Science.gov

Sample records for absorption spectrometric determination

  1. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    PubMed

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  2. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  3. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples.

    PubMed

    Taher, Mohammad Ali; Pourmohammad, Fatemeh; Fazelirad, Hamid

    2015-12-01

    In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra-trace amounts of rhodium after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015-0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Flow injection-hydride generation atomic absorption spectrometric determination of selenium, arsenic and bismuth.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2008-08-15

    A simple and robust flow injection system which permits low sample and reagent consumption is described for rapid and reliable hydride generation atomic absorption spectrometric determination of selenium, arsenic and bismuth. The system, which composed of one peristaltic pump and one four channel solenoid valve, used water as the carrier streams for both sample and NaBH(4) solution. Rapid off-line pre-reduction of the analytes was achieved by using hydroxylamine hydrochloride for selenium and a mixture of potassium iodide and ascorbic acid for arsenic and bismuth. Transition metal interference was eliminated with the addition of thiourea and EDTA into the NaBH(4) solution and significant sensitivity enhancement was observed for selenium in the presence of thiourea in the reductant solution. Under optimised conditions, the method achieved detection limits of 0.2 ng mL(-1) for Se, 0.5 ng mL(-1) for As and 0.3 ng mL(-1) for Bi. The method was very reproducible, achieving relative standard deviations of 6.3% for Se, 3.6% for As and 4.7% for Bi, and has a sample throughput of 360 h(-1). Successful application of the method to the quantification of selenium, arsenic and bismuth in a certified reference river sediment sample is reported.

  5. Electrothermal atomic absorption spectrometric determination of arsenic in essential lavender and rose oils.

    PubMed

    Karadjova, Irina B; Lampugnani, Leonardo; Tsalev, Dimiter L

    2005-02-28

    Analytical procedures for electrothermal atomic absorption spectrometric (ETAAS) determination of arsenic in essential oils from lavender (Lavendula angustifolia) and rose (Rosa damascena) are described. For direct ETAAS analysis, oil samples are diluted with ethanol or i-propanol for lavender and rose oil, respectively. Leveling off responses of four different arsenic species (arsenite, arsenate, monomethylarsonate and dimethylarsinate) is achieved by using a composite chemical modifier: l-cysteine (0.05gl(-1)) in combination with palladium (2.5mug) and citric acid (100mug). Transverse-heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction and 'end-capped' graphite tubes with integrated pyrolytic graphite platforms, pre-treated with Zr-Ir for permanent modification are employed as most appropriate atomizer. Calibration with solvent-matched standard solutions of As(III) is used for four- and five-fold diluted samples of lavender and rose oil, respectively. Lower dilution factors required standard addition calibration by using aqueous (for lavender oil) or i-propanol (for rose oil) solutions of As(III). The limits of detection (LOD) for the whole analytical procedure are 4.4 and 4.7ngg(-1) As in levender and rose oil, respectively. The relative standard deviation (R.S.D.) for As at 6-30ngg(-1) levels is between 8 and 17% for both oils. As an alternative, procedure based on low temperature plasma ashing in oxygen with ETAAS, providing LODs of 2.5 and 2.7ngg(-1) As in levender and rose oil, respectively, and R.S.D. within 8-12% for both oils has been elaborated. Results obtained by both procedures are in good agreement.

  6. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    PubMed

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  7. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    USGS Publications Warehouse

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  8. Flotation separation and electrothermal atomic absorption spectrometric determination of thallium in wastewater samples.

    PubMed

    Hosseini, Mohammad Saeid; Chamsaz, Mahmoud; Raissi, Heidar; Naseri, Yousef

    2006-01-01

    The proposed method is a simple process for the determination of trace amount of thallium(I) in the environmental wastewater samples by electrothermal atomic absorption spectrometry. The wastewater samples were obtained from the environment of a cement plant and subjected to a simple treatment, such as adjusting pH and masking the interfering ions, to prepare for the flotation process in which the thallium(I) content was floated as an ion-association complex using iodide and Rhodamine B at the interface of aqueous/cyclohexane layers. The floated layer was then separated and dissolved in 2 ml of a solution, which was 1% to H2SO4 and 50% to methanol, respectively. Aliquots of 10-microl of this solution were subjected to the graphite furnace to determine the thallium(I) content. The flotation process can be carried in a weak acidic medium in which the interfering effects owing to certain metal ions were eliminated by masking them as neutral citrate chelates. The dynamic range for the determination was found to be 1.0 x 10(-8) - 1.0 x 10(-7) mol l(-1). The RSD was 3.2% and the DL was 2.5 x 10(-9) mol l(-1) (calculated as 3SD of the blank). The reliability of the method is demonstrated by the analysis of a synthetic wastewater in which the recovery was found to be 94%.

  9. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  10. Optimisation of flame parameters for simultaneous multi-element atomic absorption spectrometric determination of trace elements in rocks

    USGS Publications Warehouse

    Kane, J.S.

    1988-01-01

    A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.

  11. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    PubMed

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  12. Electrothermal atomic absorption spectrometric determination of cobalt, copper, lead and nickel traces in aragonite following flotation and extraction separation.

    PubMed

    Zendelovska, D; Pavlovska, G; Cundeva, K; Stafilov, T

    2001-03-30

    A method of determination of Co, Cu, Pb and Ni in nanogram quantities from aragonite is presented. Flotation and extraction of Co, Cu, Pb and Ni is suggested as methods for elimination matrix interferences of calcium. The method of flotation is performed by iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)(3), as a colloid precipitate collector. The liquid-liquid extraction of Co, Cu, Pb and Ni is carried out by sodium diethyldithiocarbamate, NaDDTC, as complexing reagent into methylisobutyl ketone, MIBK. The electrothermal atomic absorption spectrometry (ETAAS) is used for determination of analytes. The detection limits of ETAAS followed by flotation are: 7.8 ng.g(-1) for Co, 17.1 ng.g(-1) for Cu, 7.2 ng.g(-1) for Pb and 9.0 mug.g(-1) for Ni. The detection limits of ETAAS followed by extraction are found to be: 12.0 ng.g(-1) for Co, 51.0 ng.g(-1) for Cu, 24.0 ng.g(-1) for Pb and 21.0 ng.g(-1) for Ni.

  13. Flow injection/atomic absorption spectrometric determination of zineb in commercial formulations of pesticide based on slurry sampling.

    PubMed

    Cassella, Ricardo J; Salim, Verĵnica A; Garrigues, Salvador; Santelli, Ricardo E; de la Guardia, Miguel

    2002-11-01

    This paper reports on a new strategy for the slurry sampling determination of dithiocarbamate pesticide zineb [[ethylenebis(dithiocarbamato)]zinc] employing a FIA system with a flame atomic absorption spectrometry detector. In the flow system, an on-line alkaline hydrolysis of the pesticide is performed, allowing the release of Zn(II) ions to the solution, which are easily detected by a flame AAS technique. Several parameters that could affect the performance of the analytical methodology were studied, such as the concentration of NH3(aq) used in the hydrolysis step, the effect of the presence of Triton X-100 on the sensitivity and precision, and the FIA parameters (carrier flow rate and mixing coil volume). Under optimized conditions, aqueous slurries containing 2.5 to 25 microg ml(-1) zineb provided good linear calibration fits. From the obtained data, a detection limit (3sigma) of 1.0 microg ml(-1) zineb was found and a repeatability of 2.7% was obtained from 12 measurements of a slurry containing 2.5 microg m(-1) zineb. On the other hand, a precision (reproducibility) of 7.8% was achieved from three determinations of a sample containing 128 mg g(-1) of the pesticide. Also, the developed system provides a sampling frequency of 72 h(-1).

  14. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  15. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  16. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination

    NASA Astrophysics Data System (ADS)

    Godlewska-Żyłkiewicz, Beata

    2003-08-01

    Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3±1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7±3.3% for platinum and 96.8±1.1 for palladium) was obtained with solution of 0.3 mol l -1 thiourea in 1 mol l -1 hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.

  17. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: application to pharmacokinetic studies.

    PubMed

    Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  18. Novel Atomic Absorption Spectrometric and Rapid Spectrophotometric Methods for the Quantitation of Paracetamol in Saliva: Application to Pharmacokinetic Studies

    PubMed Central

    Issa, M. M.; Nejem, R. M.; El-Abadla, N. S.; Al-Kholy, M.; Saleh, Akila. A.

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 μg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 μg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 μg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%. PMID:20046743

  19. Study of the versatility of a graphite furnace atomic absorption spectrometric method for the determination of cadmium in the environmental field.

    PubMed

    Rucandio, M Isabel; Petit-Domínguez, M Dolores

    2002-01-01

    Cadmium is a representative example of trace elements that are insidious and widespread health hazards. In contemporary environmental analysis, there is a clear trend toward its determination over a wide range of concentrations in complex matrixes. This paper describes a versatile method for the determination of Cd at various levels (0.1-500 microg/g) in several sample types, such as soils, sediments, coals, ashes, sewage sludges, animal tissues, and plants, by graphite furnace atomic absorption spectrometry with Zeeman background correction. The effect of the individual presence of about 50 elements, with an interference/analyte concentration ratio of up to 10(5), was tested; recoveries of Cd ranged from 93 to 106%. The influence of different media, such as HNO3, HCI, HF, H2SO4, HClO4, acetic acid, hydroxylammonium chloride, and ammonium acetate, in several concentrations, was also tested. From these studies it can be concluded that the analytical procedure is scarcely matrix dependent, and the results obtained for a wide diversity of reference materials are in good agreement with the certified values.

  20. Determination of calcium, magnesium, sodium, and potassium in foodstuffs by using a microsampling flame atomic absorption spectrometric method after closed-vessel microwave digestion: method validation.

    PubMed

    Chekri, Rachida; Noël, Laurent; Vastel, Christelle; Millour, Sandrine; Kadar, Ali; Guérin, Thierry

    2010-01-01

    This paper describes a validation process in compliance with the NFIEN ISO/IEC 17025 standard for the determination of the macrominerals calcium, magnesium, sodium, and potassium in foodstuffs by microsampling with flame atomic absorption spectrometry after closed-vessel microwave digestion. The French Standards Commission (Agence Francaise de Normalisation) standards NF V03-110, NF EN V03-115, and XP T-90-210 were used to evaluate this method. The method was validated in the context of an analysis of the 1322 food samples of the second French Total Diet Study (TDS). Several performance criteria (linearity, LOQ, specificity, trueness, precision under repeatability conditions, and intermediate precision reproducibility) were evaluated. Furthermore, the method was monitored by several internal quality controls. The LOQ values obtained (25, 5, 8.3, and 8.3 mg/kg for Ca, Mg, Na, and K, respectively) were in compliance with the needs of the TDS. The method provided accurate results as demonstrated by a repeatability CV (CVr) of < 7% and a reproducibility CV (CVR) of < 12% for all the elements. Therefore, the results indicated that this method could be used in the laboratory for the routine determination of these four elements in foodstuffs with acceptable analytical performance.

  1. Flame atomic absorption spectrometric determination of trace amounts of nickel after extraction and preconcentration onto natural modified analcime zeolite loaded with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol.

    PubMed

    Afzali, Darush; Taher, Mohammad Ali; Mostafavi, Ali; Mahani, Mohammad Khayatzadeh

    2005-01-01

    Nickel is a moderately toxic element compared with other transition metals. However, inhalation of nickel and its compounds leads to serious problems, including cancer of the respiratory system and a skin disorder, nickel-eczema. Thus, attention has focused on the toxicity of nickel at low concentrations, and the development of reliable, analytical approaches for the determination of trace amounts of nickel is needed. This paper describes a simple, rapid, and sensitive flame atomic absorption spectrometric method for the determination of trace amounts of nickel in various samples after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex on a modified Analcime column in the pH range of 7.5-10.5. The retained analyte on the Analcime is recovered with 5.0 mL 2 M nitric acid and determined by flame atomic absorption spectrometry. The detection limit is 20 ng/mL, and the calibration curve is linear for analyte concentrations in the range of 0.1-8 microg/mL final solution, with a correlation coefficient of 0.9993. Eight replicate determinations of nickel at 2 microg/mL in the final solution gave an absorbance of 0.1222, with a relative standard deviation (RSD) of +/-1.2%. The interference of a large number of anions and cations was studied, and the proposed method was used for the determination of nickel in various standard reference samples. The accuracy of the proposed method was evaluated by analyzing standard reference samples, and the results were satisfactory (recoveries of >96%; RSD of <3.5%).

  2. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  3. Separation and flame atomic absorption spectrometric determination of total chromium and chromium (III) in phosphate rock used for production of fertilizer.

    PubMed

    El-Sheikh, Amjad H; Al-Degs, Yahya S; Sweileh, Jamal A; Said, Adi J

    2013-11-15

    Due to the commercial value of phosphate rock (PR) as a fertilizer precursor, it is necessary to investigate its heavy metals content. Chromium (Cr) may present as Cr(III) or Cr(VI) in PR; but quantitative differentiation between them is not an easy task. This is due to possible interconversion of Cr species during the digestion/leaching process. In this work, ultrasound digestion (USD) of PR was optimized (300 mg PR, 4.0 mL of 4.0 mol L(-1) nitric acid, 15 min sonication) for the sake of leaching Cr species prior to their determination by flame atomic absorption spectroscopy. Using multi-walled carbon nanotube (MWCNT) as adsorbent, solid phase extraction (SPE) was used to separate Cr(III) from the digestate at pH 9, while total Cr was estimated after reducing Cr(VI) into Cr(III). The optimum USD/SPE method gave LOQ and LOD of Cr(III) of 0.96 mg kg(-1) and 0.288 mg kg(-1), respectively. The method sensitivity was 1.44×10(-3) AU kg mg(-1) within the studied Cr concentration range (5-400 mg kg(-1)). The USD/SPE method was validated by analyzing lake sediments LKSD-4 certified reference material, and by comparison with classical digestion method (CD). Application of USD/SPE on Jordanian PR samples gave total Cr rang 29.1-122.0 mg kg(-1) (±1.4-6.3), while Cr(III) ranged between 23.8 and 101.7 mg kg(-1) (±1.3-5.5). AFPC Rock Check Program samples gave total Cr range 238.9-394.7 mg kg(-1) (±11.5-24.1), while Cr(III) ranged between 202.4 and 335.8 mg kg(-1) (±11.4-18.3). These results were very close to the results obtained by the CD method. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination.

    PubMed

    Altunay, Nail; Yıldırım, Emre; Gürkan, Ramazan

    2018-04-15

    In the study, a simple, and efficient microextraction approach, which is termed as vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction (VA-IL-DLLME), was developed for flame atomic absorption spectrometric analysis of aluminum (Al) and chromium (Cr) in vegetables. The method is based on the formation of anionic chelate complexes of Al(III) and Cr(VI) with o-hydroxy azo dye, at pH 6.5, and then extraction of the hydrophobic ternary complexes formed in presence of cetyltrimethylammonium bromide (CTAB) into a 125 μL volume of 1-butyl-3-methylimidazolium bis(trifluorosulfonyl)imide [C 4 mim][Tf 2 N]) as extraction solvent. Under optimum conditions, the detection limits were 0.02 µg L -1 in linear working range of 0.07-100 µg L -1 for Al(III), and 0.05 µg L -1 in linear working range of 0.2-80 µg L -1 for Cr(VI). After the validation by analysis of a certified reference material (CRM), the method was successfully applied to the determination of Al and Cr in vegetables using standard addition method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Flame Atomic Absorption Spectrometric Determination of Gold After Solid-Phase Extraction of Its 2-Aminobenzothiazole Complex on Diaion SP-207.

    PubMed

    Unsal, Yunus Emre; Tuzen, Mustafa; Soylak, Mustafa

    2016-01-01

    An SPE of Au (III) on a 2-aminobenzothiazole-coated Diaion SP 207-column system has been developed. The parameters, including pH of solution, amount of 2-aminobenzothiazole, eluent type, sample volume, and flow rates, were examined. The effects of alkali, alkali earth, and some metals were also studied. The recovery values at optimal conditions and detection limits for Au (III) were found as >95% and 3.8 μg L(-1), respectively. The factor of preconcentration was 250. The RSD value was <5%. The capacity of adsorption for the resin was 10.4 mg g(-1). The accuracy of the method was evaluated by the use of CDN-GS-3D gold-certified reference material. The proposed procedure for the determination of gold was applied to water, mine, soil, and anodic slime samples.

  6. Diaion HP-2MG modified with 2-(2,6-dichlorobenzylideneamino) benzenethiol as new adsorbent for solid phase extraction and flame atomic absorption spectrometric determination of metal ions.

    PubMed

    Ghaedi, M; Montazerozohori, M; Haghdoust, S; Zaare, F; Soylak, M

    2013-04-01

    A solid phase extraction method for enrichment-separation and the determination of cobalt (Co(2+)), copper (Cu(2+)), nickel (Ni(2+)), zinc (Zn(2+)) and lead (Pb(2+)) ions in real samples has been proposed. The influences of some analytical parameters like pH, flow rate, eluent type and interference of matrix ions on recoveries of analytes were optimized. The limits of detection were found in the range of 1.6-3.9 µg L(-1), while preconcentration factor for all understudy metal ions were found to be 166 with loading half time (t 1/2) less than 10 min. The procedure was applied for the enrichment-separation of analyte ions in environmental samples with recoveries higher than 94.8% and relative SD <4.9% (N = 5).

  7. Determination of trace elements of Egyptian cane sugar (Naga Hammady factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analyses.

    PubMed

    Awadallah, R M; Sherif, M K; Mohamed, A E; Grass, F

    1984-01-01

    INAA, AAS and ICP-AES techniques are applied to the determination of trace amounts of Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in the stalks of sugar cane plant after extracting juice, raw juice principal (mixed) juice, juice withdrawn from the successive stages of sugar industry, sirup, deposits from evaporators, molasse, A-? and B-sugar and in the soil samples (collected from the field supplying the factories by cane plants) taken from the immediate vicinity of the plant roots at surface, 30 and 60 cm depth. The results obtained are in a good agreement of the safety baselines of using juice as beverage, molasse derivatives (honey, sweets, ...) as diet for common people in the developed countries and in industry (methanol, ethanol, acetone & acetic acid, ...) and sugar sweeting for many purposes (in beverages, desserts, ...). Differences of trace elements concentrations in soil samples may be reasoned to geochemical and biogeochemical fractionation while those in juice may be due to the changes in the environmental conditions, chemical composition and botanic structures. Variations in trace element contents in the products formed during the successive stages of sugar industry may be a result of evaporation, filtration processes, chemical treatments or corrosion of vessels, containers or engines. Trace elements are very important where they are responsible for enzymatic and biochemical reactions, matabolism, health and diseases.

  8. Spectrometric determination of platinum with methoxypromazine maleate

    SciTech Connect

    Thimmegowda, A.; Sankegowda, H.; Gowda, N.M.M.

    1984-03-01

    A simple, rapid, and sensitive spectrophotometric method has been developed for the determination of platinum in solution. The chromogenic reagent, methoxypromazine maleate, reacts with platinum(IV) almost instantaneously in phosphoric acid medium containing copper(II) catalyst to form a bluish pink 1:1 complex with an absorption maximum at 562 nm. The complexation is complete within 1 min. A 30-fold molar excess of the reagent over metal ion is necessary for completion of the reaction. Beer's law is obeyed over the concentration range of 0.4-9.8 ppm of platinum(IV) with an optimal range of 1.5-8.6 ppm. The molar absorptivity is 1.71 x 10/sub 4/more » L mol/sup -1/ cm/sup -1/ and the Sandell sensitivity is 11.4 ng cm/sup -2/. The apparent stability constant of the complex is log K = 5.58 +/- 0.1 at 27/sup 0/C. The effects of acid concentration, time, temperature, concentration of the reagent and copper, order of addition of reagents, and the interferences from various ions are investigated. The method has been used for the determination of platinum in synthetic solutions that approximate the composition of some alloys and minerals. 25 references, 1 figure, 2 tables.« less

  9. Comparison of serum copper determination by colorimetric and atomic absorption spectrometric methods in seven different laboratories. The S.F.B.C. (Société Française de Biologie Clinique) Trace Element Group.

    PubMed

    Arnaud, J; Chappuis, P; Zawislak, R; Houot, O; Jaudon, M C; Bienvenu, F; Bureau, F

    1993-02-01

    An interlaboratory collaborative trial was conducted on the determination of serum copper using two different methods, based on colorimetry (test combination Copper, Boehringer Mannheim, Mannheim, Germany) and flame atomic absorption spectrometry (FAAS). The general performance of the colorimetric method was below that of FAAS, except for sensitivity and linear range, as assessed by detection limit (0.44 versus 1.32 mumol/L) and upper limit of linearity (150 versus 50 mumol/L). The range of the between-run CVs and the recovery of standard additions were, respectively, 2.3-11.9% and 92-127% for the colorimetric method and 1.1-6.0% and 93-101% for the FAAS method. Interferences were minimal with both methods. The two techniques correlated satisfactorily (the correlation coefficients ranged from 0.945-0.970 among laboratories) but the colorimetric assay exhibited slightly higher results than the FAAS method. Each method was transferable among laboratories.

  10. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection.

    PubMed

    Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y

    1999-04-01

    An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.

  11. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    PubMed

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  12. Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages.

    PubMed

    Sochor, Jiri; Ryvolova, Marketa; Krystofova, Olga; Salas, Petr; Hubalek, Jaromir; Adam, Vojtech; Trnkova, Libuse; Havel, Ladislav; Beklova, Miroslava; Zehnalek, Josef; Provaznik, Ivo; Kizek, Rene

    2010-11-29

    The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods--DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5. Absorption curves were measured and absorbance maxima were found. All methods were calibrated using the standard compounds Trolox® and/or gallic acid. Calibration curves were determined (relative standard deviation was within the range from 1.5 to 2.5%). The obtained characteristics were compared and discussed. Moreover, the data obtained were applied to optimize and to automate all mentioned protocols. Automatic analyzer allowed us to analyse simultaneously larger set of samples, to decrease the measurement time, to eliminate the errors and to provide data of higher quality in comparison to manual analysis. The total time of analysis for one sample was decreased to 10 min for all six methods. In contrary, the total time of manual spectrometric determination was approximately 120 min. The obtained data provided good correlations between studied methods (R=0.97-0.99).

  13. DEVELOPMENT OF AN ELECTROSPRAY MASS SPECTROMETRIC METHOD FOR DETERMINING PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    An electrospray mass spectrometric method has been developed for application to agricultural and horticultural fertilizers to determine perchlorate. After fertilizers are leached or dissolved in water, the method relies on the formation of stable ion pair complex of the perchlor...

  14. A hybrid sorption - Spectrometric method for determination of synthetic anionic dyes in foodstuffs.

    PubMed

    Tikhomirova, Tatyana I; Ramazanova, Gyulselem R; Apyari, Vladimir V

    2017-04-15

    A sorption-spectrometric method for determination of the anionic synthetic dyes based on their sorption on silica sorbent modified with hexadecyl groups (C16) followed by measuring the diffuse reflectance spectra on the surface of the sorbent has been proposed. Adsorption of sulfonated azo dyes Tartrazine (E102), Sunset Yellow FCF (E110), Ponceau 4R (E124) reaches maximum in acidic medium (1M HCl - pH 1). For the quinophthalone type dye Quinoline Yellow (E104), the adsorption is also maximal in an acidic medium (1M HCl - pH 2). The triphenylmethane dye Fast Green FCF (E143) is absorbed in the wider area of pH (1M HCl - pH 6). Increasing concentration of the dyes in a solution led to the increase in absorption band intensity in diffuse reflectance spectra of the adsorbent, which was used for their direct determination. The proposed method was applied to the determination of dyes in beverages and pharmaceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mass spectrometric determination of early and advanced glycation in biology.

    PubMed

    Rabbani, Naila; Ashour, Amal; Thornalley, Paul J

    2016-08-01

    Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1-5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and N(ε)-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them - amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine - particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and

  16. Mass spectrometric determination of the composition of the Venus clouds

    NASA Technical Reports Server (NTRS)

    Herzog, R. F. K.

    1973-01-01

    The instrumentation is analyzed for determining the composition of the clouds on Venus. Direct analysis of the gas phase atmosphere, and the detection of ferrous chloride with a mass spectrometer are dicussed along with the mass analyzer, and the pre-separation of cloud particles from the ambient atmosphere.

  17. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  18. Liquid chromatography/mass spectrometric determination of patulin in apple juice using atmospheric pressure photoionization.

    PubMed

    Takino, Masahiko; Daishima, Shigeki; Nakahara, Taketoshi

    2003-01-01

    This paper describes a comparison between atmospheric pressure chemical ionization (APCI) and the recently introduced atmospheric pressure photoionization (APPI) technique for the liquid chromatography/mass spectrometric (LC/MS) determination of patulin in clear apple juice. A column switching technique for on-line extraction of clear apple juice was developed. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for both APCI and APPI. The results indicated that APPI provides lower chemical noise and signal suppression in comparison with APCI. The linear range for patulin in apple juice (correlation coefficient >0.999) was 0.2-100 ng mL(-1). Mean recoveries of patulin in three apple juices ranged from 94.5 to 103.2%, and the limit of detection (S/N = 3), repeatability and reproducibility were 1.03-1.50 ng mL(-1), 3.9-5.1% and 7.3-8.2%, respectively. The total analysis time was 10.0 min. Copyright 2003 John Wiley & Sons, Ltd.

  19. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals

    SciTech Connect

    Edwards, R.L.; Chen, J.H.; Ku, T.L.

    1987-06-19

    The development of mass spectrometric techniques for determination of STTh abundance has made it possible to reduce analytical errors in STYU-STUU-STTh dating of corals even with very small samples. Samples of 6 x 10Y atoms of STTh can be measured to an accuracy of +/- 3% (2sigma) and 3 x 10 atoms of STTh can be measured to an accuracy of +/- 0.2%. The time range over which useful age data on corals can be obtained now ranges from about 50 to about 500,000 years. For young corals, this approach may be preferable to UC dating. The precision should makemore » it possible to critically test the Milankovitch hypothesis concerning Pleistocene climate fluctuations. Analyses of a number of corals that grew during the last interglacial period yield ages of 122,000 to 130,000 years. The ages coincide with, or slightly postdate, the summer solar insolation high at 65N latitude which occurred 128,000 years ago. This supports the idea that changes in Pleistocene climate can be the result of variations in the distribution of solar insolation caused by changes in the geometry of the earth's orbit and rotation axis.« less

  20. Gas chromatographic/mass spectrometric determination of carbon isotope composition in unpurified samples: methamphetamine example.

    PubMed

    Low, I A; Liu, R H; Legendre, M G; Piotrowski, E G; Furner, R L

    1986-10-01

    A gas chromatograph/quadrupole mass spectrometer system, operated in electron impact/selected ion monitoring mode, is used to determine the intensity ratio of the m/z 59 and the m/z 58 ions of the [C3H8N]+ fragment derived from methamphetamine samples synthesized with varying amounts of 13C-labeled methylamine. Crude products are introduced into the gas chromatograph without prior cleanup. The ratios measured were in excellent agreement with those calculated. A change in 0.25% use of 13C-methylamine is sufficient for product differentiation. The feasibility of using isotope labeling and subsequent mass spectrometric isotope ratio measurement as the basis of a compound tracing mechanism is discussed. Specifically, if methamphetamine samples manufactured from legal sources are asked to incorporate distinct 13C compositions, their sources can be traced when samples are diverted into illegal channels. Samples derived from illicit preparations can also be traced if the manufacturers of a precursor (methylamine in this case) incorporate distinct 13C compositions in their products.

  1. Determination of ractopamine in pig hair using liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Wu, Junlin; Liu, Xiaoyun; Peng, Yunping

    2014-01-01

    A quantitative analytical procedure for the determination of ractopamine in pig hair has been developed and validated. The hair samples were washed and incubated at 75°C with isoxuprine and hair extraction buffer. The drug present was quantified using mixed solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. The limit of quantization (LOQ) was 10pg/mg and the intra-day precision at 25pg/mg and 750pg/mg was 0.49% and 2.8% respectively. Inter-day precision was 0.88% and 3.52% at the same concentrations. The hair extraction percentage recovery at 25pg/mg and 50ng/mL was 99.47% and 103.83% respectively. The extraction percentage recovery at 25pg/mg and 50ng/mg was 93.52% and 100.26% respectively. Our results showed that ractopamine residues persist in hair in 24days of withdrawal and also showed the possibility to test ractopamine from pig hair samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations

  3. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical

  4. Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy.

    PubMed

    Jia, Xiujuan; Wang, Tiebang; Bu, Xiaodong; Tu, Qiang; Spencer, Sandra

    2006-04-11

    A graphite furnace atomic absorption (GFAA) spectrometric method for the determination of ruthenium (Rh) in solid and liquid pharmaceutical compounds has been developed. Samples are dissolved or diluted in dimethyl sulfoxide (DMSO) without any other treatment before they were analyzed by GFAA with a carefully designed heating program to avoid pre-atomization signal loss and to achieve suitable sensitivity. Various inorganic and organic solvents were tested and compared and DMSO was found to be the most suitable. In addition, ruthenium was found to be stable in DMSO for at least 5 days. Spike recoveries ranged from 81 to 100% and the limit of quantitation (LOQ) was determined to be 0.5 microg g(-1) for solid samples or 0.005 microg ml(-1) for liquid samples based a 100-fold dilution. The same set of samples was also analyzed by ICP-MS with a different sample preparation method, and excellent agreement was achieved.

  5. Spectrometric determination of clinically relevant fatty acids in the blood serum

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.

    2017-01-01

    The content of fatty acid (FA) triglycerides in food and biological media is predicting traditionally using gas and liquid chromatographic methods. Named techniques aren't available for clinical labs due to their complexity. So, our objective was to develop the method and apparatus for rapid assay of a few clinically important FA as the saturated palmitic, mono unsaturated oleic and others in serum using near infrared spectrometer. As a result, the applicability of the FT spectrometer in the wavelength range of 0.9 -1.8 μ to analyze these FA in serum without sample preparation was confirmed. Besides, measurement specifications were determined and a correlations of the absorption spectra and contents of total triglycerides and cholesterol, palmitic, oleic, linoleic and arachidonic FA in serum were established

  6. A comparison of reliability of soil Cd determination by standard spectrometric methods

    PubMed Central

    McBride, M.B.

    2015-01-01

    Inductively coupled plasma emission spectrometry (ICP-OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP-OES and ICP-MS measurements of Cd in acid digests. ICP-OES using the emission at 226.5 nm generally unable to quantify soil Cd at low (near-background) levels, and gave unreliable values compared to ICP-MS. Using the line at 228.nm, a marked positive bias in Cd measurement (relative to the 226.5 nm measurement) was attributable to As interference even at soil As concentrations below 10 mg/kg. This spectral interference in ICP-OES was severe in As-contaminated orchard soils, giving a false value for soil total Cd near 2 mg kg−1 when soil As was 100–150 mg kg−1. In attempting to avoid these ICP emission-specific interferences, we evaluated a method to estimate total soil Cd using 1 M HNO3 extraction followed by determination of Cd by flame atomic absorption (FAA), either with or without pre-concentration of Cd using an Aliquat-heptanone extractant. The 1 M HNO3 extracted an average of 82% of total soil Cd. The FAA method had no significant interferences, and estimated the total Cd concentrations in all soils tested with acceptable accuracy. For Cd-contaminated soils, the Aliquat-heptanone pre-concentration step was not necessary, as FAA sensitivity was adequate for quantification of extractable soil Cd and reliable estimation of total soil Cd. PMID:22031569

  7. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  8. Precise Determination of the Absorption Maximum in Wide Bands

    ERIC Educational Resources Information Center

    Eriksson, Karl-Hugo; And Others

    1977-01-01

    A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)

  9. The Flame Spectrometric Determination of Calcium in Fruit Juice by Standard Addition.

    ERIC Educational Resources Information Center

    Strohl, Arthur N.

    1985-01-01

    Provides procedures to measure the calcium concentration in fruit juice by atomic absorption. Fruit juice is used because: (1) it is an important consumer product; (2) large samples are available; and (3) calcium exists in fruit juice at concentrations that do not require excessive dilution or preconcentration prior to measurement. (JN)

  10. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  11. Flameless atomic-absorption determination of gold in geological materials

    USGS Publications Warehouse

    Meier, A.L.

    1980-01-01

    Gold in geologic material is dissolved using a solution of hydrobromic acid and bromine, extracted with methyl isobutyl ketone, and determined using an atomic-absorption spectrophotometer equipped with a graphite furnace atomizer. A comparison of results obtained by this flameless atomic-absorption method on U.S. Geological Survey reference rocks and geochemical samples with reported values and with results obtained by flame atomic-absorption shows that reasonable accuracy is achieved with improved precision. The sensitivity, accuracy, and precision of the method allows acquisition of data on the distribution of gold at or below its crustal abundance. ?? 1980.

  12. Absorption spectrometric and thermodynamic study of charge transfer complexes of menadione (Vitamin K 3) with a series of phenols

    NASA Astrophysics Data System (ADS)

    Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K.; Mukherjee, Dulal C.

    2005-03-01

    The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K 3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl 4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies ( hνCT) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the hνCT values, the Hückel parameters ( hÖ and kC-Ö) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K 3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.

  13. Absorption spectrometric and thermodynamic study of charge transfer complexes of menadione (Vitamin K3) with a series of phenols.

    PubMed

    Pal, Purnendu; Bhattacharya, Sumanta; Mukherjee, Asok K; Mukherjee, Dulal C

    2005-03-01

    The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies (h nu(CT)) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the h nu(CT) values, the Hückel parameters (h(O) and k(C-O)) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.

  14. Determination of papaverine and cocaine by use of a precipitation system coupled on-line to an atomic absorption spectrometer.

    PubMed

    Eisman, M; Gallego, M; Varcárcel, M

    1994-02-01

    A continuous-precipitation flame-atomization atomic absorption spectrometric method for the determination of papaverine and cocaine hydrochlorides is proposed. The method is based on the precipitation of reineckates by injection of Reinecke's salt into a carrier containing the alkaloids and their subsequent retention on a stainless steel filter. In this way, papaverine and cocaine hydrochlorides can be determine over the ranges 5-85 and 50-850 micrograms ml-1 with a relative standard deviation of 1.3 and 3.2%, respectively, and a sampling frequency of 150 h-1. The proposed method is more sensitive and selective for papaverine than it is for cocaine and can be applied to the determination of papaverine HCl in pharmaceutical preparations.

  15. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  16. Atomic-absorption determination of rhodium in chromite concentrates

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Rhodium is determined in chromite concentrates by atomic absorption after concentration either by co-precipitation with tellurium formed by the reduction of tellurite with tin(II) chloride or by fire assay into a gold bead. Interelement interferences in the atomic-absorption determination are removed by buffering the solutions with lanthanum sulphate (lanthanum concentration 1%). Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated. A lower limit of approximately 0.07 ppm Rh can be determined in a 3-g sample. ?? 1969.

  17. Determination of itopride in human plasma by liquid chromatography coupled to tandem mass spectrometric detection: application to a bioequivalence study.

    PubMed

    Lee, Heon-Woo; Seo, Ji-Hyung; Choi, Seung-Ki; Lee, Kyung-Tae

    2007-01-30

    A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5>166.1 for itopride and m/z 342.3>111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2=0.9999) over the studied range (0.5-1000 ng mL(-1)) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.

  18. Determination of rhenium in molybdenite by X-ray fluorescence: A combined chemical-spectrometric technique.

    PubMed

    Solt, M W; Wahlberg, J S; Myers, A T

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 microg of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods.

  19. Determination of rhenium in molybdenite by X-ray fluorescence. A combined chemical-spectrometric technique

    USGS Publications Warehouse

    Solt, M.W.; Wahlberg, J.S.; Myers, A.T.

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.

  20. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    SciTech Connect

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103

  1. Determination of suvorexant in human plasma using 96-well liquid-liquid extraction and HPLC with tandem mass spectrometric detection.

    PubMed

    Breidinger, S A; Simpson, R C; Mangin, E; Woolf, E J

    2015-10-01

    A method, using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), was developed for the determination of suvorexant (MK-4305, Belsomra(®)), a selective dual orexin receptor antagonist for the treatment insomnia, in human plasma over the concentration range of 1-1000ng/mL. Stable isotope labeled (13)C(2)H3-suvorexant was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction, in the 96-well format, of a 100μL plasma sample with methyl t-butyl ether. The compounds were chromatographed under isocratic conditions on a Waters dC18 (50×2.1mm, 3μm) column with a mobile phase consisting of 30/70 (v/v %) 10mM ammonium formate, pH3/acetonitrile at a flow rate of 0.3mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for suvorexant (m/z 451→186) and (13)C(2)H3-suvorexant (m/z 455→190) on an Applied Biosystems API 4000 tandem mass spectrometer was used for quantitation. Intraday assay precision, assessed in six different lots of control plasma, was within 10% CV at all concentrations, while assay accuracy ranged from 95.6 to 105.0% of nominal. Quality control (QC) samples in plasma were stored at -20°C. Initial within day analysis of QCs after one freeze-thaw cycle showed accuracy within 9.5% of nominal with precision (CV) of 6.7% or less. The plasma QC samples were demonstrated to be stable for up to 25 months at -20°C. The method described has been used to support clinical studies during Phase I through III of clinical development. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry

    NASA Astrophysics Data System (ADS)

    Battie, Yann; Izquierdo-Lorenzo, Irene; Resano-Garcia, Amandine; Naciri, Aotmane En; Akil, Suzanna; Adam, Pierre Michel; Jradi, Safi

    2017-11-01

    A new methodology is developed to determine the shape distribution of gold nanoparticles (NPs) from optical spectroscopic measurements. Indeed, the morphology of Au colloids is deduced by fitting their absorption spectra with an effective medium theory which takes into account the nanoparticle shape distribution. The same procedure is applied to ellipsometric measurements recorded on photoresist films which contain Au NPs. Three spaces (L2, r2, P2) are introduced to interpret the NPs shape distribution. In the P2 space, the sphericity, the prolacity and the oblacity estimators are proposed to quantify the shape of NPs. The r2 space enables the determination of the NP aspect ratio distribution. The distributions determined from optical spectroscopy were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting absorption or ellipsometric spectra with an adequate effective medium theory, provides a robust tool for measuring the shape and concentration of metallic NPs.

  3. Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.

    PubMed

    Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K

    1993-01-01

    Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.

  4. Determination of acrylamide in various food matrices: evaluation of LC and GC mass spectrometric methods.

    PubMed

    Becalski, Adam; Lau, Benjamin P Y; Lewis, David; Seaman, Stephen W; Sun, Wing F

    2005-01-01

    Recent concerns surrounding the presence of acrylamide in many types of thermally processed food have brought about the need for the development of analytical methods suitable for determination of acrylamide in diverse matrices with the goals of improving overall confidence in analytical results and better understanding of method capabilities. Consequently, the results are presented of acrylamide testing in commercially available food products--potato fries, potato chips, crispbread, instant coffee, coffee beans, cocoa, chocolate and peanut butter, obtained by using the same sample extract. The results obtained by using LC-MS/MS, GC/MS (El), GC/HRMS (El)--with or without derivatization--and the use of different analytical columns, are discussed and compared with respect to matrix borne interferences, detection limits and method complexities.

  5. Simultaneous kinetic spectrometric determination of three flavonoid antioxidants in fruit with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Sun, Ruiling; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2014-03-01

    A simple, inexpensive and sensitive kinetic spectrophotometric method was developed for the simultaneous determination of three anti-carcinogenic flavonoids: catechin, quercetin and naringenin, in fruit samples. A yellow chelate product was produced in the presence neocuproine and Cu(I) - a reduction product of the reaction between the flavonoids with Cu(II), and this enabled the quantitative measurements with UV-vis spectrophotometry. The overlapping spectra obtained, were resolved with chemometrics calibration models, and the best performing method was the fast independent component analysis (fast-ICA/PCR (Principal component regression)); the limits of detection were 0.075, 0.057 and 0.063 mg L-1 for catechin, quercetin and naringenin, respectively. The novel method was found to outperform significantly the common HPLC procedure.

  6. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism.

    PubMed

    Moriya, Shunsuke; Iwasaki, Kaori; Samejima, Keijiro; Takao, Koichi; Kohda, Kohfuku; Hiramatsu, Kyoko; Kawakita, Masao

    2012-10-20

    An analytical method for the determination of three polyamines (putrescine, spermidine, and spermine) and five acetylpolyamines [N(1)-acetylspermidine (N(1)AcSpd), N(8)-acetylspermidine (N(8)AcSpd), N(1)-acetylspermine, N(1),N(8)-diacetylspermidine, and N(1),N(12)-diacetylspermine] involved in the polyamine catabolic pathway has been developed using a hybrid tandem mass spectrometer. Heptafluorobutyryl (HFB) derivatives of these compounds and respective internal standards labeled with stable isotopes were analyzed simultaneously by TOF MS, based on peak areas appearing at appropriate m/z values. The isomers, N(1)AcSpd and N(8)AcSpd were determined from their fragment ions, the acetylamidopropyl and acetylamidobutyl groups, respectively, using MS/MS with (13)C(2)-N(1)AcSpd and (13)C(2)-N(8)AcSpd which have the (13)C(2)-acetyl group as an internal standard. The TOF MS method was successfully applied to measure the activity of enzymes involved in polyamine catabolic pathways, namely N(1)-acetylpolyamine oxidase (APAO), spermine oxidase (SMO), and spermidine/spermine N(1)-acetyltransferase (SSAT). The following natural substrates and products labeled with stable isotopes considering the application to biological samples were identified; for APAO, [4,9,12-(15)N(3)]-N(1)-acetylspermine and [1,4,8-(15)N(3)]spermidine ((15)N(3)-Spd), respectively; for SMO, [1,4,8,12-(15)N(4)]spermine and (15)N(3)-Spd, respectively; and for SSAT, (15)N(3)-Spd and [1,4,8-(15)N(3)]-N(1)-acetylspermidine, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Quantitative ionspray liquid chromatographic/tandem mass spectrometric determination of reserpine in equine plasma.

    PubMed

    Anderson, M A; Wachs, T; Henion, J D

    1997-02-01

    A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.

  8. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    PubMed Central

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  9. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    PubMed

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  10. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including Vitamin K 3

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Mukherjee, Asok K.

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.

  11. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  12. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  13. Development and application of mass spectrometric techniques for ultra-trace determination of 236U in environmental samples-A review.

    PubMed

    Bu, Wenting; Zheng, Jian; Ketterer, Michael E; Hu, Sheng; Uchida, Shigeo; Wang, Xiaolin

    2017-12-01

    Measurements of the long-lived radionuclide 236 U are an important endeavor, not only in nuclear safeguards work, but also in terms of using this emerging nuclide as a tracer in chemical oceanography, hydrology, and actinide sourcing. Depending on the properties of a sample and its neutron irradiation history, 236 U/ 238 U ratios from different sources vary significantly. Therefore, this ratio can be treated as an important fingerprint for radioactive source identification, and in particular, affords a definitive means of discriminating between naturally occurring U and specific types of anthropogenic U. The development of mass spectrometric techniques makes it possible to determine ultra-trace levels of 236 U in environmental samples. In this paper, we review the current status of mass spectrometric approaches for determination of 236 U in environmental samples. Various sample preparation methods are summarized and compared. The mass spectrometric techniques emphasized herein are thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICP-MS) and accelerator mass spectrometry (AMS). The strategies or principles used by each technique for the analysis of 236 U are described. The performances of these techniques in terms of abundance sensitivity and detection limit are discussed in detail. To date, AMS exhibits the best capability for ultra-trace determinations of 236 U. The levels and behaviors of 236 U in various environmental media are summarized and discussed as well. Results suggest that 236 U has an important, emerging role as a tracer for geochemical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determination of Lead in Urine by Atomic Absorption Spectrophotometry1

    PubMed Central

    Selander, Stig; Cramé, Kim

    1968-01-01

    A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975

  15. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Spectrometre de masse a ionisation Penning selective: Elimination des corrections necessaires a la determination du rapport isotopique de l'hydrogene

    NASA Astrophysics Data System (ADS)

    Letarte, Sylvain

    Dans le but d'ameliorer la precision avec laquelle le rapport isotopique de l'hydrogene peut etre determine, un spectrometre de masse a ionisation Penning a ete construit pour provoquer l'ionisation selective de l'hydrogene moleculaire et de l'hydrure de deuterium a partir d'un melange gazeux. L'utilisation d'atomes dans des etats d'excitation metastable s'est averee une solution adequate pour reponde a cette attente. L'emploi de l'helium, a l'interieur d'une source d'atomes metastables construit specifiquement pour ce travail, ne permet pas d'obtenir un spectre de masse compose uniquement des deux molecules d'interet. L'ionisation de ces dernieres provient de deux processus distincts, soient l'ionisation Penning et l'ionisation par bombardement electronique. Contrairement a l'helium, il a ete demontre que le neon metastable est un candidat ideal pour produire l'ionisation selective de type Penning. Le nombre d'ions produits est directement proportionnel au courant de la decharge electrique et de la pression d'operation de la source d'atomes metastables. Ces resultats demontrent le potentiel d'un tel spectrometre de masse pour ameliorer la precision a laquelle le rapport isotopique peut etre determine comparativement aux autres techniques existantes.

  17. High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Becker, J. Susanne; Zoriy, Miroslav; Przybylski, Michael; Becker, J. Sabine

    2007-03-01

    The combination of atomic and molecular mass spectrometric methods was applied for characterization and identification of several human proteins from Alzheimer's diseased brain. A brain protein mixture was separated by two-dimensional (2D) gel electrophoresis and the protein spots were fast screened by microlocal analysis using LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) in respect to phosphorus, sulfur, copper, zinc and iron content. Five selected protein spots in 2D gel containing these elements were investigated after tryptic digestion by matrix assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Than element concentrations (P, Cu, Zn and Fe) were determined in three identified human brain proteins by LA-ICP-MS in the 2D gel. Results of structure analysis of human brain proteins by MALDI-FTICR-MS were combined with those of the direct determination of phosphorus, copper, zinc and iron concentrations in protein spots with LA-ICP-MS. From the results of atomic and molecular mass spectrometric techniques the human brain proteins were characterized in respect to their structure, sequence, phosphorylation state and metal content as well.

  18. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  19. Probiotics and Other Key Determinants of Dietary Oxalate Absorption1

    PubMed Central

    Liebman, Michael; Al-Wahsh, Ismail A.

    2011-01-01

    Oxalate is a common component of many foods of plant origin, including nuts, fruits, vegetables, grains, and legumes, and is typically present as a salt of oxalic acid. Because virtually all absorbed oxalic acid is excreted in the urine and hyperoxaluria is known to be a considerable risk factor for urolithiasis, it is important to understand the factors that have the potential to alter the efficiency of oxalate absorption. Oxalate bioavailability, a term that has been used to refer to that portion of food-derived oxalate that is absorbed from the gastrointestinal tract (GIT), is estimated to range from 2 to 15% for different foods. Oxalate bioavailability appears to be decreased by concomitant food ingestion due to interactions between oxalate and coingested food components that likely result in less oxalic acid remaining in a soluble form. There is a lack of consensus in the literature as to whether efficiency of oxalate absorption is dependent on the proportion of total dietary oxalate that is in a soluble form. However, studies that directly compared foods of varying soluble oxalate contents have generally supported the proposition that the amount of soluble oxalate in food is an important determinant of oxalate bioavailability. Oxalate degradation by oxalate-degrading bacteria within the GIT is another key factor that could affect oxalate absorption and degree of oxaluria. Studies that have assessed the efficacy of oral ingestion of probiotics that provide bacteria with oxalate-degrading capacity have led to promising but generally mixed results, and this remains a fertile area for future studies. PMID:22332057

  20. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Determining photon energy absorption parameters for different soil samples

    PubMed Central

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-01-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137Cs and 60Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  2. Determination of Lead in Blood by Atomic Absorption Spectrophotometry1

    PubMed Central

    Selander, Stig; Cramér, Kim

    1968-01-01

    Lead in blood was determined by atomic absorption spectrophotometry, using a wet ashing procedure and a procedure in which the proteins were precipitated with trichloroacetic acid. In both methods the lead was extracted into isobutylmethylketone before measurement, using ammonium pyrrolidine dithiocarbamate as chelator. The simpler precipitation procedure was shown to give results identical with those obtained with the ashing technique. In addition, blood specimens were examined by the precipitation method and by spectral analysis, which method includes wet ashing of the samples, with good agreement. All analyses were done on blood samples from `normal' persons or from lead-exposed workers, and no additions of inorganic lead were made. The relatively simple protein precipitation technique gave accurate results and is suitable for the large-scale control of lead-exposed workers. PMID:5663425

  3. Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fiber felt.

    PubMed

    Kawata, K; Ibaraki, T; Tanabe, A; Yagoh, H; Shinoda, A; Suzuki, H; Yasuhara, A

    2001-03-09

    Simple gas chromatographic-mass spectrometric determination of hydrophilic organic compounds in environmental water was developed. A cartridge containing activated carbon fiber felt was made by way of trial and was evaluated for solid-phase extraction of the compounds in water. The hydrophilic compounds investigated were acrylamide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, furfural, furfuryl alcohol, N-nitrosodiethylamine and N-nitrosodimethylamine. Overall recoveries were good (80-100%) from groundwater and river water. The relative standard deviations ranged from 4.5 to 16% for the target compounds. The minimum detectable concentrations were 0.02 to 0.03 microg/l. This method was successfully applied to several river water samples.

  4. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

    PubMed

    de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino

    2018-05-01

    This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.

  5. Protocol to determine accurate absorption coefficients for iron containing transferrins

    PubMed Central

    James, Nicholas G.; Mason, Anne B.

    2008-01-01

    An accurate protein concentration is an essential component of most biochemical experiments. The simplest method to determine a protein concentration is by measuring the A280, using an absorption coefficient (ε), and applying the Beer-Lambert law. For some metalloproteins (including all transferrin family members) difficulties arise because metal binding contributes to the A280 in a non-linear manner. The Edelhoch method is based on the assumption that the ε of a denatured protein in 6 M guanidine-HCl can be calculated from the number of the tryptophan, tyrosine, and cystine residues. We extend this method to derive ε values for both apo- and iron-bound transferrins. The absorbance of an identical amount of iron containing protein is measured in: 1) 6 M guanidine-HCl (denatured, no iron); 2) pH 7.4 buffer (non-denatured with iron); and 3) pH 5.6 (or lower) buffer with a chelator (non-denatured without iron). Since the iron free apo-protein has an identical A280 under non-denaturing conditions, the difference between the reading at pH 7.4 and the lower pH directly reports the contribution of the iron. The method is fast and consumes ~1 mg of sample. The ability to determine accurate ε values for transferrin mutants that bind iron with a wide range of affinities has proven very useful; furthermore a similar approach could easily be followed to determine ε values for other metalloproteins in which metal binding contributes to the A280. PMID:18471984

  6. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  7. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  8. Organic palladium and palladium-magnesium chemical modifiers in direct determination of lead in fractions from distillation of crude oil by electrothermal atomic absorption analysis

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Bulska, Ewa; Hulanicki, Adam

    1999-05-01

    Platinum reforming catalysts are easily poisoned by increased levels of lead, therefore a sensitive atomic absorption spectrometric procedure for lead determination in fractions from crude oil distillation was developed. Lead was present in organic form in the samples analysed therefore the behaviour of various lead compounds (Pb-alkylarylsulphonate, Pb-4-cyclohexanobutyrate, tetraethyllead, Pb in fuel oil) was studied. The best procedure for the determination of lead in different petroleum products, including those containing asphaltenes includes a pretreatment with iodine and methyltrioctylammonium chloride, followed by the use of an organic Pd-Mg modifier. Under these conditions an effective matrix removal is possible at a pyrolysis temperature up to approximately 1100°C and the behaviour of lead present in different forms is unified. The characteristic mass is 11-12 pg Pb, corresponding to a detection limit of 0.25 ng g -1 for 20 μl sample solution. This can be lowered by multiple injection.

  9. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  10. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  11. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  12. A liquid chromatography-mass spectrometric method for the determination of oak moss allergens atranol and chloroatranol in perfumes.

    PubMed

    Bossi, Rossana; Rastogi, Suresh C; Bernard, Guillaume; Gimenez-Arnau, Elena; Johansen, Jeanne D; Lepoittevin, Jean-Pierre; Menné, Torkil

    2004-05-01

    This paper describes a validated liquid chromatographic-tandem mass spectrometric method for quantitative analysis of the potential oak moss allergens atranol and chloroatranol in perfumes and similar products. The method employs LC-MS-MS with electrospray ionization (ESI) in negative mode. The compounds are analysed by selective reaction monitoring (SRM) of 2 or 3 ions for each compound in order to obtain high selectivity and sensitivity. The method has been validated for the following parameters: linearity; repeatability; recovery; limit of detection; and limit of quantification. The limits of detection, 5.0 ng/mL and 2.4 ng/mL, respectively, for atranol and chloroatranol, achieved by this method allowed identification of these compounds at concentrations below those causing allergic skin reactions in oak-moss-sensitive patients. The recovery of chloratranol from spiked perfumes was 96+/-4%. Low recoveries (49+/-5%) were observed for atranol in spiked perfumes, indicating ion suppression caused by matrix components. The method has been applied to the analysis of 10 randomly selected perfumes and similar products.

  13. Fast determination of phosphorus in honey, milk and infant formulas by electrothermal atomic absorption spectrometry using a slurry sampling procedure

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2007-01-01

    A procedure for the electrothermal atomic absorption spectrometric determination of phosphorus in honey, milk and infant formulas using slurried samples is described. Suspensions prepared in a medium containing 50% v/v concentrated hydrogen peroxide, 1% v/v concentrated nitric acid, 10% m/v glucose, 5% m/v sucrose and 100 mg l - 1 of potassium were introduced directly into the furnace. For the honey samples, multiple injection of the sample was necessary. The modifier selected was a mixture of 20 μg palladium and 5 μg magnesium nitrate, which was injected after the sample and before proceeding with the drying and calcination steps. Calibration was performed using aqueous standards prepared in the same suspension medium and the graph was linear between 5 and 80 mg l - 1 of phosphorus. The reliability of the procedure was checked by comparing the results obtained by the new developed method with those found when using a reference spectrophotometric method after a mineralization step, and by analyzing several certified reference materials.

  14. Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification.

    PubMed

    Hrdlickova Kuckova, Stepanka; Rambouskova, Gabriela; Hynek, Radovan; Cejnar, Pavel; Oltrogge, Doris; Fuchs, Robert

    2015-11-01

    Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry is commonly used for the identification of proteinaceous binders and their mixtures in artworks. The determination of protein binders is based on a comparison between the m/z values of tryptic peptides in the unknown sample and a reference one (egg, casein, animal glues etc.), but this method has greater potential to study changes due to ageing and the influence of organic/inorganic components on protein identification. However, it is necessary to then carry out statistical evaluation on the obtained data. Before now, it has been complicated to routinely convert the mass spectrometric data into a statistical programme, to extract and match the appropriate peaks. Only several 'homemade' computer programmes without user-friendly interfaces are available for these purposes. In this paper, we would like to present our completely new, publically available, non-commercial software, ms-alone and multiMS-toolbox, for principal component analyses of MALDI-TOF MS data for R software, and their application to the study of the influence of heterogeneous matrices (organic lakes) for protein identification. Using this new software, we determined the main factors that influence the protein analyses of artificially aged model mixtures of organic lakes and fish glue, prepared according to historical recipes that were used for book illumination, using MALDI-TOF peptide mass mapping. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation. © 2013 Elsevier B.V. All rights reserved.

  16. Determination of cocaine, benzoylecgonine, cocaethylene and norcocaine in human hair using solid-phase extraction and liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Moore, Christine; Coulter, Cynthia; Crompton, Katherine

    2007-11-15

    A quantitative analytical procedure for the determination of cocaine, benzoylecgonine and cocaethylene and norcocaine in hair has been developed and validated. The hair samples were washed, incubated, and any drugs present were quantified using mixed mode solid-phase extraction and liquid chromatography with tandem mass spectrometric detection in positive atmospheric pressure chemical ionization mode. For confirmation, two transitions were monitored and one ion ratio was determined, which was within 20% of that of the known calibration standards. The monitoring of the qualifying transition and requirement for its presence within a specific ratio to the primary ion limited the sensitivity of the assay, particularly for benzoylecgonine, however, the additional confidence in the final result as well as forensic defensibility were considered to be of greater importance. Even with simultaneous monitoring, the concentrations proposed by the United States Federal guidelines for hair analysis were achieved. The limits of quantitation were 50 pg/mg; the limit of detection was 25 pg/mg. The intra-day precision of the assays at 100 pg/mg (n=5) was 1.3%, 8.1%, 0.8% and 0.4%; inter-day precision 4.8%, 9.2%, 15.7% and 12.6% (n=10) for cocaine, benzoylecgonine, cocaethylene and norcocaine, respectively. The methods were applied to both proficiency specimens and to samples obtained during research studies in the USA.

  17. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  18. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  19. Quantification and application of a liquid chromatography-tandem mass spectrometric method for the determination of WKYMVm peptide in rat using solid-phase extraction.

    PubMed

    Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G

    2018-03-01

    A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2  + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.

  20. A liquid chromatography-atmospheric pressure photoionization tandem mass spectrometric method for the determination of organosulfur compounds in petroleum asphalt cements.

    PubMed

    da Silveira, Géssica Domingos; Faccin, Henrique; Claussen, Luis; Goularte, Rayane Bueno; Do Nascimento, Paulo C; Bohrer, Denise; Cravo, Margareth; Leite, Leni F M; de Carvalho, Leandro Machado

    2016-07-29

    We present a sensitive liquid chromatography-atmospheric pressure photoionization tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the determination of selected organosulfur compounds in Brazilian asphalt cements. It was possible to detect 14 organosulfur compounds of different classes where sulfoxides and sulfones presented higher sensibility in ionization than thiophenes and aromatic sulfides. A dopant-assisted APPI method was also tested, however, when chromatographic flow rate was optimized a decrease in signal was observed for all compounds. PAHs were tested and ruled out as possible interfering compounds and the matrix effect of asphalt cements was within an acceptable range for the quantification of organosulfur compounds. The proposed method was found to have satisfactory linearity and accuracy with recoveries between 83.85 and 110.28% for thianaphthene and 3-methylbenzothiophene, respectively. Therefore, the method allowed the characterization of organosulfur compounds in Brazilian asphalt cements and demonstrated changes in the amount quantified in asphaltenic and maltenic fractions after the RTFOT+SUNTEST aging process. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Determination of Triazine Herbicides in Drinking Water by Dispersive Micro Solid Phase Extraction with Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometric Detection.

    PubMed

    Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2015-11-11

    A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.

  2. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  3. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    USGS Publications Warehouse

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  4. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  5. Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.

    PubMed

    Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D

    2014-02-24

    Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off.

  6. Screening Natural Content of Water-Soluble B Vitamins in Fish: Enzymatic Extraction, HILIC Separation, and Tandem Mass Spectrometric Determination.

    PubMed

    Chatterjee, Niladri Sekhar; Kumar, K Ashok; Ajeeshkumar, K K; Kumari, K R Remya; Vishnu, K V; Anandan, Rangasamy; Mathew, Suseela; Ravishankar, C N

    2017-05-01

    Despite the potential of LC with tandem MS (MS/MS) in improving sensitivity and selectivity, analytical methods are scarce for the determination of protein-bound and phosphorylated forms of B vitamins in food. This prompted us to develop a method for LC-MS/MS determination of naturally occurring nicotinamide, nicotinic acid, thiamine, pyridoxine, riboflavin, pantothenic acid, biotin, folic acid, and cyanocobalamin in fish. Baseline separation of the vitamins was achieved in a hydrophilic interaction LC condition. An ultrasonication-assisted enzymatic extraction protocol for sample preparation was optimized and validated. The time required for extraction was significantly reduced (to 4 h), while maintaining good extraction efficiency. Acetonitrile content (80%, v/v) in the prepared sample was found to be optimum for excellent peak shape and sensitivity. The dynamic linear range of the vitamins ranged from 2.5 to 500 ng/g, and the regression coefficient values were greater than 0.99. LOQ values ranged from 0.4 to 50 ng/g for the different vitamins. The spike recovery values at 50 and 100 ng/g ranged from 87.5 to 97.5%. The intra- and interday precision values were satisfactory. Accuracy of the developed method was determined by analysis of a Certified Reference Material. The method could also be used for unambiguous determination of the natural content of the target vitamins in fish.

  7. Electrospray ionization and time-of-flight mass spectrometric method for simultaneous determination of spermidine and spermine.

    PubMed

    Samejima, Keijiro; Otani, Masahiro; Murakami, Yasuko; Oka, Takami; Kasai, Misao; Tsumoto, Hiroki; Kohda, Kohfuku

    2007-10-01

    A sensitive method for the determination of polyamines in mammalian cells was described using electrospray ionization and time-of-flight mass spectrometer. This method was 50-fold more sensitive than the previous method using ionspray ionization and quadrupole mass spectrometer. The method employed the partial purification and derivatization of polyamines, but allowed a measurement of multiple samples which contained picomol amounts of polyamines. Time required for data acquisition of one sample was approximately 2 min. The method was successfully applied for the determination of reduced spermidine and spermine contents in cultured cells under the inhibition of aminopropyltransferases. In addition, a new proper internal standard was proposed for the tracer experiment using (15)N-labeled polyamines.

  8. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  9. A liquid chromatography–tandem mass spectrometric method for quantitative determination of native 5-methyltetrahydrofolate and its polyglutamyl derivatives in raw vegetables

    PubMed Central

    Wang, Chao; Riedl, Ken M.; Schwartz, Steven J.

    2013-01-01

    Folate deficiency is a prevalent phenomenon worldwide especially in underprivileged countries. Polyglutamyl 5-methyltetrahydrofolate (5MTHF) species are the naturally occurring principle folate in store-bought vegetables. Here we report a simple and complete extraction method for the determination of native polyglutamyl 5-methyltetrahydrofolate in vegetables using high performance liquid chromatography with tandem mass spectrometric detection (HPLC–MS/MS). Coarsely chopped samples (18 different vegetables) were steamed to inactivate glutamylase enzymes and liberate folate from binding proteins and extracted in a reducing buffer with 13C5 5MTHF stable isotope added as internal standard. The polyglutamyl 5-methyltetrahydrofolate species were separated in 9 min on a C18 column using a reversed phase system. HPLC eluate was interfaced with a triple quadrupole mass spectrometer operated in electrospray positive mode. The respective pseudomolecular cation of each polyglutamyl 5-methyltetrahydrofolate species was selected for fragmentation to a common daughter ion for detection. We quantitated polyglutamyl 5-methyltetrahydrofolate in store-bought vegetables from families Brassicaceae, Asteraceae and Amaranthaceae (including mustard greens, romaine lettuce and Swiss chard) of which most have not been quantitated previously. Most vegetables from Asteraceae and those from Amaranthaceae contained similar amounts of monoglutamyl 5MTHF and polyglutamyl 5MTHF while Brassicaceae were dominated by polyglutamyls and endive species (Asteraceae) contained mainly monoglutamyl 5MTHF. The precision of the method for the various polyglutamyl 5-methyltetrahydrofolate forms was 1–9% RSD, recovery 84–91%, limit of detection 64–658 fmol and limit of quantitation 193–1994 fmol. Herein we describe a rapid, sensitive and selective HPLC–MS/MS technique to quantitate polyglutamyl 5-methyltetrahydrofolate species. This method may be suitable for analyzing the polyglutamyl 5

  10. Quantifying the Δ63-Δ47 offset: Determining mineral- and temperature-dependent acid fractionation factors through mass spectrometric analyses of stochastically-reordered carbonates

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B.; Mosenfelder, J. L.; Tripati, A.

    2017-12-01

    "Clumped" isotope thermometry—the relationship between the formation temperature of a carbonate mineral and the relative abundance of 13C—18O bonds in its crystal lattice—is a novel geochemical proxy with a wide range of applications in paleoclimatology, geobiology, and paleoceanography. It is based on the thermodynamic propensity for rare, heavy isotopes to bond at greater rates at lower temperatures, while at high temperatures, a stochastic distribution of heavy isotopologues is achieved. Unfortunately, precision mass spectrometric determination of the abundance of isotopologues in solid materials has proven difficult; instead, the isotopic composition of carbonates has traditionally been measured through acid digestion and subsequent analysis of the product CO2 gas. For example, clumped isotope thermometry typically relates formation temperature to Δ47, the abundance of 47-amu isotopologues relative to the predicted stochastic distribution. As a consequence, the degree of fractionation that occurs between solid (Δ63) and gaseous (Δ47) phases has largely gone unstudied. By melting calcite and witherite powder at high pressures and temperatures ( 1650ºC), we have produced a suite of carbonates predicted to have stochastic distributions of CO32- isotopologues (i.e., Δ63 values of 0‰). Thus, the measured Δ47 values of CO2 produced from these samples through acid digestion should equal the degree of fractionation that occurs. We perform these measurements at a range of acid temperatures on several digestion apparatuses in order to deduce and quantify controls on acid digestion fractionation factors. We also calculate acid digestion fractionation factors using different sets of constants and compare our results to previously published estimates.

  11. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  12. HPLC–electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma

    PubMed Central

    Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W.

    2008-01-01

    A fast and specific liquid chromatography–mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 µl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 µm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20 mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus. PMID:18617349

  13. HPLC-electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma.

    PubMed

    Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W

    2008-11-04

    A fast and specific liquid chromatography-mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 microl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 microm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus.

  14. Inductively coupled plasma-mass spectrometric method for the determination of dissolved trace elements in natural water

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, Howard E.

    1996-01-01

    An inductively coupled plasma-mass spectrometry method was developed for the determination of dissolved Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sr, Tl, U, V, and Zn in natural waters. Detection limits are generally in the 50-100 picogram per milliliter (pg/mL) range, with the exception of As which is in the 1 microgram per liter (ug/L) range. Interferences associated with spectral overlap from concomitant isotopes or molecular ions and sample matrix composition have been identified. Procedures for interference correction and reduction related to isotope selection, instrumental operating conditions, and mathematical data processing techniques are described. Internal standards are used to minimize instrumental drift. The average analytical precision attainable for 5 times the detection limit is about 16 percent. The accuracy of the method was tested using a series of U.S. Geological Survey Standard Reference Water Standards (SWRS), National Research Council Canada Riverine Water Standard, and National Institute of Standards and Technology (NIST) Trace Elements in Water Standards. Average accuracies range from 90 to 110 percent of the published mean values.

  15. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2016-07-01

    The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  17. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  19. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  20. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.

  1. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging.

    PubMed

    Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg

    2010-01-26

    Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.

  2. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae

    2018-07-01

    It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.

  3. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    NASA Astrophysics Data System (ADS)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  4. Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry

    PubMed Central

    Blomfield, Jeanette; Macmahon, R. A.

    1969-01-01

    The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion × 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0·1 ml of sample, and the free copper of plasma with 0·5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined. PMID:5776543

  5. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    PubMed

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  7. The use of VIEWIT and perspective plot to assist in determining the landscape's visual absorption capability

    Treesearch

    Wayne Tlusty

    1979-01-01

    The concept of Visual Absorption Capability (VAC) is widely used by Forest Service Landscape Architects. The use of computer generated graphics can aid in combining times an area is seen, distance from observer and land aspect relative viewer; to determine visual magnitude. Perspective Plot allows both fast and inexpensive graphic analysis of VAC allocations, for...

  8. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  9. Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry

    NASA Technical Reports Server (NTRS)

    Lee, G. H.

    1967-01-01

    Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.

  10. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  11. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  12. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  13. Preconcentration and determination of boron in milk, infant formula, and honey samples by solid phase extraction-electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2009-02-01

    This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO 3 and 50% v/v H 2O 2 and introduced in the atomizer. A mixture of 20 µg Pd and 0.5 µg Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 µg g - 1 , equivalent to three times the standard error of the estimate ( sy/ x) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L - 1 hydrochloric acid. Detection limits were 0.03 µg g - 1 for 4% m/v honey, 0.04 µg g - 1 for 5% m/v infant formula and 0.08 µg mL - 1 for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.

  14. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  15. Determination of bromine in selected polymer materials by a wavelength-dispersive X-ray fluorescence spectrometric method - Critical thickness problem and solutions

    NASA Astrophysics Data System (ADS)

    Gorewoda, Tadeusz; Mzyk, Zofia; Anyszkiewicz, Jacek; Charasińska, Jadwiga

    2015-04-01

    The purpose of this study was to develop an accurate method for the determination of bromine in polymer materials using X-ray fluorescence spectrometry when the thickness of the sample is less than the bromine critical thickness (tc) value. This is particularly important for analyzing compliance with the Restriction of Hazardous Substances Directive. Mathematically and experimentally estimated tc values in polyethylene and cellulose matrixes were up to several millimeters. Four methods were developed to obtain an accurate result. These methods include the addition of an element with a high mass absorption coefficient, the measurement of the total bromine contained in a defined volume of the sample, the exploitation of tube-Rayleigh line intensities and using the Br-Lβ line.

  16. Determination of UV-visible-NIR absorption coefficient of graphite bulk using direct and indirect methods

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.

    2017-10-01

    Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.

  17. The river absorption capacity determination as a tool to evaluate state of surface water

    NASA Astrophysics Data System (ADS)

    Wilk, Paweł; Orlińska-Woźniak, Paulina; Gębala, Joanna

    2018-02-01

    In order to complete a thorough and systematic assessment of water quality, it is useful to measure the absorption capacity of a river. Absorption capacity is understood as a pollution load introduced into river water that will not cause permanent and irreversible changes in the aquatic ecosystem and will not cause a change in the classification of water quality in the river profile. In order to implement the method, the Macromodel DNS/SWAT basin for the Middle Warta pilot (central Poland) was used to simulate nutrient loads. This enabled detailed analysis of water quality in each water body and the assessment of the size of the absorption capacity parameter, which allows the determination of how much pollution can be added to the river without compromising its quality class. Positive values of the calculated absorption capacity parameter mean that it is assumed that the ecosystem is adjusted in such a way that it can eliminate pollution loads through a number of self-purification processes. Negative values indicate that the load limit has been exceeded, and too much pollution has been introduced into the ecosystem for it to be able to deal with through the processes of self-purification. Absorption capacity thus enables the connection of environmental standards of water quality and water quality management plans in order to meet these standards.

  18. Determination of nitroaromatic explosives and their degradation products in unsaturated-zone water samples by high-performance liquid chromatography with photodiode-array, mass spectrometric, and tandem mass spectrometric detection

    USGS Publications Warehouse

    Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.

    1996-01-01

    Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.

  19. [Determination of aluminum in sediments by atomic absorption spectrophotometer without FIA spectrophotometric analysis].

    PubMed

    Zhao, Zhen-yi; Han, Guang-xi; Song, Xi-ming; Luo, Zhi-xiong

    2008-06-01

    To search for a new method of determining, we developed a new flow injection analyzer, applied to the atomic absorption spectrophotometer, relying on it without flame in place of visible spectrophotometer, and studied the appropriate condition for the determination of aluminum in sediments, thus built up a kind of new analytical test technique. Three peak and two valley absorption values (A1, A2, A3, A4 and A5) can be continuously obtained simultaneously that all can be used for quantitative analysis, then we discussed its theory and experiment technique. Based on the additivity of absorbance (A = A1+A2+A3+A4+ A5), the sensitivity of FIA is enhanced, and its precision and linear relation are also good, raising the efficiency of AAS. The simple method has been applied to determining Al in sediments, and the results are satisfactory.

  20. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  1. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.

    PubMed

    Loeschner, Katrin; Navratilova, Jana; Grombe, Ringo; Linsinger, Thomas P J; Købler, Carsten; Mølhave, Kristian; Larsen, Erik H

    2015-08-15

    Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass spectrometric detection (AF(4)-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF(4)-ICP-MS has been carried out and the results showed repeatable and intermediately reproducible determination of AgNP mass fraction and size. The findings demonstrated the potential of AF(4)-ICP-MS for quantitative analysis of NPs in complex food matrices for use in food monitoring and control. The accurate determination of AgNP size distribution remained challenging due to the lack of certified size standards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  3. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  4. Determination of absorption coefficient of Chlorella vulgaris and Arthrospira maxima in water

    NASA Astrophysics Data System (ADS)

    Tekiner, Murat; Kurt, Mustafa; Ak, Ilknur; Kurt, Arzu

    2018-02-01

    Safe drinking water is crucial for human healthy, nowadays all drinking and irrigation water in developed country commonly come from dams. The water is transported to our usage area by several type of pipe or water-trench. The water can be infected some bacteria such as Chlorella vulgaris, Arthrospira maxima, during this transportation. In this study, we determine which wavelength effect to these green algae and cyanobacteria. For different concentration of these microorganisms in water, we determined uv-vis spectrum. By analyzing these spectrums, we determined absorption coefficient of these microorganisms for selected wavelength. The results show which wavelength can be used for destroy these microorganisms in affected water.

  5. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    PubMed

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  6. The capability of fluoroscopic systems to determine differential Roentgen-ray absorption

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Crepeau, R. L.

    1975-01-01

    A clinical fluoroscopic unit used in conjunction with a TV image digitization system was investigated to determine its capability to evaluate differential absorption between two areas in the same field. Fractional contrasts and minimum detectability for air, several concentrations of Renografin-60, and aluminum were studied using phantoms of various thicknesses. Results showed that the videometric response, when treated as contrast, shows a linear response with absorber thickness up to considerable thicknesses.

  7. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  8. [Determination of the content of sulfur of coal by the infrared absorption method with high acccuracy].

    PubMed

    Wang, Hai-Feng; Lu, Hai; Li, Jia; Sun, Guo-Hua; Wang, Jun; Dai, Xin-Hua

    2014-02-01

    The present paper reported the differential scanning calorimetry-thermogravimetry curves and the infrared (IR) absorption spectrometry under the temperature program analyzed by the combined simultaneous thermal analysis-IR spectrometer. The gas products of coal were identified by the IR spectrometry. This paper emphasized on the combustion at high temperature-IR absorption method, a convenient and accurate method, which measures the content of sulfur in coal indirectly through the determination of the content of sulfur dioxide in the mixed gas products by IR absorption. It was demonstrated, when the instrument was calibrated by varied pure compounds containing sulfur and certified reference materials (CRMs) for coal, that there was a large deviation in the measured sulfur contents. It indicates that the difference in chemical speciations of sulfur between CRMs and the analyte results in a systematic error. The time-IR absorption curve was utilized to analyze the composition of sulfur at low temperatures and high temperatures and then the sulfur content of coal sample was determined by using a CRM for coal with a close composition of sulfur. Therefore, the systematic error due to the difference in chemical speciations of sulfur between the CRM and analyte was eliminated. On the other hand, in this combustion at high temperature-IR absorption method, the mass of CRM and analyte were adjusted to assure the sulfur mass equal and then the CRM and the analyte were measured alternately. This single-point calibration method reduced the effect of the drift of the IR detector and improved the repeatability of results, compared with the conventional multi-point calibration method using the calibration curves of signal intensity vs sulfur mass. The sulfur content results and their standard deviations of an anthracite coal and a bituminous coal with a low sulfur content determined by this modified method were 0.345% (0.004%) and 0.372% (0.008%), respectively. The uncertainty (U

  9. [Determination of eight trace elements in the Swertia davidii Franch by flame atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Yu, Hon; Cao, Yu-juan; Zhang, Jing-jing; Liu, Qin

    2007-12-01

    The effects of different sample digestives on the determination of Swertia davidii Franch are compared. Eight trace elements in the Swertia davidii Franch were determined by flame atomic absorption spectrometry. The result shows that the RSD and recovery are better if the Swertia davidii Franch was digested with HNO3-HClO4 (5 : 1) mixed acid. The experimental results show that the detection limits were all smaller than 0.097 microg x mL(-1), the RSDs (n=8) all smaller than 2.34%, and the addition standard recovery (ASR) (n=8) was 89.32%-106.65% for all the elements.

  10. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  11. Determination of sulfur in kerosene by combustion and molecular absorption spectrometry in the gas phase

    SciTech Connect

    Ruschak, M.L.; Syty, A.

    1982-08-01

    A technique of nonflame molecular adsorption in the gas phase developed for the determination of sulfite trapped in tetrachloromercurate, is described herein for application to the determination of total sulfur in kerosene. The burner head is removed from the atomic absorption spectrometer and replaced with a flow-through absorption cell. A special reaction vessel is used to evolve SO/sub 2/ from the sulfite in a precise and convenient manner. The transient absorbance caused by the SO/sub 2/, as it is carried through the absorption cell, is measured. Both spiked and unspiked samples of kerosene were analyzed, and the reproducibility of themore » repeated runs is evidenced by a relative standard deviation from the mean of 5% for the unspiked kerosene and 4% for the spiked kerosene. If the detection level is defined as that concentration of S which gives a % S twice the standard deviation from the mean yields, the detection limit for the present method is 0.002% S by weight in kerosene.« less

  12. Determination of total x-ray absorption coefficient using non-resonant x-ray emission

    PubMed Central

    Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

    2011-01-01

    An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively. PMID:22355697

  13. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  14. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    NASA Astrophysics Data System (ADS)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  15. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  16. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection.

    PubMed

    Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda

    2014-01-15

    A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Determination of Nicotine Absorption from Multiple Tobacco Products and Nicotine Gum

    PubMed Central

    Digard, Helena; Proctor, Christopher; Kulasekaran, Anuradha; Malmqvist, Ulf

    2013-01-01

    Introduction: Snus is a smokeless tobacco product traditionally used in Scandinavia and available in pouched or loose forms. The objective of this study was to determine nicotine absorption for current pouched and loose snus products in comparison with a cigarette and an over-the-counter nicotine gum. Methods: We conducted an open-label, randomized, 6-way, crossover study involving 20 healthy snus and cigarette users. One of 6 products (2 pouched snus, 2 weights of loose snus, a cigarette, and a nicotine gum) was administered at each of 6 visits. Blood samples were taken at intervals over 120 min and sensory perception assessed by questionnaire. Results: For the 4 smokeless tobacco products and the nicotine gum, blood plasma levels of nicotine were ranked according to total nicotine content as follows: loose snus (27.1 mg nicotine) > pouched snus (14.7 mg nicotine) > loose snus (10.8 mg nicotine) = pouched snus (10.7 mg nicotine) > nicotine gum (4.2 mg nicotine). The area under the plasma concentration–time curve (AUC) and maximum plasma concentration (Cmax) of nicotine ranged from 26.9 to 13.1 ng.h/ml and 17.9 to 9.1 ng.h/ml, respectively across all the products. Nicotine was absorbed more rapidly from the cigarette but systemic exposure was within the range of the smokeless tobacco products (AUC = 14.8 ng.h/ml; Cmax = 12.8 ng.h/ml). Conclusions: This study has generated new information on comparative nicotine absorption from a cigarette, loose snus, and pouched snus typical of products sold in Scandinavia. The similar nicotine absorption for 1 g portions of loose and pouched snus with approximately 11 mg of nicotine indicate that absorption kinetics were dependent on quantity of tobacco by weight and total nicotine content rather than product form. PMID:22585541

  18. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  19. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  20. Determination of aluminum in biological fluids by furnace atomic absorption spectrophotometry.

    PubMed

    Johnson, K E; Treble, R G

    1992-01-01

    Detailed procedures were developed for the furnace atomic absorption spectrophotometry (FAAS) determination of aluminum (Al) in serum, urine, cerebrospinal fluid (CSF), and proportionated dialysate. Of particular note were the use of Mg (NO3)2.6H2O as a matrix modifier and the employment of the standard additions routine in analysis. The accuracy of the method(s) used is supported by work with assayed controls and by recovery studies. The use of a "clean room" was shown to be unnecessary. Normal serum, urine, and CSF Al ranges observed were 4.8-8.9, 5.1-9.1, and 1.0-5.8 micrograms L-1 respectively.

  1. Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant.

    PubMed

    Casa, G; Castrillo, A; Galzerano, G; Wehr, R; Merlone, A; Di Serafino, D; Laporta, P; Gianfrani, L

    2008-05-23

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) nu1+2nu2(0)+nu3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of approximately 1.6 x 10(-4).

  2. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    NASA Astrophysics Data System (ADS)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν20+ν3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ˜1.6×10-4.

  3. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry

    PubMed Central

    Attimarad, Mahesh

    2010-01-01

    The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003

  4. Sulfur determination in coal using molecular absorption in graphite filter vaporizer.

    PubMed

    Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo

    2011-02-15

    The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. An atomic-absorption method for the determination of gold in large samples of geologic materials

    USGS Publications Warehouse

    VanSickle, Gordon H.; Lakin, Hubert William

    1968-01-01

    A laboratory method for the determination of gold in large (100-gram) samples has been developed for use in the study of the gold content of placer deposits and of trace amounts of gold in other geologic materials. In this method the sample is digested with bromine and ethyl ether, the gold is extracted into methyl isobutyl ketone, and the determination is made by atomicabsorption spectrophotometry. The lower limit of detection is 0.005 part per million in the sample. The few data obtained so far by this method agree favorably with those obtained by assay and by other atomic-absorption methods. About 25 determinations can be made per man-day.

  7. A quantum perturbative pair distribution for determining interatomic potentials from extended x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piazza, F.

    2002-11-01

    In this paper we develop a technique for determining interatomic potentials in materials in the quantum regime from single-shell extended x-ray absorption spectroscopy (EXAFS) spectra. We introduce a pair distribution function, based on ordinary quantum time-independent perturbation theory. In the proposed scheme, the model potential parameters enter the distribution through a fourth-order Taylor expansion of the potential, and are directly refined in the fit of the model signal to the experimental spectrum. We discuss in general the validity of our theoretical framework, namely the quantum regime and perturbative treatment, and work out a simple tool for monitoring the sensitivity of our theory in determining lattice anharmonicities based on the statistical F-test. As an example, we apply our formalism to an EXAFS spectrum at the Ag K edge of AgI at T = 77 K. We determine the Ag-I potential parameters and find good agreement with previous studies.

  8. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  9. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations.

    PubMed

    Soylak, Mustafa; Erdogan, Nilgun D

    2006-09-21

    A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.

  10. A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: comparative studies with the standard Jaffé and isotope-dilution mass spectrometric assays.

    PubMed

    Leung, Elvis M K; Chan, Wan

    2014-02-01

    Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples.

  11. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    EPA Science Inventory

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  12. Dual-isotope method for determination of human zinc absorption: the use of a test meal of turkey meat

    SciTech Connect

    Flanagan, P.R.; Cluett, J.; Chamberlain, M.J.

    The percentage of /sup 65/Zn taken up (absorbed) from extrinsically labeled turkey meat was calculated from the amounts of /sup 65/Zn and a nonabsorbed /sup 51/Cr marker present in the body or in a single stool specimen after 1-2 d. /sup 51/CrCl/sub 3/ proved to be a suitable marker for unabsorbed /sup 65/Zn and so the early determination of /sup 65/Zn absorption was possible. With stool counting, /sup 65/Zn absorption data from first stool samples after 1-2 d were accurate as judged by correlation with the amount of /sup 65/Zn in the body 7-10 d later (retention); results from subsequentmore » stools gave lower absorption values due to the early excretion of some absorbed /sup 65/Zn. The dual-isotope method gave reproducible results when four successive tests of zinc absorption were carried out in a group of six subjects. The average (mean +/- SD) /sup 65/Zn absorption from turkey meals containing 31 mumol (2 mg) and 46 mumol (3 mg) of zinc was 39 +/- 8% and 29 +/- 6%, respectively, measured by stool counting; /sup 65/Zn absorption and retention correlated well in both studies. A series of different beverages was given in place of water with the turkey meal. Orange juice significantly reduced /sup 65/Zn absorption and milk also showed this tendency, but tea, whiskey, wine or beer had no significant effect on the absorption of /sup 65/Zn from the turkey meal. In groups of subjects the mean ratio of /sup 65/Zn absorption from extrinsically labeled turkey meat on two occasions (1.06) was not significantly different from that of the absorption of extrinsic to intrinsic /sup 65/Zn labels (1.16). The dual-isotope technique with either stool or body counting is suitable for the rapid determination of /sup 65/Zn absorption from extrinsically labeled turkey within 2 d.« less

  13. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    USGS Publications Warehouse

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  14. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry.

    PubMed

    Dall'Olmo, Giorgio; Brewin, Robert J W; Nencioli, Francesco; Organelli, Emanuele; Lefering, Ina; McKee, David; Röttgers, Rüdiger; Mitchell, Catherine; Boss, Emmanuel; Bricaud, Annick; Tilstone, Gavin

    2017-11-27

    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m -1 and a precision of about 0.0025 m -1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.

  17. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  18. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.

    PubMed

    Van de Broek, Bieke; Grandjean, Didier; Trekker, Jesse; Ye, Jian; Verstreken, Kris; Maes, Guido; Borghs, Gustaaf; Nikitenko, Sergey; Lagae, Liesbet; Bartic, Carmen; Temst, Kristiaan; Van Bael, Margriet J

    2011-09-05

    The fields of bioscience and nanomedicine demand precise thermometry for nanoparticle heat characterization down to the nanoscale regime. Since current methods often use indirect and less accurate techniques to determine the nanoparticle temperature, there is a pressing need for a direct and reliable element-specific method. In-situ extended X-ray absorption fine structure (EXAFS) spectroscopy is used to determine the thermo-optical properties of plasmonic branched gold nanoparticles upon resonant laser illumination. With EXAFS, the direct determination of the nanoparticle temperature increase upon laser illumination is possible via the thermal influence on the gold lattice parameters. More specifically, using the change of the Debye-Waller term representing the lattice disorder, the temperature increase is selectively measured within the plasmonic branched nanoparticles upon resonant laser illumination. In addition, the signal intensity shows that the nanoparticle concentration in the beam more than doubles during laser illumination, thereby demonstrating that photothermal heating is a dynamic process. A comparable temperature increase is measured in the nanoparticle suspension using a thermocouple. This good correspondence between the temperature at the level of the nanoparticle and at the level of the suspension points to an efficient heat transfer between the nanoparticle and the surrounding medium, thus confirming the potential of branched gold nanoparticles for hyperthermia applications. This work demonstrates that X-ray absorption spectroscopy-based nanothermometry could be a valuable tool in the fast-growing number of applications of plasmonic nanoparticles, particularly in life sciences and medicine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of airborne MAIS imaging spectrometric data for mineral exploration

    SciTech Connect

    Wang Jinnian; Zheng Lanfen; Tong Qingxi

    1996-11-01

    The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less

  20. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

  1. Determination of aminopolycarboxylic acids in river water by solid-phase extraction on activated charcoal cartridges and gas chromatography with mass spectrometric detection. Method performance characteristics and estimation of the uncertainty.

    PubMed

    Jiménez, Juan J

    2013-04-03

    A new sample preparation procedure to determine aminopolycarboxylic acids (ethylenediaminetetraacetic acid, EDTA, nitrilotriacetic acid, NTA, diethylenetriaminepentaacetic acid, DTPA, and cyclohexanediaminetetraacetic acid, CDTA) in river water is described. The procedure consists of the solid-phase extraction of the aminopolycaroxyllic acids on activated charcoal cartridges after increasing the ionic strength and acidifying the sample. The extract was eluted with methanol and the analytes were methylated in presence of BF3/methanol to determine them by GC with mass spectrometric detection. Recoveries were higher than 90% with good repeatabilities and inter-day precision for concentrations close to quantification limits (about 10 μg L(-1)) and higher. It has been verified that the proposed method is robust according to the Youden and Steiner test and free of matrix effects arisen from the presence of organic matter and iron(III) as deduced from statistical tests. A bottom-up approach was followed to estimate the uncertainty of the measured concentration. At concentrations close to 10 μg L(-1) the most relevant step of the method is the calculus of the interpolated concentration which has a high value of relative standard uncertainty. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    PubMed

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  3. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    SciTech Connect

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol

    2015-09-14

    There is a long-standing controversy over the melting curve of Fe at high pressure as determined from static laser heated diamond anvil cell and dynamic compression studies. X-ray absorption spectroscopy measurements are used here as a criterion to detect melting under pressure. Confronted with a diversity of obtained melting curves, this technique, used at such pressure and temperature conditions, is eligible to be at the forefront to probe Earth's deep interior. Furthermore, the experiment reported here holds promise for addressing important issues related to the structure and phase diagram of compressed melts, such as the existence of structural complexity (polyamorphism)more » in the liquid phase or the extent of icosahedral ordering whose investigation has been limited until now to ambient conditions.« less

  4. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  5. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  6. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  7. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  8. Development of a hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the determination of kinsenoside, an antihyperlipidemic candidate, in rat plasma and its application to pharmacokinetic studies.

    PubMed

    Rehman, Shaheed Ur; Kim, In Sook; Choi, Min Sun; Luo, Zengwei; Yao, Guangming; Xue, Yongbo; Zhang, Yonghui; Yoo, Hye Hyun

    2016-02-20

    Kinsenoside is a major bioactive constituent isolated from Anoectochilus formosanus and is investigated as an antihyperlipidemic candidate. In this study, a rapid, sensitive, and reliable bioanalytical method was developed for the determination of kinsenoside in rat plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The plasma sample was pretreated with 1% acetic acid, followed by protein precipitation with acetonitrile:methanol (70:30). Chromatographic separation was performed on a HILIC silica column (2.1mm×100mm, 3μm). The mobile phases consisted of 0.1% acetic acid in distilled water (solvent A) and 0.1% acetic acid in acetonitrile (solvent B). A gradient program was used at a flow rate of 0.2mL/min. For mass spectrometric detection, the multiple reaction monitoring mode was used; the MRM transitions were m/z 265.2→m/z 102.9 for kinsenoside and m/z 163.3→m/z 132.1 for the internal standard (IS) nicotine in the positive ionization mode. A calibration curve was constructed in the range of 2-500ng/mL. The intra- and interday precision and accuracy were within 5%. The HILIC-MS/MS method was specific, accurate, and reproducible and was successfully applied in a pharmacokinetic study of kinsenoside in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On the Quality of ENSDF {gamma}-Ray Intensity Data for {gamma}-Ray Spectrometric Determination of Th and U and Their Decay Series Disequilibria, in the Assessment of the Radiation Dose Rate in Luminescence Dating of Sediments

    SciTech Connect

    Corte, Frans de; Vandenberghe, Dimitri; Wispelaere, Antoine de

    In luminescence dating of sediments, one of the most interesting tools for the determination of the annual radiation dose is Ge {gamma}-ray spectrometry. Indeed, it yields information on both the content of the radioelements K, Th, and U, and on the occurrence - in geological times - of disequilibria in the Th and U decay series. In the present work, two methodological variants of the {gamma}-spectrometric analysis were tested, which largely depend on the quality of the nuclear decay data involved: (1) a parametric calibration of the sediment measurements, and (2) the correction for the heavy spectral interference of themore » 226Ra 186.2 keV peak by 235U at 185.7 keV. The performance of these methods was examined via the analysis of three Certified Reference Materials, with the introduction of {gamma}-ray intensity data originating from ENSDF. Relevant conclusions were drawn as to the accuracy of the data and their uncertainties quoted.« less

  10. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327

  11. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    PubMed

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  12. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  13. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  14. [Atomic absorption in mercury determination by "Julia-2" analyzer and urine mercury level in children of Moscow suburbs].

    PubMed

    Pavlovskaia, N A; Vagina, E N; Stepanova, E V

    2000-01-01

    The authors report on atomic absorption method determining mercury in urine. Being sensitive, with lower determination threshold of 10 nmole/l and correctness of 95.5%, the method was tested on children living in two districts of Moscow suburb.

  15. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    PubMed

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  17. Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy.

    PubMed

    Schneid, Stefan C; Gieseler, Henning; Kessler, William J; Pikal, Michael J

    2009-09-01

    The goal of this work was to demonstrate the application of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a non-invasive method to determine the average product temperature of the batch during primary drying. The TDLAS sensor continuously measures the water vapor concentration and the vapor flow velocity in the spool connecting the freeze-dryer chamber and condenser. Vapor concentration and velocity data were then used to determine the average sublimation rate (g/s) which was subsequently integrated to evaluate the amount of water removed from the product. Position dependent vial heat transfer coefficients (K(v)) were evaluated using the TDLAS sensor data for 20 mL vials during sublimation tests with pure water. TDLAS K(v) data showed good agreement to K(v) data obtained by the traditional gravimetric procedure. K(v) for edge vials was found to be about 20-30% higher than that of center vials. A weighted K(v) was then used to predict a representative average product temperature from TDLAS data in partial and full load freeze drying runs with 5%, 7.5%, or 10% (w/w) sucrose, mannitol, and glycine solutions. TDLAS product temperatures for all freeze-drying runs were within 1-2 degrees C of "center vial" steady state thermocouple data.

  18. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  19. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    PubMed

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  20. Determination of pKa values of benzoxa-, benzothia- and benzoselena-zolinone derivatives by capillary electrophoresis. Comparison with potentiometric titration and spectrometric data.

    PubMed

    Foulon, C; Duhal, N; Lacroix-Callens, B; Vaccher, C; Bonte, J P; Goossens, J F

    2007-07-01

    Acidity constants of benzoxa-, benzothia- and benzoselena-zolinone derivatives were determined by capillary electrophoresis, potentiometry and spectrophotometry experiments. These three analytical techniques gave pK(a) results that were in good agreement. A convenient, accurate and precise method for the determination of pK(a) was developed to measure changes in acidity constants induced by heteroatom or 6-benzoyl substituted derivatives. pK(a) values were determined simultaneously for two compounds characterized by different electrophoretic mobility (micro(e)) and pK(a) value and in the presence of an analogous neutral marker.

  1. OVERVIEW OF A NEW EPA METHOD: DETERMINATION OF PERCHLORATE IN DRINKING WATER, GROUNDWATER AND HIGH SALINITY WATER BY ION CHROMATOGRAPHY, SUPPRESSED CONDUCTIVITY WITH ELECTROSPRAY IONIZATION MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    In this presentation the analytical instrumentation and procedures necessary to qualitatively and quantitatively determine low levels of perchlorate (ClO4-) in drinking waters using ion chromatography with electrolytic conductivity suppression, electrospray ionization mass spec...

  2. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  3. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  4. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  5. Determination of attenuation parameters and energy absorption build-up factor of amine group materials

    NASA Astrophysics Data System (ADS)

    Lokhande, Rajkumar M.; More, Chaitali V.; Surung, Bharat S.; Pawar, Pravina P.

    2017-12-01

    We have computed radiological parameters of some C- H- N- O based amine group bio material in the energy range 122-1330 keV with the gamma ray count by narrow beam geometry. The NaI(Tl) detector with 8 K multichannel analyser was used having resolution 6.8% at 663 keV. The energy absorption buildup factor (EABF) was determined by using Geometric Progression (G-P) fitting method up to penetration depth of 40 mfp at energy 0.015-15 MeV. The NIST XCOM data were compared with the experimental value and we observed (3-5%) difference. The comparative study of effective atomic number and effective electron density in the energy range 122-1330 keV using Gaussian fit for accuracy were performed. The amino acid has the highest EABF value at 0.1 MeV and the variation in EABF with penetration depth up to 1-40 mean free path (mfp). The calculated radiological data of biological material are applicable in medical physics and dosimetry.

  6. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  7. Validation of a liquid chromatography-triple quadrupole mass spectrometric method for the determination of 5-nitro-5'-hydroxy-indirubin-3'-oxime (AGM-130) in human plasma and its application to microdose clinical trial.

    PubMed

    Park, Min-Ho; Lee, Yun Young; Cho, Kyung Hee; La, Sookie; Lee, Hee Joo; Yim, Dong-Seok; Ban, Sooho; Park, Moon-Young; Kim, Yong-Chul; Kim, Yoon-Gyoon; Shin, Young G

    2016-03-01

    A liquid chromatography-triple quadrupole mass spectrometric (LC-MS/MS) method was developed and validated for the determination of 5-nitro-5'-hydroxy-indirubin-3'-oxime (AGM-130) in human plasma to support a microdose clinical trial. The method consisted of a liquid-liquid extraction for sample preparation and LC-MS/MS analysis in the positive ion mode using TurboIonSpray(TM) for analysis. d3 -AGM-130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10-2000 pg/mL for AGM-130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between-run accuracy ranged from 98.1 to 101.0%. AGM-130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM-130 was also stable in human plasma at room temperature for 6 h and through three freeze-thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC-MS/MS method for determination of AGM-130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Accurate and facile determination of the index of refraction of organic thin films near the carbon 1s absorption edge.

    PubMed

    Yan, Hongping; Wang, Cheng; McCarn, Allison R; Ade, Harald

    2013-04-26

    A practical and accurate method to obtain the index of refraction, especially the decrement δ, across the carbon 1s absorption edge is demonstrated. The combination of absorption spectra scaled to the Henke atomic scattering factor database, the use of the doubly subtractive Kramers-Kronig relations, and high precision specular reflectivity measurements from thin films allow the notoriously difficult-to-measure δ to be determined with high accuracy. No independent knowledge of the film thickness or density is required. High confidence interpolation between relatively sparse measurements of δ across an absorption edge is achieved. Accurate optical constants determined by this method are expected to greatly improve the simulation and interpretation of resonant soft x-ray scattering and reflectivity data. The method is demonstrated using poly(methyl methacrylate) and should be extendable to all organic materials.

  9. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Jesus, Alexandre; Zmozinski, Ariane Vanessa; Damin, Isabel Cristina Ferreira; Silva, Márcia Messias; Vale, Maria Goreti Rodrigues

    2012-05-01

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 μg kg- 1 for arsenic and 0.2 μg kg- 1 for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a "cold finger" was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis.

  10. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less

  11. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  12. SPECIES DETERMINATION OF ORGANOMETALLIC COMPOUNDS USING ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY WITH LIQUID CHROMATOGRAPHY

    SciTech Connect

    Koizumi, H.; Hadeishi, T.; McLaughlin, R.

    1978-01-01

    Over the past several years we have devised and expanded the capabilities of Zeeman atomic absorption spectroscopy (ZAA). Using this technique, trace elements in a complex matrix can be directly analyzed with high accuracy even when there is only one atom of interest contained in several million atoms of the host material. Quantities in the nanogram, or in some cases picogram, range can be determined within IS seconds for more than 30 elements. Because of its high selectivity and high sensitivity, ZAA can be used as a new technique for organometallic species determination by interfacing with a high pressure liquidmore » chromatograph (HPLC). The HPLC separates various molecular species. Different kinds of mobil solvents can be directly introduced in the ZAA detection system; even organic solvents or high concentration salt solutions. Then, organometallic species in the ppb range are separately detected according to their retention times. This technique has a much larger field of application than HPLC coupled with conventional AA. The advantages of the ZAA technique are described in a recent publication. In this case, a steady magnetic field at 11 kgauss is applied to the sample vapor perpendicular to the incident light beam. The difference in absorption of the polarized constituents P{perpendicular} and P{parallel} is proportional to the atomic density, but is not affected by the various kind of spectral interferences caused by thermal decomposition of the eluants. The recently developed HPLC technique has many advantages over gas chromatography. Nonvolatile, polar, thermally unstable molecules or high molecular weight compounds can be separated. In the present system, the main requirement is that the solute be soluble in the mobile solvent. A demonstration of the operation of this system is provided by the analysis of a mixture of vitamin B12 and Co(No{sub 3}){sub 2}. As shown in Figure 1, vitamin B12 has a Co in its functional center. Sample 1 contained Co of 0

  13. DETERMINATION OF CARBENDAZIM IN WATER BY HIGH-PERFORMANCE IMMUNOAFFINITY CHROMATOGRAPHY ON-LINE WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH DIODE-ARRAY OR MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    An automated method for the determination of carbendazim in water that combines high-performance immunoaffinity chromatography (HPIAC), high-performance liquid chromatography (HPLC) in the reversed-phase mode, and detection by either UV-Vis diode array detector (DAD) spectroscopy...

  14. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  15. Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-08-01

    The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).

  16. Cathepsin B is a novel gender-dependent determinant of cholesterol absorption from the intestine[S

    PubMed Central

    Wong, Winifred P. S.; Altemus, Jessica B.; Hester, James F.; Chan, Ernest R.; Côté, Jean-François; Serre, David; Sehayek, Ephraim

    2013-01-01

    We used a mouse C57BL/6J×CASA/Rk intercross to map a locus on chromosome 14 that displayed a gender-dependent effect on cholesterol absorption from the intestine. Studies in congenic animals revealed a complex locus with multiple operating genetic determinants resulting in alternating gender-dependent phenotypic effects. Fine-mapping narrowed the locus to a critical 6.3 Mb interval. Female subcongenics, but not males, of the critical interval displayed a decrease of 33% in cholesterol absorption. RNA-Seq analysis of female subcongenic jejunum revealed that cysteine protease cathepsin B (Ctsb) is a candidate to explain the interval effect. Consistent with the phenotype in critical interval subcongenics, female Ctsb knockout mice, but not males, displayed a decrease of 31% in cholesterol absorption. Although studies in Ctsb knockouts revealed a gender-dependent effect on cholesterol absorption, further fine-mapping dismissed a role for Ctsb in determining the effect of the critical 6.3 Mb interval on cholesterol absorption. PMID:23248330

  17. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  18. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  19. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  20. Determination of urinary manganese by the direct chelation-extraction method and flameless atomic absorption spectrophotometry.

    PubMed Central

    Watanabe, T; Tokunaga, R; Iwahana, T; Tati, M; Ikeda, M

    1978-01-01

    The direct chelation-extraction method, originally developed by Hessel (1968) for blood lead analysis, has been successfully applied to urinalysis for manganese. The analyses of 35 urine samples containing up to 100 microgram/1 of manganese from manganese-exposed workers showed that the data obtained by this method agree well with those by wet digestion-flame atomic absorption spectrophotometry and also by flameless atomic absorption spectrophotometry. PMID:629893

  1. A systematic approach to determining the properties of an iodine absorption cell for high-precision radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Perdelwitz, V.; Huke, P.

    2018-06-01

    Absorption cells filled with diatomic iodine are frequently employed as wavelength reference for high-precision stellar radial velocity determination due their long-term stability and low cost. Despite their wide-spread usage in the community, there is little documentation on how to determine the ideal operating temperature of an individual cell. We have developed a new approach to measuring the effective molecular temperature inside a gas absorption cell and searching for effects detrimental to a high precision wavelength reference, utilizing the Boltzmann distribution of relative line depths within absorption bands of single vibrational transitions. With a high resolution Fourier transform spectrometer, we took a series of 632 spectra at temperatures between 23 °C and 66 °C. These spectra provide a sufficient basis to test the algorithm and demonstrate the stability and repeatability of the temperature determination via molecular lines on a single iodine absorption cell. The achievable radial velocity precision σRV is found to be independent of the cell temperature and a detailed analysis shows a wavelength dependency, which originates in the resolving power of the spectrometer in use and the signal-to-noise ratio. Two effects were found to cause apparent absolute shifts in radial velocity, a temperature-induced shift of the order of ˜1 ms-1K-1 and a more significant effect resulting in abrupt jumps of ≥50 ms-1 is determined to be caused by the temperature crossing the dew point of the molecular iodine.

  2. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing.

    PubMed

    Arnquist, Isaac J; Hoppe, Eric J; Bliss, Mary; Grate, Jay W

    2017-03-07

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of (1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, (2) dissolving both the ash and the boat in acid, (3) performing a column separation to remove copper, and (4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for 232 Th and 238 U, respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for 232 Th and 2 pg/g for 238 U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

  3. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing

    SciTech Connect

    Arnquist, Isaac J.; Hoppe, Eric J.; Bliss, Mary

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of 1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, 2) dissolving both the ash and the boat in acid, 3) performing a column separation to remove copper, and 4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion)more » levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene® 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for Th and U respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for Th and 2 pg/g for U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries, and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.« less

  4. [An ultrafast liquid chromatography-tandem mass spectrometric method for simultaneous determination of common artificial synthetic pigments in cooked meat products].

    PubMed

    Chen, Xiaohong; Li, Xiaoping; Zhao, Yonggang; Pan, Shengdong; Jin, Micong

    2015-07-01

    A method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) has been developed for the simultaneous determination of seven synthetic pigments in cooked meat product. After the cooked meat products were extracted by mixed extraction agent, purified by WAX column, the UFLC separation was performed on a Shim-pack XR-ODS II column (75 mm x 2.0 mm, 2.2 µm) with a linear gradient elution program of acetonitrile and ammonium acetate (AmAc, 5 mmol/L) as the mobile phase. Electrospray ionization was applied and operated in the negative ion mode. The limits of quantitation (LOQs) for the seven synthetic pigments were in the range of 0.7-5.0 µg/kg. The calibration curves showed good linearities for the seven analytes in their detection ranges, and the correlative coefficients (r) were more than 0.999. The recoveries were between 88.2%-106.5% with the RSDs in the range of 1.2%-5.0%. The method is sensitive, reproducible, quick and adapts to the simultaneous determination of the seven synthetic pigments in cooked meat product.

  5. Development and Interlaboratory Study of a Liquid Chromatography Tandem Mass Spectrometric Methodfor the Determination of Multiple Mycotoxins inCereals Using Stable Isotope Dilution.

    PubMed

    Ye, Jin; Wu, Yu; Guo, Qilei; Lu, Meiling; Wang, Songshan; Xin, Yuanyuan; Xie, Gang; Zhang, Yan; Mariappan, Meena; Wang, Songxue

    2018-05-01

    An efficient, rapid, accurate, and cost-effective method based on stable isotope dilution and LC tandem MS was developed for the determination of multimycotoxins in cereals. The samples were extracted using acetonitrile-water-acetic acid (70 + 29 + 1, v/v/v), followed by dilution and centrifugation without any further cleanup. The mycotoxins were separated on a C18 column. Interference due to matrix effects was efficiently compensated for with [13C]-labeled stable isotope internal standards. The method demonstrated excellent linear relations, with regression coefficients above 0.999. Spiked recoveries at three different concentrations ranged from 80.9 to 115.9%, and RSDs were below 14% for all mycotoxins. The trueness of the method was also verified by participating in two proficiency tests, and satisfactory z-scores (|z| < 1.1) were obtained. In addition, an international interlaboratory study was organized to evaluate the methods. Eight laboratories characterized recovery, repeatability, and reproducibility studies in wheat, maize, and barley. The interlaboratory results were analyzed according to ISO 5725-2. Cochran and Grubbs tests were used to remove outliers. The mean recoveries of all 16 mycotoxins ranged from 87 to 111%. Repeatability, reproducibility, and Horwitz ratio values were 3.5-16.2, 5.4-33.6, and 0.16-1.65%, respectively. The results demonstrate that the method is reliable to determine multimycotoxins in cereals.

  6. Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes

    NASA Astrophysics Data System (ADS)

    Rodger, Craig J.; Kavanagh, Andrew J.; Clilverd, Mark A.; Marple, Steve R.

    2013-12-01

    electron precipitation (EEP) impacts the chemistry of the middle atmosphere with growing evidence of coupling to surface temperatures at high latitudes. To better understand this link, it is essential to have realistic observations to properly characterize precipitation and which can be incorporated into chemistry-climate models. The Polar-orbiting Operational Environmental Satellite (POES) detectors measure precipitating particles but only integral fluxes and only in a fraction of the bounce loss cone. Ground-based riometers respond to precipitation from the whole bounce loss cone; they measure the cosmic radio noise absorption (CNA), a qualitative proxy with scant direct information on the energy flux of EEP. POES observations should have a direct relationship with ΔCNA and comparing the two will clarify their utility in studies of atmospheric change. We determined ionospheric changes produced by the EEP measured by the POES spacecraft in ~250 overpasses of an imaging riometer in northern Finland. The ΔCNA modeled from the POES data is 10-15 times less than the observed ΔCNA when the >30 keV flux is reported as <106 cm-2 s-1 sr-1. Above this level, there is relatively good agreement between the space-based and ground-based measurements. The discrepancy occurs mostly during periods of low geomagnetic activity, and we contend that weak diffusion is dominating the pitch angle scattering into the bounce loss cone at these times. A correction to the calculation using measurements of the trapped flux considerably reduces the discrepancy and provides further support to our hypothesis that weak diffusion leads to underestimates of the EEP.

  7. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Method for the determination of cobalt from biological products with graphite furnace atomic absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian

    2016-12-01

    Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.

  9. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    PubMed

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.

  10. Modified Activated Carbon Prepared from Acorn Shells as a New Solid-Phase Extraction Sorbent for the Preconcentration and Determination of Trace Amounts of Nickel in Food Samples Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Ebrahimi, Bahram

    2017-03-01

    A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.

  11. Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic-tandem mass spectrometric determination.

    PubMed

    Klejdus, Bořivoj; Plaza, Merichel; Šnóblová, Marie; Lojková, Lea

    2017-02-20

    The extraction of phenolic compounds from 4 different sea algae samples, three brown algae (Cystoseira abies-marina, C. abies-marina grinded under cryogenic conditions with liquid nitrogen, Undaria pinnatifida and Sargassum muticum) and one red algae (Chondrus crispus) via solid phase extraction using micro-elution solid-phase extraction (μ-SPE) plate method was studied. Prior to μ-SPE, 50mg of algae with 80% methanol mixture was extracted in hyphenated series by various extraction techniques, such as pressurized liquid extraction and Ika Ultra-Turrax ® Tube Drive, in combination with ultrasound assisted extraction. The μ-SPE plate technique reduced the time of sample pre-treatment thanks to higher sensitivity and pre-concentration effect. Selected groups of benzoic acid derivatives (p-hydroxybenzoic, protocatechuic, gallic, vanillic, and syringic acids), hydroxybenzaldehydes (4-hydroxybenzaldehyde, and 3,4-dihydroxybenzaldehyde), and cinnamic acid derivatives (p-coumaric, caffeic, ferulic, sinapic, and chlorogenic acids) were determined using rapid resolution liquid chromatography coupled to mass spectrometry detection with negative ion electrospray ionization (RRLC-ESI-MS) using multiple reactions monitoring. LOQs of measured samples varied in the range 0.23-1.68ng/mL and LODs in the range 0.07-0.52ng/mL. The applied method allowed a simultaneous determination of phenolics (i.e. free, esters soluble in methanol, glycosides, and esters insoluble in methanol) in less than 5min (including alkaline or acidic hydrolysis of raw extracts) from sea algae extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Chromatographic mass spectrometric determination of low-molecular-weight aromatic compounds of microbial origin in the serum from patients with sepsis].

    PubMed

    Beloborodova, N V; Arkhipova, A S; Beloborodov, D M; Boĭko, N B; Mel'ko, A I; Olenin, A Iu

    2006-02-01

    The investigation quantitatively determined the content of low-molecular-weight aromatic compounds of microbial origin in the sera of 34 individuals by chromatographic mass spectrometry. An "Agilent Technogies 6890N" gas chromatograph with a 5973 mass selective detector was applied; chromatographic separation of components was effected on an Hp-5MS quartz capillary column. Aromatic small molecules originating from microbes (SMOM) were determined in the sera of 7 patients with sepsis. The diagnosis of sepsis was documented by the presence of the systemic inflammation syndrome and by that of bacteriemia and/or artificial ventilation-associated pneumonia along with the level of procalcitonin of higher than 10 ng/ml. The levels of aromatic SMOM were compared in 10 healthy donors, 8 preoperative cardiosurgical patients, and 9 patients with different abnormalities without sepsis treated in an intensive care unit (ICU). Serum phenylacetic and 3-phenylpropionic acids were found to be prevalent in the healthy donors and postoperative cardiosurgical patients. In ICU patients with different complications without sepsis, more than half the compounds under study were undetectable, the others were found in very low concentrations, which may be accounted for by antibiotic therapy. At the same time, almost the whole spectrum of the test compounds (other than 3-phenylpropionic acid) with the highest concentrations of 3-phenyllactic, p-hydroxyphenylacetic, 3-(p-hydroxyphenyl)lactic and 2-hydroxybutanic acids, was detectable in septic patients receiving a more intensive therapy. The differences were statistically significant (by the Mann-Whitney U-test; p < 0.05). By taking into account the potentially high biological activity of the test compounds, studies are to be continued in this area.

  13. Liquid chromatographic-tandem mass spectrometric method for the simultaneous determination of alkylphenols polyethoxylates, alkylphenoxy carboxylates and alkylphenols in wastewater and surface-water.

    PubMed

    Ciofi, L; Ancillotti, C; Chiuminatto, U; Fibbi, D; Checchini, L; Orlandini, S; Del Bubba, M

    2014-10-03

    Four different pellicular stationary phases (i.e. octadecylsilane, octasilane, Phenyl-Hexyl and pentafluorophenyl) were investigated for the chromatographic resolution of alkylphenols (APs), alkylphenols polyethoxylates (APnEOs) and alkylphenoxy carboxylates (APECs) using mixtures of water and organic solvents (i.e. methanol, acetonitrile and tetrahydrofuran) as eluents, in order to obtain their determination by a single LC-MS/MS run. In fact, alkylphenols and alkylphenoxy carboxylates must be analysed in negative ion mode, whereas alkylphenols polyethoxylates undergo ionisation only in positive ion mode, and therefore, two distinct LC-MS/MS analysis are commonly adopted. The best resolution among the aforementioned target analytes was achieved on the pentafluorophenyl column, eluting with an acidified water-acetonitrile-tetrahydrofuran mixture and using the post column addition of an ammonia solution in methanol for the detection of positively ionisable compounds. Under these optimized chromatographic conditions the investigated compounds were determined via a single chromatographic run, with only one polarity switch, in 15min, achieving the following instrumental detection limits: 600pg for AP1EOs, 0.8-14pg for AP2EOs, 10.4-150pg for APs and 4.4-4.8pg for APECs. The chromatographic method was coupled with solid-phase extraction and clean-up procedures and successfully applied to the analysis of wastewater and surface water samples, highlighting mean concentration ranging from 6ng/L for 4-t-OP1EC to 1434ng/L for 4-NP1121EC, depending on the sample analysed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study

    NASA Astrophysics Data System (ADS)

    Wanapun, Duangporn; Wampler, Ronald D.; Begue, Nathan J.; Simpson, Garth J.

    2008-03-01

    A new method for sensitive determination of protein secondary structure via multi-photon absorption is considered theoretically. Perturbation theory is developed to describe the polarization-dependent two-photon absorption (TPA) of α-helix and β-sheet protein secondary structures. The exciton coupling interactions responsible for relatively weak electronic circular dichroism in one-photon absorption are predicted to give rise to large changes in the TPA cross-section (>200%) for circular versus linear incident polarizations, defined as CLD. The CLD effect in TPA is electric dipole-allowed, which explains the much greater sensitivity. These predictions suggest TPA should be a viable means of sensitively probing protein secondary structure.

  15. Simultaneous determination of ethyl carbamate and urea in Korean rice wine by ultra-performance liquid chromatography coupled with mass spectrometric detection.

    PubMed

    Lee, Gyeong-Hweon; Bang, Dae-Young; Lim, Jung-Hoon; Yoon, Seok-Min; Yea, Myeong-Jai; Chi, Young-Min

    2017-10-15

    In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.83μg/L, 3.75-5.96%, and 0.01-10.0mg/L, respectively, for urea; the corresponding values were 0.17μg/L, 1.06-4.01%, and 1.0-50.0μg/L, respectively, for EC. The correlation between the contents of EC and its precursor urea was determined under specific pH (3.5 and 4.5) and temperature (4, 25, and 50°C) conditions using the developed method. As a result, EC content was increased with greater temperature and lower pH. In Korean rice wine, urea was detected 0.19-1.37mg/L and EC was detected 2.0-7.7μg/L. The method developed in this study, which has the advantages of simplified sample preparation, low detection limits, and good selectivity, was successfully applied for the rapid analysis of EC and urea. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Determination of phenylurea herbicides in water samples using online sorptive preconcentration and high-performance liquid chromatography with UV or electrospray mass spectrometric detection.

    PubMed

    Baltussen, E; Snijders, H; Janssen, H G; Sandra, P; Cramers, C A

    1998-04-10

    A recently developed method for the extraction of organic micropollutants from aqueous samples based on sorptive enrichment in columns packed with 100% polydimethylsiloxane (PDMS) particles was coupled on-line with HPLC analysis. The sorptive enrichment procedure originally developed for relatively nonpolar analytes was used to preconcentrate polar phenylurea herbicides from aqueous samples. PDMS extraction columns of 5, 10 and 25 cm were used to extract the herbicides from distilled, tap and river water samples. A model that allows prediction of retention and breakthrough volumes is presented. Despite the essentially apolar nature of the PDMS material, it is possible to concentrate sample volumes up to 10 ml on PDMS cartridges without losses of the most polar analyte under investigation, fenuron. For less polar analytes significantly larger sample volumes can be applied. Since standard UV detection does not provide adequate selectivity for river water samples, an electrospray (ES)-MS instrument was used to determine phenylurea herbicides in a water sample from the river Dommel. Methoxuron was present at a level of 80 ng/l. The detection limit of the current set-up, using 10 ml water samples and ES-MS detection is 10 ng/l in river water samples. Strategies for further improvement of the detection limits are identified.

  17. Odour-causing compounds in air samples: gas-liquid partition coefficients and determination using solid-phase microextraction and GC with mass spectrometric detection.

    PubMed

    Godayol, Anna; Alonso, Mònica; Sanchez, Juan M; Anticó, Enriqueta

    2013-03-01

    A quantification method based on solid-phase microextraction followed by GC coupled to MS was developed for the determination of gas-liquid partition coefficients and for the air monitoring of a group of odour-causing compounds that had previously been found in wastewater samples including dimethyl disulphide, phenol, indole, skatole, octanal, nonanal, benzothiazole and some terpenes. Using a divinylbenzene/carboxen/polydimethylsiloxane fibre, adsorption kinetics have been studied to define an extraction time that would avoid coating saturation. It was found that for an extraction time of 10 min, external calibration could be performed in the range of 0.4-100 μg/m(3), with detection limits between 0.1 and 20 μg/m(3). Inter-day precision of the developed method was evaluated (n = 5) and RSD values between 12 and 24% were obtained for all compounds. The proposed method has been applied to the analysis of air samples surrounding a wastewater treatment plant in Catalonia (Spain). In all air samples evaluated, dimethyl disulphide, limonene and phenol were detected, and the first two were the compounds that showed the highest partition coefficients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a bioequivalence study.

    PubMed

    Hu, Ziyan; Zou, Qiaogen; Tian, Jixin; Sun, Lili; Zhang, Zunjian

    2011-12-15

    A rapid and sensitive method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma has been developed and validated. Following liquid-liquid extraction, the analytes were separated on a reversed-phase C(18) column (150 mm × 2.0 mm, 3 μm) using formic acid:10 mM ammonium acetate:methanol (0.2:62:38, v/v/v) as mobile phase at a flow rate of 0.2 mL/min and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode. The method was linear for all analytes over the following concentration (ng/mL) ranges: codeine 0.08-16; ephedrine 0.8-160; guaiphenesin 80-16,000; chlorpheniramine 0.2-40. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. It is the first time that the validated HPLC-MS/MS method was successfully applied to a bioequivalence study in 6 healthy beagle dogs. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Validation of a liquid chromatography-electrospray ionization tandem mass spectrometric method to determine six polyether ionophores in raw, UHT, pasteurized and powdered milk.

    PubMed

    Pereira, Mararlene Ulberg; Spisso, Bernardete Ferraz; Jacob, Silvana do Couto; Monteiro, Mychelle Alves; Ferreira, Rosana Gomes; Carlos, Betânia de Souza; da Nóbrega, Armi Wanderley

    2016-04-01

    This study aimed to validate a method developed for the determination of six antibiotics from the polyether ionophore class (lasalocid, maduramicin, monensin, narasin, salinomycin and semduramicin) at residue levels in raw, UHT, pasteurized and powdered milk using QuEChERS extraction and high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The validation was conducted under an in-house laboratory protocol that is primarily based on 2002/657/EC Decision, but takes in account the variability of matrix sources. Overall recoveries between 93% and 113% with relative standard deviations up to 16% were obtained under intermediate precision conditions. CCα calculated values did not exceed 20% the Maximum Residue Limit for monensin and 25% the Maximum Levels for all other substances. The method showed to be simple, fast and suitable for verifying the compliance of raw and processed milk samples regarding the limits recommended by Codex Alimentarius and those adopted in European Community for polyether ionophores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fluorescence Spectrometric Determination of Drugs Containing α-Methylene Sulfone/Sulfonamide Functional Groups Using N-Methylnicotinamide Chloride as a Fluorogenic Agent.

    PubMed

    Elokely, Khaled M; Eldawy, Mohamed A; Elkersh, Mohamed A; El-Moselhy, Tarek F

    2011-01-01

    A simple spectrofluorometric method has been developed, adapted, and validated for the quantitative estimation of drugs containing α-methylene sulfone/sulfonamide functional groups using N(1)-methylnicotinamide chloride (NMNCl) as fluorogenic agent. The proposed method has been applied successfully to the determination of methyl sulfonyl methane (MSM) (1), tinidazole (2), rofecoxib (3), and nimesulide (4) in pure forms, laboratory-prepared mixtures, pharmaceutical dosage forms, spiked human plasma samples, and in volunteer's blood. The method showed linearity over concentration ranging from 1 to 150 μg/mL, 10 to 1000 ng/mL, 1 to 1800 ng/mL, and 30 to 2100 ng/mL for standard solutions of 1, 2, 3, and 4, respectively, and over concentration ranging from 5 to 150 μg/mL, 10 to 1000 ng/mL, 10 to 1700 ng/mL, and 30 to 2350 ng/mL in spiked human plasma samples of 1, 2, 3, and 4, respectively. The method showed good accuracy, specificity, and precision in both laboratory-prepared mixtures and in spiked human plasma samples. The proposed method is simple, does not need sophisticated instruments, and is suitable for quality control application, bioavailability, and bioequivalency studies. Besides, its detection limits are comparable to other sophisticated chromatographic methods.

  1. Ultra performance liquid chromatography atmospheric pressure photoionization high resolution mass spectrometric method for determination of multiclass pesticide residues in grape and mango juices.

    PubMed

    Deme, Pragney; Upadhyayula, Vijayasarathi V R

    2015-04-15

    A novel analytical method was developed for determination of organochlorine, synthetic pyrethroid, organophosphate and carbamate pesticide residues in fruit juices using ultra performance liquid chromatography-atmospheric pressure photoionization-high resolution mass spectrometry (UPLC-APPI-HRMS). The analytes were extracted from fruit juices by dispersive solid-phase extraction using multi-walled carbon nanotubes (MWCNTs). The analysis was carried out in full scan mode using dual ionization mode of APPI in the mass range of 100-650 units. The limit of detection and limit of quantification values for the pesticides were in the range of 0.025-0.15 ng mL(-1) and 0.1-0.5 ng mL(-1) respectively. The matrix effect of the method was found to be low and extraction recoveries were in the range of 60-110%. Some of the real fruits juice samples showed the presence of some pesticides in the range of 6.5-24.8 ng L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Determination of metformin hydrochloride and glyburide in an antihyperglycemic binary mixture using high-performance liquid chromatographic-UV and spectrometric methods.

    PubMed

    Salem, Hesham

    2010-01-01

    Three methods were developed for simultaneous determination of metformin hydrochloride and glyburide in an antihyperglycemic binary mixture without previous separation. In the first method, a reversed-phase HPLC column with acetonitrile-water (60 + 40, v/v) mobile phase at 0.9 mL/min flow rate was used to separate both compounds, with UV detection at 254 nm. Linearity was obtained in the concentration range of 0.06--0.24 microg/mL for glyburide and 1.5-6.0 microg/mL for metformin hydrochloride. The second method depended on first- and second-derivative UV spectrometry with zero-crossing measurements. The first-derivative amplitude at 261 nm was selected for the assay of glyburide, and the second-derivative amplitude at 235 nm was selected for the assay of metformin hydrochloride. The third method depended on measuring the first derivative of the ratio-spectra at 241 nm for glyburide and 227 nm for metformin hydrochloride. For the second and third methods, Beer's law was obeyed in the range of 10-55 microg/mL for glyburide and 20-200 microg/mL for metformin. The proposed methods were extensively validated and applied for the analysis of some pharmaceutical formulations containing binary mixtures of the mentioned drugs.

  3. Quantitative Determination of Cannabinoids in Cannabis and Cannabis Products Using Ultra-High-Performance Supercritical Fluid Chromatography and Diode Array/Mass Spectrometric Detection.

    PubMed

    Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M; Wanas, Amira S; Mehmedic, Zlatko; van Antwerp, John; ElSohly, Mahmoud A; Khan, Ikhlas A

    2017-05-01

    Ultra-high-performance supercritical fluid chromatography (UHPSFC) is an efficient analytical technique and has not been fully employed for the analysis of cannabis. Here, a novel method was developed for the analysis of 30 cannabis plant extracts and preparations using UHPSFC/PDA-MS. Nine of the most abundant cannabinoids, viz. CBD, ∆ 8 -THC, THCV, ∆ 9 -THC, CBN, CBG, THCA-A, CBDA, and CBGA, were quantitatively determined (RSDs < 6.9%). Unlike GC methods, no derivatization or decarboxylation was required prior to UHPSFC analysis. The UHPSFC chromatographic separation of cannabinoids displayed an inverse elution order compared to UHPLC. Combining with PDA-MS, this orthogonality is valuable for discrimination of cannabinoids in complex matrices. The developed method was validated, and the quantification results were compared with a standard UHPLC method. The RSDs of these two methods were within ±13.0%. Finally, chemometric analysis including principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to differentiate between cannabis samples. © 2016 American Academy of Forensic Sciences.

  4. A high-performance liquid chromatographic-tandem mass spectrometric method for the determination of ethyl glucuronide and ethyl sulfate in urine validated according to forensic guidelines.

    PubMed

    Albermann, M E; Musshoff, F; Madea, B

    2012-01-01

    Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are powerful markers for alcohol intake and abuse. Several analytical procedures for the quantification of EtG and EtG in serum and urine have been developed so far. Many of the published methods show limits of detections (LODs) or limits of quantifications (LOQs) for EtG in urine within the range of 0.1 mg/L or higher. Since this is the actual cutoff value for proving abstinence in Germany, problems may occur if urine samples are highly diluted. In this paper, the validation of a highly sensitive, fast and simple LC-MS-MS for the determination of EtG and EtS in urine is described. The calibration curves for EtG and EtS is linear over the whole range (0.025-2.0 mg/L). Very low detection limits can be achieved (LOD: EtG 0.005 mg/L, EtS 0.005 mg/L; and LOQ: EtG 0.019 mg/L, EtS 0.015 mg/L). All data for selectivity, precision and accuracy, recovery, as well as for the processed sample and the freeze/thaw stability, comply with the guidelines of the German Society of Toxicological and Forensic Chemistry. Strong matrix-related effects can be compensated for by using an internal standard. Finally, the applicability of the procedure is proven by analysis of 87 human urine samples and by successful participation in interlaboratory comparison tests. © The Author [2011]. Published by Oxford University Press. All rights reserved.

  5. Quantitative determination of the enantiomers of methadone in human plasma and saliva by chiral column chromatography coupled with mass spectrometric detection.

    PubMed

    George, Rani; Lobb, Michael; Haywood, Alison; Khan, Sohil; Hardy, Janet; Good, Phillip; Hennig, Stefanie; Norris, Ross

    2016-01-01

    Methadone is a potent lipophilic synthetic opioid that is effective in the treatment of cancer pain and perceived benefit in difficult pain control scenarios (especially in cases of neuropathic pain). The use of methadone in clinical practice is challenging however, due to the narrow therapeutic window and large inter- and intra-individual variability in therapeutic response. Quantitation of the enantiomers d- and l-methadone (d- and l-MTD) in plasma and saliva provides a basis for studying its pharmacokinetics in patients with cancer and for monitoring efficacy, toxicity and side-effects. This assay involves quantitation of the enantiomers of methadone using their respective deuterated internal standards, in plasma and saliva matrices with no impact of ion suppression in either matrix. The analytical recoveries of d- and l-MTD from the saliva collection devices (Salivette®) are optimised in this novel method with an accurate and simple extraction method employing dichloromethane. Optimal enantioselective separations were achieved using an α1-acid glycoprotein chiral stationary phase and triple quadrupole tandem mass spectrometer. Linearity was demonstrated over 0.05-1000µg/L for both enantiomers in plasma and in saliva with correlation coefficients greater than 0.998. The lower limit of quantitation (LLOQ) was determined to be 0.1µg/L in plasma and saliva for d- and l-MTD. Accuracy of the method ranges from 100% to 106% even at the LLOQ and total precision, expressed as the coefficient of variation, was between 0.2% and 4.4% for both analytes in both matrices. A simple one step extraction procedure resulted in recoveries greater than 95% for both analytes, at concentrations as low as 0.5µg/L, from the Salivette®. The validated method was applied successfully in 14 paired plasma and saliva samples obtained from adult patients with cancer pain receiving methadone. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Determination of total lead in lipstick: development and validation of a microwave-assisted digestion, inductively coupled plasma-mass spectrometric method.

    PubMed

    Hepp, Nancy M; Mindak, William R; Cheng, John

    2009-01-01

    Recent reports describing the presence of lead (Pb) in lipsticks have suggested that, under ordinary use, the potential amount of Pb exposure is harmful. To permit independent assessment of the Pb contamination, a method for determining total Pb in lipstick using microwave-assisted digestion and analysis employing inductively coupled plasma-mass spectrometry (ICP-MS) was developed and validated. Since lipsticks may contain fats, oils, pigments, dyes, and minerals, several reference materials (RM) were analyzed, including coal, wear metals in oil, organic Pb in oil, milk powder, and estuarine sediment. With the exception of the RM with mineral content (estuarine sediment), complete recovery of Pb from the RMs was obtained by simple nitric acid (HNO(3)) digestion. Complete recovery of Pb from estuarine sediment was achieved only when hydrofluoric acid (HF) was added to the digestion mix, followed by treatment with excess boric acid (H(3)BO(3)) to neutralize the HF and to dissolve insoluble fluorides. Commercial lipsticks were tested for total Pb by the validated method. The detection limit was estimated to be 0.04 microg Pb/g. The average value obtained for the lipsticks was 1.07 microg/g. Undigested material was present in some lipstick digests when only HNO(3) was used, and generally lower Pb values were obtained. All of the Pb levels found by the U.S. Food and Drug Administration (FDA) were within the range the agency would expect to find in lipsticks formulated with permitted color additives and other ingredients prepared under good manufacturing practice (GMP) conditions. This method will be useful for the FDA and industry in helping to ensure the safety of cosmetic products.

  7. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  8. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  9. Highly Sensitive Determination of the Polaron-Induced Optical Absorption of Organic Charge-Transport Materials

    NASA Astrophysics Data System (ADS)

    Rabe, T.; Görrn, P.; Lehnhardt, M.; Tilgner, M.; Riedl, T.; Kowalsky, W.

    2009-04-01

    We examine polaron-induced absorption in organic transport materials using a highly sensitive measurement technique. A hole only device is embedded into a low-loss TE2 waveguide structure, and the current induced change of the waveguide absorption is measured. The exemplary study of 2,2',7,7'-tetrakis(N,N-diphenylamine)-9,9'-spiro-bifluorene (S-TAD) reveals a very low polaron absorption cross section of σp≤2.6×10-18cm2 for 560 nm ≤λ≤660nm. The accuracy of this data is unsurpassed by other techniques used for the unambiguous study of polaronic species in organic thin films.

  10. Determination of naltrexone and 6beta-naltrexol in human blood: comparison of high-performance liquid chromatography with spectrophotometric and tandem-mass-spectrometric detection.

    PubMed

    Brünen, Sonja; Krüger, Ralf; Finger, Susann; Korf, Felix; Kiefer, Falk; Wiedemann, Klaus; Lackner, Karl J; Hiemke, Christoph

    2010-02-01

    We present data for a comparison of a liquid-chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) and a high-performance liquid-chromatographic method with column switching and UV spectrophotometric detection. The two methods were developed for determination of naltrexone and 6beta-naltrexol in blood serum or plasma aiming to be used for therapeutic drug monitoring to guide the treatment of patients with naltrexone. For the high-performance liquid chromatography (HPLC)/UV detection, online sample cleanup was conducted on Perfect Bond C(18) material with 2% (vol/vol) acetonitrile in deionized water. Drugs were separated on a C(18) column using 11.5% (vol/vol) acetonitrile and 0.4% (vol/vol) N,N,N,N-tetramethylethylenediamine within 20 min. LC-MS/MS used naltrexone-d (3) and 6beta-naltrexol-d (4) as internal standards. After protein precipitation, the chromatographic separation was performed on a C(18) column by applying a methanol gradient (5-100%, vol/vol) with 0.1% formic acid over 9.5 min. The HPLC/UV method was found to be linear for concentrations ranging from 2 to 100 ng/ml, with a regression correlation coefficient of r (2) > 0.998 for naltrexone and 6beta-naltrexol. The limit of quantification was 2 ng/ml for naltrexone and 6beta-naltrexol. For the LC-MS/MS method the calibration curves were linear (r(2) > 0.999) from 0.5 to 200 ng/ml for both substances, and the limit of quantification was 0.5 ng/ml. The concentrations measured by the two methods correlated significantly for both substances (r(2) > 0.967; p < 0.001). Both methods could be used for therapeutic drug monitoring. The HPLC/UV method was advantageous regarding automatization and costs, whereas LC-MS/MS was superior with regard to sensitivity.

  11. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    ERIC Educational Resources Information Center

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  12. Solar absorption by elemental and brown carbon determined from spectral observations.

    PubMed

    Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V

    2012-10-23

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.

  13. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  14. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  15. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    PubMed

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  16. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-05

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  18. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  19. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    PubMed

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  20. NONINVASIVE DETERMINATION OF RESPIRATORY OZONE ABSORPTION: THE BOLUS-RESPONSE METHOD

    EPA Science Inventory

    Dr. James Ultman and colleagues used a fast-responding ozone measurement system, which they had developed with previous HEI support, to noninvasively measure the absorption of inhaled ozone in different regions of the respiratory tract of healthy adult men. While the subjec...

  1. Potential improvements aimed at high precision δ13C isotopic ratio determinations in CO2 mixtures using optical absorption spectrometry.

    PubMed

    Koulikov, Serguei; Assonov, Sergey; Fajgelj, Ales; Tans, Pieter

    2018-07-01

    The manuscript explores some advantages and limitations of laser based optical spectroscopy, aimed at achieving robust, high-reproducibility 13 C 16 O 2 and 12 C 16 O 2 ratio determinations on the VPDB-CO 2 δ 13 C scale by measuring the absorbance of line pairs of 13 C 16 O 2 and 12 C 16 O 2 . In particular, the sensitivities of spectroscopic lines to both pressure (P) and temperature (T) are discussed. Based on the considerations and estimations presented, a level of reproducibility of the 13 C 16 O 2 / 12 C 16 O 2 ratio determinations may be achieved of about 10 -6 . Thus one may establish an optical spectroscopic measurement technique for robust, high-precision 13 C 16 O 2 and 12 C 16 O 2 ratio measurements aimed at very low uncertainty. (Notably, creating such an optical instrument and developing technical solutions is beyond the scope of this paper.) The total combined uncertainty will also include the uncertainty component(s) related to the accuracy of calibration on the VPDB-CO 2 δ 13 C scale. Addressing high-accuracy calibrations is presently not straightforward - absolute numerical values of 13 C/ 12 C for the VPDB-CO 2 scale are not well known. Traditional stable isotope mass-spectrometry uses calibrations vs CO 2 evolved from the primary carbonate reference materials; which can hardly be used for calibrating commercial optical stable isotope analysers. In contrast to mass-spectrometry, the major advantage of the laser-based spectrometric technique detailed in this paper is its high robustness. Therefore one can introduce a new spectrometric δ 13 C characterisation method which, being once well-calibrated on the VPDB-CO 2 scale, may not require any further (re-)calibrations. This can be used for characterisation of δ 13 C in CO 2 -in-air mixtures with high precision and also with high accuracy. If this technique can be realised with the estimated long-term reproducibility (order of 10 -6 ), it could potentially serve as a more convenient Optical

  2. Determination of efficiency of an aged HPGe detector for gaseous sources by self absorption correction and point source methods

    NASA Astrophysics Data System (ADS)

    Sarangapani, R.; Jose, M. T.; Srinivasan, T. K.; Venkatraman, B.

    2017-07-01

    Methods for the determination of efficiency of an aged high purity germanium (HPGe) detector for gaseous sources have been presented in the paper. X-ray radiography of the detector has been performed to get detector dimensions for computational purposes. The dead layer thickness of HPGe detector has been ascertained from experiments and Monte Carlo computations. Experimental work with standard point and liquid sources in several cylindrical geometries has been undertaken for obtaining energy dependant efficiency. Monte Carlo simulations have been performed for computing efficiencies for point, liquid and gaseous sources. Self absorption correction factors have been obtained using mathematical equations for volume sources and MCNP simulations. Self-absorption correction and point source methods have been used to estimate the efficiency for gaseous sources. The efficiencies determined from the present work have been used to estimate activity of cover gas sample of a fast reactor.

  3. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. © 2014 WILEY Periodicals, Inc.

  4. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    SciTech Connect

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  5. Determination of traces of silicone defoamer in fruit juices by solvent extraction/atomic absorption spectroscopy.

    PubMed

    Gooch, E G

    1993-01-01

    Silicone defoamers are used to control foam during the processing of fruit juices. Residual silicones in fruit juices can be separated from the naturally occurring siliceous materials in fruit products and selectively recovered by solvent extraction, after suitable pretreatment. The recovered silicone is measured by atomic absorption spectroscopy. Silicone concentrations as low as about 1 ppm can be measured. The juices are accurately spiked for recovery studies by the addition of silicone dispersed in D-sorbitol.

  6. Determining the Concentrations and Temperatures of Products in a CF_4/CHF_3/N_2 Plasma via Submillimeter Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2017-06-01

    Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.

  7. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    PubMed

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  8. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less

  9. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  10. Noninvasive determination of respiratory ozone absorption: development of a fast-responding ozone analyzer.

    PubMed

    Ultman, J S; Ben-Jebria, A

    1991-03-01

    We developed a chemiluminescent ozone analyzer and constructed an ozone bolus generator with the eventual goal of using a bolus-response method to measure noninvasively the longitudinal distribution of ozone absorption in human lungs. Because the analyzer will be used to sample gases within a single breath, it must have a sufficiently rapid response to monitor changes in ozone concentration during a four-second breathing period, yet its sampling flow must be small enough that it does not interfere with quiet respiratory flows of 300 mL/sec. Our analyzer, which is based on the chemiluminescent reaction between 2-methyl-2-butene and ozone, has favorable performance characteristics: a 90 percent step-response time of 110 msec; a linear calibration from 0.03 to 10 parts per million (ppm)2 with a sensitivity of 2.3 nA/ppm; a signal-to-noise ratio of 30 evaluated at 0.5 ppm; and a minimum detection limit of 0.017 ppm. At an airflow corresponding to quiet breathing, the ozone generator is capable of producing single boluses with a peak ozone fraction as high as 4 ppm, but containing only 0.35 micrograms of ozone dispersed over a small volume of 19 mL. To test the combination of ozone analyzer and bolus generator, we performed bolus-response experiments at steady airflows of 50 to 200 mL/sec in excised pig and sheep tracheas. In spite of the small surface area available for radial diffusion, we found that 25 to 50 percent of the ozone introduced into the trachea was absorbed. By comparing the mathematical moments of the bolus input and the response curves to the predictions of a diffusion theory, we computed an absorption coefficient (K). The values of K increased with increasing airflow, implying that ozone absorption is limited by diffusion processes in the airway lumen as well as in the surrounding tissue.

  11. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    PubMed

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  12. Rapid separation on copper powder of total mercury in blood and determination of mercury by flameless atomic absorption spectrometry.

    PubMed

    Dogan, S; Haerdi, W

    1979-01-01

    The determination of mercury in blood by flameless atomic absorption spectrometry (FAAS) has been described. Prior to its analysis, the sample was decomposed by combustion and separated on a copper powder micro-column. A special type of cell has been used which gives a better sensitivity compared with the types of cells described in the literature and the method of FAAS analysis has been improved. The sensitivity of 0.1 ng for 1% absorbance was observed and the standard deviation for six determinations at this level was found to be +/- 0.05 ng, for 95% probability.

  13. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  14. Development and validation of a highly sensitive gas chromatographic-mass spectrometric screening method for the simultaneous determination of nanogram levels of fentanyl, sufentanil and alfentanil in air and surface contamination wipes.

    PubMed

    Van Nimmen, Nadine F J; Veulemans, Hendrik A F

    2004-05-07

    A highly sensitive gas chromatographic-mass spectrometric (GC-MS) analytical method for the determination of the opioid narcotics fentanyl, alfentanil, and sufentanil in industrial hygiene personal air samples and surface contamination wipes was developed and comprehensively validated. Sample preparation involved a single step extraction of the samples with methanol, fortified with a fixed amount of the penta-deuterated analogues of the opioid narcotics as internal standard. The GC-MS analytical procedure using selected ion monitoring (SIM) was shown to be highly selective. Linearity was shown for levels of extracted wipe and air samples corresponding to at least 0.1-2 times their surface contamination limit (SCL) and accordingly to 0.1-2 times their time weighted average occupational exposure limit (OEL-TWA) based on a full shift 9601 air sample. Extraction recoveries were determined for spiked air samples and surface wipes and were found to be quantitative for both sampling media in the entire range studied. The air sampling method's limit of detection (LOD) was determined to be 0.4 ng per sample for fentanyl and sufentanil and 1.6 ng per sample for alfentanil, corresponding to less than 1% of their individual OEL for a full shift air sample (9601). The limit of quantification (LOQ) was found to be 1.4, 1.2, and 5.0 ng per filter for fentanyl, sufentanil, and alfentanil, respectively. The wipe sampling method had LODs of 4 ng per wipe for fentanyl and sufentanil and 16 ng per wipe for alfentanil and LOQs of respectively, 14, 12, and 50 ng per wipe. The analytical intra-assay precision of the air sampling and wipe sampling method, defined as the coefficient of variation on the analytical result of six replicate spiked media was below 10 and 5%, respectively, for all opioids at all spike levels. Accuracy expressed as relative error was determined to be below 10%, except for alfentanil at the lowest spike level (-13.1%). The stability of the opioids during simulated

  15. On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry.

    PubMed

    González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M

    2003-04-01

    A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.

  16. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.

    PubMed

    Chen, Weiting; Zhao, Huijuan; Li, Tongxin; Yan, Panpan; Zhao, Kuanxin; Qi, Caixia; Gao, Feng

    2017-08-08

    Spatial frequency domain (SFD) measurement allows rapid and non-contact wide-field imaging of the tissue optical properties, thus has become a potential tool for assessing physiological parameters and therapeutic responses during photodynamic therapy of skin diseases. The conventional SFD measurement requires a reference measurement within the same experimental scenario as that for a test one to calibrate mismatch between the real measurements and the model predictions. Due to the individual physical and geometrical differences among different tissues, organs and patients, an ideal reference measurement might be unavailable in clinical trials. To address this problem, we present a reference-free SFD determination of absorption coefficient that is based on the modulation transfer function (MTF) characterization. Instead of the absolute amplitude that is used in the conventional SFD approaches, we herein employ the MTF to characterize the propagation of the modulated lights in tissues. With such a dimensionless relative quantity, the measurements can be naturally corresponded to the model predictions without calibrating the illumination intensity. By constructing a three-dimensional database that portrays the MTF as a function of the optical properties (both the absorption coefficient μ a and the reduced scattering coefficient [Formula: see text]) and the spatial frequency, a look-up table approach or a least-square curve-fitting method is readily applied to recover the absorption coefficient from a single frequency or multiple frequencies, respectively. Simulation studies have verified the feasibility of the proposed reference-free method and evaluated its accuracy in the absorption recovery. Experimental validations have been performed on homogeneous tissue-mimicking phantoms with μ a ranging from 0.01 to 0.07 mm -1 and [Formula: see text] = 1.0 or 2.0 mm -1 . The results have shown maximum errors of 4.86 and 7% for [Formula: see text] = 1.0 mm -1 and

  17. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  18. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of

  19. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  20. Determination of concentration and molar absorptivity of hypochlorous acid and hypobromous acid species by hydrogen peroxide titration

    NASA Astrophysics Data System (ADS)

    Uehara, H.; Arakaki, T.

    2017-12-01

    Hypochlorous acid and hypobromous acid (abbreviated as "HypoX acids") are the main ingredients of bleaching and bactericides. The HypoX acids change their chemical forms depending on environmental factors such as pH and various chemical reactions. For example, it has been reported that hypobromite ion in water changes to carcinogenic bromate by photochemical reaction with ultraviolet light. In this study, concentrations of HypoX acids were determined by UV-VIS absorbance measurement utilizing the fact that HypoX acids react with hydrogen peroxide and do not co-exist in the solution. The method for determining the concentration by titration with hydrogen peroxide can be carried out simpler and more efficiently than the DPD method or the current titration method generally used for chlorine concentration measurement. Molar absorptivity between 250 - 500 nm of HypoX acids, including their conjugate base species, was determined by solving theoretical acid-base formula including molar fraction of each chemical species at various pHs. Molar absorptivity of OCl- and OBr- between 250 - 500 nm was determined based on the concentrations obtained from titration with hydrogen peroxide and absorbance at pH > 10, where OCl- and OBr- dominate. Furthermore, the HypoX acids solutions were irradiated with a solar simulator, and the photolysis rate constants were obtained. Based on those values, the half-lives were calculated and the behavior of HypoX acids in the environment was elucidated.

  1. Incorporating a Generic Model of Subcutaneous Insulin Absorption into the AIDA v4 Diabetes Simulator 3. Early Plasma Insulin Determinations

    PubMed Central

    Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor

    2009-01-01

    Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as

  2. Tin Valence and Local Environments in Silicate Glasses as Determined From X-ray Absorption Spectroscopy

    SciTech Connect

    McKeown,D.; Buechele, A.; Gan, H.

    2008-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Angstroms. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Angstroms, that suggest Sn4+O6 units linking with each other, while the 4.96 Angstroms Sn-Sn distance for one waste glass suggests clustering of unlinkedmore » Sn4+O6 units.« less

  3. Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Reufer, Mathias; Gaudino, Danila; Scheffold, Frank

    2017-11-01

    Diffusing wave spectroscopy (DWS) can be employed as an optical rheology tool with numerous applications for studying the structure, dynamics and linear viscoelastic properties of complex fluids, foams, glasses and gels. To carry out DWS measurements, one first needs to quantify the static optical properties of the sample under investigation, i.e. the transport mean free path l * and the absorption length l a. In the absence of absorption this can be done by comparing the diffuse optical transmission to a calibration sample whose l * is known. Performing this comparison however is cumbersome, time consuming, and prone to mistakes by the operator. Moreover, already weak absorption can lead to significant errors. In this paper, we demonstrate the implementation of an automatized approach, based on which the DWS measurement procedure can be simplified significantly. By comparison with a comprehensive set of calibration measurements we cover the entire parameter space relating measured count rates ( CR t , CR b ) to ( l *, l a). Based on this approach we can determine l * and la of an unknown sample accurately thus making the additional measurement of a calibration sample obsolete. We illustrate the use of this approach by monitoring the coarsening of a commercially available shaving foam with DWS.

  4. Direct sampling graphite furnace atomic absorption spectrometry - feasibility of Na and K determination in desalted crude oil

    NASA Astrophysics Data System (ADS)

    Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.

    2018-03-01

    In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.

  5. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    NASA Astrophysics Data System (ADS)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  6. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  7. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nunes, Dayana Lopes; dos Santos, Eliane Pereira; Barin, Juliano Smanioto; Mortari, Sergio Roberto; Dressler, Valderi Luiz; de Moraes Flores, Érico Marlon

    2005-06-01

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO 2 dissolved in the condensed phase was evaluated. No effect of NO 3- on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO 2-. For Hg, no interference of nitrite was observed up to 20 mg of NO 2-. A complete suppression of the Se signal was observed when gaseous NO 2 was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO 2 was passed directly into the atomizer, Se signals decreased similarly to when NO 2 was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO 2 effect in sample digests containing residual NO 2, but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively.

  8. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  9. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  10. An induction furnace for the determination of cadmium in solutions and zinc-base metals by atomic-absorption spectroscopy.

    PubMed

    Headridge, J B; Smith, D R

    1971-03-01

    An induction furnace coupled to a Unicam SP90 atomic-absorption spectrophotometer is described for the determination of traces of volatile elements in solutions and volatile matrices. The apparatus has been used to obtain calibration graphs for 1-20 and 50-750 ng of cadmium in microl-volumes of solution, the 228.8 and 326.2 nm resonance lines respectively being used, and to determine cadmium in 5-mg samples of zinc-base metals within the concentration range 5-400 microg g by using the less sensitive 326-2-nm line. A furnace temperature of 1,350 degrees was used. Data on accuracy and precision are presented. The apparatus could readily be used to determine trace elements in volatile materials at concentrations of 10-1000 ng/g .

  11. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    PubMed

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.

  12. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    PubMed

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  14. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  15. A method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry.

    PubMed

    Parkinson, I S; Ward, M K; Kerr, D N

    1982-10-27

    A simple but reliable method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry is described. No preparatory procedures are required for water samples, although serum is mixed with a wetting agent (Triton X-100) to allow complete combustion of the samples and to improve analytical precision. Precautions to prevent contamination during sample handling are discussed and instrumental parameters are defined. The method has a sensitivity of 35.5 pg and detection limits of 2.3 micrograms Al/l for serum and 1.3 micrograms Al/l for water. The method was used to determine the aluminium concentration in serum of 46 normal subjects. The mean aluminium content was 7.3 micrograms/l (range 2--15 micrograms/l.

  16. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  17. Flame and flameless atomic-absorption determination of tellurium in geological materials

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.; Hubert, A.E.

    1978-01-01

    The sample is digested with a solution of hydrobromic acid and bromine and the excess of bromine is expelled. After dilution of the solution to approximately 3 M in hydrobromic acid, ascorbic acid is added to reduce iron(III) before extraction of tellurium into methyl isobutyl ketone (MIBK). An oxidizing air-acetylene flame is used to determine tellurium in the 0.1-20 ppm range. For samples containing 4-200 ppb of tellurium, a carbon-rod atomizer is used after the MIBK extract has been washed with 0.5 M hydrobromic acid to remove the residual iron. The flame procedure is useful for rapid preliminary monitoring, and the flameless procedure can determine tellurium at very low concentrations. ?? 1978.

  18. Determination of niobium in rocks, ores and alloys by atomic-absorption spectrophotometry.

    PubMed

    Husler, J

    1972-07-01

    Niobium, in concentrations as low as 0.02% Nb(2)O(5), is determined in a variety of materials without separation or enrichment. Chemical and ionization interferences are controlled, and sensitivity is increased, by maintaining the iron, aluminium, hydrofluoric acid and potassium content within certain broad concentration limits. There is close agreement with the results of analyses by emission spectrographic, electron microprobe and X-ray fluorescence methods.

  19. Determination of arsenic in geological materials by electrothermal atomic-absorption spectrometry after hydride generation

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.

    1979-01-01

    Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.

  20. Evaluation of the use of five laboratory determined ozone absorption cross sections in brewer and dobson retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Redondas, A.; Evans, R.; Stuebi, R.; Köhler, U.; Weber, M.

    2013-09-01

    The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson Spectrophotometers, in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process a TOC value is produced. Inherent in the algorithm is the use of a laboratory determined cross-section data set. We used five ozone cross section data sets: three Bass and Paur, Daumont, Malicet and Brion (DMB) and a new Institute of Environmental Physics (IUP), University of Bremen, set. The three Bass and Paur (1985) sets are: quadratic temperature coefficients from IGACO web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005), in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson are then calculated using the normal Brewer operative method which is essentially the same as used on Dobson. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments: we find the UIP data set changes the calculated TOC by -0.5%, the DBM data set changes the calculate TOC by -3.2%, and the IGQ4 data set at -45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. The application of a common Langley calibration and the IUP cross section the differences between Brewer and Dobson vanish whereas using Bass and Paur and DBM produce differences of 1.5% and 2% respectively. A

  1. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  2. Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy

    PubMed Central

    Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.

    2004-01-01

    Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554

  3. Experimental Determination of the Molar Absorption Coefficient of n-Hexane Adsorbed on High-Silica Zeolites.

    PubMed

    Gatti, Giorgio; Olivas Olivera, Diana F; Sacchetto, Vittoria; Cossi, Maurizio; Braschi, Ilaria; Marchese, Leonardo; Bisio, Chiara

    2017-09-06

    Determination of the molar absorption coefficients of the CH 3 bending mode at ν˜ =1380 cm -1 (ϵ 1380 ) of n-hexane adsorbed from the gas phase on two different dealuminated zeolites is derived by a combination of IR spectroscopy and microgravimetric analysis. High-silica zeolite Y (HSZ-Y) and zeolite ZSM-5 (with SiO 2 /Al 2 O 3 ratios of 200 and 280, respectively) with different textural and surface features are selected to evaluate the effect of the pore structure and architecture on the value of ϵ 1380 of the adsorbed n-hexane. Experimental data indicate that the molecule experiences a different adsorption environment inside zeolites; thus resulting in a significant change of the dipole moment and very different ϵ 1380 values: (0.278±0.018) cm μmol -1 for HSZ-Y and (0.491±0.032) cm μmol -1 for ZSM-5. Experimental data are also supported by computational modeling, which confirms the effect of different matrices on the IR absorption intensity. This study reveals that the use of probe molecules for quantitative measurements of surface sites has to be judiciously adopted, especially if adsorption occurs in the restricted spaces of microporous materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers

    NASA Astrophysics Data System (ADS)

    Burguera, Marcela; Burguera, José Luis; Rondón, Carlos; Carrero, Pablo

    2001-10-01

    A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different 'coating' treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l -1 NH 4F HF after every three boron measurements. The addition of 10 μl of 15 g l -1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l -1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.

  5. An optical method to determine the thermodynamics of hydrogen absorption and desorption in metals

    NASA Astrophysics Data System (ADS)

    Gremaud, R.; Slaman, M.; Schreuders, H.; Dam, B.; Griessen, R.

    2007-12-01

    Hydrogenography, an optical high-throughput combinatorial technique to find hydrogen storage materials, has so far been applied only to materials undergoing a metal-to-semiconductor transition during hydrogenation. We show here that this technique works equally well for metallic hydrides. Additionally, we find that the thermodynamic data obtained optically on thin Pd-H films agree very well with Pd-H bulk data. This confirms that hydrogenography is a valuable general method to determine the relevant parameters for hydrogen storage in metal hydrides.

  6. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  7. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  8. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    SciTech Connect

    Andreeva, M. A., E-mail: Mandreeva1@yandex.ru; Repchenko, Yu. L., E-mail: kent160@mail.ru; Smekhova, A. G.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  9. Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry.

    PubMed

    da Silva, Alessandra Furtado; Borges, Daniel L G; Lepri, Fábio Grandis; Welz, Bernhard; Curtius, Adilson J; Heitmann, Uwe

    2005-08-01

    This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 microg) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 degrees C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 degrees C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 degrees C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 degrees C and atomization at 1500 degrees C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g(-1), calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6-1.2 mg were analyzed.

  10. Determination of K-shell absorption jump factors and jump ratios for La2O3, Ce and Gd using two different methods

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma

    2015-02-01

    The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.

  11. What's in the Wind? Determining the Properties of Outflowing Gas in Powerful Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Leighly, Karen

    2017-08-01

    A significant fraction of quasars exhibits blueshifted broadabsorption lines (BALs) in their rest-UV spectra, indicating powerfuloutflows emerging from the central engine. These outflows may removeangular momentum to enable black hole growth, enrich the intergalacticmedium with metals, and trigger quenching of star formation ingalaxies. Despite years of study, the physical conditions of theoutflowing gas are poorly understood. The handful of objects that havebeen subjected to detailed analysis are atypical and characterized byrelatively narrow lines where blending is unimportant. However,investigating more powerful BAL quasars will give us better insightinto the types of outflows much more likely to impact galaxyevolution.SimBAL is a novel spectral synthesis fitting method for BAL quasarsthat uses Bayesian model calibration to compare synthetic to observedspectra. With the model inputs of ionization parameter, columndensity, and covering fraction specified, the gas properties givingrise to the BAL features can be determined. We propose to applySimBAL to archival spectra of a sample of 14 luminous BAL quasars to characterize their bulk outflow properties as a function of velocityfor the first time. Our results will show the range of parameterstypical of powerful outflows, an essential step towards constrainingthe physics behind quasar winds and thus their impact on theirenvironments.

  12. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    SciTech Connect

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number ofmore » 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.« less

  13. Determination of inorganic arsenic and its organic metabolites in urine by flow-injection hydride generation atomic absorption spectrometry.

    PubMed

    Hanna, C P; Tyson, J F; McIntosh, S

    1993-08-01

    A method has been developed for the determination of inorganic arsenic [As(III) and As(V)] and its organic metabolites (monomethylarsenic and dimethylarsenic) in urine by flow-injection hydride generation atomic absorption spectrometry. The nontoxic seafood-derived arsenobetaine and arsenocholine species were first separated by a solid-phase extraction procedure. The remaining sample was digested with a mixture of nitric and sulfuric acids and potassium dichromate, followed by attack with hydrogen peroxide. The resulting As(V) was reduced to As(III) with potassium iodide in hydrochloric acid before injection into the flow-injection manifold. The percentage analytical recoveries (mean +/- 95% confidence interval) of various arsenic species added to a urine specimen at 250 micrograms/L were 108 +/- 2, 112 +/- 11, 104 +/- 7, and 95 +/- 5 for As(III), As(V), monomethylarsenic, and dimethylarsenic, respectively. For the determination of arsenic in Standard Reference Material 2670 (toxic metals in human urine), results agreed with the certified value (480 +/- 100 micrograms/L). Analyses of samples for the Centre de Toxicologie du Quebec, containing seafood-derived species, demonstrated the viability of the separation procedure. Detection limits were between 0.1 and 0.2 microgram/L in the solution injected into the manifold, and precision at 10 micrograms/L was between 2% and 3% (CV). These preliminary results show that the method might be applicable to determinations of arsenic in a range of clinical urine specimens.

  14. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    PubMed

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  15. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  16. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    PubMed

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  17. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    PubMed Central

    Chamsaz, Mahmoud; Akhoundzadeh, Jeiran; Arbab-zavar, Mohammad Hossein

    2012-01-01

    A simple microextraction method based on solidification of a floating organic drop (SFOD) was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Ammonium pyrolidinedithiocarbamate (APDC) was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s) and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD) for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples. PMID:25685441

  18. Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Redondas, A.; Evans, R.; Stuebi, R.; Köhler, U.; Weber, M.

    2014-02-01

    The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson spectrophotometers in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process, a TOC value is produced. Inherent to the algorithm is the use of a laboratory-determined cross-section data set. We used five ozone cross-section data sets: three data sets that are based on measurements of Bass and Paur; one derived from Daumont, Brion and Malicet (DBM); and a new set determined by Institute of Experimental Physics (IUP), University of Bremen. The three Bass and Paur (1985) sets are as follows: quadratic temperature coefficients from the IGACO (a glossary is provided in Appendix A) web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005) in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson instruments are then calculated using the normal Brewer operative method, which is essentially the same as that used for Dobson instruments. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments, we find the IUP data set changes the calculated TOC by -0.5%, the DBM data set changes the calculated TOC by -3.2%, and the IGQ4 data set at -45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used. We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. With the application of a common Langley

  19. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  20. Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques.

    PubMed

    Dasenaki, Marilena E; Thomaidis, Nikolaos S

    2010-07-05

    A strategy was newly developed to rapidly screen seventeen sulfonamides and five tetracyclines in a single run from fish tissues using ultra-high performance liquid chromatography (UHPLC) coupled with comprehensive mass spectrometric approaches, including precursor-ion scan and data dependent scan. The product ions for precursor-ion scanning were selected by studying the MS/MS fragmentation of the analytes. All sulfonamides share the same diagnostic product ion at m/z 156 in positive MS/MS scan, while for tetracycline antibiotics the diagnostic product ion was proved to be at m/z 153.8. Further characterization of each compound was performed using a data dependent scan. Separation was performed on a Zorbax Eclipse Plus C18 column with a gradient elution using acetonitrile - 0.1% formic acid mobile phase at a flow rate of 0.1 mL min(-1). This approach has proven to be a powerful, highly selective, and sensitive tool for rapid screening and detection of non-targeted components in fish tissue and requires a minimum sample preparation such as one generic extraction step with MeOH:ACN 50:50 (v/v) acidified with 0.05% formic acid. The method has also been applied successfully to porcine and poultry meat. The validation of such a screening method was performed for the first time according to Commission Decision 2002/657/EC and satisfactory method performance characteristics were achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tinas, Hande; Ozbek, Nil; Akman, Suleyman

    2018-02-01

    In this study, lead concentrations in various flour samples were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling. Since samples were analyzed directly, the risks and disadvantages of sample digestion were eliminated. Solid flour samples were dried, weighed on the platforms, Pd was added as a modifier and introduced directly into a graphite tube using a manual solid sampler. Platforms and tubes were coated with Zr. The optimized pyrolysis and atomization temperatures were 800 °C and 2200 °C, respectively. The sensitivities of lead in various flour certified reference materials (CRMs) and aqueous standards were not significantly different. Therefore, aqueous standards were safely used for calibration. The absolute limit of detection and characteristic mass were 7.2 pg and 9.0 pg of lead, respectively. The lead concentrations in different types of flour samples were found in the range of 25-52 μg kg- 1. Finally, homogeneity factors representing the heterogeneity of analyte distribution for lead in flour samples were determined.

  2. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  3. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  4. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    PubMed

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  5. Back-extraction of trace elements from organometallic-halide extracts for determination by flameless atomic absorption spectrometry

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.

  6. Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry.

    PubMed

    Amorim, Fábio A C; Ferreira, Sérgio L C

    2005-02-28

    In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250mL and the extraction process using 4.0mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3ngg(-1) for cadmium and 4.2ngg(-1) for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20ngg(-1), respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200ngg(-1), respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.

  7. First Asteroid Spectrometric Observations with BTA: 3045 Alois

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Burenkov, A. N.; Pramskij, A. G.

    2001-11-01

    BTA, Russian 6-m telescope, was mainly used for faint stars and extragalactic objects observations. We have firstly performed with the telescope spectrometric observations of a main belt asteroid, 3045 Alois, and are planning to use it for Centaurs and Kuiper Belt objects spectrometry. We have obtained some results of the observations. Spectra of Alois were recorded on two nights of March 2001 (29/30 and 30/31) with a long slit spectrograph (UAGS + CCD) in the .38-.80 um spectral range. HD105633 (G5) [1] considered as a solar analog was also observed, and the data were used for calculation the asteroid reflectance spectra. It was found that reflectance spectra of Alois obtained on different nights have various continuum slopes and absorption features. The reflectance spectrum on 29/30 March had a flat continuum in the range .44-.65 um and absorption bands at .5 um (ab. 7 % with respect to the continuum) similar to that found on the E-type asteroid 2035 Stearns [2], and at .80 um (ab. 25 %). Another one on 30/31 March had a red continuum in the range .40-.67 um and absorption bands at .43 um (ab. 6 %) resembling absorption features found on some C-, M- and S-type asteroids [3, 4], and at .80 um (ab. 17 %). From the data and taking into account the mean heliocentric distance of 3045 Alois (3.13 AU) we suppose that the asteroid having irregular spectral characteristics may be of M- or E-type and possibly hydrated. Unfortunately, its albedo and rotational period remain still unknown. [1] Mermilliod J.-C. (1994) Bull. Inf. CDS 45, 3. [2] Fornasier S. and Lazzarine M. (2001) Icarus 152, 127-133. [3] Vilas F. et al. (1993) Icarus 102, 225-231. [4] Busarev V. V. (2001) LPSC XXXII, abs. 1927.

  8. Structure elucidation of metabolite x17299 by interpretation of mass spectrometric data.

    PubMed

    Zhang, Qibo; Ford, Lisa A; Evans, Anne M; Toal, Douglas R

    2017-01-01

    A major bottleneck in metabolomic studies is metabolite identification from accurate mass spectrometric data. Metabolite x17299 was identified in plasma as an unknown in a metabolomic study using a compound-centric approach where the associated ion features of the compound were used to determine the true molecular mass. The aim of this work is to elucidate the chemical structure of x17299, a new compound by de novo interpretation of mass spectrometric data. An Orbitrap Elite mass spectrometer was used for acquisition of mass spectra up to MS 4 at high resolution. Synthetic standards of N,N,N -trimethyl-l-alanyl-l-proline betaine (l,l-TMAP), a diastereomer, and an enantiomer were chemically prepared. The planar structure of x17299 was successfully proposed by de novo mechanistic interpretation of mass spectrometric data without any laborious purification and nuclear magnetic resonance spectroscopic analysis. The proposed structure was verified by deuterium exchanged mass spectrometric analysis and confirmed by comparison to a synthetic standard. Relative configuration of x17299 was determined by direct chromatographic comparison to a pair of synthetic diastereomers. Absolute configuration was assigned after derivatization of x17299 with a chiral auxiliary group followed by its chromatographic comparison to a pair of synthetic standards. The chemical structure of metabolite x17299 was determined to be l,l-TMAP.

  9. Fast liquid chromatographic-tandem mass spectrometric method using mixed-mode phase chromatography and solid phase extraction for the determination of 12 mono-hydroxylated brominated diphenyl ethers in human serum.

    PubMed

    Petropoulou, Syrago-Styliani E; Duong, Wendy; Petreas, Myrto; Park, June-Soo

    2014-08-22

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed from the oxidative metabolism of polybrominated diphenyl ethers (PBDEs) in humans, rats and mice, but their quantitation in human blood and other matrices with liquid chromatography-mass spectrometric techniques has been a challenge. In this study, a novel analytical method was developed and validated using only 250 μL of human serum for the quantitation of twelve OH-PBDEs, fully chromatographically separated in a 15 min analytical run. This method includes two novel approaches: an enzymatic hydrolysis procedure and a chromatographic separation using a mixed mode chromatography column. The enzymatic hydrolysis (EH) was found critical for 4'-OH-BDE17, which was not detectable without it. For the sample clean up, a solid phase extraction protocol was developed and validated for the extraction of the 12 congeners from human serum. In addition, for the first time baseline resolution of two components was achieved that correspond to a single peak previously identified as 6'-OH-BDE99. The method was validated for linearity, accuracy, precision, matrix effects, limit of quantification, limit of detection, sample stability and overall efficiency. Recoveries (absolute and relative) ranged from 66 to 130% with relative standard deviations <21% for all analytes. Limit of detection and quantitation ranged from 4 to 90 pg mL(-1) and 6-120 pg mL(-1), respectively, with no carry over effects. This method was applied in ten commercially available human serum samples from the general US population. The mean values of the congeners detected in all samples are 4'-OH-BDE17 (34.2 pg mL(-1)), 4-OH-BDE42 (33.9 pg mL(-1)), 5-OH-BDE47 (17.5 pg mL(-1)) and 4'-OH-BDE49 (12.4 pg mL(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. © 2011 Institute of Food Technologists®

  11. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2012-08-01

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.

  12. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    PubMed

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  13. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    PubMed

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  14. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  15. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    NASA Astrophysics Data System (ADS)

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gerrard, Victoria; Gomez-Marquez, Jose

    2014-03-01

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  17. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model.

    PubMed

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  18. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  19. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Spectrometric Characterization of Active Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Bedard, D.; Monin, D.; Scott, R.; Wade, G.

    2012-09-01

    Spectrometric characterization of artificial space objects for the purposes of Space Situational Awareness (SSA) has demonstrated great potential since this technique was first reported at this conference over a decade ago. Yet, much scientific work remains to be done before this tool can be used reliably in an operational context. For example, a detailed study of the impacts of a dynamic illumination-object-sensor geometry during individual spectrometric observations has yet to be described. A thorough understanding of this last problem is considered critical if reflectance spectroscopy will be used to characterize active low Earth orbiting spacecraft, in which the Sun-object-sensor geometry varies considerably over the course of a few seconds, or to study space debris that have uncontrolled and varying attitude. It is with the above questions in mind that two observation campaigns were conducted. The first consisted in using small-aperture telescopes to obtain multi-color photometric light curves of active geosynchronous satellites over a wide range of phase angles. The second observation campaign was conducted at the Dominion Astrophysical Observatory (DAO) using the 1.8-metre Plaskett telescope and its Cassegrain spectrograph. The objective of this experiment was to gather time-resolved spectrometric measurements of active geosynchronous satellites as a function of phase angle. This class of satellites was selected because their attitude is controlled and can be estimated to a high level of confidence. This paper presents the two observation campaigns and provides a summary of the key results of this experiment.

  2. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  3. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    PubMed

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.

  4. Liquid Chromatography Electrospray Ionization Mass Spectrometric (LC-ESI-MS) and Desorption Electrospray Ionization Mass Spectrometric (DESI-MS) Identification of Chemical Warfare Agents in Consumer Products

    DTIC Science & Technology

    2007-06-01

    T ACanadaY Approved for PublicR Distribution Uln& Liquid Chromatography Electrospray Ionization Mass Spectrometric ( LC -ESI- MS) and Desorption...consumer products with chemical warfare agents or other toxic chemicals. Liquid chromatography electrospray ionization mass spectrometry ( LC -ESI-MS) and...house LC -ESI-MS and LC -ESI-MS/MS methods were evaluated for the determination of chemical warfare agents in spiked bottled water samples. The

  5. Determination of cadmium in urine by extraction and flameless atomic-absorption spectrophotometry Comparison of urine from smokers and non-smokers of different sex and age.

    PubMed

    Jawaid, M; Lind, B; Elinder, C G

    1983-07-01

    A method is presented for determining cadmium in urine by nameless atomic-absorption spectrophotometry after extraction. The sample is dried, ashed in the presence of nitric acid, and then the residue is dissolved in hydrochloric acid. Cadmium is extracted as its tetrahexylammonium iodide complex into methyl isobutyl ketone. The organic phase is analysed for cadmium by atomic-absorption spectrophotometry with electrothermal atomization. The median urinary excretion of cadmium for smokers aged 50-64 has been found to be 0.7 and 0.75 mug l . for males and females respectively, the values for non-smokers being 0.25 and 0.4mug l .

  6. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    PubMed

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish.

  7. New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region.

    PubMed

    Ohno, Seigo; Miyamoto, Katsuhiko; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5-26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was approximately 2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

  8. Spectrometric Analysis for Pulse Jet Mixer Testing

    SciTech Connect

    ZEIGLER, KRISTINE

    2004-07-12

    The Analytical Development Section (ADS) was tasked with providing support for a Hanford River Protection Program-Waste Treatment Program (RPP-WTP) project test involving absorption analysis for non-Newtonian pulse jet mixer testing for small scale (PJM) and prototype (CRV) tanks with sparging. Tanks filled with clay were mixed with various amounts of powdered dye as a tracer. The objective of the entire project was to determine the best mixing protocol (nozzle velocity, number of spargers used, total air flow, etc.) by determining the percent mixed volume through the use of an ultraviolet-visible (UV-Vis) spectrometer. The dye concentration within the sample could bemore » correlated to the volume fraction mixed in the tank. Samples were received in vials, a series of dilutions were generated from the clay, allowed to equilibrate, then centrifuged and siphoned for the supernate liquid to analyze by absorption spectroscopy. Equilibration of the samples and thorough mixing of the samples were a continuous issue with dilution curves being difficult to obtain. Despite these technical issues, useful data was obtained for evaluation of various mix conditions.« less

  9. Characterizations of the radioactive waste by the remotely-controlled collimated spectrometric system

    SciTech Connect

    Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system wasmore » used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)« less

  10. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    NASA Astrophysics Data System (ADS)

    Kruger, Pamela C.; Parsons, Patrick J.

    2007-03-01

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3

  11. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  12. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  13. Separation, preconcentration and inductively coupled plasma-mass spectrometric (ICP-MS) determination of thorium(IV), titanium(IV), iron(III), lead(II) and chromium(III) on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin.

    PubMed

    Aydin, Funda Armagan; Soylak, Mustafa

    2010-01-15

    A simple and effective method is presented for the separation and preconcentration of Th(IV), Ti(IV), Fe(III), Pb(II) and Cr(III) by solid phase extraction on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin prior to their inductively coupled plasma-mass spectrometric determinations. The influence of analytical parameters including pH of the aqueous solution, flow rates of sample and eluent solutions and sample volume on the quantitative recoveries of analyte ions was investigated. Matrix effects caused by the presence of alkali, earth alkali and some metal ions in the analyzed solutions were investigated. The presented solid phase extraction method was applied to BCR-144R Sewage Sludge (domestic origin), BCR-141R Calcareous Loam Soil, NIST 1568a Rice Flour and NIST 1577b Bovine Liver certified reference materials (CRMs) for the determination of analyte ions and the results were in good agreement with the certified values. The separation procedure presented was also applied to the various natural water samples collected from Turkey with satisfactory results.

  14. Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flame.

    PubMed

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael

    2005-08-01

    Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained.

  15. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  16. Determination of Copper by Graphite Furnace Atomic Absorption Spectrophotometry: A Student Exercise in Instrumental Methods of Analysis.

    ERIC Educational Resources Information Center

    Williamson, Mark A.

    1989-01-01

    Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…

  17. Mass Spectrometric Studies of Oxides

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2012-01-01

    Current studies at NASA Glenn on oxide thermodynamics are discussed. Previous studies on the vaporization of B2O3 in reducing atmospheres led to inconsistent studies when B was used as a reductant. It is shown that liquid B2O3 does not wet B and a clear phase separation was noted in the Knudsen cell. This problem was solved by using FeB and Fe2B to supply a different and constant activity of B. The thermodynamic data thus derived are compared to quantum chemical composite calculations. A major problem in high temperature mass spectrometry is the determination of accurate ionization cross sections, particularly for molecules. The method of Deutsch and Mark shows promise and some sample calculations are discussed. Finally current studies on the thermodynamics of rare earth silicates are discussed. Here the problems are obtaining a measurable signal from SiO2 vaporization and non-equilibrium vaporization. The use of a Ta reducing agent provides a stronger signal, which is related to silica activity. The Whitman-Motzfeld relation adapted to KEMS measurements is applied to obtain equilibrium pressures.

  18. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  20. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  1. Electrospray Modifications for Advancing Mass Spectrometric Analysis

    PubMed Central

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-01-01

    Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented. PMID:28573082

  2. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  3. Determination of silver in irons and steels by atomic-absorption spectrometry with an induction furnace: Direct analysis of solid samples.

    PubMed

    Aziz-Alrahman, A M; Headridge, J B

    1978-07-01

    The silver contents of 17 irons and steels have been determined by dropping 0.5-20mg of millings or turnings of the metals into an induction furnace situated within an atomic-absorption spectrophotometer. The limit of detection was 0.005 mug/g and the relative standard deviations were 12% or better for silver contents of not less than 0.05 mug/g. Samples are added to the furnace at 4-5 min intervals.

  4. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  5. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  6. Mass spectrometric profiling of flavonoid glycoconjugates possessing isomeric aglycones.

    PubMed

    Abrankó, László; Szilvássy, Blanka

    2015-01-01

    In fields such as food and nutrition science or plant physiology, interest in untargeted profiling of flavonoids continues to expand. The group of flavonoids encompasses several thousands of chemically distinguishable compounds, among which are a number of isobaric compounds with the same elemental composition. Thus, the mass spectrometric identification of these compounds is challenging, especially when reference standards are not available to support their identification. Many different types of isomers of flavonoid glycoconjugates are known, i.e. compounds that differ in their glycosylation position, glycan sequence or type of interglycosidic linkage. This work focuses on the mass spectrometric identification of flavonoid glycoconjugate isomers possessing the same glycan mass and differing only in their aglycone core. A non-targeted HPLC-ESI-MS/MS profiling method using a triple quadrupole MS is presented herein, which utilizes in-source fragmentation and a pseudo-MS(3) approach for the selective analysis of flavonoid glycoconjugates with isomeric/isobaric aglycones. A selective MRM-based identification of the in-source formed isobaric aglycone fragments was established. Additionally, utilizing the precursor scanning capability of the employed triple quadrupole instrument, the developed method enabled the determination of the molecular weight of the studied intact flavonoid glycoconjugate. The versatility of the method was proven with various types of flavonoid aglycones, i.e. anthocyanins, flavonols, flavones, flavanones and isoflavones, along with their representative glycoconjugates. The developed method was also successfully applied to a commercially available sour cherry sample, in which 16 different glycoconjugates of pelargonidin, genistein, cyanidin, kaempferol and quercetin could be tentatively identified, including a number of compounds containing isomeric/isobaric aglycones. Copyright © 2015 John Wiley & Sons, Ltd.

  7. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    PubMed

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The use of gas chromatographic-mass spectrometric-computer systems in pharmacokinetic studies.

    PubMed

    Horning, M G; Nowlin, J; Stafford, M; Lertratanangkoon, K; Sommer, K R; Hill, R M; Stillwell, R N

    1975-10-29

    Pharmacokinetic studies involving plasma, urine, breast milk, saliva and liver homogenates have been carried out by selective ion detection with a gas chromatographic-mass spectrometric-computer system operated in the chemical ionization mode. Stable isotope labeled drugs were used as internal standards for quantification. The half-lives, the concentration at zero time, the slope (regression coefficient), the maximum velocity of the reaction and the apparent Michaelis constant of the reaction were determined by regression analysis, and also by graphic means.

  9. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    NASA Astrophysics Data System (ADS)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  10. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    PubMed

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model.

    PubMed

    Gienger, Jonas; Groß, Hermann; Neukammer, Jörg; Bär, Markus

    2016-11-01

    The real part of the refractive index of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range 250-1100 nm using the Kramers-Kronig (KK) relations, and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

  12. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    NASA Technical Reports Server (NTRS)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  13. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    PubMed

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of trace elements in metals and alloys by atomic-absorption spectroscopy using an induction-heated graphite well furnace as atom source.

    PubMed

    Headridge, J B; Smith, D R

    1972-07-01

    An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.

  16. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    USGS Publications Warehouse

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  17. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  18. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    PubMed

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.

    2006-11-01

    A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

  1. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    PubMed

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  2. [Mass-spectrometric analysis of an anti-microbial preparation decamethoxine].

    PubMed

    Sukhodub, L F; Kosevich, M V; Shelkovskiĭ, V S; Volianskiĭ, Iu L

    1989-11-01

    I. I. Mechnikov Kharkov Research Institute of Microbiology, Vaccines and Sera, Ministry of Public Health of the Ukrainian SSR. The results of mass spectrometric investigation of decamethoxine++, an antimicrobial chemotherapeutic drug, are presented. It was shown that desorption-field mass spectrometry provided recording decamethoxine++ intensive quasimolecular ions [M.Cl]+ and [M]++ forming under conditions of high electric intensity only from the intact parent molecule. Hence, the presence of the peaks in the desorption field mass spectra made it possible to definitively determine decamethoxine++ in the samples. Therefore, the procedure of desorption-field mass spectrometry proved reliable in identification of bisquaternary ammonium compounds. Ways for thermal decomposition and mass spectrometric fragmentation of the decamethoxine++ molecule under various ionization conditions are also discussed.

  3. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  4. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.

    PubMed

    Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S

    2002-04-20

    Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

  5. Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing. II - Application

    NASA Technical Reports Server (NTRS)

    King, M. D.

    1979-01-01

    A hemispherical radiometer has been used to obtain spectrally narrow-band measurements of the downward hemispheric diffuse and total (global) flux densities at varying solar zenith angles on 14 days over Tucson. Data are presented which illustrate the effects of temporally varying atmospheric conditions as well as clear stable conditions on the ratio of the diffuse to direct solar radiation at the earth's surface. The ground albedo and the effective imaginary term of the complex refractive index of atmospheric particulates are derived from the diffuse-direct ratio measurements on seven clear stable days at two wavelengths using the statistical procedure described by King and Herman (1979). Results indicate that the downwelling diffuse radiation field in the midvisible region in Tucson can be adequately described by Mie scattering theory if the ground albedo is 0.279 + or - 0.100 and the index of absorption is 0.0306 + or - 0.0082.

  6. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  7. Rapid Determination of Trace Palladium in Active Pharmaceutical Ingredients by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Yin, Q. H.; Zhu, D. M.; Yang, D. Z.; Hu, Q. F.; Yang, Y. L.

    2018-01-01

    Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0-500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.

  8. X-ray absorption spectroscopy to determine originating depth of electrons that form an inelastic background of Auger electron spectrum

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Cui, Yi-Tao; Murai, Takaaki; Oji, Hiroshi; Kimoto, Yasuji

    2017-07-01

    In Auger electron spectroscopy (AES), the spectral background is mainly due to inelastic scattering of Auger electrons that lose their kinetic energy in a sample bulk. To investigate the spectral components within this background for SiO2(19.3 nm)/Si(100) with known layer thickness, X-ray absorption spectroscopy (XAS) was used in the partial-electron-yield (PEY) mode at several electron kinetic energies to probe the background of the Si KLL Auger peak. The Si K-edge PEY-XAS spectra constituted of both Si and SiO2 components at each kinetic energy, and their component fractions were approximately the same as those derived from the simulated AES background for the same sample structure. The contributions of Auger electrons originating from layers at different depths to the inelastic background could thus be identified experimentally.

  9. The Influence of Wavelength-Dependent Absorption and Temperature Gradients on Temperature Determination in Laser-Heated Diamond-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.

    2016-12-01

    In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.

  10. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  11. Liquid-liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant.

    PubMed

    Carrillo-Carrión, Carolina; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2007-11-09

    BTEX-S compounds are widely distributed in the environment and can be present in different foodstuffs, including olive oil. Taking into account the risks of the exposure to these compounds, analytical methods for their determination in different matrices are mandatory. In this paper, the use of surfactant-coated multiwalled carbon nanotubes as additive in liquid-liquid extraction is applied for the determination of single-ring aromatic compounds in olive oil samples. After sample treatment, the aqueous extracts are subsequently analyzed by headspace/gas chromatography/mass spectrometry allowing the determination of BTEX-S within ca. 15 min. Each stage of the proposed LLE/HS/GC/MS configuration involves a selectivity enhancement avoiding the interference of other compounds of the sample matrix. Limits of detection were in the range 0.25 ng mL(-1) (obtained for ethylbenzene) and 0.43 ng mL(-1) (for benzene). The repeatability of the proposed method expressed as RSD varied between 1.9% (styrene) and 3.3% (benzene) (n=11).

  12. Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-15

    A simple and rapid dispersive micro-solid phase extraction (DMSPE) combined with mode-mismatched thermal lens spectrometry as well as fiber optic linear array spectrophotometry was developed for the separation, extraction and determination of sulfadiazine. Graphene oxide was synthesized using the modified Hummers method and functionalized with iron oxide nanoparticles by means of a simple one step chemical coprecipitation method. The synthesized iron oxide functionalized graphene oxide was utilized as an efficient sorbent in DMSPE of sulfadiazine. The retained analyte was eluted by using 180µL of a 6:4 mixture of methanol/acetic acid solution and was spectrophotometrically determined based on the formation of an azo dye through coupling with thenoyltrifluoroacetone. Under the optimized conditions, with the application of spectrophotometry technique and with a sample volume of 100mL, the method exhibited a linear dynamic range of 3-80µg L(-1) with a detection limit of 0.82µg L(-1), an enrichment factor of 200 as well as the relative standard deviations of 2.6% and 4.3% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. Whereas, through the application of the thermal lens spectrometry and a sample volume of 10mL, the method exhibited a linear dynamic range of 1-800µg L(-1) with a detection limit of 0.34µg L(-1) and the relative standard deviations of 3.1% and 5.4% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. The method was successfully applied to the determination of sulfadiazine in milk, honey and water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  14. Simple method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer.

    PubMed

    Ishizaki, M

    1978-03-01

    A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.

  15. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  16. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  17. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments.

    PubMed

    Belay, Abebe; Libnedengel, Ermias; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-02-01

    The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV-vis electronic absorption spectra. From solvatochromic theory the ground and excited-state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski-Chamma-Viallet and Reichardt equations are quite similar. The ground and excited-state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO-LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent. Copyright © 2015 John Wiley & Sons, Ltd.

  19. On-line ionic liquid-based preconcentration system coupled to flame atomic absorption spectrometry for trace cadmium determination in plastic food packaging materials.

    PubMed

    Martinis, Estefanía M; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-05-15

    A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).

  20. The determination of lead in sugar and sweets without digestion by electrothermal atomic absorption spectrometry (ETAAS) with a rhodium chemical modifier.

    PubMed

    Dias, V M C; Cardoso, A S B

    2006-05-01

    Reference methods for determining lead in food are usually time-consuming. This paper reports a straightforward procedure using electrothermal atomic absorption spectrometry (ETAAS), to determine lead (Pb) in fat-free sweets. Several chemical modifiers were examined and results showed that it is not necessary to digest the samples, when a rhodium (Rh) modifier was used. The samples were dissolved in nitric acid and the determination of Pb was performed by ETAAS, using Rh chemical modifier at a pyrolysis temperature of 900 degrees C and an atomization temperature of 1,500 degrees C. No ashing step was employed and aqueous standards were used, in the range 2-10 microg l(-1). The limit of quantification was 0.095 mg kg(-1), and the accuracy of the method was verified by analysing certified reference materials.

  1. Rapid and sensitive liquid chromatography-tandem mass spectrometric method for the quantitative determination of potentially harmful substance 5,5'-oxydimethylenebis (2-furfural) in traditional Chinese medicine injections.

    PubMed

    Zang, Qingce; Gao, Yang; Huang, Luojiao; He, Jiuming; Lin, Sheng; Jin, Hongtao; Zhang, Ruiping; Abliz, Zeper

    2018-03-01

    With the rapid development and wide application of traditional Chinese medicine injection (TCMI), a number of adverse events of some TCMIs have incessantly been reported and have drawn broad attention in recent years. Establishing effective and practical analytical methods for safety evaluation and quality control of TCMI can help to improve the safety of TCMIs in clinical applications. In this study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the quantitative determination of potentially harmful substance 5,5'-oxydimethylenebis (2-furfural, OMBF) in TCMI samples. Chromatographic separation was performed on a C18 reversed-phase column (150 mm × 2.1 mm, 5 µm) by gradient elution, using methanol-water containing 0.1% formic acid as mobile phase at the flow rate of 0.3 mL/min. MS/MS detection was performed on a triple quadrupole mass spectrometer with positive electrospray ionization in the multiple reaction-monitoring mode. The method was sensitive with a limit of quantification of 0.3 ng/mL and linear over the range of 0.3-30 ng/mL ( r =0.9998). Intra- and inter-day precision for analyte was <9.52% RSD with recoveries in the range 88.0-109.67% at three concentration levels. The validated method was successfully applied to quantitatively determine the compound OMBF in TCMIs and glucose injections. Our study indicates that this method is simple, sensitive, practicable and reliable, and could be applied for safety evaluation and quality control of TCMIs and glucose injections.

  2. Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of aluminium adjuvant in immunobiologicals.

    PubMed

    Mishra, Arti; Bhalla, Sumir Rai; Rawat, Sameera; Bansal, Vivek; Sehgal, Rakesh; Kumar, Sunil

    2007-10-01

    In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25-125 microg/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision was calculated to be 1.62 and 2.22%, respectively. Further the procedure was found to be robust in relation to digestion temperature, alteration in acid (HNO(3) and H(2)SO(4)) ratio used for sample digestion and storage of digested vaccine samples up to a period of 15 days. After validation, AAS method was compared for its equivalency with routinely used complexometric titration method. On simultaneously applying on seven different groups of both bacterial and viral vaccines, viz., DPT, DT, TT, Hepatitis-A and B, Antirabies vaccine (cell culture) and tetravalent DPT-Hib, a high degree of positive correlation (+0.85-0.998) among AAS and titration methods was observed. Further AAS method was found to have an edge over complexometric titration method that a group of vaccines, viz., ARV (cell culture, adsorbed) and Hepatitis-A, in which Aluminium estimation is not feasible by pharmacopoeial approved complexometric titration method (possibly due to some interference in the sample matrix), this newly described and validated AAS assay procedure delivered accurate and reproducible results.

  3. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    PubMed

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media.

  6. Liquid chromatography tandem mass spectrometric determination of triterpenes in human fluids: Evaluation of markers of dietary intake of olive oil and metabolic disposition of oleanolic acid and maslinic acid in humans.

    PubMed

    Pozo, Oscar J; Pujadas, Mitona; Gleeson, Sarah Biel; Mesa-García, Maria Dolores; Pastor, Antoni; Kotronoulas, Aristotelis; Fitó, Montserrat; Covas, Maria-Isabel; Navarro, José Ramón Fernández; Espejo, Juan Antonio; Sanchez-Rodriguez, Estefania; Marchal, Rosa; Calleja, Miguel Angel; de la Torre, Rafael

    2017-10-16

    Olive oil is rich in several minor components like maslinic (MA) and oleanolic (OA) acids which have cardioprotective, antitumor, and anti-inflammatory properties. In order to assess the health benefits in humans provided by the olive oil triterpenes (MA and OA), suitable analytical methods able to quantify the low concentrations expected in human fluids are required. In this study, the LC-MS/MS quantification of both OA and MA in plasma and urine has been evaluated. The plasmatic method is based on the direct determination of the analytes. The urinary detection requires more sensitivity which was reached by derivatization with 2-picolylamine. Additionally, the urinary species present after MA and OA ingestion were evaluated by the direct detection of several phase II metabolites previously synthesized. Our results showed that OA is metabolized as both sulfate and glucuronide conjugates whereas MA is mainly excreted as glucuronide. Based on this information, the method for the urinary detection of MA and OA involved an enzymatic hydrolysis. Both plasmatic and urinary methods were validated with suitable precision and accuracy at all tested levels. Required sensitivity was achieved in both matrices. Up to our knowledge, this is the first method able to quantify the low concentration levels of triterpenes present in urine. Samples from two healthy volunteers who received virgin olive oils with different triterpenes content were analyzed. Some preliminary clues on the metabolic disposition of OA and MA after olive oil intake are provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Studies on Antiretroviral Drug Concentrations in Breast Milk: Validation of a Liquid Chromatography–Tandem Mass Spectrometric Method for the Determination of 7 Anti-Human Immunodeficiency Virus Medications

    PubMed Central

    Rezk, Naser L.; White, Nicole; Bridges, Arlene S.; Abdel-Megeed, Mohamed F.; Mohamed, Tarek M.; Moselhy, Said S.; Kashuba, Angela D. M.

    2010-01-01

    Studying the pharmacokinetics of antiretroviral drugs in breast milk has important implications for the health of both the mother and the infant, particularly in resource-poor countries. Breast milk is a highly complex biological matrix, yet it is necessary to develop and validate methods in this matrix, which simultaneously measure multiple analytes, as women may be taking any number of drug combinations to combat human immunodeficiency virus infection. Here, we report a novel extraction method coupled to high-performance liquid chromatography and tandem mass spectrometry for the accurate, precise, and specific measurement of 7 antiretroviral drugs currently prescribed to infected mothers. Using 200 µL of human breast milk, simultaneous quantification of lamivudine (3TC), stavudine (d4T), zidovudine (ZDV), nevirapine (NVP), nelfinavir (NFV), ritonavir, and lopinavir was validated over the range of 10–10,000 ng/mL. Intraday accuracy and precision for all analytes were 99.3% and 5.0 %, respectively. Interday accuracy and precision were 99.4 % and 7.8%, respectively. Cross-assay validation with UV detection was performed using clinical breast milk samples, and the results of the 2 assays were in good agreement (P = 0.0001, r = 0.97). Breast milk to plasma concentration ratios for the different antiretroviral drugs were determined as follows: 3TC = 2.96, d4T = 1.73, ZDV = 1.17, NVP = 0.82, and NFV = 0.21. PMID:18758393

  8. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study.

    PubMed

    Wu, Xiao; Lintelmann, Jutta; Klingbeil, Sophie; Li, Jie; Wang, Hao; Kuhn, Evelyn; Ritter, Sebastian; Zimmermann, Ralf

    2017-09-01

    The influence of different exposures to PM 2.5 (particulate matter with an aerodynamic diameter below 2.5 μm) on the concentrations of biomarkers of exposure and oxidative stress should be investigated. For this purpose, urine samples from individuals travelling from Germany to China were collected and analysed. Robust LC and LC-MS/MS methods were established for the determination of biomarkers including 8-hydroxy-2'-deoxyguanosine, malondialdehyde, F 2α -isoprostanes and hydroxylated polycyclic aromatic hydrocarbons. As a pilot study, nine volunteers travelled from Germany (mean daily concentration of PM 2.5 : 21 μg/m 3 ) to China (mean daily concentration of PM 2.5 : 108 μg/m 3 ). Urine samples were collected before and after the trip. In samples collected after return to Germany, the median concentrations of oxidative stress biomarkers were observed to be higher than in samples collected before leaving Germany. Decreasing trends were observed in the sequences of samples collected after return in the following weeks. Correlations were found between exposure and oxidative stress biomarkers. Travellers are ideal models for PM pollution-induced acute health effects study. Exposure to PM pollution can cause oxidative stress and damage.

  9. Rapid enantiomeric separation and simultaneous determination of phenethylamines by ultra high performance liquid chromatography with fluorescence and mass spectrometric detection: application to the analysis of illicit drugs distributed in the Japanese market and biological samples.

    PubMed

    Inagaki, Shinsuke; Hirashima, Haruo; Taniguchi, Sayuri; Higashi, Tatsuya; Min, Jun Zhe; Kikura-Hanajiri, Ruri; Goda, Yukihiro; Toyo'oka, Toshimasa

    2012-12-01

    A rapid enantiomeric separation and simultaneous determination method based on ultra high performance liquid chromatography (UHPLC) was developed for phenethylamine-type abused drugs using (R)-(-)-4-(N,N-dimethylaminosulfonyl)-7-(3-isothiocyanatopyrrolidin-1-yl)-2,1,3-benzoxadiazole ((R)-(-)-DBD-Py-NCS) as the chiral fluorescent derivatization reagent. The derivatives were rapidly enantiomerically separated by reversed-phase UHPLC using a column of 2.3-µm octadecylsilica (ODS) particles by isocratic elution with water-methanol or water-acetonitrile systems as the mobile phase. The proposed method was applied to the analysis of products containing illicit drugs distributed in the Japanese market. Among the products, 1-(3,4-methylenedioxyphenyl)butan-2-amine (BDB) and 1-(2-methoxy4,5-methylenedioxyphenyl)propan-2-amine (MMDA-2) were detected in racemic form. Furthermore, the method was successfully applied to the analysis of hair specimens from rats that were continuously dosed with diphenyl(pyrrolidin-2-yl)methanol (D2PM). Using UHPLC-fluorescence (FL) detection, (R)- and (S)-D2PM from hair specimens were enantiomerically separated and detected with high sensitivity. The detection limits of (R)- and (S)-D2PM were 0.12 and 0.21 ng/mg hair, respectively (signal-to-noise ratio (S/N) = 3). Copyright © 2012 John Wiley & Sons, Ltd.

  10. An improved dispersive solid-phase extraction clean-up method for the gas chromatography-negative chemical ionisation tandem mass spectrometric determination of multiclass pesticide residues in edible oils.

    PubMed

    Deme, Pragney; Azmeera, Tirupathi; Prabhavathi Devi, B L A; Jonnalagadda, Padmaja R; Prasad, R B N; Vijaya Sarathi, U V R

    2014-01-01

    An improved sample preparation using dispersive solid-phase extraction clean-up was proposed for the trace level determination of 35 multiclass pesticide residues (organochlorine, organophosphorus and synthetic pyrethroids) in edible oils. Quantification of the analytes was carried out by gas chromatography-mass spectrometry in negative chemical ionisation mode (GC-NCI-MS/MS). The limit of detection and limit of quantification of residues were in the range of 0.01-1ng/g and 0.05-2ng/g, respectively. The analytes showed recoveries between 62% and 110%, and the matrix effect was observed to be less than 25% for most of the pesticides. Crude edible oil samples showed endosulfan isomers, p,p'-DDD, α-cypermethrin, chlorpyrifos, and diazinon residues in the range of 0.56-2.14ng/g. However, no pesticide residues in the detection range of the method were observed in refined oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Use of a bisphenol-A imprinted polymer as a selective sorbent for the determination of phenols and phenoxyacids in honey by liquid chromatography with diode array and tandem mass spectrometric detection.

    PubMed

    Herrero-Hernández, E; Carabias-Martínez, R; Rodríguez-Gonzalo, E

    2009-09-21

    An extraction-preconcentration procedure based on the use of a molecularly imprinted polymer (MIP) as selective sorbent has been developed for the determination of several phenolic compounds (bisphenol-A, bisphenol-F and 4-nitrophenol) and phenoxyacid herbicides (2,4-D, 2,4,5-T and 2,4,5-TP) in honey samples. Liquid chromatography with diode array detection (LC-DAD) and electrospray ionisation-ion trap mass spectrometry (LC-IT-MS) were used for the separation, identification and quantification of these analytes. The molecularly imprinted polymer was obtained by precipitation polymerisation with bisphenol-A (BPA) as template and 4-vinylpyridine as the functional monomer. The behaviour of this sorbent was compared with those of other materials frequently used in SPE. The selectivity of the BPA-MIP for the target analytes was tested in samples containing other pesticides in common use. The recoveries achieved for all six compounds were in the 81-96% range. By applying the proposed procedure prior to LC-IT-MS, the limits of detection achieved in commercial honey samples were in the 0.1-3.8 ng g(-1) range, with relative standard deviations of 12-24%.

  12. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  13. Ultra-high performance liquid chromatography tandem mass spectrometric method for the determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots--development, validation and clinical application during breast cancer adjuvant therapy.

    PubMed

    Antunes, Marina Venzon; Raymundo, Suziane; de Oliveira, Vanessa; Staudt, Dilana Elisabeth; Gössling, Gustavo; Peteffi, Giovana Piva; Biazús, Jorge Villanova; Cavalheiro, José Antônio; Tre-Hardy, Marie; Capron, Arnaud; Haufroid, Vincent; Wallemacq, Pierre; Schwartsmann, Gilberto; Linden, Rafael

    2015-01-01

    A LC-MSMS method for the simultaneous determination of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in dried blood spots samples was developed and validated. The method employs an ultrasound-assisted liquid extraction and a reversed phase separation in an Acquity(®) C18 column (150×2.1 mm, 1.7 µm). Mobile phase was a mixture of formic acid 0.1% (v/v) pH 2.7 and acetonitrile (gradient from 60:40 to 50:50, v/v). Total analytical run time was 8 min. Precision assays showed CV % lower than 10.75% and accuracy in the range 94.5 to 110.3%. Mean analytes recoveries from DBS ranged from 40% to 92%. The method was successfully applied to 91 paired clinical DBS and plasma samples. Dried blood spots concentrations were highly correlated to plasma, with rs>0.83 (P<0.01). Median estimated plasma concentrations after hematocrit and partition factor adjustment were: TAM 123.3 ng mL(-1); NDT 267.9 ng mL(-1), EDF 10.0 ng mL(-1) and HTF 1.3 ng mL(-1,) representing in average 98 to 104% of the actually measured concentrations. The DBS method was able to identify 96% of patients with plasma EDF concentrations below the clinical threshold related to better prognosis (5.9 ng mL(-1)). The procedure has adequate analytical performance and can be an efficient tool to optimize adjuvant breast cancer treatment, especially in resource limited settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Single-laboratory validation of a high-performance liquid chromatographic-diode array detector-fluorescence detector/mass spectrometric method for simultaneous determination of water-soluble vitamins in multivitamin dietary tablets.

    PubMed

    Chen, Pei; Atkinson, Renata; Wolf, Wayne R

    2009-01-01

    The purpose of this study was to develop a single-laboratory validated (SLV) method using high-performance liquid chromatography with different detectors [diode array detector (DAD); fluorescence detector (FLD); and mass spectrometry (MS)] for determination of 7 B-complex vitamins (B1-thiamin, B2-riboflavin, B3-nicotinamide, B6-pyridoxine, B9-folic acid, pantothenic acid, and biotin) and vitamin C in multivitamin/multimineral dietary supplements. The method involves the use of a reversed-phase octadecylsilyl column (4 microm, 250 x 2.0 mm id) and a gradient mobile phase profile. Gradient elution was performed at a flow rate of 0.25 mL/min. After a 5 min isocratic elution at 100% A (0.1% formic acid in water), a linear gradient to 50% A and 50% B (0.1% formic acid in acetonitrile) at 15 min was employed. Detection was performed with a DAD as well as either an FLD or a triple-quadrupole MS detector in the multiple reaction monitoring mode. SLV was performed using Standard Reference Material (SRM) 3280 Multivitamin/Multimineral Tablets, being developed by the National Institute of Standards and Technology, with support by the Office of Dietary Supplements of the National Institutes of Health. Phosphate buffer (10 mM, pH 2.0) extracts of the NIST SRM 3280 were analyzed by the liquid chromatographic (LC)-DAD-FLDIMS method. Following extraction, the method does not require any sample cleanup/preconcentration steps except centrifugation and filtration.

  15. Single-Laboratory Validation of a High-Performance Liquid Chromatographic-Diode Array Detector-Fluorescence Detector/Mass Spectrometric Method for Simultaneous Determination of Water-Soluble Vitamins in Multivitamin Dietary Tablets

    PubMed Central

    Chen, Pei; Atkinson, Renata; Wolf, Wayne R.

    2014-01-01

    The purpose of this study was to develop a single-laboratory validated (SLV) method using high-performance liquid chromatography with different detectors [diode array detector (DAD); fluorescence detector (FLD); and mass spectrometry (MS)] for determination of 7 B-complex vitamins (B1-thiamin, B2-riboflavin, B3-nicotinamide, B6-pyridoxine, B9-folic acid, pantothenic acid, and biotin) and vitamin C in multivitamin/multimineral dietary supplements. The method involves the use of a reversed-phase octadecylsilyl column (4 µm, 250 × 2.0 mm id) and a gradient mobile phase profile. Gradient elution was performed at a flow rate of 0.25 mL/min. After a 5 min isocratic elution at 100% A (0.1% formic acid in water), a linear gradient to 50% A and 50% B (0.1% formic acid in acetonitrile) at 15 min was employed. Detection was performed with a DAD as well as either an FLD or a triple-quadrupole MS detector in the multiple reaction monitoring mode. SLV was performed using Standard Reference Material (SRM) 3280 Multivitamin/Multimineral Tablets, being developed by the National Institute of Standards and Technology, with support by the Office of Dietary Supplements of the National Institutes of Health. Phosphate buffer (10 mM, pH 2.0) extracts of the NIST SRM 3280 were analyzed by the liquid chromatographic (LC)-DAD-FLD/MS method. Following extraction, the method does not require any sample cleanup/preconcentration steps except centrifugation and filtration. PMID:19485230

  16. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    SciTech Connect

    Cikota, Aleksandar; Deustua, Susana; Marleau, Francine, E-mail: acikota@eso.org

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxymore » center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.« less

  17. Dissimilar behavior of technetium and rhenium in borosilicatewaste glass as determined by X-ray absorption spectroscopy

    SciTech Connect

    Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.

    2006-11-09

    Technetium-99 is an abundant, long-lived (t1/2 = 213,000 yr)fission product that creates challenges for the safe, long-term disposalof nuclear waste. While 99Tc receives attention largely due to its highenvironmental mobility, it also causes problems during its incorporationinto nuclear waste glass due to the volatility of Tc(VII) compounds. Thisvolatility decreases the amount of 99Tc stabilized in the waste glass andcauses contamination of the waste glass melter and off-gas system. Theapproach to decrease the volatility of 99Tc that has received the mostattention is reduction of the volatile Tc(VII) species to less volatileTc(IV) species in the glass melt. On engineering scale experiments,rhenium ismore » often used as a non-radioactive surrogate for 99Tc to avoidthe radioactive contamination problems caused by volatile 99Tc compounds.However, Re(VII) is more stable towards reduction than Tc(VII), so morereducing conditions would be required in the glass melt to produceRe(IV). To better understand the redox behavior of Tc and Re in nuclearwaste glass, a series of glasses were prepared under different redoxconditions. The speciation of Tc and Re in the resulting glasses wasdetermined by X-ray absorption fine structure spectroscopy. Surprisingly,Re and Tc do not behave similarly in the glass melt. Although Tc(0),Tc(IV), and Tc(VII) were observed in these samples, only Re(0) andRe(VII) were found. In no case was Re(IV) (or Re(VI))observed.« less

  18. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model.

    PubMed

    Sutton, S C; Rinaldi, M T; Vukovinsky, K E

    2001-01-01

    This study was undertaken to determine whether the gravimetric method provided an accurate measure of water flux correction and to compare the gravimetric method with methods that employ nonabsorbed markers (eg, phenol red and 14C-PEG-3350). Phenol red,14C-PEG-3350, and 4-[2-[[2-(6-amino-3-pyridinyl)-2-hydroxyethyl]amino]ethoxy]-, methyl ester, (R)-benzene acetic acid (Compound I) were co-perfused in situ through the jejunum of 9 anesthetized rats (single-pass intestinal perfusion [SPIP]). Water absorption was determined from the phenol red,14C-PEG-3350, and gravimetric methods. The absorption rate constant (ka) for Compound I was calculated. Both phenol red and 14C-PEG-3350 were appreciably absorbed, underestimating the extent of water flux in the SPIP model. The average +/- SD water flux microg/h/cm) for the 3 methods were 68.9 +/- 28.2 (gravimetric), 26.8 +/- 49.2 (phenol red), and 34.9 +/- 21.9 (14C-PEG-3350). The (average +/- SD) ka for Compound I (uncorrected for water flux) was 0.024 +/- 0.005 min(-1). For the corrected, gravimetric method, the average +/- SD was 0.031 +/- 0.001 min(-1). The gravimetric method for correcting water flux was as accurate as the 2 "nonabsorbed" marker methods.

  19. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  20. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  1. Determination of essential elements in beverages, herbal infusions and dietary supplements using a new straightforward sequential approach based on flame atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Procopio, Jesús R

    2017-03-15

    A simple method based on FAAS was developed for the sequential multi-element determination of Cu, Zn, Mn, Mg and Si in beverages and food supplements with successful results. The main absorption lines for Cu, Zn and Si and secondary lines for Mn and Mg were selected to carry out the measurements. The sample introduction was performed using a flow injection system. Using the choice of the absorption line wings, the upper limit of the linear range increased up to 110mgL -1 for Mg, 200mgL -1 for Si and 13mgL -1 for Zn. The determination of the five elements was carried out, in triplicate, without the need of additional sample dilutions and/or re-measurements, using less than 3.5mL of sample to perform the complete analysis. The LODs were 0.008mgL -1 for Cu, 0.017mgL -1 for Zn, 0.011mgL -1 for Mn, 0.16mgL -1 for Si and 0.11mgL -1 for Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    PubMed

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  3. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  4. The downfall of TBA-354 - a possible explanation for its neurotoxicity via mass spectrometric imaging.

    PubMed

    Ntshangase, Sphamandla; Shobo, Adeola; Kruger, Hendrik G; Asperger, Arndt; Niemeyer, Dagmar; Arvidsson, Per I; Govender, Thavendran; Baijnath, Sooraj

    2017-10-13

    1. TBA-354 was a promising antitubercular compound with activity against both replicating and static Mycobacterium tuberculosis (M.tb), making it the focal point of many clinical trials conducted by the TB Alliance. However, findings from these trials have shown that TBA-354 results in mild signs of reversible neurotoxicity; this left the TB Alliance with no other choice but to stop the research. 2. In this study, mass spectrometric methods were used to evaluate the pharmacokinetics and spatial distribution of TBA-354 in the brain using a validated liquid chromatography tandem-mass spectrometry (LCMS/MS) and mass spectrometric imaging (MSI), respectively. Healthy female Sprague-Dawley rats received intraperitoneal (i.p.) doses of TBA-354 (20 mg/kg bw). 3. The concentrationtime profiles showed a gradual absorption and tissue penetration of TBA-354 reaching the C max at 6 h post dose, followed by a rapid elimination. MSI analysis showed a time-dependent drug distribution, with highest drug concentration mainly in the neocortical regions of the brain. 4. The distribution of TBA-354 provides a possible explanation for the motor dysfunction observed in clinical trials. These results prove the importance of MSI as a potential tool in preclinical evaluations of suspected neurotoxic compounds.

  5. Application of high-resolution continuum source flame atomic absorption spectrometry to reveal, evaluate and overcome certain spectral effects in Pb determination of unleaded gasoline

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał

    2017-06-01

    High-resolution continuum source and line source flame atomic absorption spectrometry (HR-CS FAAS and LS FAAS, respectively) were applied for Pb determination in unleaded aviation or automotive gasoline that was dissolved in methyl-isobutyl ketone. When using HR-CS FAAS, a structured background (BG) was registered in the vicinity of both the 217.001 nm and 283.306 nm Pb lines. In the first case, the BG, which could be attributed to absorption by the OH molecule, directly overlaps with the 217 nm line, but it is of relatively low intensity. For the 283 nm line, the structured BG occurs due to uncompensated absorption by OH molecules present in the flame. BG lines of relatively high intensity are situated at a large distance from the 283 nm line, which enables accurate analysis, not only when using simple variants of HR-CS FAAS but also for LS FAAS with a bandpass of 0.1 nm. The lines of the structured spectrum at 283 nm can have ;absorption; (maxima) or ;emission; (minima) character. The intensity of the OH spectra can significantly depend on the flame character and composition of the investigated organic solution. The best detection limit for the analytical procedure, which was 0.01 mg L- 1 for Pb in the investigated solution, could be achieved using HR-CS FAAS with the 283 nm Pb line, 5 pixels for the analyte line measurement and iterative background correction (IBC). In this case, least squares background correction (LSBC) is not recommended. However, LSBC (available as the ;permanent structures; option) would be recommended when using the 217 nm Pb line. In LS FAAS, an additional phenomenon related to the nature of the organic matrix (for example, isooctane or toluene) can play an important role. The effect is of continuous character and probably due to the simultaneous efficient correction of the continuous background (IBC) it is not observed in HR-CS FAAS. The fact that the effect does not depend on the flame character indicates that it is not radiation

  6. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    PubMed

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  7. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  8. Validation of a hydride generation atomic absorption spectrometry methodology for determination of mercury in fish designed for application in the Brazilian national residue control plan.

    PubMed

    Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M

    2013-01-01

    In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.

  9. On-line preconcentration system for lead(II) determination in waste water by atomic absorption spectrometry using active carbon loaded with Pyrogallol Red.

    PubMed

    Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H

    2003-06-01

    An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.

  10. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Akman, Suleyman

    The presence of fluorine (F) was detected via the rotational molecular absorption line of diatomic strontium-monofluoride (SrF) generated in the gas phase at 651.187 nm using high-resolution continuum source electrothermal atomic absorption spectrometry. Upon the addition of excess strontium (Sr) as the nitrate, the fluorine in the sample was converted to SrF in the gas phase of a graphite furnace. The effects on the accuracy, precision and sensitivity of variables such as the SrF wavelength, graphite furnace program, amount of Sr, coating of the graphite tube and platform with Zr and Ir and the use of a modifier were investigated and optimized. It was determined that there was no need to use a modifier or to cover the platform/tubes with Zr or Ir. Fluorine concentrations in various water samples (certified waste water, tap water, drinking water and mineral water) were determined using 20 μg of Sr as the molecule-forming reagent and applying a maximum pyrolysis temperature of 800 °C and a molecule-forming temperature of 2200 °C with a heating rate of 2000 °C s- 1. Good linearity was maintained up to 0.1 μg of F. The accuracy and precision of the method were tested by analyzing certified reference wastewater. The results were in good agreement with certified values, and the precision was satisfactory (RSD < 10%). The limit of detection and the characteristic mass for the method were 0.36 ng and 0.55 ng, respectively. Finally, the fluorine concentrations in several drinking water and mineral water samples taken from the market were determined. The results were in good agreement with the values supplied by the producers. No significant differences were found between the results from the linear calibration and standard addition techniques. The method was determined to be simple, fast, accurate and sensitive.

  11. Spectrometric measurements of radioisotope activity in the thyroid

    NASA Astrophysics Data System (ADS)

    Osko, Jakub; Golnik, Natalia

    2008-01-01

    The results of measurements of iodine 131I and technetium 99mTc uptake in human thyroid, performed with scintillation or semiconductor detectors can exhibit a considerable uncertainty due to the differences in the thyroid position in the patient's neck. Basic physical laws of radiation attenuation and scattering show that the final shape of the registered spectrum should depends on the thyroid position in the neck and on the thickness of the tissue between the thyroid and the detector. The use of the spectrometric measuring method is proposed in this work for determination of the iodine gathering effective depth. The performed studies showed that the measurements results can be used for improving the accuracy of the iodine 131I activity in thyroid measurements and for selection of the group of patients for whom the anatomical position of the thyroid or the spatial distribution of the iodine gathering is much different than the standard one, assumed during the calibration of the counters. The results of the measurements were in agreement with Monte-Carlo calculations of the detector response. The method was used in routine monitoring of occupationally exposed persons, using the thyroid counter. A group of six persons with measurable internal contamination was selected and the measurements were performed on consecutive days, so the results could be registered at decreasing iodine activities in the thyroid. Larger series of measurements were performed at Brodno Regional Hospital in Warsaw, for a group of 95 patients after diagnostic administration of iodine 131I.

  12. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  13. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  14. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    PubMed

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  15. On-site Determination of Trace Arsenic by Reflection-Absorption Colorimetry of Molybdenum Blue Collected on a Membrane Filter.

    PubMed

    Hasegawa, Yuya; Suzuki, Yasutada; Kawakubo, Susumu

    2017-01-01

    An on-site determination method for trace arsenic has been developed by collecting it as molybdenum blue (MB) in the presence of tetradecyldimethylbenzylammonium chloride on a mixed cellulose ester membrane filter and by measuring reflection absorbance (RA) of MB on the filter using a laboratory-made palm-top size reflection-absorbance colorimeter with a red light-emitting diode. The value of RA was proportional to the amount of arsenic up to 0.5 μg with a detection limit of 0.01 μg. The proposed method was successfully applied to soil extract and hot-spring water samples.

  16. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  17. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    PubMed

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  18. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  19. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    PubMed

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  20. Determination of indium in geological materials by electrothermal-atomization atomic absorption spectrometry with a tungsten-impregnated graphite furance

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    The sample is fused with lithium metaborate and the melt is dissolved in 15% (v/v) hydrobromic acid. Iron(III) is reduced with ascorbic acid to avoid its coextraction with indium as the bromide into methyl isobutyl ketone. Impregnation of the graphite furnace with sodium tungstate, and the presence of lithium metaborate and ascorbic acid in the reaction medium improve the sensitivity and precision. The limits of determination are 0.025-16 mg kg-1 indium in the sample. For 22 geological reference samples containing more than 0.1 mg kg-1 indium, relative standard deviations ranged from 3.0 to 8.5% (average 5.7%). Recoveries of indium added to various samples ranged from 96.7 to 105.6% (average 100.2%). ?? 1984.

  1. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  2. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  3. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  4. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    PubMed

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  5. Direct determination of oxidation state of gold deposits in metal-reducing bacterium Shewanella algae using X-ray absorption near-edge structure spectroscopy (XANES).

    PubMed

    Konishi, Yasuhiro; Tsukiyama, Takeshi; Saitoh, Norizoh; Nomura, Toshiyuki; Nagamine, Shinsuke; Takahashi, Yoshio; Uruga, Tomoya

    2007-06-01

    X-ray absorption near-edge structure spectroscopy (XANES) was successfully employed to determine the gold valence in the metal-reducing bacterium Shewanella algae after exposure to a 1 mM aqueous HAuCl4 solution for 10-120 min. XANES spectra revealed the oxidation state of gold in the bacterial cells to be Au(0) without any contribution from Au(III), demonstrating that S. algae cells can reduce AuCl4- ions to elemental gold. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis confirmed that gold nanoparticles 5-15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable, cell surface location for the easy recovery of biogenic nanoparticles.

  6. [Determination of total mercury in water samples, sediments and solids in suspension in aquatic systems by cold-vapor atomic absorption spectrophotometry].

    PubMed

    Vieira, J L; Passarelli, M M

    1996-06-01

    The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to preventing human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity.

  7. Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma

    2017-03-01

    This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.

  8. Determination of free and total sulfur(IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase.

    PubMed

    Oliveira, Michael L; Brandao, Geovani C; de Andrade, Jailson B; Ferreira, Sergio L C

    2018-03-01

    This work proposes a method for the determination of free and total sulfur(IV) compounds in coconut water samples, using the high-resolution continuum source molecular absorption spectrometry. It is based on the measurement of the absorbance signal of the SO 2 gas generate, which is resultant of the addition of hydrochloric acid solution on the sample containing the sulfating agent. The sulfite bound to the organic compounds is released by the addition of sodium hydroxide solution, before the generation of the SO 2 gas. The optimization step was performed using multivariate methodology involving volume, concentration and flow rate of hydrochloric acid. This method was established by the sum of the absorbances obtained in the three lines of molecular absorption of the SO 2 gas. This strategy allowed a procedure for the determination of sulfite with limits of detection and quantification of 0.36 and 1.21mgL -1 (for a sample volume of 10mL) and precision expressed as relative standard deviation of 5.4% and 6.4% for a coconut water sample containing 38.13 and 54.58mgL -1 of free and total sulfite, respectively. The method was applied for analyzing five coconut water samples from Salvador city, Brazil. The average contents varied from 13.0 to 55.4mgL -1 for free sulfite and from 24.7 to 66.9mgL -1 for total sulfur(IV) compounds. The samples were also analyzed employing the Ripper´s procedure, which is a reference method for the quantification of this additive. A statistical test at 95% confidence level demonstrated that there is no significant difference between the results obtained by the two methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  10. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry.

    PubMed

    Ghaedi, Mehrorang; Ahmadi, Farshid; Shokrollahi, Ardeshir

    2007-04-02

    A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the formation of metal complexes by 4,6-dihydroxy-2-mercaptopyrimidine (DHMP) loaded on activated carbon. The metals content on the complexes are then eluted using 5 mL 2M HNO(3) in acetone, which are detected by AAS at resonance line. In this procedure, minerals such as Cu, Ni, Pb and Co could be analyzed in one run by caring out the simultaneous separation and quantification of them. At optimum condition the response are linear over concentration range of 0.04-1.1 microg mL(-1) for Ni(2+) and 0.04-1.0 microg mL(-1) for Cu(2+), Pb(2+) and Co(2+). The detection limits of each element are expressed as the amount of analytes in ng mL(-1) giving a signal to noise ratio of 3 are equal to 3.5, 3.4, 2.9 and 8.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The sorption capacity was determined by saturating 0.5 g solid phase. The loading capacity are 0.54, 0.53, 0.63 and 0.45 mg g(-1) for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The ability of method for repeatable recovery of trace ion are 99.0, 98.9, 99.2 and 98.8 with R.S.D. of 1.4, 1.3, 1.2 and 1.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The low detection limits of these elements in this technique make it a superior alternative to UV-vis and in several applications, also an alternative to ICP-MS techniques. The method has been successfully applied for these metals content evaluation in some real samples including natural water, leaves of spinach and cow liver.

  11. A membrane-separator interface for mass-spectrometric analysis of blood plasma

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Gerasimov, D. G.

    2014-09-01

    We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.

  12. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  13. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    PubMed

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    PubMed

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  17. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  18. Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination.

    PubMed

    Ghasemi, Ensieh; Najafi, Nahid Mashkouri; Raofie, Farhad; Ghassempour, Alireza

    2010-09-15

    A simple and effective speciation and preconcentration method based on hollow fiber liquid phase microextraction (HF-LPME) was developed for simultaneous separation of trace inorganic tellurium and selenium in environmental samples prior to electrothermal atomic absorption spectroscopy (ETAAS) determination. The method involves the selective extraction of the Te (IV) and Se (IV) species by HF-LPME with the use of ammonium pyrrolidinecarbodithioate (APDC) as the chelating agent. The complex compounds were extracted into 10 microL of toluene and the solutions were injected into a graphite furnace for the determination of Te (IV) and Se (IV). To determine the total tellurium and selenium in the samples, first Te (VI) and Se (VI) were reduced to Te (IV) and Se (IV), and then the microextraction method was performed. The experimental parameters of HF-LPME were optimized using a central composite design after a 2(n-1) fractional factorial experimental design. Under optimum conditions, enrichment factors of up to 520 and 480 were achieved for Te (IV) and Se (IV), respectively. The detection limits were 4 ng L(-1) with 3.5% RSD (n=5, c=2.0 microg L(-1)) for Te (IV) and 5 ng L(-1) with 3.1% RSD for Se (IV). The applicability of the developed technique was evaluated by application to spiked, environmental water and soil samples. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    NASA Astrophysics Data System (ADS)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  1. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    PubMed

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    NASA Astrophysics Data System (ADS)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  3. Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section.

    PubMed

    Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E

    2013-10-01

    An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a

  4. Assessment of an extended dataset of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    PubMed

    Aggarwal, M; Fisher, P; Hüser, A; Kluxen, F M; Parr-Dobrzanski, R; Soufi, M; Strupp, C; Wiemann, C; Billington, R

    2015-06-01

    Dermal absorption is a key parameter in non-dietary human safety assessments for agrochemicals. Conservative default values and other criteria in the EFSA guidance have substantially increased generation of product-specific in vitro data and in some cases, in vivo data. Therefore, data from 190 GLP- and OECD guideline-compliant human in vitro dermal absorption studies were published, suggesting EFSA defaults and criteria should be revised (Aggarwal et al., 2014). This follow-up article presents data from an additional 171 studies and also the combined dataset. Collectively, the data provide consistent and compelling evidence for revision of EFSA's guidance. This assessment covers 152 agrochemicals, 19 formulation types and representative ranges of spray concentrations. The analysis used EFSA's worst-case dermal absorption definition (i.e., an entire skin residue, except for surface layers of stratum corneum, is absorbed). It confirmed previously proposed default values of 6% for liquid and 2% for solid concentrates, irrespective of active substance loading, and 30% for all spray dilutions, irrespective of formulation type. For concentrates, absorption from solvent-based formulations provided reliable read-across for other formulation types, as did water-based products for solid concentrates. The combined dataset confirmed that absorption does not increase linearly beyond a 5-fold increase in dilution. Finally, despite using EFSA's worst-case definition for absorption, a rationale for routinely excluding the entire stratum corneum residue, and ideally the entire epidermal residue in in vitro studies, is presented. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, < 0.4-6 ng g - 1 in gasoline, < 0.5-2 ng g - 1 in atmospheric oil, < 6-100 ng g - 1 in heavy vacuum oil and 140-300 ng g - 1 in distillation residue.

  6. [Determination of critical micelle concentration of alkyl polyglucoside (APG) nonionic surfactant aqueous system by multi-peaks Gaussian fitting of visible absorption spectra line shape].

    PubMed

    Zhang, Jian-Hua; Kong, Kai-Qing; He, Zheng-Ling; Liu, Zi-Li

    2007-07-01

    A multi-peaks Gaussian fitting on the line shape of visible spectra was used to determine the critical micelle concentration (CMC) of alkyl polyglucoside (APG) nonionic surfactant aqueous system such as octyl beta D mono-glucoside (C8 G1) and decyl beta D mono-glucoside (C10 G1). Visible electronic absorption spectra of a series of different concentration C8G1 or C10G1 with crystal violet (CV) used as a probe were measured respectively and characterized by the overlap of the principal peak with lambda(max) at 598-609 nm and a shoulder at 538-569 nm assigned to monomer and dimer CV respectively. A multi-peaks Gaussian fitting was used to interpret the spectra and give relative integrating absorbance (A2/A1) of two peaks, red-shift (deltalambda) and half-width. A sudden change occurred at CMC in the curves of the relative integrating absorbance (A2/A1), red-shift (deltalambda) and half-width (w1, w2) versus the C8G1 or C10G1 surfactant concentrations. Significantly the dependence of the CMC upon the half-width was ob-served for the first time and successfully used to determine CMC of nonionic surfactant such as APG.

  7. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  8. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT.

    PubMed

    Sharma, S P; Lahiri, S C

    2008-06-01

    TNT (2,4,6-trinitrotoluene) formed deep red 1:1 CT complexes with chromogenic agents like isopropylamine, ethylenediamine, bis(3-aminopropyl)amine and tetraethylenepentamine in DMSO. The complexes were also observed in solvents like methanol, acetone, etc. when the amines were present in large excess. The isopropylamine, complex showed three absorption peaks (at 378, 532 and 629 nm) whereas higher amines showed four peaks (at 370, 463, 532 and 629 nm). The peak at 463 nm vanished rapidly. The peak of the complexes near 530 nm required about 8-10 min to develop and the complexes were stable for about an hour but the peak slowly shifted towards 500 nm and the complexes were found to be stable for more than 24 h. The evidence of complex formation was obtained from distinct spots in HPTLC plates and from the shifts in frequencies and formation of new peaks in FTIR spectra. The peaks near 460 nm (transient) and 530 nm may be due to Janovsky reaction but could not be established. The extinction coefficients of the complexes were determined directly which enabled the accurate determination of the association constants KDA with TNT and amines in stoichiometric ratios. The results were verified using iterative method. The quantification of TNT was made using epsilon value of the complex with ethylenediamine. The vertical electron affinity (EA) of TNT was calculated using the method suggested by Mulliken.

  9. Continuous flow analysis combined with a light-absorption ratio variation approach for determination of copper at ng/ml level in natural water.

    PubMed

    Gao, Hong-Wen; Wang, Chun-Lei; Jia, Jiang-Yan; Zhang, Ya-Lei

    2007-06-01

    The complexation between Cu(II) and naphthochrome green (NG) is very sensitive at pH 4.09 with the formation of complex ion [Cu(NG)2(H2O)2](2-). It can thus used for the determination of Cu(II) by the light-absorption ratio variation approach (LARVA) with a good selectivity. Both the ordinary detection procedure and continuous flow analysis (CFA) were carried out, where the latter is fit for continuous and rapid analysis of samples. The limit of detection (LOD) of Cu(II) is only 1 ng/ml, which is favorable for direct monitoring of natural water. About 30 samples could be analyzed per hour by CFA. Cu(II) contents in Yangtze River, West Lake, Taihu Lake of China and seawater near Shanghai were determined with satisfactory results. The CFA-LARVA spectrophotometry was the first to be coupled and it will play an important role in the in-situ analysis of natural water quality.

  10. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  11. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.

  12. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    PubMed

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  13. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  17. Determination of mercury in agroindustrial samples by flow-injection cold vapor atomic absorption spectrometry using ion exchange and reductive elution.

    PubMed

    Gomes Neto, J A; Zara, L F; Rocha, J C; Santos, A; Dakuzaku, C S; Nóbrega, J A

    2000-03-06

    A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.

  18. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  19. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  1. Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry.

    PubMed

    Fırat, Merve; Bodur, Süleyman; Tışlı, Büşra; Özlü, Cansu; Chormey, Dotse Selali; Turak, Fatma; Bakırdere, Sezgin

    2018-06-12

    In this study, a switchable solvent was used to preconcentrate trace amounts of Cd from aqueous solution for its determination by flame atomic absorption spectrometry (FAAS). Protonation of N,N-dimethylbenzylamine by dry ice (solid CO 2 ) made it water soluble, and addition of sodium hydroxide converted it back to its original nonionic state for phase separation and subsequent extraction of Cd. A slotted quartz tube (SQT) was attached to the flame burner head to increase the residence time of Cd atoms in the light path. Under the optimum conditions, limits of detection and quantification were determined as 0.7 and 2.6 μg L -1 , respectively. Low relative standard deviations calculated from seven replicate measurements of the lowest concentration indicated high precision. Accuracy of the developed method was checked by using a standard reference material (SRM 1633c). Spiked recovery tests were also performed on lake water and wastewater samples at different concentrations to check the applicability of the developed method, and the results obtained (90-103%) established high recovery.

  2. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.

  3. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  4. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  5. The gas-chromatographic and gas-chromatographic-mass-spectrometric identification of halogen-containing organic compounds

    NASA Astrophysics Data System (ADS)

    Gidaspov, B. V.; Zenkevich, I. G.; Rodin, A. A.

    1989-09-01

    The problem of identifying halogen-containing organic compounds in their gas-chromatographic and gas-chromatographic-mass-spectrometric (GC-MS) determination in different materials has been examined. Particular attention has been paid not to the complete characterisation of methods for carrying out this analysis but to the most important problem of increasing the selectivity at the stages of sampling, separation, and interpretation of the gas-chromatographic and GC-MS information. The bibliography contains 292 references.

  6. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique.

    PubMed

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-06-01

    To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.

  7. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  9. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  10. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  11. Percutaneous absorption

    PubMed Central

    Brisson, Paul

    1974-01-01

    Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976

  12. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Reliability of a new technique for the determination of vitamin B12 absorption in children: single stool sample test--a double isotope technique

    SciTech Connect

    Hjelt, K.

    1986-03-01

    The fractional vitamin B12 absorption (FAB12) was determined in 39 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST), as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.2 years (mean 5.0 years). The test dose was administered orally and consisted of 0.5-4.5 micrograms of /sup 57/CoB12 (approximately 0.05 microCi), carmine powder, and 2 mg /sup 51/CrCl/sub 3/ (approximately 1.25 microCi) as the inabsorbable tracer. The wholebody radiation to a 1-year-old child averaged only 20 mrad. The stool and napkin was collected and homogenized bymore » addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin, as well as 300 ml chromium sulfuric acid (75% v/v) containing the standards, were counted in a broad-based well counter. The FAB12 determined by SSST employing the stool with the highest content of /sup 51/Cr (which corresponded to the most carmine-colored stool) correlated closely to the FAB12 based on complete stool collection (r = 0.98, n = 39, p less than 0.001). The reproducibility of FAB12 determined by SSST was assessed from double assays in 19 patients. For a mean value of 12%, the SD was 3%, which corresponded to a coefficient of variation (CV) of 25%. The excretion of /sup 57/Co and /sup 51/Cr in the urine was examined in six patients with moderate to severe mucosal damage and was found to be low.« less

  14. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples.

    PubMed

    Yang, Xiupei; Jia, Zhihui; Yang, Xiaocui; Li, Gu; Liao, Xiangjun

    2017-03-01

    A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL -1 Ag + in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL -1 for both Zn 2+ and Cu 2+ , 80 μg·mL -1 for Pb 2+ , 1000 μg·mL -1 for Mn 2+ , and 100 μg·mL -1 for both Cd 2+ and Ni 2+ . The calibration curve was linear in the range of 1-500 ng·mL -1 with a limit of detection (LOD) at 0.3 ng·mL -1 . The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  17. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    PubMed

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  18. Speciation and determination of ultra trace amounts of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry.

    PubMed

    Najafi, Nahid Mashkouri; Tavakoli, Hamed; Alizadeh, Reza; Seidi, Shahram

    2010-06-18

    A simple and powerful method has been developed for the rapid and selective determination of Te(IV) and Te(VI), employing dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry using palladium as permanent modifier. Under acidic conditions pH 1, only Te(IV) can form a complex with ammonium pyrrolidine dithiocarbamate (APDC) and therefore be extracted into fine droplets of carbon tetrachloride (extraction solvent) which are dispersed with ethanol into the water sample solution. After centrifugation, Te(IV) was determined in the sedimented organic phase while Te(VI) remained in the aqueous phase. Total inorganic tellurium was determined after the reduction of the Te(VI) to Te(IV). Te(VI) was calculated as the difference between the measured total inorganic tellurium and Te(IV) content. The effective parameters for improving the efficiency of microextraction process were investigated by using experimental and central composite designs. Under optimal conditions the enrichment factor was 125 and the calibration graph was linear in the range of 0.015-1 ng mL(-1) with detection limit and characteristic mass of 0.004 ng mL(-1) and 0.033 pg, respectively. The relative standard deviation for 0.5 ng mL(-1) of tellurium measurement was 3.6% (n=6) at ash and atomization temperature, 900 and 2600 degrees C, respectively. The recoveries of spiked Te(IV) and Te(VI) to the environmental water samples were 89.6-101.3% and 96.6-99.1%, respectively. The accuracy is also evaluated by applying the proposed method to certified reference material (NIST SRM 1643e), for which the result was in a good agreement with the certified values reported for this CRM (95% confidence level). 2010 Elsevier B.V. All rights reserved.

  19. Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA.

    PubMed

    Baytak, Sitki; Türker, A Rehber

    2006-02-28

    Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.

  20. INTERLABORATORY STUDY OF A THERMOSPRAY-LIQUID CHROMATOGRAPHIC/MASS SPECTROMETRIC METHOD FOR SELECTED N-METHYL CARBAMATES, N-METHYL CARBAMOYLOXIMES, AND SUBSTITUTED UREA PESTICIDES

    EPA Science Inventory

    A thermospray-liquid chromatographic/mass spectrometric (TS-LC/MS) method was evaluated in an interlaboratory study for determining 3 N-methyl carbamates (bendiocarb, carbaryl, and carbofuran), 3-N-methyl carbamoyloximes (aldicarb, methomyl, and oxamyl), 2 substituted urea pestic...