the measured data, which includes dividing the spectrum in spectral bands. Both, spectral and axial resolution of SOCT depend on the spectral width of each window. A supercontinuum source with its broad spectrum allows a sufficient number of windows combined with a reasonable axial resolution, which depends on the application. Here a SOCT system is used in the visible spectral range from 480 to 730 nm by combining a supercontinuum light source, a Michelson interferometer and a commercial available broadband spectrometer. This wavelength range is chosen because it covers a range of useful absorbers, including that of human proteins. The system is tested with a laser dye rhodamine B for calibration and verification. Rhodamine B has an absorption peak at around 542 nm, which resembles the absorption spectrum of several proteins in the globin group. The results show that the absorption spectrum of rhodamine B can be reconstructed with sufficient accuracy and demonstrate that varying spectroscopic information can be retrieved from different depths.

  15. Geodetic Mobil Solar Spectrometer for JASON Altimeter Satellite Calibration

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Geiger, A.; Kahle, H.-G.; Becker-Ross, H.; Florek, S.; Okruss, M.

    Atmospheric water vapor is a crucial factor in achieving highest accuracies for space geodetic measurements. Water vapor causes a delay of the propagation time of the altimeter satellite signal, which propagates into errors for the determination of surface heights. Knowledge of the precipitable water vapor (PW) enables a tropospheric correction of the satellite signal. Therefore, different remote sensing techniques have been pursued to measure the PW continuously. The prototype Geodetic Mobil Solar Spectrometer (GEMOSS) was developed at the Geodesy and Geodynamics Laboratory (GGL, ETH Zurich) in cooperation with the Institute of Spectrochemistry and Applied Spectroscopy (ISAS) (Berlin, Germany). A new optical approach allows the simultaneous measurement of numerous single absorption lines of water vapor in the wide range between 728 nm and 915 nm. The large number of available absorption lines increases the accuracy of the absolute PW retrievals considerably. GEMOSS has been deployed during two campaigns in Greece in the framework of the EU-project GAVDOS, which deals with the calibration of the altimeter satellite JASON. During the overfly of JASON, the ground-based determination of PW enables the correction of the satellite measurements due to tropospheric water vapor. Comparisons with radiometer and radiosondes data allow to assess the accuracy and reliability of GEMOSS. The instrumental advancement of GEMOSS is presented together with the results of the campaigns carried out.

  16. High Efficiency Near Infrared Spectrometer for Zodiacal Light Spectral Study

    NASA Technical Reports Server (NTRS)

    Kutyrea, A. S.

    2008-01-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 61 2, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I lneat 5 184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program.

  17. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  18. Ultraviolet absorption spectrum of gaseous HOCl

    SciTech Connect

    Mishalanie, E.A; Rutkowski, C.J.; Hutte, R.S.; Birks, J.W.

    1986-10-23

    The UV absorption spectrum of gaseous HOCl was investigated in the wavelength region 240 to 390 nm by using a dynamic HOCl source. Substantial quantities of HOCl were produced compared to two species (Cl/sub 2/O, ClO/sub 2/) that are spectral interferences in the wavelength region of interest. Thirteen experimental absorption spectra were analyzed by the statistical method of factor analysis. This analysis revealed that two major components were contributing to the total absorbance in each spectrum and that these two components accounted for 99.97% of all variance in the data. Mass spectra were simultaneously recorded with the absorption spectra by a quadrupole mass spectrometer that was calibrated for HOCl, Cl/sub 2/, Cl/sub 2/O, ClO/sub 2/, and other species. The two components in the absorption spectra were identified as Cl/sub 2/ and HOCl containing trace levels of ClO/sub 2/. The isolated Cl/sub 2/ and HOCl/ClO/sub 2/ spectral curves were obtained from a spectral-isolation factor analysis and quantified by using the Cl/sub 2/ spectrum as an internal standard. Atmospheric photolysis constants averaged over 24 h were calculated as a function of altitude from these cross sections and those currently recommended for atmospheric modeling. The calculated j values from the cross sections generated in this work predict a shorter photolysis lifetime for HOCl above 28 km. This results in a 6 to 19% decrease in the predicted HOCl diurnal average concentration in the altitude region 28 to 34 km, respectively, compared to the concentrations predicted by the currently recommended cross sections.

  19. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  20. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  1. Quantitative measurement of analyte gases in a microwave spectrometer using a dynamic sampling method

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Matthews, I. P.; Samuel, A. H.

    1996-07-01

    This article reports quantitative measurement of concentrations of water vapor (absorption line at 22.235 GHz) and ethylene oxide (absorption line at 23.123 GHz) in different gas mixtures by means of a microwave spectrometer. The problem of absorption line broadening and the gas memory problem inherent in the quantitative analysis of gases using microwave molecular rotational spectroscopy have been solved. The line broadening problem was minimized by gas dilution with nitrogen and the gas memory problem was effectively reduced by means of a dynamic sampling method. Calibration of ethylene oxide with a dilution factor of 5 has demonstrated that the standard deviations of the calibration data were less than 4.2%. A typical ethylene oxide sterilization production cycle was chosen to monitor chamber ethylene oxide concentrations in the gas dwell phase and the repeatability of these real time measurements was 2.7%.

  2. High-Resolution Spectroscopy of Quasars and Quasar Absorption-Line Systems

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael

    1995-01-01

    Topic cover in this paper included new observations of QSO absorption lines by the Keck Telescope HIRES spectrometer and the Hubble Space Telescope. An overview of the major scientific issues in this field is followed by a brief summary of a panel discussion that addressed future instrumental possibilities that could answer some of these questions.

  3. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  4. Data processing of absorption spectra from photoionized plasma experiments at Za)

    NASA Astrophysics Data System (ADS)

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-01

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  5. All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples

    NASA Astrophysics Data System (ADS)

    Kirchner, Friedrich O.; Lahme, Stefan; Riedle, Eberhard; Baum, Peter

    2014-07-01

    We report on an optical transmission spectrometer optimized for tiny samples. The setup is based on all-reflective parabolic optics and delivers broadband operation from 215 to 1030 nm. A fiber-coupled light source is used for illumination and a fiber-coupled miniature spectrometer for detection. The diameter of the probed area is less than 200 μm for all wavelengths. We demonstrate the capability to record transmission, absorption, reflection, fluorescence and refractive indices of tiny and ultrathin sample flakes with this versatile device. The performance is validated with a solid state wavelength standard and with dye solutions.

  6. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  7. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  8. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  9. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  10. Modeling, measuring, and minimizing the instrument response function of a tunable diode laser spectrometer

    NASA Astrophysics Data System (ADS)

    Sauke, Todd B.; Becker, Joseph F.

    2005-04-01

    The instrument response function (IRF) of a spectrometer limits the accuracy of measured spectroscopic parameters by broadening recorded spectral lines/features. We describe methods to model the effects of the IRF on spectral data, to minimize the IRF widths, and to measure the resulting width of the spectrometer IRF. We have modeled the IRF of our Tunable Diode Laser Spectrometer as a Voigt function. A real-time method of eliminating the effects of low-frequency spectrometer drift has been implemented and has resulted in a substantial reduction in the width of the IRF, its residual Gaussian component reduced from about 0.00045cm to about 0.0002cm. An accurate measurement of the IRF Gaussian width utilizes a computationally simple method making use of the spectral dependence of the RMS noise of each signal-averaged data point. Various noise sources affecting the spectrometer (preamp/detector noise, laser AM noise, and laser FM noise) are identified and separately quantified by use of the same method. The IRF Gaussian-width measurement can be automatically applied to each measured spectrum of an experimental data set. A related method is discussed which allows accurate determination of the spectral dependence of statistical noise appropriate for use in quantitative Chi-square fitting of absorption spectra. We explore simple, efficient numerical processes which can dramatically enhance the quality and usefulness of acquired spectral data, improving the ability to apply TDL spectroscopy to high-precision, quantitative measurements and the determination of detailed spectroscopic lineshape parameters. This paper provides a guide for interested readers to implement these developments in their own spectrometers.

  11. Nuclear structure analysis using the Orange Spectrometer

    SciTech Connect

    Regis, J.-M.; Pascovici, Gh.; Christen, S.; Meersschout, T.; Bernards, C.; Fransen, Ch.; Dewald, A.; Braun, N.; Heinze, S.; Thiel, S.; Jolie, J.; Materna, Th.

    2009-01-28

    Recently, an Orange spectrometer, a focusing iron-free magnetic spectrometer, has been installed at a beam line of the 10 MV Tandem accelerator of the IKP of the University of Cologne. The high efficiency of 15% of 4{pi} for the detection of conversion electrons and the energy resolution of 1% makes the Orange spectrometer a powerful instrument. From the conversion electron spectrum, transition multipolarities can be determined using the so called K to L ratio. In combination with an array of germanium and lanthanum bromide detectors, e{sup -}-{gamma}-coincidences can be performed to investigate the level scheme. Moreover, the very fast lanthanum bromide scintillator with an energy resolution of 3% allows e{sup -}-{gamma} lifetime measurements down to 0.3 ns. A second Orange spectrometer can be added to build the Double Orange Spectrometer for e{sup -}-e{sup -}-coincidences. It is indispensable for lifetime measurements of low intensity or nearby lying transitions as often occur in odd-A and odd-odd nuclei. The capabilities are illustrated with several examples.

  12. Imaging Spectrometers Using Concave Holographic Gratings

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Wang, S.

    1993-01-01

    Imaging spectroscopy combines the spatial attributes of imaging with the compositionally diagnostic attributes of spectroscopy. For spacebased remote sensing applications, mass, size, power, data rate, and application constrain the scanning approach. For the first three approaches, substantial savings in mass and size of the spectrometer can be achieved in some cases with a concave holographic grating and careful placement of an order-sorting filter. A hologram etched on the single concave surface contains the equivalent of the collimating, dispersing, and camera optics of a conventional grating spectrometer and provides substantial wavelength dependent corrections for spherical aberrations and a flat focal field. These gratings can be blazed to improve efficiency when used over a small wavelength range or left unblazed for broadband uniform efficiency when used over a wavelength range of up to 2 orders. More than 1 order can be imaged along the dispersion axis by placing an appropriately designed step order-sorting filter in front of the one- or two-dimensional detector. This filter can be shaped for additional aberration corrections. The VIRIS imaging spectrometer based on the broadband design provides simultaneous imaging of the entrance slit from lambda = 0.9 to 2.6 microns (1.5 orders) onto a 128 x 128 HgCdTe detector (at 77 K). The VIRIS spectrometer was used for lunar mapping with the UH 24.in telescope at Mauna Kea Observatory. The design is adaptable for small, low mass, space based imaging spectrometers.

  13. Modeling of the generic spatial heterodyne spectrometer and comparison with conventional spectrometer

    SciTech Connect

    Powell, Ian; Cheben, Pavel

    2006-12-20

    We describe the modeling of the generic spatial heterodyne spectrometer. This instrument resembles a somewhat modified Michelson interferometer, in which the power spectrum of the input source is determined by performing a one-dimensional Fourier transform on the output intensity profile. Code has been developed to analyze the performance of this type of spectrometer by determining the dependence of both spectral resolution and throughput on parameters such as aperture and field of view. An example of a heterodyne spectrometer is developed to illustrate the techniques employed in the modeling and a comparison undertaken between its performance and that of a conventional spectrometer. Unlike the traditional Fourier transform infrared system, the heterodyne spectrometer has the very desirable feature of having no moving components.

  14. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  15. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  16. Ultraviolet imaging spectrometer (UVS) experiment on board the NOZOMI spacecraft: Instrumentation and initial results

    NASA Astrophysics Data System (ADS)

    Taguchi, M.; Fukunishi, H.; Watanabe, S.; Okano, S.; Takahashi, Y.; Kawahara, T. D.

    2000-01-01

    An ultraviolet imaging spectrometer (UVS) on board the PLANET-B (NOZOMI) spacecraft has been developed. The UVS instrument consists of a grating spectrometer (UVS-G), an absorption cell photometer (UVS-P) and an electronics unit (UVS-E). The UVS-G features a flat-field type spectrometer measuring emissions in the FUV and MUV range between 110 nm and 310 nm with a spectral resolution of 2-3 nm. The UVS-P is a photometer separately detecting hydrogen (H) and deuterium (D) Lyman aemissions by the absorption cell technique. They take images using the spin and orbital motion of the spacecraft. The major scientific objectives of the UVS experiment at Mars and the characteristics of the UVS are described. The MUV spectra of geocoronal and interplanetary Lyman aemissions and lunar images taken at wavelength of hydrogen Lyman a and the background at 170 nm are presented as representative examples of the UVS observations during the Earth orbiting phase and the Mars transfer phase.

  17. PIR-fiber spectroscopy with FTIR and TDL spectrometers in the middle infared range of spectra

    NASA Astrophysics Data System (ADS)

    Artjushenko, Vjacheslav G.; Afanasyeva, Natalia I.; Bruch, Reinhard F.; Daniellian, G.; Stepanov, Eugene V.

    2000-07-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR- fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high resolution of TDL spectrometers with (Delta) v equals 10-4 cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors, and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  18. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  19. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  20. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  1. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  2. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  3. Partial pressure measurements with an active spectrometer

    SciTech Connect

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

  4. Acousto-optical spectrometers' frequency performance stability

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei I.; Lavrov, Aleksandr P.; Molodyakov, Sergey A.; Saenko, Igor I.

    2004-02-01

    Performance characteristics of the acoutsto-optical spectrometers for some radioastronomical applications are discussed. The main attention is given to the long-term stability of the acousto-optical spectrometer's frequency characteristics. It is shown that a problem of the frequency scale thermal instabilities can be overcome by using the suitable correction, based on the proposed model of the frequency scale drifts. For the acousto-optical spectrometers under consideration a simple method of the frequency scale drifts correction by using the data from measuring of a single reference signal's frequency was developed and applied for correction of molecular lines observations data. More careful procedure for more exigent applications, such as pulsar timing, is considered.

  5. Fast neutron detection with a segmented spectrometer

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  6. Automated calibration of a flight particle spectrometer

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1986-01-01

    An automatic calibration system was designed for use in the vacuum facility at the Space Science Laboratory of the Marshall Space Flight Center. That system was developed and used in the intervening winter to calibrate the ion spectrometer that eventually flew in May 1986 aboard the NASA project, CRIT 1. During this summer, it is planned to implement the calibration of both an ion and electron spectrometer of a new design whose basic elements were conceived during the winter of 1985 to 1986. This spectrometer was completed in the summer and successfully mounted in the vacuum tank for calibration. However, the source gate valve malfunctioned, and, at the end of the summer, it still needed a replacement. During the inevitable delays in the experimental research, the numerical model of the Critical Velocity effect was completed and these results were presented.

  7. A compact multichannel spectrometer for Thomson scattering

    SciTech Connect

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  8. Plasma Spectrochemistry with a Fourier Transform Spectrometer.

    NASA Astrophysics Data System (ADS)

    Manning, Thomas Joseph John

    1990-01-01

    This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.

  9. Compact real-time birefringent imaging spectrometer.

    PubMed

    Kudenov, Michael W; Dereniak, Eustace L

    2012-07-30

    The design and experimental demonstration of a snapshot hyperspectral imaging Fourier transform (SHIFT) spectrometer is presented. The sensor, which is based on a multiple-image FTS (MFTS), offers significant advantages over previous implementations using Michelson interferometers. Specifically, its use of birefringent interferometry creates a vibration insensitive and ultra-compact (15x15x10 mm(3)) common-path interferometer while offering rapid reconstruction rates through the graphics processing unit. The SHIFT spectrometer's theory and experimental prototype are described in detail. Included are reconstruction and spectral calibration procedures, followed by the spectrometer's validation using measurements of gas-discharge lamps. Lastly, outdoor measurements demonstrate the sensor's ability to resolve spectral signatures in typical outdoor lighting and environmental conditions. PMID:23038346

  10. SPEG: An energy loss spectrometer for GANIL

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Fernandez, B.; Gastebois, J.; Gillibert, A.; Mittig, W.; Barrette, J.

    1989-04-01

    Since July 1985, an energy loss spectrometer (SPEG) is under operation at the National Heavy Ion Laboratory (GANIL), at Caen (France). It has been designed to allow the study of quantum states populated in reactions induced by nuclei accelerated at energies up to 100 A MeV. The spectrometer has been designed by P. Birien. The optical properties and the main magnetic features have been calculated by Birien and Valero. A detailed reported of their study is given in ref. [1]. In the first part of the present paper, after recalling the specifications of the spectrometer, we shall give an overall description of the main characteristics, together with indications about the various shimming procedures which have been used to achieve the desired resolution (sections 1-4). In the second part, we shall describe various accessories and the different kinds of detectors which are used during experiments, with several illustrations of experimental results (sections 5 and 6).

  11. Miniature, sub-nanometer resolution Talbot spectrometer.

    PubMed

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6  cm3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum. PMID:27244382

  12. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  13. Compact snapshot birefringent imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2010-08-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.

  14. Testing of Josephson Spectrometer with Waveguide Coupling

    NASA Astrophysics Data System (ADS)

    Lyatti, M.; Gundareva, I.; Pavlovskii, V.; Poppe, U.; Divin, Y.

    2014-05-01

    One of the challenges in public security is the quick and reliable identification of threat liquids in bottles, when vapour analysis is not possible. Recently, we demonstrated that it is possible to rapidly identify liquids by EM measurements of their dielectric functions in the sub-THz range with a high-Tc Josephson spectrometer. Following this approach, we have developed a Josephson spectrometer with a new radiation coupling system, based on dielectric waveguides. In this paper, we present the results of spectroscopic measurements on liquid samples of various purities including 30% H2O2/H2O, performed using our Josephson spectrometer with waveguide coupling. Also, the signal and noise characteristics of a classical Josephson detector used in our liquid identifier were numerically simulated and the power dynamic range was estimated for a wide spread of junction parameters.

  15. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  16. Miniaturized Energy Spectrometer for Space Plasma Measurements

    NASA Astrophysics Data System (ADS)

    Goes de Lima, Raphaela; Scime, Earl; Keesee, Amy; Lusk, Greg

    2015-11-01

    Taking advantage of technological developments in lithographic fabrication techniques over the past two decades, we have designed an ultra-compact plasma spectrometer that requires only low voltage power supplies, no microchannel plates, and has a high aperture area to instrument area ratio. The designed target is for ions in the 3- 20 keV range with a highly directional field of view. In addition to reducing mass, size, and voltage requirements, the new design will revolutionize the manufacturing process of plasma spectrometers, enabling large quantities of identical instruments to be manufactured at low individual unit cost. Such a plasma spectrometer is ideal for Heliophysics plasma investigations, particularly for small satellite and multi-spacecraft missions. Here we present initial measurements of the performance of the instrument components and designs of the electronics for the low energy threshold solid state detector. Work Support under NASA grant - NNX14AJ36G.

  17. Performance of an INTEGRAL spectrometer model

    NASA Technical Reports Server (NTRS)

    Jean, P.; Naya, J. E.; vonBallmoos, P.; Vedrenne, G.; Teegarden, B.

    1997-01-01

    Model calculations for the INTEGRAL spectrometer (SPI) onboard the future INTErnational Gamma Ray Astrophysics Laboratory (INTEGAL) are presented, where the sensitivity for narrow lines is based on estimates of the background level and the detection efficiency. The instrumental background rates are explained as the sum of various components that depend on the cosmic ray intensity and the spectrometer characteristics, such as the mass distribution around the Ge detectors, the passive material, the characteristics of the detector system and the background reduction techniques. Extended background calculations were performed with Monte Carlo simulations and using semi-empirical and calculated neutron and proton cross sections. In order to improve the INTEGRAL spectrometer sensitivity, several designs and background reduction techniques were compared for an instrument with a fixed detector volume.

  18. A neutron spectrometer using nested moderators.

    PubMed

    Dubeau, J; Hakmana Witharana, S S; Atanackovic, J; Yonkeu, A; Archambault, J P

    2012-06-01

    The design, simulation results and measurements of a new neutron energy spectrometer are presented. The device, which may be called NNS, for Nested Neutron Spectrometer, works under the same principles as a Bonner Sphere Spectrometer (BSS) System, i.e. whereby a thermal neutron detector is surrounded by a polyethylene moderator. However, the moderator is cylindrical in shape. The different thicknesses of moderator are created by inserting one cylinder into another, much like nested Russian dolls. This design results in a much lighter instrument that is also easier to use in the field. Simulations and measurements show that, despite its shape, the device can be made to offer a near angular isotropic response to neutrons and that unfolded neutron spectra are in agreement with those obtained with a more traditional BSS. PMID:21964903

  19. Degradation Free Spectrometers for Solar EUV Measurements

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.; McMullin, D. R.

    2011-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for summer 2012. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS selectable spectral bandwidth is designed to provide solar irradiance in a 10 nm band centered on the Lyman-alpha 121.6 nm line and a 4 nm band centered on the He-II 30.4 nm line to overlap EUV observations from the SDO/EUV Variability Experiment (EVE) and the SOHO/Solar EUV Monitor (SEM). A clone of the SOHO/SEM flight instrument and a Rare Gas Ionization Cell (RGIC) absolute EUV detector will also be flown to provide additional measurements for inter-comparison. Program delays related to the sounding rocket flight termination system, which was no longer approved by the White Sands Missile Range prevented the previously scheduled summer 2011 launch of these instruments. During this delay several enhancements have been made to the sounding rocket versions of the DFS instruments, including a lighter, simplified vacuum housing and gas system for the OFS and an improved mounting for the DGS, which allows more accurate co-alignment of the optical axes of the DGS, OFS, and the SOHO/SEM clone. Details of these enhancements and results from additional lab testing of the instruments are reported here. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA's Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  20. Superconducting High-Resolution X-Ray Spectrometers for Chemical State Analysis of Dilute Samples

    SciTech Connect

    Friedrich, S; Drury, O B; Funk, T; Sherrell, D; Yachandra, V K; Labov, S E; Cramer, S P

    2003-09-02

    Cryogenic X-ray spectrometers operating at temperatures below 1 K combine high energy resolution with broadband efficiency for X-ray energies up to 10 keV. They offer advantages for chemical state analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional Ge or Si(Li) detectors lack energy resolution and grating spectrometers lack detection efficiency. We are developing soft X-ray spectrometers based on superconducting Nb-Al-AlOx-Al-Nb tunnel junction (STJ) technology. X-rays absorbed in one of the superconducting electrodes generate excess charge carriers in proportion to their energy, thereby producing a measurable temporary increase in tunneling current. For STJ operation at the synchrotron, we have designed a two-stage adiabatic demagnetization refrigerator (ADR) with a cold finger that holds a 3 x 3 array of STJs inside the UHV sample chamber at a temperature of {approx}0.1 K within {approx}15 mm of a room temperature sample. Our STJ spectrometer can have an energy resolution below 10 eV FWHM for X-ray energies up to 1 keV, and has total count rate capabilities above 100,000 counts/s. We will describe detector performance in synchrotron-based X-ray fluorescence experiments and demonstrate its use for XAS on a dilute metal site in a metalloprotein.