Science.gov

Sample records for absorption spectrometry aas

  1. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    PubMed

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  2. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    PubMed

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  4. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS).

    PubMed

    Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M

    2012-01-01

    A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.

  5. The role of atomic absorption spectrometry in geochemical exploration

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  6. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    EPA Science Inventory


    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  8. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  9. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  10. Compression Behavior and Energy Absorption of Aluminum Alloy AA6061 Tubes with Multiple Holes

    NASA Astrophysics Data System (ADS)

    Simhachalam, Bade; Lakshmana Rao, C.; Srinivas, Krishna

    2014-05-01

    In this article, compression behavior and energy absorption of aluminum alloy AA6061 tubes are investigated both experimentally and numerically. Static and dynamic simulations are done using LS-Dyna Software for AA6061 tubes. True stress-plastic strain curves from the tensile test are used in the static and dynamic simulations of AA6061 tubes. The energy absorption values between experimental compression results and numeral simulation are found to be in good agreement. Dynamic simulations are done with drop velocity of up to 10 m/s to understand the inertia effects on energy absorption. The deformed modes from the numerical simulation are compared between tubes with and without holes in static and dynamic conditions.

  11. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  12. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.; Sadagov, Yuri M.

    2011-06-01

    Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.

  13. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nunes, Dayana Lopes; dos Santos, Eliane Pereira; Barin, Juliano Smanioto; Mortari, Sergio Roberto; Dressler, Valderi Luiz; de Moraes Flores, Érico Marlon

    2005-06-01

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO 2 dissolved in the condensed phase was evaluated. No effect of NO 3- on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO 2-. For Hg, no interference of nitrite was observed up to 20 mg of NO 2-. A complete suppression of the Se signal was observed when gaseous NO 2 was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO 2 was passed directly into the atomizer, Se signals decreased similarly to when NO 2 was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO 2 effect in sample digests containing residual NO 2, but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively.

  14. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.

  15. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  16. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    PubMed

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  17. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  18. CO AND H{sub 2} ABSORPTION IN THE AA TAURI CIRCUMSTELLAR DISK

    SciTech Connect

    France, Kevin; Burgh, Eric B.; Schindhelm, Eric

    2012-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the Hubble Space Telescope Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H{sub 2} observed on the line of sight through the AA Tauri circumstellar disk. CO A - X absorption bands are observed against the far-UV continuum. The CO absorption ismore » characterized by log{sub 10}(N({sup 12}CO)) = 17.5 {+-} 0.5 cm{sup -2} and T{sub rot}(CO) = 500{sup +500}{sub -200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect {sup 13}CO in absorption with an isotopic ratio of {approx}20. We do not observe H{sub 2} absorption against the continuum; however, hot H{sub 2} (v > 0) is detected in absorption against the Ly{alpha} emission line. We measure the column densities in eight individual rovibrational states, determining a total log{sub 10}(N(H{sub 2})) = 17.9{sup +0.6}{sub -0.3} cm{sup -2} with a thermal temperature of T(H{sub 2}) = 2500{sup +800}{sub -700} K. The high temperature of the molecules, the relatively small H{sub 2} column density, and the high inclination of the AA Tauri disk suggest that the absorbing gas resides in an inner disk atmosphere. If the H{sub 2} and CO are cospatial within a molecular layer {approx}0.6 AU thick, this region is characterized by {approx} 10{sup 5} cm{sup -3} with an observed (CO/H{sub 2}) ratio of {approx}0.4. We also find evidence for a departure from a purely thermal H{sub 2} distribution, suggesting that excitation by continuum photons and H{sub 2} formation may be altering the level populations in the molecular gas.« less

  19. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  20. Pigment identification in artwork using graphite furnace atomic absorption spectrometry.

    PubMed

    Goltz, D M; Coombs, J; Marion, C; Cloutis, E; Gibson, J; Attas, M; Choo-Smith, L-P; Collins, C

    2004-06-17

    The use of a sampling technique is described for the identification of metals from inorganic pigments in paint. The sampling technique involves gently contacting a cotton swab with the painted surface to physically remove a minute quantity ( approximately 1-2mug) of pigment. The amount of material removed from the painted surface is invisible to the unaided eye and does not cause any visible effect to the painted surface. The cotton swab was then placed in a 1.5ml polystyrene beaker containing HNO(3) to extract pigment metals prior to analysis using graphite furnace atomic absorption spectrometry (GFAAS). GFAAS is well suited for identifying pigment metals since it requires small samples and many pigments consist of main group elements (e.g. Al) as well as transition metals (e.g. Zn, Fe and Cd). Using Cd (cadmium red) as the test element, the reproducibility of sampling a paint surface with the cotton swab was approximately 13% in either a water or oil medium. To test the feasibility of cotton sampling for pigment identification, samples were obtained from paintings (watercolour and oil) of a local collection. Raman spectra provided complementary information to the GFAAS, which together are essential for positive identification of some pigments. For example, GFAAS indicated the presence of Cu, but the Raman spectra positively identified the modern copper pigment phthalocyanine green (Cu(C(32)Cl(16)N(8)). Both Raman spectroscopy and GFAAS were useful for identifying ZnO as a white pigment.

  1. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    PubMed

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  2. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less

  3. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  4. Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.

    1995-07-01

    The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.

  5. Direct sampling graphite furnace atomic absorption spectrometry - feasibility of Na and K determination in desalted crude oil

    NASA Astrophysics Data System (ADS)

    Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.

    2018-03-01

    In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.

  6. Noise-immune cavity-enhanced analytical atomic spectrometry - NICE-AAS - A technique for detection of elements down to zeptogram amounts

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-10-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10- 12 cm- 1 Hz- 1/2 (corresponding to a single-pass absorbance of 7 × 10- 11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm3 (10 fg/m3 or 10- 5 ng/m3), which corresponds to 25 atoms/cm3, and Na down to 0.5 zg (zg = zeptogram = 10- 21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:1021) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated under atmospheric

  7. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    NASA Astrophysics Data System (ADS)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  8. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  10. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  11. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    NASA Astrophysics Data System (ADS)

    Kruger, Pamela C.; Parsons, Patrick J.

    2007-03-01

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3

  12. Measurements of atmospheric ethene by solar absorption FTIR spectrometry

    NASA Astrophysics Data System (ADS)

    Toon, Geoffrey C.; Blavier, Jean-Francois L.; Sung, Keeyoon

    2018-04-01

    Atmospheric ethene (C2H4; ethylene) amounts have been retrieved from high-resolution solar absorption spectra measured by the Jet Propulsion Laboratory (JPL) MkIV interferometer. Data recorded from 1985 to 2016 from a dozen ground-based sites have been analyzed, mostly between 30 and 67° N. At clean-air sites such as Alaska, Sweden, New Mexico, or the mountains of California, the ethene columns were always less than 1 × 1015 molec cm-2 and therefore undetectable. In urban sites such as JPL, California, ethene was measurable with column amounts of 20 × 1015 molec cm-2 observed in the 1990s. Despite the increasing population and traffic in southern California, a factor 3 decrease in ethene column density is observed over JPL over the past 25 years, accompanied by a decrease in CO. This is likely due to southern California's increasingly stringent vehicle exhaust regulations and tighter enforcement over this period.

  13. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    PubMed

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  14. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  15. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    PubMed

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Diode laser differential absorption spectrometry for measurements of some parameters of condensed media.

    PubMed

    Liger, V V; Bolshov, M A; Kuritsyn, Yu A; Krivtsun, V M; Zybin, A V; Niemax, K

    2007-04-01

    A method of diode laser differential absorption spectrometry (DLDAS) is proposed. The method is based on the detection of absorption spectra variations caused by the changes of a parameter of a condensed media (temperature, composition of the components of a mixture, pH, etc.). Some simple theoretical background of the proposed technique is presented. The potentialities of the method are demonstrated in the experiments on remote contactless measurement of the temperature of aqueous solutions and measurement of the deviations of the composition of a mixture of dyes from the equilibrium state.

  17. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    PubMed

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry.

    PubMed

    da Silva, Alessandra Furtado; Borges, Daniel L G; Lepri, Fábio Grandis; Welz, Bernhard; Curtius, Adilson J; Heitmann, Uwe

    2005-08-01

    This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 microg) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 degrees C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 degrees C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 degrees C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 degrees C and atomization at 1500 degrees C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g(-1), calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6-1.2 mg were analyzed.

  19. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    PubMed

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim

    1994-05-01

    Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).

  1. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer)

    PubMed Central

    Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.

    2008-01-01

    Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417

  2. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  3. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  4. Correlation between Wavelength Dispersive X-ray Fluorescence (WDXRF) analysis of hardened concrete for chlorides vs. Atomic Absorption (AA) analysis in accordance with AASHTO T- 260; sampling and testing for chloride ion in concrete and concrete raw mater

    DOT National Transportation Integrated Search

    2014-04-01

    A correlation between Wavelength Dispersive X-ray Fluorescence(WDXRF) analysis of Hardened : Concrete for Chlorides and Atomic Absorption (AA) analysis (current method AASHTO T-260, procedure B) has been : found and a new method of analysis has been ...

  5. Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Franzke, J.; Stancu, D. G.; Niemax, K.

    2003-07-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.

  6. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  7. [Determination of eight trace elements in the Swertia davidii Franch by flame atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Yu, Hon; Cao, Yu-juan; Zhang, Jing-jing; Liu, Qin

    2007-12-01

    The effects of different sample digestives on the determination of Swertia davidii Franch are compared. Eight trace elements in the Swertia davidii Franch were determined by flame atomic absorption spectrometry. The result shows that the RSD and recovery are better if the Swertia davidii Franch was digested with HNO3-HClO4 (5 : 1) mixed acid. The experimental results show that the detection limits were all smaller than 0.097 microg x mL(-1), the RSDs (n=8) all smaller than 2.34%, and the addition standard recovery (ASR) (n=8) was 89.32%-106.65% for all the elements.

  8. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Liquid chromatography-hydride generation-atomic absorption spectrometry for the speciation of tin in seafoods.

    PubMed

    Viñas, Pilar; López-García, Ignacio; Merino-Meroño, Beatriz; Campillo, Natalia; Hernández-Cordóba, Manuel

    2004-04-01

    Liquid chromatography with hydride generation atomic absorption spectrometry as the detection system was applied to the separation and determination of inorganic tin, tributyltin, dibutyltin, monobutyltin, diphenyltin and monophenyltin. A reversed phase C18 column and a methanol/water/acetic acid (70:27:3, v/v/v) mixture containing 0.05%(v/v) triethylamine and 0.1%(w/v) tropolone as the mobile phase (isocratic elution) were used. Extraction of organotins from the samples was carried out using methanol containing 0.05%(w/v) tropolone, a process that was repeated twice. The supernatants were shaken with water and dichloromethane in a separating funnel and the organic phase was collected and evaporated to dryness. When the method was applied to the speciation of tin in fresh and canned mussels, no organotins above the detection limits were identified in any of the samples, inorganic tin being the only species detected. The reliability of the procedure was checked by analyzing the total tin content of the samples by electrothermal atomic absorption spectrometry and by speciation of tin in a certified reference material, mussel tissue (CRM 477). The method can be used for environmental monitoring of organotins contaminated samples.

  11. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  12. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  13. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  14. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    PubMed

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  16. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  17. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    PubMed

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  18. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multicomutation flow system for manganese speciation by solid phase extraction and flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tobiasz, Anna; Sołtys, Monika; Kurys, Ewa; Domagała, Karolina; Dudek-Adamska, Danuta; Walas, Stanisław

    2017-08-01

    In the paper an application of solid phase extraction technique for speciation analysis of manganese in water samples with the use of flame atomic absorption spectrometry is presented. Two types of sorbents, activated silica gel and Dowex 1 × 4, were used respectively for simultaneously Mn2 + and MnO42 - retention and preconcentration. The whole procedure was realized in multicomutation flow system. Different conditions like: type and concentration of eluent, sample pH and loading time were tested during the study. Under appropriate conditions, it was possible to obtained enrichment factors of 20 and 16 for Mn(II) and Mn(VII), respectively. Precision of the procedure was close to 4% (measured as relative standard deviation), whereas the detection limit (3σ) was 1.4 μg·L- 1 for Mn(II) and 4.8 μg·L- 1 for Mn(VII).

  20. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  1. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  2. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.

    2017-03-01

    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  3. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.

  4. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  5. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma mass spectrometry and atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher D.; Lewis, Miles E.; Geraghty, Ciaran M.; Barbosa, Fernando; Parsons, Patrick J.

    2006-08-01

    A biomonitoring method for the determination of Pb, Cd, and Hg at background levels in whole blood by inductively coupled plasma-mass spectrometry is described. While this method was optimized for assessing Pb, Cd and Hg at environmental levels, it also proved suitable for assessing concentrations associated with occupational exposure. The method requires as little as 200 μl of blood that is diluted 1 + 49 for direct analysis in the inductively coupled plasma-mass spectrometer. Method performance is compared to well-established AAS methods. Initial method validation was accomplished using National Institute of Standards and Technology (NIST) Standard Reference Material 966, Toxic Metals in Bovine Blood. Method detection limits (3s) are 0.05 μg dl - 1 for Pb, 0.09 μg l - 1 for Cd; and 0.17 μg l - 1 for Hg. Repeatability ranged from 1.4% to 2.8% for Pb; 3% to 10% for Cd; and 2.6% to 8.8% for Hg. In contrast, AAS method detection limits were 1 μg dl - 1 , 0.54 μg l - 1 , and 0.6 μg l - 1 , for Pb, Cd, and Hg, respectively. Further performance assessments were conducted over a 2-year period via participation in four international External Quality Assessment Schemes (EQAS) operated specifically for toxic metals in blood. This includes schemes operated by (a) the New York State Department of Health's Wadsworth Center, Albany, NY, USA (b) L'Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, Canada, (c) Friedrich-Alexander University, Erlangen, Germany, and (d) the University of Surrey, Guildford, UK Trace Elements scheme. The EQAS data reflect analytical performance for blind samples analyzed independently by both inductively coupled plasma-mass spectrometry and AAS methods.

  6. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  7. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference

  8. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    PubMed

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  9. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  11. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  12. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis.

    PubMed

    Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze

    2017-07-25

    Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.

  13. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    PubMed

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  14. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Acid effects on the measurement of mercury by cold vapor atomic absorption spectrometry

    SciTech Connect

    Adeloju, S.B.; Mann, T.F.

    1987-07-01

    The influence of nitric, hydrochloric and sulfuric acids on the measurement of mercury by cold vapor atomic absorption spectrometry has been investigated. Small pre-reduction peaks associated with the instability of mercury were observed in solutions containing less than or equal to 12.5, < 2 and less than or equal to 12.5% v/v of each acid, respectively. Mercury was found to be most stable in greater than or equal to 2% v/v hydrochloric acid and the measured absorbance was not greatly influenced by varying concentration of the acid. The mercury absorbance measurements were more sensitive in solutions containing less than ormore » equal to 6.3% v/v hydrochloric acid than in similar concentrations of nitric and sulfuric acids. The use of the three acids as a digestion mixture result in serious interference from nitrogen oxides. The interference was removed by use of expelling agents such as urea and sulfamic acid or overcome by use of excess stannous chloride, prior to the reduction of mercury(II) ions. The determination of mercury in NBS albacore tuna using both of these approaches to overcome the interference problem proved to be successful.« less

  16. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  17. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  18. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  19. Optimization of electrothermal atomization parameters for simultaneous multielement atomic absorption spectrometry

    USGS Publications Warehouse

    Harnly, J.M.; Kane, J.S.

    1984-01-01

    The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.

  20. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41.

    PubMed

    Fiamegkos, I; Cordeiro, F; Robouch, P; Vélez, D; Devesa, V; Raber, G; Sloth, J J; Rasmussen, R R; Llorente-Mirandes, T; Lopez-Sanchez, J F; Rubio, R; Cubadda, F; D'Amato, M; Feldmann, J; Raab, A; Emteborg, H; de la Calle, M B

    2016-12-15

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue.

    PubMed

    Villa-Lojo, M C; Alonso-Rodríguez, E; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2002-06-10

    A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.

  2. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  3. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  4. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Jesus, Alexandre; Zmozinski, Ariane Vanessa; Damin, Isabel Cristina Ferreira; Silva, Márcia Messias; Vale, Maria Goreti Rodrigues

    2012-05-01

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 μg kg- 1 for arsenic and 0.2 μg kg- 1 for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a "cold finger" was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis.

  5. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  6. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    EPA Science Inventory

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  8. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  9. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  10. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    PubMed

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  11. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  12. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    PubMed

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  13. Rapid separation on copper powder of total mercury in blood and determination of mercury by flameless atomic absorption spectrometry.

    PubMed

    Dogan, S; Haerdi, W

    1979-01-01

    The determination of mercury in blood by flameless atomic absorption spectrometry (FAAS) has been described. Prior to its analysis, the sample was decomposed by combustion and separated on a copper powder micro-column. A special type of cell has been used which gives a better sensitivity compared with the types of cells described in the literature and the method of FAAS analysis has been improved. The sensitivity of 0.1 ng for 1% absorbance was observed and the standard deviation for six determinations at this level was found to be +/- 0.05 ng, for 95% probability.

  14. Mercury Pollution Exploration in Latvia with High-Sensitivity Zeeman Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogans, Egils; Gavare, Zanda; Svagere, Anda; Poikane, Rita; Skudra, Jānis

    2011-01-01

    This research presents Hg pollution measurements performed in Latvia with sensitive method using Zeeman AAS analyzer RA-915+ and necessary attachments. Air in Riga city and water samples from a number of rivers and lakes of Latvia were analyzed for presence of low-level Hg concentrations. Ombrotrophic bog peat was analyzed to get insight into long-term trends. Environment in the sites sampled is relatively clean according to the results obtained, but there are local spots of pollution.

  15. Determination of sub-ng g-1 levels of total inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry after pre-concentration.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2017-03-01

    A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.

  16. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    USGS Publications Warehouse

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  17. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  18. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    PubMed

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  19. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  20. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  1. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  2. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  3. On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry.

    PubMed

    González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M

    2003-04-01

    A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.

  4. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  5. A method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry.

    PubMed

    Parkinson, I S; Ward, M K; Kerr, D N

    1982-10-27

    A simple but reliable method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry is described. No preparatory procedures are required for water samples, although serum is mixed with a wetting agent (Triton X-100) to allow complete combustion of the samples and to improve analytical precision. Precautions to prevent contamination during sample handling are discussed and instrumental parameters are defined. The method has a sensitivity of 35.5 pg and detection limits of 2.3 micrograms Al/l for serum and 1.3 micrograms Al/l for water. The method was used to determine the aluminium concentration in serum of 46 normal subjects. The mean aluminium content was 7.3 micrograms/l (range 2--15 micrograms/l.

  6. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  7. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  8. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  9. Measurement of free radical kinetics in pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.

    2012-04-01

    This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.

  10. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  11. Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.

    PubMed

    Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A

    2018-02-01

    A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.

  12. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Determination of sulfur in kerosene by combustion and molecular absorption spectrometry in the gas phase

    SciTech Connect

    Ruschak, M.L.; Syty, A.

    1982-08-01

    A technique of nonflame molecular adsorption in the gas phase developed for the determination of sulfite trapped in tetrachloromercurate, is described herein for application to the determination of total sulfur in kerosene. The burner head is removed from the atomic absorption spectrometer and replaced with a flow-through absorption cell. A special reaction vessel is used to evolve SO/sub 2/ from the sulfite in a precise and convenient manner. The transient absorbance caused by the SO/sub 2/, as it is carried through the absorption cell, is measured. Both spiked and unspiked samples of kerosene were analyzed, and the reproducibility of themore » repeated runs is evidenced by a relative standard deviation from the mean of 5% for the unspiked kerosene and 4% for the spiked kerosene. If the detection level is defined as that concentration of S which gives a % S twice the standard deviation from the mean yields, the detection limit for the present method is 0.002% S by weight in kerosene.« less

  14. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    PubMed

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  15. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  16. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    PubMed

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  17. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  18. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry.

    PubMed

    Wiegelmann, Marcel; Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-09-01

    A high analytical sensitivity in ultraviolet matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is only achieved if the laser wavelength corresponds to a high optical absorption of the matrix. Laser fluence and the physicochemical properties of the compounds, e.g., the proton affinity, also influence analytical sensitivity significantly. In combination, these parameters determine the amount of material ejected per laser pulse and the ion yield, i.e., the fraction of ionized biomolecules. Here, we recorded peptide ion signal intensities as a function of these parameters. Three cinnamic acid matrices were investigated: α-cyano-4-hydroxycinnamic acid, α-cyano-4-chlorocinnamic acid, and α-cyano-2,4-difluorocinnamic acid. In addition, 2,5-dihydroxybenzoic acid was used in comparison experiments. Ion signal intensities "per laser shot" and integrated ion signal intensities were acquired over 900 consecutive laser pulses applied on distinct positions on the dried-droplet sample preparations. With respect to laser wavelength, the two standard MALDI wavelengths of 337/355 nm were investigated. Also, 305 or 320 nm was selected to account for the blue-shifted absorption profiles of the halogenated derivatives. Maximal peptide ion intensities were obtained if the laser wavelength fell within the peak of the absorption profile of the compound and for fluences two to three times the corresponding ion detection threshold. The results indicate ways for improving the analytical sensitivity in MALDI-MS, and in particular for MALDI-MS imaging applications where a limited amount of material is available per irradiated pixel.

  19. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    PubMed

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L -1 and buffer concentration of 0.01 mol L -1 , were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L -1 , limits detection and quantification of 0.024 and 0.081 μg L -1 , respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min -1 , and frequency of readings equal to 26 readings h -1 The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg -1 ), black tea (1.09 ± 0.15 μg kg -1 ), green tea (3.85 ± 0.13 μg kg -1 ), cigarette tobacco (38.27 ± 0.22 μg kg -1 ), and hair (0.35 ± 0.02 μg kg -1 ). © The Author(s) 2016.

  1. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  2. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    USGS Publications Warehouse

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  3. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    PubMed

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Speciation of chromium (VI) and total chromium determination in welding dust samples by flow-injection analysis coupled to atomic absorption spectrometry.

    PubMed

    Girard, L; Hubert, J

    1996-11-01

    We have studied the speciation of chromium (VI) in stainless-steel welding dusts. The approach used for the analysis of Cr(VI) and total Cr relies on a flow-injection analyzer (FIA) equipped with two different sequential detectors. The system measures Cr(VI). by colorimetry (with 1,5-diphenyl carbohydrazide) and total chromium content by flame atomic absorption spectroscopy (AAS). The extraction of the samples of welding-fume dusts is achieved in a buffer solution (acetic acid and sodium acetate at pH 4). This extraction procedure gives a 96% recovery of chromium (VI). The FIA-AAS system that has been described is also more sensitive, has a lower detection limit (0.005 mug ml(-1)) and gives a better precision (< 1%) than other equivalent systems that have been previously described.

  5. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  6. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  7. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    PubMed Central

    2011-01-01

    Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM) is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India) for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG). In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2). PMID:21466671

  8. Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow.

    PubMed

    Volani, Chiara; Caprioli, Giulia; Calderisi, Giovanni; Sigurdsson, Baldur B; Rainer, Johannes; Gentilini, Ivo; Hicks, Andrew A; Pramstaller, Peter P; Weiss, Guenter; Smarason, Sigurdur V; Paglia, Giuseppe

    2017-10-01

    Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 μL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that

  9. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    SciTech Connect

    Carkeet, C; Dueker, S R; Lango, J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake.more » The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.« less

  10. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled 14C-cobalamin

    PubMed Central

    Carkeet, Colleen; Dueker, Stephen R.; Lango, Jozsef; Buchholz, Bruce A.; Miller, Joshua W.; Green, Ralph; Hammock, Bruce D.; Roth, John R.; Anderson, Peter J.

    2006-01-01

    There is a need for an improved test of human ability to assimilate dietary vitamin B12. Assaying and understanding absorption and uptake of B12 is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry is uniquely suited for assessing absorption and kinetics of carbon-14 (14C)-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of 14C in microliter volumes of biological samples with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B12 in the range of normal dietary intake. The B12 used was quantitatively labeled with 14C at one particular atom of the dimethylbenzimidazole (DMB) moiety by exploiting idiosyncrasies of Salmonella metabolism. To grow aerobically on ethanolamine, Salmonella enterica must be provided with either preformed B12 or two of its precursors, cobinamide and DMB. When provided with 14C-DMB specifically labeled in the C2 position, cells produced 14C-B12 of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) (1 Ci = 37 GBq) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 μg, 2.2 kBq/59 nCi) of purified 14C-B12 was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B12 assimilation. PMID:16585531

  11. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    PubMed

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.

  12. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  13. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. © 2011 Institute of Food Technologists®

  14. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2012-08-01

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.

  15. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    PubMed

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  16. Determination of inorganic arsenic and its organic metabolites in urine by flow-injection hydride generation atomic absorption spectrometry.

    PubMed

    Hanna, C P; Tyson, J F; McIntosh, S

    1993-08-01

    A method has been developed for the determination of inorganic arsenic [As(III) and As(V)] and its organic metabolites (monomethylarsenic and dimethylarsenic) in urine by flow-injection hydride generation atomic absorption spectrometry. The nontoxic seafood-derived arsenobetaine and arsenocholine species were first separated by a solid-phase extraction procedure. The remaining sample was digested with a mixture of nitric and sulfuric acids and potassium dichromate, followed by attack with hydrogen peroxide. The resulting As(V) was reduced to As(III) with potassium iodide in hydrochloric acid before injection into the flow-injection manifold. The percentage analytical recoveries (mean +/- 95% confidence interval) of various arsenic species added to a urine specimen at 250 micrograms/L were 108 +/- 2, 112 +/- 11, 104 +/- 7, and 95 +/- 5 for As(III), As(V), monomethylarsenic, and dimethylarsenic, respectively. For the determination of arsenic in Standard Reference Material 2670 (toxic metals in human urine), results agreed with the certified value (480 +/- 100 micrograms/L). Analyses of samples for the Centre de Toxicologie du Quebec, containing seafood-derived species, demonstrated the viability of the separation procedure. Detection limits were between 0.1 and 0.2 microgram/L in the solution injected into the manifold, and precision at 10 micrograms/L was between 2% and 3% (CV). These preliminary results show that the method might be applicable to determinations of arsenic in a range of clinical urine specimens.

  17. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    PubMed

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  18. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tinas, Hande; Ozbek, Nil; Akman, Suleyman

    2018-02-01

    In this study, lead concentrations in various flour samples were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling. Since samples were analyzed directly, the risks and disadvantages of sample digestion were eliminated. Solid flour samples were dried, weighed on the platforms, Pd was added as a modifier and introduced directly into a graphite tube using a manual solid sampler. Platforms and tubes were coated with Zr. The optimized pyrolysis and atomization temperatures were 800 °C and 2200 °C, respectively. The sensitivities of lead in various flour certified reference materials (CRMs) and aqueous standards were not significantly different. Therefore, aqueous standards were safely used for calibration. The absolute limit of detection and characteristic mass were 7.2 pg and 9.0 pg of lead, respectively. The lead concentrations in different types of flour samples were found in the range of 25-52 μg kg- 1. Finally, homogeneity factors representing the heterogeneity of analyte distribution for lead in flour samples were determined.

  19. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    PubMed

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  3. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  4. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    PubMed

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  5. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    PubMed Central

    Chamsaz, Mahmoud; Akhoundzadeh, Jeiran; Arbab-zavar, Mohammad Hossein

    2012-01-01

    A simple microextraction method based on solidification of a floating organic drop (SFOD) was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Ammonium pyrolidinedithiocarbamate (APDC) was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s) and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD) for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples. PMID:25685441

  6. Can sample treatments based on advanced oxidation processes assisted by high-intensity focused ultrasound be used for toxic arsenic determination in human urine by flow-injection hydride-generation atomic absorption spectrometry?

    PubMed

    Correia, A; Galesio, M; Santos, H; Rial-Otero, R; Lodeiro, C; Oehmen, A; Conceição, Antonio C L; Capelo, J L

    2007-05-15

    Two advanced oxidation processes (AOPs), based on high-intensity focused ultrasound (HIFU), namely, KMnO(4)/HCl/HIFU and H(2)O(2)/HCl/HIFU are studied and compared for the determination of toxic arsenic in human urine [As(III)+As(V)+MMA+DMA] by flow-injection hydride-generation atomic absorption spectrometry (FI-HG-AAS). The KMnO(4)/HCl/HIFU procedure was found to be adequate for organic matter degradation in human urine. l-cysteine (letra minuscula) was used for As reduction to the trivalent state. The new procedure was assessed with seven urines certified in different As species. Results revealed that with KMnO(4)/HCl/HIFU plus l-cysteine the toxic arsenic can be accurately measured in human urine whilst the H(2)O(2)/HCl/HIFU procedure underestimates toxic As. DMA and MMA degradation in urine were observed, due to the effects of the ultrasonic field. Recoveries for As(III), As(V), MMA and DMA were within the certified ranges. Arsenobetaine was not degraded by the AOPs. The new procedure adheres well to the principles of analytical minimalism: (i) low reagent consumption, (ii) low reagent concentration, (iii) low waste production and (iv) low amount of time required for sample preparation and analysis.

  7. Rating AAs.

    ERIC Educational Resources Information Center

    Carter, Susan J.

    2001-01-01

    Why alternative investments? In a word: performance. Many higher education endowment and foundation managers are making increasing commitments to alternative investments, or AAs, in order to obtain higher returns and broader diversification for their investment portfolios than public securities instruments can usually provide. Learn how to handle…

  8. Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry.

    PubMed

    Amorim, Fábio A C; Ferreira, Sérgio L C

    2005-02-28

    In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250mL and the extraction process using 4.0mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3ngg(-1) for cadmium and 4.2ngg(-1) for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20ngg(-1), respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200ngg(-1), respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.

  9. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes.

    PubMed

    Yildirim, Emrah; Akay, Pınar; Arslan, Yasin; Bakirdere, Sezgin; Ataman, O Yavuz

    2012-12-15

    Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H(2)Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H(2)Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60s at 300°C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    PubMed

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  12. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    PubMed

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  13. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    PubMed

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  15. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  16. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    PubMed

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  18. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    NASA Astrophysics Data System (ADS)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  19. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  20. Simple method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer.

    PubMed

    Ishizaki, M

    1978-03-01

    A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.

  1. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  2. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  3. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μgL-1 levels in water samples by electrothermal atomic absorption spectrometry after electromembrane extraction.

    PubMed

    Tahmasebi, Zeinab; Davarani, Saied Saeed Hosseiny

    2016-12-01

    In this work, electromembrane extraction in combination with electrothermal atomic absorption spectrometry (ET-AAS) was investigated for speciation, preconcentration and quantification of Cr(VI) and Cr(III) in water samples through the selective complexation of Cr(VI) with 1,5-diphenylcarbazide (DPC) as a complexing agent. DPC reduces Cr(VI) to Cr(III) ions and then Cr(III) species are extracted based on electrokinetic migration of their cationic complex (Cr(III)-DPC) toward the negative electrode placed in the hollow fiber. Also, once oxidized to Cr(VI), Cr(III) ions in initial sample were determined by this procedure. The influence of extraction parameters such as pH, type of organic solvent, chelating agent concentration, stirring rate, extraction time and applied voltage were evaluated following a one-at-a-time optimization approach. Under optimized conditions, the extracted analyte was quantified by ETAAS, with an acceptable linearity in the range of 0.05-5ngmL -1 (R 2 value=0.996), and a repeatability (%RSD) between 3.7% and 12.2% (n=4) for 5.0 and 1.0ngmL -1 of Cr(VI), respectively. Also, we obtained an enrichment factor of 110 that corresponded to the recovery of 66%. The detection limit (S/N ratio of 3:1) was 0.02ngmL -1 . Finally, this new method was successfully employed to determine Cr(III) and Cr(VI) species in real water samples. Copyright © 2016. Published by Elsevier B.V.

  4. On-line ionic liquid-based preconcentration system coupled to flame atomic absorption spectrometry for trace cadmium determination in plastic food packaging materials.

    PubMed

    Martinis, Estefanía M; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-05-15

    A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).

  5. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  7. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [AA amyloidosis].

    PubMed

    Stojanovic, Katia Stankovic; Georgin-Lavialle, Sophie; Grateau, Gilles

    2017-06-01

    AA amyloidosis remains one of the three main types of systemic amyloidosis with AL and ATTR. Its incidence has been however decreasing recently in Western countries. Chronic inflammatory diseases are currently the first cause of AA amyloidosis, including rheumatoid arthritis, spondyloarthritis and autoinflammatory diseases. Castleman's disease is a specific cause of AA amyloidosis that can be cured by surgery. A chronic inflammatory response is required to develop amyloidosis. Other genetic and environmental factors are also involved. The first clinical manifestation is a chronic glomerular nephropathy, which can be detected by urine examination and serum creatinine measure. Immunohistochemistry is mandatory to confirm the clinical diagnosis of AA amyloidosis and to avoid misdiagnosis. Long-term prognosis remains poor on chronic dialysis in case of clinical gut involvement. Current treatment is based on the control of the inflammatory response. Specific treatment aimed at inhibiting amyloid formation targeting serum amyloid P component and heparan sulphate are currently evaluated. Copyright © 2017 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.

  9. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, < 0.4-6 ng g - 1 in gasoline, < 0.5-2 ng g - 1 in atmospheric oil, < 6-100 ng g - 1 in heavy vacuum oil and 140-300 ng g - 1 in distillation residue.

  10. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    PubMed

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  11. Role of iron modifier on boron atomization process using graphite furnace-atomic absorption spectrometry based on speciation of iron using X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuhei; Tagami, Azusa; Shiarasaki, Toshihiro; Yonetani, Akira; Yamamoto, Takashi; Imai, Shoji

    2018-04-01

    The role of an Fe modifier on boron atomization process using graphite furnace-atomic absorbance spectrometry was investigated using a spectroscopic approach. The initial state of the Fe modifier in a pyrolytic graphite (PG) furnace was trivalent. With an increase in pyrolysis temperature, the Fe modifier was reduced in a stepwise manner. Fe2O3 and Fe3O4 were dominant at pyrolysis temperatures below 1300 K. From 1300 to 1500 K, FeO was dominant. At temperatures higher than 1700 K, Fe metal was dominant. After a drying step, 17.7% of the initial B remained in the PG furnace. After the pyrolysis step at 773 K, the residual fraction of B was similar to that after the drying step. After the pyrolysis step at a temperature of 1073 K, the residual fraction was 11.7%. At pyrolysis temperatures > 1738 K, the residual fraction was <3.3% (

  12. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    PubMed

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    SciTech Connect

    Aklamati, E K; Mulenga, M; Dueker, S R

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered withmore » the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.« less

  14. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    PubMed

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  15. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  16. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The determination of lead in sugar and sweets without digestion by electrothermal atomic absorption spectrometry (ETAAS) with a rhodium chemical modifier.

    PubMed

    Dias, V M C; Cardoso, A S B

    2006-05-01

    Reference methods for determining lead in food are usually time-consuming. This paper reports a straightforward procedure using electrothermal atomic absorption spectrometry (ETAAS), to determine lead (Pb) in fat-free sweets. Several chemical modifiers were examined and results showed that it is not necessary to digest the samples, when a rhodium (Rh) modifier was used. The samples were dissolved in nitric acid and the determination of Pb was performed by ETAAS, using Rh chemical modifier at a pyrolysis temperature of 900 degrees C and an atomization temperature of 1,500 degrees C. No ashing step was employed and aqueous standards were used, in the range 2-10 microg l(-1). The limit of quantification was 0.095 mg kg(-1), and the accuracy of the method was verified by analysing certified reference materials.

  18. Validation of a hydride generation atomic absorption spectrometry methodology for determination of mercury in fish designed for application in the Brazilian national residue control plan.

    PubMed

    Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M

    2013-01-01

    In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.

  19. On-line preconcentration system for lead(II) determination in waste water by atomic absorption spectrometry using active carbon loaded with Pyrogallol Red.

    PubMed

    Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H

    2003-06-01

    An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.

  20. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction.

    PubMed

    Sun, Mei; Liu, Guijian; Wu, Qianghua

    2013-11-01

    A new method was developed for the determination of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry detection after cloud point extraction. Effective separation of organic and inorganic selenium in selenium-enriched rice was achieved by sequentially extracting with water and cyclohexane. Under the optimised conditions, the limit of detection (LOD) was 0.08 μg L(-1), the relative standard deviation (RSD) was 2.1% (c=10.0 μg L(-1), n=11), and the enrichment factor for selenium was 82. Recoveries of inorganic selenium in the selenium-enriched rice samples were between 90.3% and 106.0%. The proposed method was successfully applied for the determination of organic and inorganic selenium as well as total selenium in selenium-enriched rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Lead screening in DBS by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: application to newborns and pregnant women.

    PubMed

    Rello, Luis; Aramendía, Maite; Belarra, Miguel A; Resano, Martín

    2015-01-01

    DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 μg l(-1). More than 500 samples were analyzed to validate the model. The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).

  2. Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma

    2017-03-01

    This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.

  3. Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism.

    PubMed

    Li, Yongmei; Shin, Young Geun; Yu, Chongwoo; Kosmeder, Jerome W; Hirschelman, Wendy H; Pezzuto, John M; van Breemen, Richard B

    2003-12-01

    The Caco-2 cell monolayer permeability assay has become a standard model of human intestinal absorption and transport. This paper reviews recent progress in increasing the throughput of Caco-2 cell monolayer assays and in expanding the scope of this assay to include modeling intestinal drug metabolism. The state-of-the-art in Caco-2 cell monolayer permeability assays combines multi-well plates fitted with semi-permeable inserts on which Caco-2 cells have been cultured with liquid chromatography-mass spectrometry (LC-MS) or LC-tandem mass spectrometry (LC-MS-MS) for the quantitative analysis of test compounds and the identification of their intestinal metabolites. After reviewing the progress in increasing the throughput of Caco-2 cell monolayer assays for both modeling human intestinal permeability or transport and the metabolism of xenobiotic compounds, we demonstrate the application of LC-MS and LC-MS-MS to the measurement of resveratrol permeability and metabolism in the Caco-2 model. trans-Resveratrol (trans-3,5,4'-trihydroxystilbene) is a polyphenolic compound occurring in grapes, peanuts and other food sources, that is under investigation as a cancer chemoprevention agent. The apparent permeability coefficient for apical (AP) to basolateral (BL) movement of resveratrol was 2.0 x 10(-5)cm/sec. Resveratrol was not a substrate for P-glycoprotein or the multi-drug resistance associated proteins (MRP). No phase I metabolites were observed, but the phase II conjugates resveratrol-3-glucuronide and resveratrol-3-sulfate was identified based on LC-MS and LC-MS-MS analysis and comparison with synthetic standards. Although these data indicate that resveratrol diffuses rapidly across the intestinal epithelium, extensive phase II metabolism during absorption might reduce resveratrol bioavailability.

  4. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  5. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  6. Evaluation of the memory effect on gold-coated silica adsorption tubes used for the analysis of gaseous mercury by cold vapor atomic absorption spectrometry.

    PubMed

    Rahman, Mohammad Mahmudur; Brown, Richard J C; Kim, Ki-Hyun; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.

  7. Evaluation of the Memory Effect on Gold-Coated Silica Adsorption Tubes Used for the Analysis of Gaseous Mercury by Cold Vapor Atomic Absorption Spectrometry

    PubMed Central

    Rahman, Mohammad Mahmudur; Brown, Richard J. C.; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hgo), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species. PMID:23589708

  8. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    PubMed

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  9. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  11. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  12. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    PubMed

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  13. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    PubMed

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  14. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  15. Rapid Determination of Trace Palladium in Active Pharmaceutical Ingredients by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Yin, Q. H.; Zhu, D. M.; Yang, D. Z.; Hu, Q. F.; Yang, Y. L.

    2018-01-01

    Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0-500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.

  16. Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers

    NASA Astrophysics Data System (ADS)

    Burguera, Marcela; Burguera, José Luis; Rondón, Carlos; Carrero, Pablo

    2001-10-01

    A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different 'coating' treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l -1 NH 4F HF after every three boron measurements. The addition of 10 μl of 15 g l -1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l -1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.

  17. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry.

    PubMed

    Ghaedi, Mehrorang; Ahmadi, Farshid; Shokrollahi, Ardeshir

    2007-04-02

    A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the formation of metal complexes by 4,6-dihydroxy-2-mercaptopyrimidine (DHMP) loaded on activated carbon. The metals content on the complexes are then eluted using 5 mL 2M HNO(3) in acetone, which are detected by AAS at resonance line. In this procedure, minerals such as Cu, Ni, Pb and Co could be analyzed in one run by caring out the simultaneous separation and quantification of them. At optimum condition the response are linear over concentration range of 0.04-1.1 microg mL(-1) for Ni(2+) and 0.04-1.0 microg mL(-1) for Cu(2+), Pb(2+) and Co(2+). The detection limits of each element are expressed as the amount of analytes in ng mL(-1) giving a signal to noise ratio of 3 are equal to 3.5, 3.4, 2.9 and 8.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The sorption capacity was determined by saturating 0.5 g solid phase. The loading capacity are 0.54, 0.53, 0.63 and 0.45 mg g(-1) for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The ability of method for repeatable recovery of trace ion are 99.0, 98.9, 99.2 and 98.8 with R.S.D. of 1.4, 1.3, 1.2 and 1.4 for Ni(2+), Co(2+), Cu(2+) and Pb(2+). The low detection limits of these elements in this technique make it a superior alternative to UV-vis and in several applications, also an alternative to ICP-MS techniques. The method has been successfully applied for these metals content evaluation in some real samples including natural water, leaves of spinach and cow liver.

  18. Aa Ah Nak

    ERIC Educational Resources Information Center

    Tha, Na Gya; Wus, Thay

    2017-01-01

    In this article, Aa Ah Nak, the authors' methodology presents not only various reflections but also diverse contradictions about the Aa Nii language as well as language revitalization. This article explores language foundation and how the Aa Nii language revitalization is inextricably linked to the genocide and resulting historic trauma pervasive…

  19. Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS.

    PubMed

    Pereira, João B; Dantas, Kelly G F

    2016-04-01

    The determination of Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, and Zn by inductively coupled plasma optical emission spectrometry (ICP OES), and Se by graphite furnace atomic absorption spectrometry (GF AAS), has been carried out in dry matter and teas from 11 samples of the cat's claw plant. The accuracy and precision values were verified against GBW 07604 (Poplar leaves) certified reference material and by the recovery test. Results showed a high content of Ca in the medicinal plant studied, followed by Mg and P. The values obtained showed that the elements studied have different concentrations depending on the method of tea preparation. The highest levels were observed in Ca and Mg, and the lowest for Se and Pb, by both infusion and decoction. Teas prepared from this plant were found to be at safe levels for human consumption, and may be suitable as sources of these elements in the human diet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Potential improvements aimed at high precision δ13C isotopic ratio determinations in CO2 mixtures using optical absorption spectrometry.

    PubMed

    Koulikov, Serguei; Assonov, Sergey; Fajgelj, Ales; Tans, Pieter

    2018-07-01

    The manuscript explores some advantages and limitations of laser based optical spectroscopy, aimed at achieving robust, high-reproducibility 13 C 16 O 2 and 12 C 16 O 2 ratio determinations on the VPDB-CO 2 δ 13 C scale by measuring the absorbance of line pairs of 13 C 16 O 2 and 12 C 16 O 2 . In particular, the sensitivities of spectroscopic lines to both pressure (P) and temperature (T) are discussed. Based on the considerations and estimations presented, a level of reproducibility of the 13 C 16 O 2 / 12 C 16 O 2 ratio determinations may be achieved of about 10 -6 . Thus one may establish an optical spectroscopic measurement technique for robust, high-precision 13 C 16 O 2 and 12 C 16 O 2 ratio measurements aimed at very low uncertainty. (Notably, creating such an optical instrument and developing technical solutions is beyond the scope of this paper.) The total combined uncertainty will also include the uncertainty component(s) related to the accuracy of calibration on the VPDB-CO 2 δ 13 C scale. Addressing high-accuracy calibrations is presently not straightforward - absolute numerical values of 13 C/ 12 C for the VPDB-CO 2 scale are not well known. Traditional stable isotope mass-spectrometry uses calibrations vs CO 2 evolved from the primary carbonate reference materials; which can hardly be used for calibrating commercial optical stable isotope analysers. In contrast to mass-spectrometry, the major advantage of the laser-based spectrometric technique detailed in this paper is its high robustness. Therefore one can introduce a new spectrometric δ 13 C characterisation method which, being once well-calibrated on the VPDB-CO 2 scale, may not require any further (re-)calibrations. This can be used for characterisation of δ 13 C in CO 2 -in-air mixtures with high precision and also with high accuracy. If this technique can be realised with the estimated long-term reproducibility (order of 10 -6 ), it could potentially serve as a more convenient Optical

  1. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  2. Integrated lab-in-syringe platform incorporating a membraneless gas-liquid separator for automatic cold vapor atomic absorption spectrometry.

    PubMed

    Giakisikli, Georgia; Miró, Manuel; Anthemidis, Aristidis

    2013-10-01

    This manuscript reports the proof-of-concept of a novel integrated lab-in-syringe/gas-liquid separation (LIS/GLS) batch-flow system based on a programmable flow for automatic cold vapor atomic absorption spectrometric assays. Homogeneous mixing of metered volumes of sample and reagent solutions drawn up in a sandwich-type mode along with in situ vapor generation are accomplished inside the microsyringe in a closed manner, while the separation of vapor species is achieved via the membraneless GLS located at the top of the syringe's valve in the upright position. The potentials of the proposed manifold were demonstrated for trace inorganic mercury determination in drinking waters and seawater. For a 3.0 mL sample, the limit of detection and repeatability (RSD) were found to be 0.03 μg L(-1) Hg(II) and 3.1% (at the 2.0 μg L(-1) concentration level), respectively, with a dynamic range extending up to 10.0 μg L(-1). The proposed system fulfills the requirements of US-EPA, WHO, and EU Council Directives for measurements of the maximum allowed concentrations of inorganic mercury in drinking water.

  3. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  4. Back-extraction of trace elements from organometallic-halide extracts for determination by flameless atomic absorption spectrometry

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.

  5. Fast determination of phosphorus in honey, milk and infant formulas by electrothermal atomic absorption spectrometry using a slurry sampling procedure

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2007-01-01

    A procedure for the electrothermal atomic absorption spectrometric determination of phosphorus in honey, milk and infant formulas using slurried samples is described. Suspensions prepared in a medium containing 50% v/v concentrated hydrogen peroxide, 1% v/v concentrated nitric acid, 10% m/v glucose, 5% m/v sucrose and 100 mg l - 1 of potassium were introduced directly into the furnace. For the honey samples, multiple injection of the sample was necessary. The modifier selected was a mixture of 20 μg palladium and 5 μg magnesium nitrate, which was injected after the sample and before proceeding with the drying and calcination steps. Calibration was performed using aqueous standards prepared in the same suspension medium and the graph was linear between 5 and 80 mg l - 1 of phosphorus. The reliability of the procedure was checked by comparing the results obtained by the new developed method with those found when using a reference spectrophotometric method after a mineralization step, and by analyzing several certified reference materials.

  6. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  7. Determination of free and total sulfur(IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase.

    PubMed

    Oliveira, Michael L; Brandao, Geovani C; de Andrade, Jailson B; Ferreira, Sergio L C

    2018-03-01

    This work proposes a method for the determination of free and total sulfur(IV) compounds in coconut water samples, using the high-resolution continuum source molecular absorption spectrometry. It is based on the measurement of the absorbance signal of the SO 2 gas generate, which is resultant of the addition of hydrochloric acid solution on the sample containing the sulfating agent. The sulfite bound to the organic compounds is released by the addition of sodium hydroxide solution, before the generation of the SO 2 gas. The optimization step was performed using multivariate methodology involving volume, concentration and flow rate of hydrochloric acid. This method was established by the sum of the absorbances obtained in the three lines of molecular absorption of the SO 2 gas. This strategy allowed a procedure for the determination of sulfite with limits of detection and quantification of 0.36 and 1.21mgL -1 (for a sample volume of 10mL) and precision expressed as relative standard deviation of 5.4% and 6.4% for a coconut water sample containing 38.13 and 54.58mgL -1 of free and total sulfite, respectively. The method was applied for analyzing five coconut water samples from Salvador city, Brazil. The average contents varied from 13.0 to 55.4mgL -1 for free sulfite and from 24.7 to 66.9mgL -1 for total sulfur(IV) compounds. The samples were also analyzed employing the Ripper´s procedure, which is a reference method for the quantification of this additive. A statistical test at 95% confidence level demonstrated that there is no significant difference between the results obtained by the two methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Liquid chromatography-electrothermal atomic absorption spectrometry for the separation and preconcentration of molybdenum in milk and infant formulas.

    PubMed

    López-García, I; Viñas, P; Romero-Romero, R; Hernández-Córdoba, M

    2007-08-06

    Two procedures for the electrothermal atomic absorption spectrometric determination of molybdenum in milk and infant formulas using slurried samples are described. For powdered milk samples, 10% (m/v) slurries were prepared in a medium containing 25 and 75% (v/v) concentrated hydrogen peroxide and hydrofluoric acid, respectively, and introduced directly into the furnace. Palladium (200 microg mL(-1)) was used as the modifier and calibration was carried out using aqueous standards prepared in the same medium. The detection limit was 0.02 microg g(-1) for powdered milk samples suspended at 10% (m/v) (equivalent to 2 microg L(-1)). The relative standard deviation (R.S.D.) for five measurements was 1.9%, the characteristic mass being 25 pg. For liquid milk samples, a procedure was proposed based on preconcentration and removal of the matrix, using ionic exchange (Amberlite IRA 743) and elution of molybdenum with 5% (m/v) NaOH. In this case, a 30-fold improvement in the calibration slope was achieved, leading to a detection limit of 0.04 microg L(-1) for liquid samples diluted to 10%. The R.S.D. was 3.5%. Using a size-based separation procedure, it was found that molybdenum is present in its inorganic form or associated to low molecular weight substances in cow milk, while in breast milk it is associated to proteins. The reliability of the procedure was checked by comparing the results obtained with those found using a previous mineralization stage and by analyzing three certified reference materials, namely, BCR 063R (skim milk powder), NBS 1549 (non-fat milk powder) and NBS 8435 (whole milk powder).

  9. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  10. Green Preconcentration of Trace Amounts of Copper from Water and Food Samples onto Novel Organo-Nanoclay Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah

    2014-01-01

    In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.

  11. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  12. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  13. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    PubMed

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  14. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry.

    PubMed Central

    Baranowska, I

    1995-01-01

    OBJECTIVE--To measure the concentrations of the trace elements lead and cadmium in human placenta and in maternal and neonatal (cord) blood. To assess the influence of the strongly polluted environment on the content of metals in tissues and on the permeability of placenta to cadmium and lead. Various methods of mineralisation were tested before analysis. METHODS--Graphite furnace atomic absorption spectrometry was used for the determination of lead and cadmium. The samples for analysis were prepared by mineralisation under pressure in a Teflon bomb (HNO3, 110 degrees C), by wet ashing under normal pressure (HNO3 + H2O2 for 12 hours), and by microwave digestion in concentrated nitric acid. RESULTS--In analysed samples the following mean concentrations of cadmium and lead were found: in venous blood Pb = 72.50 ng/ml, Cd = 4.90 ng/ml; in placenta Pb = 0.50 microgram/g, Cd = 0.11 microgram/g; in cord blood Pb = 38.31 ng/ml, Cd = 1.13 ng/ml. CONCLUSION--High concentrations of lead and cadmium were found in placentas and in maternal blood whereas in neonatal blood there was an increased concentration of lead and only traces of cadmium. It is concluded that the placenta is a better barrier for cadmium than for lead. Among the examined methods of mineralisation, microwave digestion was the best. PMID:7795737

  15. Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer.

    PubMed

    Mora, J; Todolí, J L; Sempere, F J; Canals, A; Hernandis, V

    2000-12-01

    The behaviour of a single-bore high-pressure pneumatic nebulizer (SBHPPN) as a tool for the analysis of lubricating oils by flame atomic absorption spectrometry (FAAS) was investigated. The effects of the sample oil content [from 10% to 100% (w/w) oil in 4-methylpentan-2-one, IBMK] and the carrier nature (IBMK and methanol) on the characteristics of the aerosols generated, on the analyte transport efficiency and on the analytical figures of merit in FAAS were studied. A pneumatic concentric nebulizer (PCN) was used for comparison. Increasing the oil content increases the viscosity of the sample. With the PCN this gives rise to coarser aerosols, making it impossible to nebulize samples with an oil content higher than 70% (w/w). Using the SBHPPN, the viscosity of the sample scarcely affects the characteristics of the primary aerosols. Hence, the SBHPPN is able, by using the appropriate carrier, to nebulize pure lubricating oils. Among the carriers tested, IBMK is the most advisable because it is fully miscible with all the oil samples. The SBHPPN provides higher sensitivities and lower limits of detection than the PCN. Compared with a method based on organic dilution, the use of the SBHPPN for the direct analysis of lubricating oils by FAAS makes it possible, in addition to increasing the analysis throughput, to detect elements at lower concentrations. Moreover, the SBHPPN provides similar results to those obtained using a previous acid digestion step.

  16. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.

  17. Synthesize of silver-nanoparticles by plant extract and its application for preconcentration of cadmium followed by flame atomic absorption spectrometry.

    PubMed

    Almertaha, Abdul-Hossein; Eftekhari, Mohammad; Chamsaz, Mahmoud; Gheibi, Mohammad

    2018-02-02

    In this paper, Mentha pulegium leaves extract was used as a green reducing agent for the synthesis of silver-nanoparticles. The synthesized silver-nanoparticles were characterized by UV-VIS spectrophotometry, transmission electron microscopy, X-ray spectroscopy and used as an adsorbent for preconcentration of trace levels of cadmium (ІІ). After the desorption of cadmium (ІІ) in 5 mol L -1 formic acid, the desorbent solution was aspirated into the flame atomic absorption spectrometry for the determination of cadmium. In order to optimize the experimental condition, a response surface methodology based on central composite design was used. The optimum conditions are: pH: 8.6, amounts of adsorbent: 30 mg, 10 min extraction time and desorption time of 2 min. Under the optimum condition, the calibration curve was linear in the range of 5-200 μg L -1 cadmium (ІІ) ion with a correlation coefficient of 0.9995. The limit of detection was 1.1 μg L -1 and the relative standard deviation for 25 μg L -1 cadmium (ІІ) ion was 3.0% (n = 5). In order to check the applicability of the proposed method, different real samples were analyzed. Also, the accuracy of this method was successfully checked by the analysis of certified reference material and spike tests.

  18. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    PubMed

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  4. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  5. Determination of mercury in agroindustrial samples by flow-injection cold vapor atomic absorption spectrometry using ion exchange and reductive elution.

    PubMed

    Gomes Neto, J A; Zara, L F; Rocha, J C; Santos, A; Dakuzaku, C S; Nóbrega, J A

    2000-03-06

    A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.

  6. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  7. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  8. Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry.

    PubMed

    Barbosa, Valéria Maria Pereira; Barbosa, Adriano Francisco; Bettini, Jefferson; Luccas, Pedro Orival; Figueiredo, Eduardo Costa

    2016-01-15

    Oxidized carbon nanotubes were covered with layers of bovine serum albumin to result in so-called restricted-access carbon nanotubes (RACNTs). This material can extract Pb(2+) ions directly from untreated human blood serum while excluding all the serum proteins. The RACNTs have a protein exclusion capacity of almost 100% and a maximum Pb(2+) adsorption capacity of 34.5mg g(-1). High resolution transmission electron microscopy, scanning transmission electron microscopy and energy dispersive spectroscopy were used to confirm the BSA layer and Pb(2+) adsorption sites. A mini-column filled with RACNTs was used in an on-line solid phase extraction system coupled to a thermospray flame furnace atomic absorption spectrometry. At optimized experimental conditions, the method has a detection limit as low as 2.1µg L(-1), an enrichment factor of 5.5, and inter- and intra-day precisions (expressed as relative standard deviation) of <8.1%. Recoveries of the Pb(2+) spiked samples ranged from 89.4% to 107.3% for the extraction from untreated human blood serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2010-01-15

    A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n=21) was 0.75 microg L(-1) for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.

  12. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions.

    PubMed

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  13. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    NASA Astrophysics Data System (ADS)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  14. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  15. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    NASA Astrophysics Data System (ADS)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  16. Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Aline Rodrigues; Nascentes, Clésia Cristina

    2013-02-15

    A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry.

    PubMed

    Fırat, Merve; Bodur, Süleyman; Tışlı, Büşra; Özlü, Cansu; Chormey, Dotse Selali; Turak, Fatma; Bakırdere, Sezgin

    2018-06-12

    In this study, a switchable solvent was used to preconcentrate trace amounts of Cd from aqueous solution for its determination by flame atomic absorption spectrometry (FAAS). Protonation of N,N-dimethylbenzylamine by dry ice (solid CO 2 ) made it water soluble, and addition of sodium hydroxide converted it back to its original nonionic state for phase separation and subsequent extraction of Cd. A slotted quartz tube (SQT) was attached to the flame burner head to increase the residence time of Cd atoms in the light path. Under the optimum conditions, limits of detection and quantification were determined as 0.7 and 2.6 μg L -1 , respectively. Low relative standard deviations calculated from seven replicate measurements of the lowest concentration indicated high precision. Accuracy of the developed method was checked by using a standard reference material (SRM 1633c). Spiked recovery tests were also performed on lake water and wastewater samples at different concentrations to check the applicability of the developed method, and the results obtained (90-103%) established high recovery.

  18. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  19. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    PubMed

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.

  20. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.

  1. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  2. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    PubMed

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  3. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Application of high-resolution continuum source flame atomic absorption spectrometry to reveal, evaluate and overcome certain spectral effects in Pb determination of unleaded gasoline

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał

    2017-06-01

    High-resolution continuum source and line source flame atomic absorption spectrometry (HR-CS FAAS and LS FAAS, respectively) were applied for Pb determination in unleaded aviation or automotive gasoline that was dissolved in methyl-isobutyl ketone. When using HR-CS FAAS, a structured background (BG) was registered in the vicinity of both the 217.001 nm and 283.306 nm Pb lines. In the first case, the BG, which could be attributed to absorption by the OH molecule, directly overlaps with the 217 nm line, but it is of relatively low intensity. For the 283 nm line, the structured BG occurs due to uncompensated absorption by OH molecules present in the flame. BG lines of relatively high intensity are situated at a large distance from the 283 nm line, which enables accurate analysis, not only when using simple variants of HR-CS FAAS but also for LS FAAS with a bandpass of 0.1 nm. The lines of the structured spectrum at 283 nm can have ;absorption; (maxima) or ;emission; (minima) character. The intensity of the OH spectra can significantly depend on the flame character and composition of the investigated organic solution. The best detection limit for the analytical procedure, which was 0.01 mg L- 1 for Pb in the investigated solution, could be achieved using HR-CS FAAS with the 283 nm Pb line, 5 pixels for the analyte line measurement and iterative background correction (IBC). In this case, least squares background correction (LSBC) is not recommended. However, LSBC (available as the ;permanent structures; option) would be recommended when using the 217 nm Pb line. In LS FAAS, an additional phenomenon related to the nature of the organic matrix (for example, isooctane or toluene) can play an important role. The effect is of continuous character and probably due to the simultaneous efficient correction of the continuous background (IBC) it is not observed in HR-CS FAAS. The fact that the effect does not depend on the flame character indicates that it is not radiation

  5. AAS 227: Day 3

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    , think-pair-share style clicker questions, and comparing excerpts from scientific articles and the media. Eventually, students discover that the Earths overall temperature is going up, but observations can vary from year to year because heat is moving between the atmosphere and the oceans.Press Conference: Fermis Vision, First Stars, Massive Galaxy Cluster, and Dark Energy (by Susanna Kohler)Todays afternoon press conference was an exciting assortment of results, difficult to categorize under a single umbrella.First up was Marco Ajello (Clemson University), who spoke about 2FHL, the second Fermi-LAT catalog of high-energy sources. LAT stands for Large Area Telescope, an instrument on board the Fermi gamma-ray space observatory that scans the entire sky every three hours. Ajello described the contents of the 2FHL catalog: 360 gamma-ray sources, of which 75% are blazars (distant galactic nuclei with jets pointed toward us), 11% are sources within the galaxy, and the remaining 14% are unknown. With this catalog, Fermi has expanded into higher energies than ever before, providing the first map of the 50 GeV 2 TeV sky. Heres the press release.OMeara: Im a lowly spectroscopist so I dont have fun pictures to show you, just squiggly lines. #aas227 astrobites (@astrobites) January 7, 2016Next to speak, John OMeara (St. Michaels College) told us about the discovery of a gas cloud that may be a remnant from the first population of stars. OMeara showed us the emission spectrum from a distant quasar, which displays abrupt absorption by a cloud of gas located at a redshift of z~3.5. Absorption by gas clouds is not unusual but what is unusual is that this cloud is extremely metal-poor, with only 1/2500th solar metallicity. This is the lowest heavy-element content ever measured, and a sign that the cloud might have been enriched by Population III stars the theoretical first population of stars, which were born when gas in the universe was still pristine. Heres the press release

  6. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: Characterisation by in vitro percutaneous absorption studies and Time-of-Flight Secondary Ion Mass Spectrometry.

    PubMed

    Holmes, Amy M; Scurr, David J; Heylings, Jon R; Wan, Ka-Wai; Moss, Gary P

    2017-06-15

    Skin penetration and localisation of chlorhexidine digluconate (CHG) within the skin have been investigated in order to better understand and optimise the delivery using a nano polymeric delivery system of this topically-applied antimicrobial drug. Franz-type diffusion cell studies using in vitro porcine skin and tape stripping procedures were coupled with Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise the skin during various treatments with CHG and polyamidoamine dendrimers (PAMAM). Pre-treatment of the skin with PAMAM dendrimers significantly increased the amount and depth of permeation of CHG into the skin in vitro. The effect observed was not concentration dependant in the range 0.5-10mM PAMAM. This could be important in terms of the efficiency of treatment of bacterial infection in the skin. It appears that the mechanism of enhancement is due to the PAMAM dendrimer disrupting skin barrier lipid conformation or by occluding the skin surface. Franz-type diffusion cell experiments are complimented by the detailed visualisation offered by the semi-quantitative ToF-SIMS method which provides excellent benefits in terms of sensitivity and fragment ion specificity. This allows a more accurate depth profile of chlorhexidine permeation within the skin to be obtained and potentially affords the opportunity to map the co-localisation of permeants with skin structures, thus providing a greater ability to characterise skin absorption and to understand the mechanism of permeation, providing opportunities for new and more effective therapies. Copyright © 2017. Published by Elsevier B.V.

  8. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Fast determination of trace elements in organic fertilizers using a cup-horn reactor for ultrasound-assisted extraction and fast sequential flame atomic absorption spectrometry.

    PubMed

    Teixeira, Leonel Silva; Vieira, Heulla Pereira; Windmöller, Cláudia Carvalhinho; Nascentes, Clésia Cristina

    2014-02-01

    A fast and accurate method based on ultrasound-assisted extraction in a cup-horn sonoreactor was developed to determine the total content of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in organic fertilizers by fast sequential flame atomic absorption spectrometry (FS FAAS). Multivariate optimization was used to establish the optimal conditions for the extraction procedure. An aliquot containing approximately 120 mg of the sample was added to a 500 µL volume of an acid mixture (HNO3/HCl/HF, 5:3:3, v/v/v). After a few minutes, 500 µL of deionized water was added and eight samples were simultaneously sonicated for 10 min at 50% amplitude, allowing a sample throughput of 32 extractions per hour. The performance of the method was evaluated with a certified reference material of sewage sludge (CRM 029). The precision, expressed as the relative standard deviation, ranged from 0.58% to 5.6%. The recoveries of analytes were found to 100%, 109%, 96%, 92%, 101%, 104% and 102% for Cd, Cr, Cu, Mn, Ni, Pb and Zn, respectively. The linearity, limit of detection and limit of quantification were calculated and the values obtained were adequate for the quality control of organic fertilizers. The method was applied to the analysis of several commercial organic fertilizers and organic wastes used as fertilizers, and the results were compared with those obtained using the microwave digestion procedure. A good agreement was found between the results obtained by microwave and ultrasound procedures with recoveries ranging from 80.4% to 117%. Two organic waste samples were not in accordance with the Brazilian legislation regarding the acceptable levels of contaminants. © 2013 Published by Elsevier B.V.

  10. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  11. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A preconcentration method for indirect determination of acrylamide from chips, crackers and cereal-based baby foods using flame atomic absorption spectrometry.

    PubMed

    Altunay, Nail; Gürkan, Ramazan; Orhan, Ulaş

    2016-12-01

    Acrylamide is a toxic species for human health, and is a Maillard reaction product which forms spontaneously in heat treatment process of foods. Therefore, a simple, fast and cost-effective method was developed for the indirect determination of acrylamide in processed foods particularly consumed by children. The method is based on ion-pairing of acrylamide with fluorescein (F 2- ) in presence of Ni(II) ions at pH 9.0, and then extraction of the formed ternary complex into micellar phase of poly(ethyleneglycol-mono-p-nonylphenylether) (PONPE 7.5) before analysis by flame atomic absorption spectrometry (FAAS). The ultrasonic-assisted cloud point extraction (UA-CPE) has been used for the preconcentration of acrylamide in the samples prior to its FAAS detection. The matrix matched calibration curve is linear in range of 0.3-150µgkg -1 under optimal reagent conditions (1.75mL of 0.1molL -1 ammonia buffer at pH 9.0, 2.2mgL -1 Ni(II), 4.0×10 -4 molL -1 F 2- , 0.4% (w/v) NH 4 Cl and 0.7% (v/v) PONPE 7.5) with sensitivity enhancement of 160-fold. The proposed method has been validated by assessment of the following parameters; the limits of detection (LOD) and quantification (LOQ) (0.08µgkg -1 and 0.28µgkg -1 , respectively) with a relative standard deviation (RSD%) lower than 6.3%, and extractive recovery higher than 95% for acrylamide spiked at levels of 5 and 25µgkg -1 . The method was successfully applied to the indirect determination of acrylamide in the processed foods and two CRMs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-01

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be < 5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L- 1 and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples.

  14. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples.

    PubMed

    Yang, Xiupei; Jia, Zhihui; Yang, Xiaocui; Li, Gu; Liao, Xiangjun

    2017-03-01

    A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL -1 Ag + in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL -1 for both Zn 2+ and Cu 2+ , 80 μg·mL -1 for Pb 2+ , 1000 μg·mL -1 for Mn 2+ , and 100 μg·mL -1 for both Cd 2+ and Ni 2+ . The calibration curve was linear in the range of 1-500 ng·mL -1 with a limit of detection (LOD) at 0.3 ng·mL -1 . The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  15. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    PubMed

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination and Quantification of metals in the shells of Crassostrea virginica after the Deepwater Horizon oil spill utilizing Atomic Absorption Spectrometry.

    NASA Astrophysics Data System (ADS)

    Roopnarine, D.; Patel, S.; Roopnarine, P.; Giarikos, D.; Anderson, L. C.

    2017-12-01

    The Deepwater Horizon (DWH) oil rig explosion on April 20, 2010 resulted in the release of 685,000 tons of crude oil into the Gulf of Mexico (GOM) over a period of three months. There were obvious immediate effects, but the long-term ramifications are still being studied. The primary constituent of crude oil is hydrocarbons with other organic compounds containing nitrogen, oxygen and sulfur. There are also a number of trace metals with the most abundant frequently being iron, nickel, copper and vanadium. These do not degrade like organic materials. However, the exact composition varies among the production sites. The oil from the DWH rig was classified as light crude which is moderately volatile. Natural oil seeps occur in the environment, but the DWH spill represented an acute impact. Trace amounts of heavy metals are a normal part of the composition of marine organisms, but can be toxic in high concentrations. Bivalved molluscs bioaccumulate heavy metals in their tissues and shells, and are therefore often useful as monitors of environmental pollution. We thus used the Eastern oyster Crassostrea virginica to determine the impact of the spill by measuring the concentrations of metals in the shells utilizing flame emission atomic absorption spectrometry. We focused on the hypothesis that DWH spill exposure resulted in an increase in metal uptake into the shells. Specimens spanned the years 2010 to 2014 and ranged from Grand Isle, LA to Apalachicola Bay, Fl. Vanadium had the greatest concentration in the shells, and along with copper, cadmium, zinc and iron displayed an upward trend of increase from 2010 to 2013, with a decline in 2014. However there was unexpected variability, as the specimens from Apalachicola Bay, Fl had higher levels of vanadium when compared to those from Grand Isle, LA. Ongoing work includes an increase of sample sizes from the same geographic localities and time period.

  17. Quality assessment of trace Cd and Pb contaminants in Thai herbal medicines using ultrasound-assisted digestion prior to flame atomic absorption spectrometry.

    PubMed

    Siriangkhawut, Watsaka; Sittichan, Patcharee; Ponhong, Kraingkrai; Chantiratikul, Piyanete

    2017-10-01

    A simple, efficient, and reliable ultrasound-assisted digestion (UAD) procedure was used for sample preparation prior to quantitative determination of trace Cd and Pb contaminants in herbal medicines using flame atomic absorption spectrometry. The parameters influencing UAD such as the solvent system, sample mass, presonication time, sonication time, and digestion temperature were evaluated. The efficiency of the proposed UAD procedure was evaluated by comparing with conventional acid digestion (CAD) procedure. Under the optimum conditions, linear calibration graphs in a range of 2-250 μg/L for Cd, and 50-1000 μg/L for Pb were obtained with detection limits of 0.56 μg/L and 10.7 μg/L for Cd and Pb, respectively. The limit of quantification for Cd and Pb were 1.87 μg/L and 40.3 μg/L, respectively. The repeatability for analysis of 10 μg/L for Cd and 100 μg/L for Pb was 2.3% and 2.6%, respectively. The accuracy of the proposed method was evaluated by rice flour certified reference materials. The proposed method was successfully applied for analysis of trace Cd and Pb in samples of various types of medicinal plant and traditional medicine consumed in Thailand. Most herbal medicine samples were not contaminated with Cd or Pb. The contaminant levels for both metals were still lower than the maximum permissible levels of elements in medicinal plant materials and finished herbal products sets by the Ministry of Public Health of Thailand. The exception was the high level of Cd contamination found in two samples of processed medicinal plants. Copyright © 2017. Published by Elsevier B.V.

  18. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry.

    PubMed

    Carletto, Jeferson Schneider; Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carasek, Eduardo

    2009-04-06

    A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML(2)). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5x10(-2) mol L(-1), extraction temperature 40 degrees C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 microL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 microL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 microg L(-1), relative standard deviation (RSD) 5.5% and the working linear range 2-30 microg L(-1).

  19. Speciation and determination of ultra trace amounts of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry.

    PubMed

    Najafi, Nahid Mashkouri; Tavakoli, Hamed; Alizadeh, Reza; Seidi, Shahram

    2010-06-18

    A simple and powerful method has been developed for the rapid and selective determination of Te(IV) and Te(VI), employing dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry using palladium as permanent modifier. Under acidic conditions pH 1, only Te(IV) can form a complex with ammonium pyrrolidine dithiocarbamate (APDC) and therefore be extracted into fine droplets of carbon tetrachloride (extraction solvent) which are dispersed with ethanol into the water sample solution. After centrifugation, Te(IV) was determined in the sedimented organic phase while Te(VI) remained in the aqueous phase. Total inorganic tellurium was determined after the reduction of the Te(VI) to Te(IV). Te(VI) was calculated as the difference between the measured total inorganic tellurium and Te(IV) content. The effective parameters for improving the efficiency of microextraction process were investigated by using experimental and central composite designs. Under optimal conditions the enrichment factor was 125 and the calibration graph was linear in the range of 0.015-1 ng mL(-1) with detection limit and characteristic mass of 0.004 ng mL(-1) and 0.033 pg, respectively. The relative standard deviation for 0.5 ng mL(-1) of tellurium measurement was 3.6% (n=6) at ash and atomization temperature, 900 and 2600 degrees C, respectively. The recoveries of spiked Te(IV) and Te(VI) to the environmental water samples were 89.6-101.3% and 96.6-99.1%, respectively. The accuracy is also evaluated by applying the proposed method to certified reference material (NIST SRM 1643e), for which the result was in a good agreement with the certified values reported for this CRM (95% confidence level). 2010 Elsevier B.V. All rights reserved.

  20. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-05

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be <5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L(-1) and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA.

    PubMed

    Baytak, Sitki; Türker, A Rehber

    2006-02-28

    Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.

  2. [Study on Content Determination of Lead and Arsenic in Four Traditional Tibetan Medicine Prescription Preparations by Wet Digestion Flow Injection-Hydride Generation-Atomic Absorption Spectrometry].

    PubMed

    Zheng, Zhi-yuan; Du, Yu-zhi; Zhang, Ming; Yu, Ming-jie; Li, Cen; Yang, Hong-xia; Zhao, Jing; Xia, Zheng-hua; Wei, Li-xin

    2015-04-01

    Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

  3. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.

    PubMed

    Jiang, Hong-mei; Yang, Ting; Wang, Yan-hong; Lian, Hong-zhen; Hu, Xin

    2013-11-15

    A new approach of magnetic solid phase extraction (MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) has been developed for the speciation of Cr(III) and Cr(VI) using zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles (Zincon-Si-MNPs) as the MSPE absorbent. Cr(III) was quantitatively reserved on the absorbent at pH 9.1 while total Cr was reserved at pH 6.5. The absorbed Cr species were eluted by using 2 mol/L HCl and detected by GFAAS. The concentration of Cr(VI) could be calculated by subtracting Cr(III) from total Cr. All the parameters affecting the separation and extraction efficiency of Cr species such as pH, extraction time, concentration and volume of eluent, sample volume and influence of co-existing ions were systematically examined and the optimized conditions were established accordingly. The detection limit (LOD) of the method was 0.016 and 0.011 ng mL(-1) for Cr(III) and Cr(VI), respectively, with the enrichment factor of 100 and 150. The precisions of this method (Relative standard deviation, RSD, n=7) for Cr(III) and Cr(VI) at 0.1 ng mL(-1) were 6.0% and 6.2%, respectively. In order to validate the proposed method, a certified reference material of environmental water was analyzed, and the result of Cr speciation was in good agreement with the certified value. This MSPE-GFAAS method has been successfully applied for the speciation of Cr(III) and Cr(VI) in lake and tap waters with the recoveries of 88-109% for the spiked samples. Moreover, the MSPE separation mechanism of Cr(III) and Cr(VI) based on their adsorption-desorption on Zincon-Si-MNPs has been explained through various spectroscopic characterization. © 2013 Elsevier B.V. All rights reserved.

  5. Selenium speciation using capillary electrophoresis coupled with modified electrothermal atomic absorption spectrometry after selective extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles.

    PubMed

    Yan, Lizhen; Deng, Biyang; Shen, Caiying; Long, Chanjuan; Deng, Qiufen; Tao, Chunyao

    2015-05-22

    A new method for selenium speciation in fermented bean curd wastewater and juice was described. This method involved sample extraction with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), capillary electrophoresis (CE) separation, and online detection with a modified electrothermal atomic absorption spectrometry (ETAAS) system. The modified interface for ETAAS allowed for the introduction of CE effluent directly through the end of the graphite tube. Elimination of the upper injection hole of the graphite tube reduced the loss of the anlayte and enhanced the detection sensitivity. The SSA-SMNPs were synthesized and used to extract trace amounts of selenite [Se(IV)], selenite [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from dilute samples. The concentration enrichment factors for Se(VI), Se(IV), SeMet, and SeCys2 were 21, 29, 18, and 12, respectively, using the SSA-SMNPs extraction. The limits of detection for Se(VI), Se(IV), SeMet, and SeCys2 were 0.18, 0.17, 0.54, 0.49ngmL(-1), respectively. The RSD values (n=6) of method for intraday were observed between 0.7% and 2.9%. The RSD values of method for interday were less than 3.5%. The linear range of Se(VI) and Se(IV) were in the range of 0.5-200ngmL(-1), and the linear ranges of SeMet and SeCys2 were 2-500 and 2-1000ngmL(-1), respectively. The detection limits of this method were improved by 10 times due to the enrichment by the SSA-SMNP extraction. The contents of Se(VI) and Se(IV) in fermented bean curd wastewater were measured as 3.83 and 2.62ngmL(-1), respectively. The contents of Se(VI), Se(IV), SeMet, and SeCys2 in fermented bean curd juice were determined as 6.39, 4.08, 2.77, and 4.00ngmL(-1), respectively. The recoveries were in the range of 99.14-104.5% and the RSDs (n=6) of recoveries between 0.82% and 3.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples.

    PubMed

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub

    2008-03-03

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 microL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 microgL(-1) with a detection limit of 0.5 microgL(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 microgL(-1) of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 microgL(-1) ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.

  8. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    PubMed

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  9. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  10. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  11. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  12. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    PubMed

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  13. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  14. AAS Career Services

    NASA Astrophysics Data System (ADS)

    Marvel, Kevin B.

    2012-08-01

    The American Astronomical Society provides substantial programs in the area of Career Services.Motivated by the Society's mission to enhance and share humanity's understanding of the Universe, the AAS provides a central resource for advertising positions, interviewing opportunities at its annual winter meeting and information, workshops and networks to enable astronomers to find employment.The programs of the Society in this area are overseen by an active committee on employment and the AAS Council itself.Additional resources that help characterize the field, its growth and facts about employment such as salaries and type of jobs available are regularly summarized and reported on by the American Institute of Physics.

  15. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Working towards accreditation by the International Standards Organization 15189 Standard: how to validate an in-house developed method an example of lead determination in whole blood by electrothermal atomic absorption spectrometry.

    PubMed

    Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe

    2014-09-01

    Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

  17. AAS Oral History Project

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Holbrook, Jarita; AAS Oral History Team

    2016-06-01

    Now in its fourth year, the AAS Oral History Project has interviewed over 80 astronomers from all over the world. Led by the AAS Historical Astronomy Division (HAD) and partially funded by the American Institute of Physics Niels Bohr Library and ongoing support from the AAS, volunteers have collected oral histories from astronomers at professional meetings starting in 2015, including AAS, DPS, and the IAU general assembly. Each interview lasts one and a half to two hours and focuses on interviewees’ personal and professional lives. Questions include those about one’s family, childhood, strong influences on one’s scientific career, career path, successes and challenges, perspectives on how astronomy is changing as a field, and advice to the next generation. Each interview is audio recorded and transcribed, the content of which is checked with each interviewee. Once complete, interview transcripts are posted online as part of a larger oral history library at https://www.aip.org/history-programs/niels-bohr-library/oral-histories. Future analysis will reveal a rich story of astronomers and will help the community address issues of diversity, controversies, and the changing landscape of science. We are still recruiting individuals to be interviewed from all stages of career from undergraduate students to retired and emeritus astronomers. Contact Jarita Holbrook to schedule an interview or to find out more information about the project (astroholbrook@gmail.com). Also, contact Jarita Holbrook if you would like to become an interviewer for the project.

  18. Proteolysis of serum amyloid A and AA amyloid proteins by cysteine proteases: cathepsin B generates AA amyloid proteins and cathepsin L may prevent their formation

    PubMed Central

    Rocken, C; Menard, R; Buhling, F; Vockler, S; Raynes, J; Stix, B; Kruger, S; Roessner, A; Kahne, T

    2005-01-01

    Background: AA amyloidosis develops in patients with chronic inflammatory diseases. The AA amyloid proteins are proteolytic fragments obtained from serum amyloid A (SAA). Previous studies have provided evidence that endosomes or lysosomes might be involved in the processing of SAA, and contribute to the pathology of AA amyloidosis. Objective: To investigate the anatomical distribution of cathepsin (Cath) B and CathL in AA amyloidosis and their ability to process SAA and AA amyloid proteins. Methods and results: CathB and CathL were found immunohistochemically in every patient with AA amyloidosis and displayed a spatial relationship with amyloid in all the cases studied. Both degraded SAA and AA amyloid proteins in vitro. With the help of mass spectrometry 27 fragments were identified after incubation of SAA with CathB, nine of which resembled AA amyloid proteins, and seven fragments after incubation with CathL. CathL did not generate AA amyloid-like peptides. When native human AA amyloid proteins were used as a substrate 26 fragments were identified after incubation with CathB and 18 after incubation with CathL. Conclusion: The two most abundant and ubiquitously expressed lysosomal proteases can cleave SAA and AA amyloid proteins. CathB generates nine AA amyloid-like proteins by its carboxypeptidase activity, whereas CathL may prevent the formation of AA amyloid proteins by endoproteolytic activity within the N-terminal region of SAA. This is particularly interesting, because AA amyloidosis is a systemic disease affecting many organs and tissue types, almost all of which express CathB and CathL. PMID:15897303

  19. Kinetics and mechanism of solid decompositions — From basic discoveries by atomic absorption spectrometry and quadrupole mass spectroscopy to thorough thermogravimetric analysis

    NASA Astrophysics Data System (ADS)

    L'vov, Boris V.

    2008-02-01

    This paper sums up the evolution of thermochemical approach to the interpretation of solid decompositions for the past 25 years. This period includes two stages related to decomposition studies by different techniques: by ET AAS and QMS in 1981-2001 and by TG in 2002-2007. As a result of ET AAS and QMS investigations, the method for determination of absolute rates of solid decompositions was developed and the mechanism of decompositions through the congruent dissociative vaporization was discovered. On this basis, in the period from 1997 to 2001, the decomposition mechanisms of several classes of reactants were interpreted and some unusual effects observed in TA were explained. However, the thermochemical approach has not received any support by other TA researchers. One of the potential reasons of this distrust was the unreliability of the E values measured by the traditional Arrhenius plot method. The theoretical analysis and comparison of metrological features of different methods used in the determinations of thermochemical quantities permitted to conclude that in comparison with the Arrhenius plot and second-law methods, the third-law method is to be very much preferred. However, this method cannot be used in the kinetic studies by the Arrhenius approach because its use suggests the measuring of the equilibrium pressures of decomposition products. On the contrary, the method of absolute rates is ideally suitable for this purpose. As a result of much higher precision of the third-law method, some quantitative conclusions that follow from the theory were confirmed, and several new effects, which were invisible in the framework of the Arrhenius approach, have been revealed. In spite of great progress reached in the development of reliable methodology, based on the third-law method, the thermochemical approach remains unclaimed as before.

  20. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    NASA Astrophysics Data System (ADS)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  1. Determination of silver in irons and steels by atomic-absorption spectrometry with an induction furnace: Direct analysis of solid samples.

    PubMed

    Aziz-Alrahman, A M; Headridge, J B

    1978-07-01

    The silver contents of 17 irons and steels have been determined by dropping 0.5-20mg of millings or turnings of the metals into an induction furnace situated within an atomic-absorption spectrophotometer. The limit of detection was 0.005 mug/g and the relative standard deviations were 12% or better for silver contents of not less than 0.05 mug/g. Samples are added to the furnace at 4-5 min intervals.

  2. Flow injection for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with microwave oven on-line prereduction of Se(VI) to Se(IV)

    NASA Astrophysics Data System (ADS)

    Burguera, J. L.; Carrero, P.; Burguera, M.; Rondon, C.; Brunetto, M. R.; Gallignani, M.

    1996-12-01

    An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l -1 HCl for Se(IV) and 12 mol l -1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0-120 and 0-100 μg l -1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l -1 for Se(IV) and 1.5 μg l -1 for Se(VI). The precision (about 2.0-2.5% RSD) and recoveries (96-98% for Se(IV) and 94-98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.

  3. Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Mandlate, Jaime S; Soares, Bruno M; Seeger, Tassia S; Vecchia, Paula Dalla; Mello, Paola A; Flores, Erico M M; Duarte, Fabio A

    2017-04-15

    A DLLME method for extraction and preconcentration of Cd and Pb from soft drinks and further determination by GF AAS was developed. Important parameters of DLLME such as the type and volume of dispersive and extraction solvents, concentration of DDTC (complexing agent) and pH were evaluated. Better results were obtained using 500μL of acetone for Cd and 700μL of acetonitrile for Pb as dispersive solvents, 60μL of CCl 4 as extraction solvent for both analytes and 500μL of 1.5% DDTC solution. Accuracy was evaluated by recovery assays and ranged from 91 to 113% for Cd and from 95 to 108% for Pb, with RSD below 10 and 7%, respectively. The LODs were 0.006 and 0.072ngL -1 for Cd and Pb, respectively. The optimized method was applied for the determination of Cd and Pb in soft drinks with different brands and flavours. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Conformational Specific Infrared and Ultraviolet Spectroscopy of Cold YA(D-Pro)AA\\cdotH+ Ions: a Sterochemical "twist" on the Proline Effect

    NASA Astrophysics Data System (ADS)

    Harrilal, Christopher P.; DeBlase, Andrew F.; Burke, Nicole L.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    The "proline effect" is a well-known fragmentation phenomenon in mass spectrometry, in which y-fragments are produced preferentially over b-fragments during the collision induced dissociation of protonated L-proline containing peptide ions. This specific fragmentation channel is favored because of the high basicity of the secondary amine intermediate and the ring instability in alternative bn+ products [ASMS 2014, 25, 1705]. In contrast, peptides containing the D-Pro stereoisomer have been shown to largely favor the production of b4+ ions over y3+ ions. This strongly suggests that differences in the conformational preferences between the D-Pro and L-Pro diastereomers are likely to be responsible but structural evidence has been lacking to date. Using tandem mass spectrometry and IR-UV double resonant action spectroscopy we are able to compare the 3D structures of cold [YA(D-Pro)AA+H]+ to [YA(L-Pro)AA+H]+ ions. The UV action spectra reveals two major conformers in [YA(D-Pro)AA+H]+ and one major conformer in [YA(L-Pro)AA+H]+. Clear differences in the hydrogen bonding patterns are apparent between the two conformers observed in the D-Pro specie which are both distinct from the L-Pro diastereomer. Furthermore, conformer and diastereomer specific photofragmentation patterns are observed. It is also noted that a ten-fold photofragment enhancement unique to one of the D-Pro conformers is observed upon absorption of a resonant IR photon after UV excitation. Differences in the excited state photophysics between the two D-Pro conformers suggest that vibrational excitation of S1 turns on coupling to the dissociative -Tyr channel in one conformer, while this coupling is already present in the vibronic ground state of the other. Calculated harmonic spectra (M052X/6-31+G*) of conformers obtained from Monte Carlo searches to the experimental spectra.

  5. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    PubMed

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  6. Methodology for detection of carbon monoxide in hot, humid media by telecommunication distributed feedback laser-based tunable diode laser absorption spectrometry.

    PubMed

    Lathdavong, Lemthong; Shao, Jie; Kluczynski, Pawel; Lundqvist, Stefan; Axner, Ove

    2011-06-10

    Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H2O and CO2. A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4  cm(-1), and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2f-wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water (c(H2O)≤40%) at T≤1000 °C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.

  7. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  8. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  9. Determination of essential elements in beverages, herbal infusions and dietary supplements using a new straightforward sequential approach based on flame atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Procopio, Jesús R

    2017-03-15

    A simple method based on FAAS was developed for the sequential multi-element determination of Cu, Zn, Mn, Mg and Si in beverages and food supplements with successful results. The main absorption lines for Cu, Zn and Si and secondary lines for Mn and Mg were selected to carry out the measurements. The sample introduction was performed using a flow injection system. Using the choice of the absorption line wings, the upper limit of the linear range increased up to 110mgL -1 for Mg, 200mgL -1 for Si and 13mgL -1 for Zn. The determination of the five elements was carried out, in triplicate, without the need of additional sample dilutions and/or re-measurements, using less than 3.5mL of sample to perform the complete analysis. The LODs were 0.008mgL -1 for Cu, 0.017mgL -1 for Zn, 0.011mgL -1 for Mn, 0.16mgL -1 for Si and 0.11mgL -1 for Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of the Microstructure on Diffusion Bonded AA5083, AA6082 and AA7075 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Mahendran, G.

    2018-05-01

    Rolled plates of aluminium alloys AA5083, AA6082 and AA7075 of 5 mm thickness are joined by diffusion bonding at varied parameters. The microstructure evolution of AA5083, AA6082 and AA7075 aluminium alloys is characterized by Transmission Electron Microscopy (TEM). Metallurgical investigations and mechanical tests are also performed to correlate the results of the TEM investigations with the mechanical properties of the produced diffusion bonded joints. It is observed that the bonding and shear strength of the alloys increase with the increase in bonding temperature, due to the diffusion of micro-constituents in the interface. High temperature enhances the uniform distribution of secondary phase particles and reduces pore formation/defects in the bonded joints.

  11. AAS 227: Day 1

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or at astrobites.com, or catch ourlive-tweeted updates from the @astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto have so many people tell us that they already know about and useastrobites, and we were excited to introduce a new cohort of students at AAS to astrobites for the first time.Tuesday morning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended today.Opening Address (by Becky Smethurst)The President of the AAS, aka our fearless leader Meg Urry kicked off the meeting this morning at the purely coffee powered hour of 8am this morning. She spoke about the importance of young astronomers at the meeting (heres looking at you reader!) and also the importance of the new Working Group for Accessibility and Disabilities (aka WGAD pronounced like wicked) at the AAS. The Society has made extra effort this year to make the conference accessible to all,a message which was very well received by everyone in attendance.Kavli Lecture: New Horizons Alan Stern (by Becky Smethurst)We were definitely spoilt with the first Plenary lecture at this years conference Alan Stern gave us a a review of the New Horizons mission of the Pluto Fly By (astrobites covered the mission back in July with this post). We were treated to beautiful images, wonderful results and a foray into geology.Before (Hubble) and after #NewHorizons. #thatisall #science #astro alanstern #aas227 pic.twitter.com/kkMt6RsSIR Science News (@topsciencething) January 5, 2016Some awesome facts from the lecture that blew my mind:New Horizons is now 2AU (!) beyond Pluto

  12. AAS 227: Day 2

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 2 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Plenary Session: Black Hole Physics with the Event Horizon Telescope (by Susanna Kohler)If anyone needed motivation to wake up early this morning, they got it in the form of Feryal Ozel (University of Arizona) enthralling us all with exciting pictures, videos, and words about black holes and the Event Horizon Telescope. Ozel spoke to a packed room (at 8:30am!) about where the project currently stands, and where its heading in the future.The EHT has pretty much the coolest goal ever: actually image the event horizons of black holes in our universe. The problem is that the largest black hole we can look at (Sgr A*, in the center of our galaxy) has an event horizon size of 50 as. For this kind of resolution roughly equivalent to trying to image a DVD on the Moon! wed need an Earth-sized telescope. EHT has solved this problem by linking telescopes around the world, creating one giant, mm-wavelength effective telescope with a baseline the size of Earth.Besides producing awesome images, the EHT will be able to test properties of black-hole spacetime, the no-hair theorem, and general relativity (GR) in new regimes.Ozel walked us through some of the theory prep work we need to do now in order to get the most science out of the EHT, including devising new

  13. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    PubMed

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO 3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 2 7-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg -1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size < 54µm and adding 25mL of 20% w/w glycerol. The use of 1μg Rh and 50μg citric acid was found satisfactory for the analyte stabilization. Accurate data were obtained with the use of matrix-free calibration. The accuracy of the method was confirmed by analysis of two certified reference materials (NIST SRM 2702 Inorganics in Marine Sediment and IGI BIL-1 Baikal Bottom Silt) and by comparison of the results obtained for ten real samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  15. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    PubMed

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    PubMed

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.

  18. Preconcentration and determination of boron in milk, infant formula, and honey samples by solid phase extraction-electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2009-02-01

    This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO 3 and 50% v/v H 2O 2 and introduced in the atomizer. A mixture of 20 µg Pd and 0.5 µg Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 µg g - 1 , equivalent to three times the standard error of the estimate ( sy/ x) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L - 1 hydrochloric acid. Detection limits were 0.03 µg g - 1 for 4% m/v honey, 0.04 µg g - 1 for 5% m/v infant formula and 0.08 µg mL - 1 for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.

  19. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  20. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration

    SciTech Connect

    Almeida, Manuel F.; Xara, Susana M.; Delgado, Julanda

    2009-01-15

    The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1 h at 1273 K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to amore » filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300 K taking into account the composition of the batteries. This analysis

  1. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect.

    PubMed

    Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis

    2015-08-05

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction.

    PubMed

    Krawczyk-Coda, Magdalena; Stanisz, Ewa

    2017-11-01

    This work presents ultrasound-assisted dispersive micro solid phase extraction (USA DMSPE) for preconcentration of fluorine (F) in water and herb samples. TiO 2 nanoparticles (NPs) were used as an adsorbent. The determination with slurry sampling was performed via molecular absorption of calcium monofluoride (CaF) at 606.440 nm using a high-resolution continuum source electrothermal absorption spectrometry (HR-CS ET MAS). Several factors influencing the efficiency of the preconcentration technique, such as the amount of TiO 2 , pH of sample solution, ultrasonication and centrifugation time and TiO 2 slurry solution preparation before injection to HR-CS ET MAS, were investigated in detail. The conditions of detection step (wavelength, calcium amount, pyrolysis and molecule-forming temperatures) were also studied. After extraction, adsorbent with the analyte was mixed with 200 μL of H 2 O to prepare a slurry solution. The concentration limit of detection was 0.13 ng mL -1 . The achieved preconcentration factor was 7. The relative standard deviations (RSDs, %) for F in real samples were 3-15%. The accuracy of this method was evaluated by analyses of certified reference materials after spiking: INCT-MPH-2 (Mixed Polish Herbs), INCT-SBF-4 (Soya Bean Flour), ERM-CAO11b (Hard Drinking Water) and TMDA-54.5 (Lake Ontario Water). The measured F contents in reference materials were in satisfactory agreement with the added amounts, and the recoveries were found to be 97-109%. Under the developed extraction conditions, the proposed method has been successfully applied for the determination of F in real water samples (lake, sea, tap water) and herbs.

  3. AAS 228: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  4. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry.

    PubMed

    Sigrist, Mirna; Albertengo, Antonela; Beldoménico, Horacio; Tudino, Mabel

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH(3) generation using 3.5 mol L(-1) HCl as carrier solution and 0.35% (m/v) NaBH(4) in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl(-), SO(4)(2-), NO(3)(-), HPO(4)(2-), HCO(3)(-) on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C(6)H(8)O(6) solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L(-1) and 0.6 μg L(-1) for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samplesh(-1). The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane

  5. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    PubMed

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  7. Quantitative determination of flavonoids by column high-performance liquid chromatography with mass spectrometry and ultraviolet absorption detection in Artemisia afra and comparative studies with various species of Artemisia plants.

    PubMed

    Avula, Bharathi; Wang, Yan-Hong; Smillie, Troy J; Mabusela, Wilfred; Vincent, Leszek; Weitz, Frans; Khan, Ikhlas A

    2009-01-01

    A simple and specific analytical method for the quantitative determination of flavonoids from the aerial parts of the Artemisia afra plant samples was developed. By column high-performance liquid chromatography (HPLC) with UV absorption and mass spectrometry (MS) detection, separation was achieved on a reversed-phase octadecylsilyl (C18) column with water, methanol, and acetonitrile, all containing 0.1% acetic acid, as the mobile phase. These methods were used to analyze various species of Artemisia plant samples. The wavelength used for quantification of flavonoids with the diode array detector was 335 nm. The limits of detection (LOD) by HPLC/MS were found to be 7.5, 7.5, 10, 2.0, and 2.0 ng/mL; and by LC-UV the LODs were 500, 500, 500, 300, and 300 ng/mL for apigenin, chrysoeriol, tamarixetin, acacetin, and genkwanin, respectively. The HPLC/MS method was found to be 50-150 times more sensitive than the HPLC-UV method. HPLC/MS coupled with an electrospray ionization interface is described for the identification and quantification of flavonoids in various plant samples. This method involved the use of the [M+H]+ ions of the compounds at mass-to-charge ratio of 1.0606, 301.0712, 317.0661, 285.0763, and 285.0763 (calculated mass), respectively, in the positive ion mode with extractive ion monitoring.

  8. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry.

    PubMed

    Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab

    2016-04-01

    A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    PubMed

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    PubMed

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% ( c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  12. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    PubMed

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry.

    PubMed

    Erarpat, Sezin; Özzeybek, Gözde; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-12-01

    In this study, dispersive liquid-liquid microextraction (DLLME) and slotted quartz tube (SQT) were coupled to flame atomic absorption spectrometry (FAAS) to increase the sensitivity of lead. Conditions such as the formation of the lead-dithizone complex, efficiency of the DLLME method and the output of the SQT were systematically optimized to improve the detection limit for the analyte. The conventional FAAS system was improved upon by about 3.0 times with SQT-FAAS, 32 times with DLLME-FAAS and 142 times with DLLME-SQT-FAAS. The method was applicable over a wide linear range (10-500 μg L -1 ). The limit of detection (LOD) determined by DLLME-SQT-FAAS for seawater and mussel were 2.7 μg L -1 and 270 μg kg -1 , respectively. The percent recoveries obtained for mussel and seawater samples (spiked at 20 and 50 μg L -1 ) were 95-96% and 98-110%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    PubMed

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  15. Oxidation State Specific Generation of Arsines from Methylated Arsenicals Based on L- Cysteine Treatment in Buffered Media for Speciation Analysis by Hydride Generation - Automated Cryotrapping - Gas Chromatography-Atomic Absorption Spectrometry with the Multiatomizer

    PubMed Central

    Matoušek, Tomáš; Hernández-Zavala, Araceli; Svoboda, Milan; Langrová, Lenka; Adair, Blakely M.; Drobná, Zuzana; Thomas, David J.; Stýblo, Miroslav; Dědina, Jiří

    2008-01-01

    An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l−1. Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species. PMID:18521190

  16. A comparative evaluation of APF gel, CPP/ACP paste alone and in combination with carbon dioxide laser on human enamel resistance to acid solubility using atomic absorption spectrometry: an in-vitro study.

    PubMed

    Nozari, Ali; Rafiee, Azade; Dehghan Khalili, Sara; Fekrazad, Reza

    2018-04-01

    The aim of this study was to compare the effects of acidulated phosphate fluoride (APF) gel, calcium phosphopeptide-amorphous calcium phosphate (CPP/ACP) paste alone and in combination with CO2 laser on the resistance of enamel to acid solubility. Ninety enamel sections were obtained from 15 extracted teeth and were randomly assigned to six groups: 1) control group; 2) APF group; 3) CPP-ACP group; 4) CO2 laser group; 5) APF + CO2 group; and 6) CPP-ACP + CO2 group. The specimens were individually demineralized in 0.1 M lactic acid solution with adjusted pH of 4.8 for 24h at 37 ºC. The acid solubility was determined using atomic absorption spectrometry. Statistical analysis was done using one-way ANOVA and Tukey-Kramer post hoc test (P<0.05). The average extent of calcium ion released (ppm) was estimated as follow: group 1: 6.974±1.757, group 2: 5.363±1.383, group 3: 6.962±1.489, group 4: 6.890±1.560, group 5: 4.803±1.080 and group 6: 6.789±1.218. Based on the between-group comparison results, group 2 and group 5 showed significant differences with the other groups. Under the studied conditions, only, the APF group alone and in combination with CO2 laser could decrease enamel acid solubility.

  17. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin

    2018-05-01

    In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.

  18. Separation and preconcentration of Ag(I) in aqueous samples by flotation as an ion-associate using iodide and ferroin followed the determination by flame atomic absorption spectrometry.

    PubMed

    Hosseini, Mohammad Saeid; Hashemi-Moghaddam, Hamid; Kardan-Moghaddam, Gholamreza

    2007-01-01

    A simple method for separation/preconcentration and determination of Ag(I) in aqueous samples is described. The method is based on formation of an ion-associate between Ag(I)-iodide complex and ferroin, which can be floated at the interface of the aqueous/n-heptane phases. The flotation process was carried out using 500-ml aliquot of the aqueous solution and the floated layer was dissolved in 5 ml of 1 M HNO3 containing methanol (50% v/v) as the solvent. The Ag(I) content was then determined by flame atomic absorption spectrometry (FAAS). The method so could be considered as an enrichment process, was achieved to a quantitative feature, when the pH of the solution was adjusted to 4 and the concentrations of iodide and ferroin were about 3.2 x 10(-4) M and 6.25 x 10(-5) M, respectively. The LOD and RSD (n = 7) were obtained 1.0 x 10(-8) M and 2.4%, respectively. It was found that a large number of cations and anions even at high considerably foreign ion/Ag(I) ratios were not interfered. The method was applied satisfactorily to recovery of Ag(I) from different aqueous samples.

  19. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  20. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  1. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  2. Determination of dietary cadmium-induced metallothioneins in rabbit kidneys and cadmium in metallothioneins by anion-exchange high-performance liquid chromatography coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Peng, S; Shan, X Q; Zheng, Y; Jin, L Z; Xu, W B

    1991-12-06

    A rapid method is described for the determination of dietary cadmium-induced metallothioneins (MTs) in rabbit kidneys by anion-exchange high-performance liquid chromatography. Rabbit kidney MT-I and MT-II were eluted at ca. 15.0 and 18.8 min, respectively, from a DEAE-5PW anion-exchange column with a Tris-HCl buffer (0.01-0.25 M, pH 8.6) and detected by ultraviolet absorbance at 254 nm. A standard calibration curve was constructed using purified standard MT isoforms, which demonstrated an excellent linear correlation between UV absorbance peak heights and the amounts of MT isoforms. Feeding a dose of cadmium for some days resulted in an increase in MT concentrations in rabbit kidneys, but not in the livers. The cadmium concentrations in MT-I and MT-II elutions were determined by graphite furnace atomic absorption spectrometry. MT-I and MT-II showed some differences associated with the oral intake of cadmium. Dietary cadmium also caused zinc to accumulate in kidneys to some extent. The effects of dietary oleic acid on the synthesis of MTs were also studied. Based on the method of standard additions, the recovery of MTs exceeded 93% and replicated injection of samples yielded a relative standard deviation of 2.4% at an MT level of 280 micrograms/g.

  3. Comparative study on intestinal metabolism and absorption in vivo of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach.

    PubMed

    Zhu, He; Shen, Hong; Xu, Jun; Xu, Jin-Di; Zhu, Ling-Ying; Wu, Jie; Chen, Hu-Biao; Li, Song-Lin

    2015-04-01

    Our previous study indicated that sulphur-fumigation of ginseng in post-harvest handling processes could induce chemical transformation of ginsenosides to generate multiple ginsenoside sulphur derivatives. In this study, the influence of sulphur-fumigation on intestinal metabolism and absorption in vivo of ginsenosides in ginseng was sequentially studied. The intestinal metabolic and absorbed profiles of ginsenosides in rats after intra-gastric (i.g.) administration of sulphur-fumigated ginseng (SFG) and non-fumigated ginseng (NFG) were comparatively characterized by a newly established ultra performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) with electrospray ionization negative (ESI-) mode. A novel strategy based on the characteristic product ions and fragmentation pathways of different types of aglycones (saponin skeletons) and glycosyl moieties was proposed and successfully applied to rapid structural identification of ginsenoside sulphur derivatives and relevant metabolites. In total, 18 ginsenoside sulphur derivatives and 26 ginsenoside sulphur derivative metabolites in the faeces together with six ginsenoside sulphur derivatives in the plasma were identified in the SFG-administrated group but not in the NFG-administrated group. The results clearly demonstrated that the intestinal metabolic and absorbed profiles of ginsenosides in sulphur-fumigated and non-fumigated ginseng were quite different, which inspired that sulphur-fumigation of ginseng should not be recommended before the bioactivity and toxicity of the ginsenoside sulphur derivatives were systematically evaluated. Copyright © 2014 John Wiley & Sons, Ltd.

  4. AAS 227: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt

  5. Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.

    PubMed

    Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller

    2015-01-01

    An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement.

  6. Highly selective micro-sequential injection lab-on-valve (muSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry.

    PubMed

    Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald

    2006-10-01

    A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.

  7. Extraction method based on emulsion breaking for the determination of Cu, Fe and Pb in Brazilian automotive gasoline samples by high-resolution continuum source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Leite, Clarice C.; de Jesus, Alexandre; Kolling, Leandro; Ferrão, Marco F.; Samios, Dimitrios; Silva, Márcia M.

    2018-04-01

    This work reports a new method for extraction of Cu, Fe and Pb from Brazilian automotive gasoline and their determination by high-resolution continuous source flame atomic absorption spectrometry (HR-CS FAAS). The method was based on the formation of water-in-oil emulsion by mixing 2.0 mL of extraction solution constituted by 12% (w/v) Triton X-100 and 5% (v/v) HNO3 with 10 mL of sample. After heating at 90 °C for 10 min, two well-defined phases were formed. The bottom phase (approximately 3.5 mL), composed of acidified water and part of the ethanol originally present in the gasoline sample, containing the extracted analytes was analyzed. The surfactant and HNO3 concentrations and the heating temperature employed in the process were optimized by Doehlert design, using a Brazilian gasoline sample spiked with Cu, Fe and Pb (organometallic compounds). The efficiency of extraction was investigated and it ranged from 80 to 89%. The calibration was accomplished by using matrix matching method. For this, the standards were obtained performing the same extraction procedure used for the sample, using emulsions obtained with a gasoline sample free of analytes and the addition of inorganic standards. Limits of detection obtained were 3.0, 5.0 and 14.0 μg L-1 for Cu, Fe and Pb, respectively. These limits were estimated for the original sample taking into account the preconcentration factor obtained. The accuracy of the proposed method was assured by recovery tests spiking the samples with organometallic standards and the obtained values ranged from 98 to 105%. Ten gasoline samples were analyzed and Fe was found in four samples (0.04-0.35 mg L-1) while Cu (0.28 mg L-1) and Pb (0.60 mg L-1) was found in just one sample.

  8. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Interference-free determination of trace copper in freshly ripened honeys by flame atomic absorption spectrometry following a preconcentration by solid-phase extraction and a two-step elution process.

    PubMed

    Pohl, Pawel; Stecka, Helena; Jamroz, Piotr

    2014-02-01

    A fast and straightforward procedure aimed at separating copper (Cu) ions from monosacharides and preconcentrating their traces before flame atomic absorption spectrometry (FAAS) measurements was developed, and its suitability was evaluated by the analysis of freshly ripened honeys on the content of this environmentally and physiologically relevant element. This procedure included the passage (at 20 mL/min) of 10 % (m/v) solutions of honeys (100 mL) through resin beds of Dowex 50 W × 8-400 to retain Cu by solid-phase extraction (SPE) and separate it from the glucose and fructose matrix. In turn, SPE columns were rinsed at 20 mL/min with 20 mL of water and subsequently washed with 20 mL of a 0.5 mol/L HNO3 solution (at 2.0 mL/min) to elute potassium and sodium. Preconcentrated Cu was stripped (at 2.0 mL/min) with 5.0 mL of a 2.0 mol/L HCl solution and determined by FAAS. The proposed procedure was used for the analysis of six ripened monoflower and multiflower honeys, enabling the measurement of Cu within the range of 0.17-0.42 μg/g and with a precision of 3-10%. Recoveries of Cu added to respective honey solutions were within 94-102%, proving the good accuracy of this procedure. The detection limit of Cu achieved with this SPE preconcentration/separation procedure and FAAS detection was 3.6 ng/g.

  10. Determination of methylmercury and inorganic mercury in water samples by slurry sampling cold vapor atomic absorption spectrometry in a flow injection system after preconcentration on silica C(18) modified.

    PubMed

    Segade, Susana Río; Tyson, Julian F

    2007-03-15

    A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ngl(-1) levels of analytes retained on the silica C(18) solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C(18) amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3min by the use of sonication stirring instead of magnetic stirring. The use of 1moldm(-3) hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5moldm(-3) hydrochloric acid and 10(-4)% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25ngl(-1), respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.

  11. Determination of diphenylarsinic acid, phenylarsonic acid and inorganic arsenic in drinking water by graphite-furnace atomic-absorption spectrometry after simultaneous separation and preconcentration with solid-phase extraction disks.

    PubMed

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Nakamura, Toshihiro

    2013-01-01

    A simple method of graphite-furnace atomic-absorption spectrometry (GFAAS) after solid-phase extraction (SPE) was developed for the determination of diphenylarsinic acid (DPAA), phenylarsonic acid (PAA), and inorganic arsenic (iAs) in drinking water. This method involves the simultaneous collection of DPAA, PAA, and iAs using three stacked SPE disks, i.e., an Empore SDB-XD disk (the upper layer), an activated carbon disk (the middle layer), and a Cation-SR disk loaded with Zr and Ca (ZrCa-CED; the lower layer). A 200-mL aqueous sample was adjusted to pH 3 with nitric acid and passed through the SPE disks at a flow rate of 15 mL min(-1), to concentrate DPAA on the SDB-XD disk, PAA on the activated carbon disk, and iAs on the ZrCa-CED. The As compounds were eluted from the disks with 10 mL of ethanol containing 0.5 mol L(-1) ammonia solution for DPAA, 20 mL of 1 mol L(-1) ammonia solution for PAA, and 20 mL of 6 mol L(-1) hydrochloric acid for iAs. The eluates of DPAA, PAA, and iAs were diluted to 20, 25, and 25 mL, respectively, with deionized water, and then analyzed by GFAAS. The detection limits of As (three-times the standard deviation (n = 3) of the blank values) were 0.13 and 0.16 μg L(-1) at enrichment factors of 10 and 8, respectively, using a 200-mL water sample. Spike tests with 2 μg (10 μg L(-1)) of DPAA, PAA, and iAs in 200 mL of tap water and bottled drinking water showed good recoveries (96.1-103.8%).

  12. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  13. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  14. Characterization of amyloid in equine recurrent uveitis as AA amyloid.

    PubMed

    Ostevik, L; de Souza, G A; Wien, T N; Gunnes, G; Sørby, R

    2014-01-01

    Two horses with chronic uveitis and histological lesions consistent with equine recurrent uveitis (ERU) were examined. Microscopical findings in the ciliary body included deposits of amyloid lining the non-pigmented epithelium, intracytoplasmic, rod-shaped, eosinophilic inclusions and intraepithelial infiltration of T lymphocytes. Ultrastructural examination of the ciliary body of one horse confirmed the presence of abundant extracellular deposits of non-branching fibrils (9-11 nm in diameter) consistent with amyloid. Immunohistochemistry revealed strong positive labelling for AA amyloid and mass spectrometry showed the amyloid to consist primarily of serum amyloid A1 in both cases. The findings suggest that localized, intraocular AA amyloidosis may occur in horses with ERU. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    RationaleAlthough laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits.MethodsA Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ17O, δ18O, and δ2H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales.ResultsCost-free LIMS for Lasers 2015 enables users to obtain improved δ17O, δ18O, and δ2H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ2HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale.ConclusionsLIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ2H, δ17O, and δ18O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits

  16. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    Although laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits. METHODS: A Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ(17) O, δ(18) O, and δ(2) H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales. RESULTS: Cost-free LIMS for Lasers 2015 enables users to obtain improved δ(17) O, δ(18) O, and δ(2) H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ(2) HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale. CONCLUSIONS: LIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ(2) H, δ(17) O, and δ(18) O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and

  17. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  18. Speciation of inorganic and organolead compounds by gas chromatography-atomic absorption spectrometry and the determination of lead species after pre-concentration onto diphenylthiocarbazone-anchored polymeric microbeads

    NASA Astrophysics Data System (ADS)

    Salih, Bekir

    2000-07-01

    Poly(EGDMA-HEMA) microbeads were prepared by suspension copolymerization of ethyleneglycol dimethacrylate (EGDMA) and hydroxyethylmethacrylate (HEMA) using poly(vinylalcohol), benzoyl peroxide and toluene as the stabilizer, the initiator, and the diluent, respectively. A chelating ligand, diphenylthiocarbazone (dithizone), was then attached. The microbeads were characterized by FT-IR and elemental analysis. The affinity microbeads containing 118.9 μmol dithizone g -1 polymer were used in the adsorption/desorption of some selected lead species, Pb(II), (CH 3) 2PbCl 2, (C 2H 5) 2PbCl 2, (CH 3) 3PbCl, and (C 2H 5) 3PbCl from aqueous media containing different amounts of these species (5-200 mg l -1) at different pH values, 2.0-8.0. Adsorption rates were high, and adsorption equilibrium was reached in approximately 45 min. The detection limits of the lead species onto the dithizone-anchored affinity microbeads from solutions containing a single species was 0.28 ng ml -1 for Pb(II), 0.12 ng ml -1 for (CH 3) 3PbCl, 0.24 ng ml -1 for (C 2H 5) 3PbCl, 0.18 ng ml -1 for (CH 3) 2PbCl 2 and 0.30 ng ml -1 for (C 2H 5) 2PbCl 2 on a weight basis for lead. The same behavior was observed during competitive adsorption that is adsorption from a mixture. The affinity order of the lead species was Pb(II)>(CH 3) 2PbCl 2>(CH 3) 3PbCl>(C 2H 5) 3PbCl>(C 2H 5) 2PbCl 2 for competitive adsorption. Dithizone-anchored microbeads were found to be suitable for repeated use of more than five cycles, without noticeable loss of adsorption capacity. For the speciation of organolead compounds, ionic alkyllead compounds were derivatized by n-butyl Grignard reagent and the speciation was performed using a gas chromatography-atomic absorption spectrometry coupled system. Detection limits were improved at least 180-fold with this preconcentration approach using the dithizone-anchored microbeads.

  19. Application of Zeeman graphite furnace atomic absorption spectrometry with high-frequency modulation polarization for the direct determination of aluminum, beryllium, cadmium, chromium, mercury, manganese, nickel, lead, and thallium in human blood.

    PubMed

    Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A

    2012-10-01

    Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

  20. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    PubMed

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  1. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  2. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  3. Constitutive behavior of as-cast AA1050, AA3104, and AA5182

    NASA Astrophysics Data System (ADS)

    van Haaften, W. M.; Magnin, B.; Kool, W. H.; Katgerman, L.

    2002-07-01

    Recent thermomechanical modeling to calculate the stress field in industrially direct-chill (DC) cast-aluminum slabs has been successful, but lack of material data limits the accuracy of these calculations. Therefore, the constitutive behavior of three aluminum alloys (AA1050, AA3104, and AA5182) was determined in the as-cast condition using tensile tests at low strain rates and from room temperature to solidus temperature. The parameters of two constitutive equations, the extended Ludwik equation and a combination of the Sellars-Tegart equation with a hardening law, were determined. In order to study the effect of recovery, the constitutive behavior after prestraining at higher temperatures was also investigated. To evaluate the quantified constitutive equations, tensile tests were performed simulating the deformation and cooling history experienced by the material during casting. It is concluded that both constitutive equations perform well, but the combined hardening-Sellars-Tegart (HST) equation has temperature-independent parameters, which makes it easier to implement in a DC casting model. Further, the deformation history of the ingot should be taken into account for accurate stress calculations.

  4. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS.

    PubMed

    Sales, A; Alvarez, A; Areal, M Rodriguez; Maldonado, L; Marchisio, P; Rodríguez, M; Bedascarrasbure, E

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  5. The Use of a Microprocessor-Controlled, Video Output Atomic Absorption Spectrometer as an Educational Tool in a Two-Year Technical Curriculum.

    ERIC Educational Resources Information Center

    Kerfoot, Henry B.

    Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…

  6. Laboratory Astrophysics Division of The AAS (LAD)

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  7. Laboratory Astrophysics Division of the AAS (LAD)

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  8. The Microjet of AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, A. W.; Hilton, G. M.; Williger, G. M.; Grady, C. A.; Woodgate, B.

    2005-12-01

    The microjet of AA Tau A.W. Cox (Atholton High School, Columbia MD), G.M. Hilton (SSAI and GSFC), G.M. Williger (JHU and U. Louisville), C.A. Grady (Eureka Scientific and GSFC) B.Woodgate (NASA's GSFC) AA Tau is a classical T Tauri star with a spatially resolved disk viewed at approximately 70 degrees from pole-on. Photo-polarimetric variability of the star has been interpreted as being caused by the stellar magnetic field being inclined at 30 degrees with respect to the stellar rotation axis, producing a warp in the inner disk. Under these conditions, any jet should be less collimated than typical of T Tauri microjets, and should show signs of the jet axis precessing around the stellar rotation axis. When compared with the microjets imaged in the HST/STIS coronagraphic imaging survey, the AA Tau jet has an opening half-angle of approximately 10-15 degrees rather than the 3-5 degrees typical of the other T Tauri stars which have been coronagraphically imaged by HST/STIS. Using the HST data with ultra-narrowband imagery and long slit spectroscopy obtained with the Goddard Fabry-Perot and the Dual Imaging Spectrograph at the Apache Point Observatory 3.5m telescope, we derive the jet inclination, knot ejection epochs, and ejection frequency. We also compare the jet opening angle with model predictions. Apache Point Observatory observations with the Goddard Fabry-Perot were made through a grant of Director's Discretionary Time. Apache Point Observatory is operated by the Astrophysical Research Consortium. The GFP was supported under NASA RTOP 51-188-01-22 to GSFC. Grady is supported under NASA contract NNH05CD30C to Eureka Scientific.

  9. AAS 228: Day 3 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Wikipedia Year of Science Editathon (by Meredith Rawls)Whats your first go-to source for an unfamiliar topic on the internet? If you said Wikipedia, youre not alone. For many people, Wikipedia is the primary source of information about astronomy and science. However, many Wikipedia articles about science topics are incomplete or missing, and women are underrepresented among scientists with biographies.To address this, the AAS Astronomy Education Board teamed up with the Wiki Education Foundation to host an edit-a-thon as part of the Wikipedia Year of Science. More than forty attendees spent the better part of three hours working through tutorials, creating new articles, and editing existing ones. The session was generously sponsored by the Simons Foundation.The Year of Science initiative seeks to bring Wikipedia editing skills to the classroom and help new editors find sustainable ways to contribute to Wikipedia in the long term. Anybody can create a free account and start editing!As a first-time Wikipedia contributor, I took the time to go through nearly all the tutorial exercises and familiarize myself with the process of editing a page. I decided to flesh out one section in an existing page about asteroseismology. Others created biography pages from scratch or selected various astronomical topics to write about. To me, the editing process felt like a cross between writing a blog post and a journal article, in a hack day type environment. Working through the tutorial and some examples renewed my empathy for learners who are tackling a new skill set for the first time. A full summary of our

  10. AAS Statistics and the 60% Cohort

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2004-05-01

    I will present the latest statistics available describing the gender of the AAS membership including an update on the so-called 60% cohort (that group of AAS members from the ages of 18 to 25 who are 60% women and 40% men). The AAS membership has changed significantly in the past 30 years from an overall female membership percentage of about 10% to a level around 30% today. This trend is accelerating and indicates the ongoing inclusion of women in the physical sciences, especially astronomy. By the year 2030, the AAS membership should reach gender parity if the present trend continues.

  11. Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event

    NASA Astrophysics Data System (ADS)

    Cizdziel, James V.; Tolbert, Candice; Brown, Garry

    2010-02-01

    A Direct Mercury Analyzer (DMA) based on sample combustion, concentration of mercury by amalgamation with gold, and cold vapor atomic absorption spectrometry (CVAAS) was coupled to a mercury-specific cold vapor atomic fluorescence spectrometer (CVAFS). The purpose was to evaluate combustion-AFS, a technique which is not commercially available, for low-level analysis of mercury in environmental and biological samples. The experimental setup allowed for comparison of dual measurements of mercury (AAS followed by AFS) for a single combustion event. The AFS instrument control program was modified to properly time capture of mercury from the DMA, avoiding deleterious combustion products from reaching its gold traps. Calibration was carried out using both aqueous solutions and solid reference materials. The absolute detection limits for mercury were 0.002 ng for AFS and 0.016 ng for AAS. Recoveries for reference materials ranged from 89% to 111%, and the precision was generally found to be <10% relative standard deviation (RSD). The two methods produced similar results for samples of hair, finger nails, coal, soil, leaves and food stuffs. However, for samples with mercury near the AAS detection limit (e.g., filter paper spotted with whole blood and segments of tree rings) the signal was still quantifiable with AFS, demonstrating the lower detection limit and greater sensitivity of AFS. This study shows that combustion-AFS is feasible for the direct analysis of low levels of mercury in solid samples that would otherwise require time-consuming and contamination-prone digestion.

  12. Determination of Pd, Pt and Rh in vehicles escape fumes by GF-AAS and ICP-OES.

    PubMed

    Goncalves, Antonio; Domínguez, José R; Alvarado, José

    2008-04-15

    Automotive exhaust gases from vehicles using catalytic converters were filtered through cellulose filter papers to collect suspended particles expulsed along with the engine's escape fumes. A specially designed sample collector was used for supporting the filter papers during collection. The collector was manufactured from a new car's exhaust pipe. A cellulose circular paper filter, 11 cm diameter, was attached to one end of the pipe and kept centered by pressing it against the borders of the pipe by means of a perforated aluminum cap, slightly wider than the pipe, used to cover this end of the collector. Filter papers loaded with the solid particles were acid-digested using a modified domestic microwave oven to bring the solid material into solution. The resulting solutions were analyzed for Pt by graphite furnace atomic absorption spectrometry (GF-AAS) and for Pd and Rh by inductively coupled plasma (ICP-OES). Results indicate that concentration of these analytes in the particulate is higher for new vehicles, having new catalytic converters, than for old ones. Maximum Pd, Pt and Rh in the samples analyzed were found to be 5.36, 12.60 and 1.03 microg g(-1), respectively.

  13. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    PubMed

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  14. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  15. Percutaneous absorption of selenium sulfide

    SciTech Connect

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do notmore » indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.« less

  16. AAS 228: Day 1 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Come visit astrobites at the AAS booth we have swag!Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto hear from undergrads who already know and love the site, educators who want to use it in their classrooms, and students who had not yet been introduced to astrobites and were excited about a new resource!For the rest of the meeting we will be stationed at theAAS booth in the exhibit hall (booth #211-213), so drop by if you want to learn more (or pick up swag: weve got lots of stickers and sunglasses)!Mondaymorning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended this morning.Opening Address(by Susanna Kohler)AAS President Meg Urry kicked off the meeting this morning at 8am with an overview of some of the great endeavors AAS is supporting. We astrobiters had personal motivation to drag ourselves out of bed that early: during this session, Urryannounced the new partnership between AAS and astrobites!Urry touched on some difficult topics in her welcome, including yesterdays tragedy in Orlando. Shereiteratedthe AASs support fortheCommittee for Sexual-Orientation and Gender Minorities in Astronomy (SGMA). She also reminded meeting attendees about the importance ofkeeping conference interactions professional, and pointed to the meetings anti-harassment policy.Partnership Announcement (by Michael Zevin)This morning, the American Astronomical Society announced the new partnership that it will have with Astrobites! We are beyond excited to embark on this new partnership with the

  17. Percutaneous absorption

    PubMed Central

    Brisson, Paul

    1974-01-01

    Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976

  18. Atmospheric heavy metal deposition in Northern Vietnam: Hanoi and Thainguyen case study using the moss biomonitoring technique, INAA and AAS.

    PubMed

    Viet, Hung Nguyen; Frontasyeva, Marina Vladimirovna; Thi, Thu My Trinh; Gilbert, Daniel; Bernard, Nadine

    2010-06-01

    The moss technique is widely used to monitor atmospheric deposition of heavy metals in many countries in Europe, whereas this technique is scarcely used in Asia. To implement this international reliable and cheap methodology in the Asian countries, it is necessary to find proper moss types typical for the Asian environment and suitable for the biomonitoring purposes. Such a case study was undertaken in Vietnam for assessing the environmental situation in strongly contaminated areas using local species of moss Barbula indica. The study is focused on two areas characterized by different pollution sources: the Hanoi urban area and the Thainguyen metallurgical zone. Fifty-four moss samples were collected there according to standard sampling procedure adopted in Europe. Two complementary analytical techniques, atomic absorption spectrometry (AAS) and instrumental neutron activation analysis (INAA), were used for determination of elemental concentrations in moss samples. To characterize the pollution sources, multivariate statistical analysis was applied. A total of 38 metal elements were determined in the moss by the two analytical techniques. The results of descriptive statistics of metal concentration in moss from the city center and periphery of Hanoi determined by AAS are presented. The similar results for moss from Thainguyen province determined by INAA and AAS are given also. A comparison of mean elemental concentrations in moss of this work with those in different environmental conditions of other authors provides reasonable information on heavy metal atmospheric deposition levels. Factor loadings and factor scores were used to identify and apportion contamination sources at the sampling sites. The values of percentage of total of factors show two highly different types of pollution in the two examined areas-the Hanoi pollution composition with high portion of urban-traffic activity and soil dust (62%), and the one of Thainguyen with factors related to industrial

  19. AAS 228: Day 3 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session 2015 Newton Lacy Pierce Prize Lecture: The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures (by Leonardo dos Santos)The first session on Wednesday at 228th AAS Meeting was the Newton Lacy Pierce Prize Lecture by Heather Knutson (California Institute of Technology). This talk featured a broad range of research efforts on exoplanets, with the main focus on how we study the composition of their atmospheres, and how multi-body interactions carve the structure of the planetary systems we observe.One of her first points is the well-known idea that the Solar System is an oddball, compared to the exoplanet systems we have found so far: most of these systems contain hot Jupiters and mini-Neptunes at very close-in orbits around their host stars. Moreover, even when studying their transmission spectra, it is difficult to know the exact composition of their atmospheres.Knutson: it is difficult to constrain atmospheric composition of exoplanets (H-poor or H-rich+clouds?) #aas228pic.twitter.com/LdyN4o9RC7 astrobites (@astrobites) June 15, 2016The main proposal on how these systems formed is the migration scenario. In order to validate this idea, Dr. Knutson and her group The Friends of Hot Jupiters study systems with close-in gas giants and their frequency of binary companions, which are supposed to be the main culprits causing gas-giant migration. They found that approximately half of the observed systems have long-distance companions, providing strong validation of the migration scenario. Moreover, Dr. Knutson speculates that wide binaries have more

  20. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  1. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  2. AAS 228: Day 1 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session: From Space Archeology to Serving the World Today: A 20-year Journey from the Jungles of Guatemala to a Network of Satellite Remote Sensing Facilities Around the World(by Michael Zevin)In the conferences second plenary session, NASAs Daniel Irwin turned the eyes of the conference back to Earth by highlighting the huge impact that NASA missions play in protecting and developing our own planet.Daniel Irwin: using satellite imagery to detect differences in vegetation and find ancient Mayan cities. #aas228 pic.twitter.com/9LFPQdCHTM astrobites (@astrobites) June 13, 2016Irwin came to be involved in NASA through his work mapping Guatemalan jungles, where he would spend 22 days at a time exploring the treacherous jungles on foot armed with a 1st generation GPS, a compass, and a machete. A colleague introduced Irwin to the satellite imagery thathe was exploring, demonstratinghow these images are a strong complement to field work. The sharing of this satellite data with nearby villages helped to show the encroachment of agriculture and the necessity of connecting space to the village. Satellite imagery also played a role in archeological endeavors, uncovering dozens of Mayan cities that have been buried for over a millennia by vegetation, and it provided evidence that the fall of the Mayan civilization may have been due to massive deforestation that ledto drought.Glacial retreat in Chile imaged by ISERV.Irwin displayed the constellation of NASAs Earth-monitoring satellites that have played an integral role in conserving our planet and alerting the world of natural disasters. He also showed

  3. Targeting SVCT for enhanced drug absorption: synthesis and in vitro evaluation of a novel vitamin C conjugated prodrug of saquinavir.

    PubMed

    Luo, Shuanghui; Wang, Zhiying; Patel, Mitesh; Khurana, Varun; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim K

    2011-07-29

    In order to improve oral absorption, a novel prodrug of saquinavir (Saq), ascorbyl-succinic-saquinavir (AA-Su-Saq) targeting sodium dependent vitamin C transporter (SVCT) was synthesized and evaluated. Aqueous solubility, stability and cytotoxicity were determined. Affinity of AA-Su-Saq towards efflux pump P-glycoprotein (P-gp) and recognition of AA-Su-Saq by SVCT were studied. Transepithelial permeability across polarized MDCK-MDR1 and Caco-2 cells were determined. Metabolic stability of AA-Su-Saq in rat liver microsomes was investigated. AA-Su-Saq appears to be fairly stable in both DPBS and Caco-2 cells with half lives of 9.65 and 5.73 h, respectively. Uptake of [(3)H]Saquinavir accelerated by 2.7 and 1.9 fold in the presence of 50 μM Saq and AA-Su-Saq in MDCK-MDR1 cells. Cellular accumulation of [(14)C]AA diminished by about 50-70% relative to control in the presence of 200 μM AA-Su-Saq in MDCK-MDR1 and Caco-2 cells. Uptake of AA-Su-Saq was lowered by 27% and 34% in the presence of 5mM AA in MDCK-MDR1 and Caco-2 cells, respectively. Absorptive permeability of AA-Su-Saq was elevated about 4-5 fold and efflux index reduced by about 13-15 fold across the polarized MDCK-MDR1 and Caco-2 cells. Absorptive permeability of AA-Su-Saq decreased 44% in the presence of 5mM AA across MDCK-MDR1 cells. AA-Su-Saq was devoid of cytotoxicity over the concentration range studied. AA-Su-Saq significantly enhanced the metabolic stability but lowered the affinity towards CYP3A4. In conclusion, prodrug modification of Saq through conjugation to AA via a linker significantly raised the absorptive permeability and metabolic stability. Such modification also caused significant evading of P-gp mediated efflux and CYP3A4 mediated metabolism. SVCT targeted prodrug approach can be an attractive strategy to enhance the oral absorption and systemic bioavailability of anti-HIV protease inhibitors. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Targeting SVCT for enhanced drug absorption: Synthesis and in vitro evaluation of a novel vitamin C conjugated prodrug of saquinavir

    PubMed Central

    Luo, Shuanghui; Wang, Zhiying; Patel, Mitesh; Khurana, Varun; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim. K.

    2015-01-01

    In order to improve oral absorption, a novel prodrug of saquinavir (Saq), ascorbyl-succinic-saquinavir (AA-Su-Saq) targeting sodium dependent vitamin C transporter (SVCT) was synthesized and evaluated. Aqueous solubility, stability and cytotoxicity were determined. Affinity of AA-Su-Saq towards effluxpump P-glycoprotein (P-gp) and recognition of AA-Su-Saq by SVCT were studied. Transepithelial permeability across polarized MDCK-MDR1 and Caco-2 cells were determined. Metabolic stability of AA-Su-Saq in rat liver microsomes was investigated. AA-Su-Saq appears to be fairly stable in both DPBS and Caco-2 cells with half lives of 9.65 and 5.73 h, respectively. Uptake of [3H]Saquinavir accelerated by 2.7 and 1.9 fold in the presence of 50 μM Saq and AA-Su-Saq in MDCK-MDR1 cells. Cellular accumulation of [14C]AA diminished by about 50–70% relative to control in the presence of 200 μM AA-Su-Saq in MDCK-MDR1 and Caco-2 cells. Uptake of AA-Su-Saq was lowered by 27% and 34% in the presence of 5 mM AA in MDCK-MDR1 and Caco-2 cells, respectively. Absorptive permeability of AA-Su-Saq was elevated about 4-5 fold and efflux index reduced by about 13-15 fold across the polarized MDCK-MDR1 and Caco-2 cells. Absorptive permeability of AA-Su-Saq decreased 44% in the presence of 5 mM AA across MDCK-MDR1 cells. AA-Su-Saq was devoid of cytotoxicity over the concentration range studied. AA-Su-Saq significantly enhanced the metabolic stability but lowered the affinity towards CYP3A4. In conclusion, prodrug modification of Saq through conjugation to AA via a linker significantly raised the absorptive permeability and metabolic stability. Such modification also caused significant evading of P-gp mediated efflux and CYP3A4 mediated metabolism. SVCT targeted prodrug approach can be an attractive strategy to enhance the oral absorption and systemic bioavailability of anti-HIV protease inhibitors. PMID:21571053

  5. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  6. AAS 228: Day 2 afternoon

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.The Limits of Scientific Cosmology: Setting the Stage: Accepted Facts, and Testing Limitations in Theory and Data (by Gourav Khullar)With a stellar lineup of speakers to talk about current and future prospects of cosmology and its limits (or lack thereof), the first session kicked off with talks by Risa Wechsler, Joseph Silk, and Sean Carroll (his talk on Multiverses is described below, by Nathan Sanders). Risa set the stage with an elaborate description of the current accepted facts in the era of precision cosmology including the standard model of concordance cosmology, described by seven parameters and an accepted Lambda-CDM paradigm (with a cosmological constant and cold dark matter). The talk stressed on the fact that all these parameters are understood to a percent order precision, which is a remarkable deviation from the time in 1990s when according to Risa, Alan Guth never thought that any of these numbers could be measured precisely!Risa Wechsler describing our current constraints on what Dark Matter could constitute.Joseph Silk discussing limits on cosmological parameters.The CMB measurements, Big Bang Nucleosynthesis estimates and galaxy clustering statistics all contribute to locking down the description of our universe. She emphasized on the tensions between different probes to measure expansion rate H0 of the universe, and small scale predictions of cold dark matter simulations, but she is hopeful that these shall be resolved eventually. Joe Silk followed this up with his interpretation of trying to understand our place in the universe and placing limits on different parameters and

  7. Negative Affect, Relapse, and Alcoholics Anonymous (AA): Does AA Work by Reducing Anger?*

    PubMed Central

    Kelly, John F.; Stout, Robert L.; Tonigan, J. Scott; Magill, Molly; Pagano, Maria E.

    2010-01-01

    Objective: Anger and other indices of negative affect have been implicated in a stress-induced pathway to relapse. The Alcoholics Anonymous (AA) literature states that reduction of anger is critical to recovery, yet this proposed mechanism has rarely been investigated. Using lagged, controlled hierarchical linear modeling analyses, this study investigated whether AA attendance mobilized changes in anger and whether such changes explained AA-related benefit. Method: Alcohol-dependent adults (N = 1,706) receiving treatment as part of a clinical trial were assessed at intake and at 3, 6, 9, 12, and 15 months. Results: Findings revealed substantially elevated levels of anger compared with the general population (98th percentile) that decreased over 15-month follow-up but remained high (89th percentile). AA attendance was associated with better drinking outcomes, and higher levels of anger were associated with heavier drinking. However, AA attendance was unrelated to changes in anger. Conclusions: Although support was not found for anger as a mediator, there was strong convergence between AA's explicit emphasis on anger and the present findings: Anger appears to be a serious, enduring problem related to relapse and heavy alcohol consumption. Methodological factors may have contributed to the lack of association between AA and anger, but results suggest that AA attendance alone may be insufficient to alleviate the suffering and alcohol-related risks specifically associated with anger. PMID:20409438

  8. Flameless Atomic Absorption Spectroscopy: Effects of Nitrates and Sulfates.

    DTIC Science & Technology

    1980-05-01

    ATTACHED DDJ~P 1413 EDITION 01 INO, 6 5 IabSoLEr J UjN!LbAa~ A- i SELU 0 IONOF I tG 651 J Flameless Atomic Absorption Spectroscopy: Effects of Nitrates...analytical techniques, flameless atomic absorption is subject to matrix or interference effects. Upon heating, nitrate and sulfate salts decompose to...Eklund and J.E. Smith, Anal Chem, 51, 1205 (1979) R.H. Eklund and J.A. Holcombe, Anal Chim. Acta, 109, 97 (1979) FLAMELESS ATOMIC ABSORPTION

  9. A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family

    PubMed Central

    Mollerup, Filip; Parikka, Kirsti; Koutaniemi, Sanna; Boer, Harry; Juvonen, Minna; Master, Emma; Tenkanen, Maija; Kruus, Kristiina

    2017-01-01

    ABSTRACT We describe here the identification and characterization of a copper radical oxidase from auxiliary activities family 5 (AA5_2) that was distinguished by showing preferential activity toward raffinose. Despite the biotechnological potential of carbohydrate oxidases from family AA5, very few members have been characterized. The gene encoding raffinose oxidase from Colletotrichum graminicola (CgRaOx; EC 1.1.3.−) was identified utilizing a bioinformatics approach based on the known modular structure of a characterized AA5_2 galactose oxidase. CgRaOx was expressed in Pichia pastoris, and the purified enzyme displayed the highest activity on the trisaccharide raffinose, whereas the activity on the disaccharide melibiose was three times lower and more than ten times lower activity was detected on d-galactose at a 300 mM substrate concentration. Thus, the substrate preference of CgRaOx was distinguished clearly from the substrate preferences of the known galactose oxidases. The site of oxidation for raffinose was studied by 1H nuclear magnetic resonance and mass spectrometry, and we confirmed that the hydroxyl group at the C-6 position was oxidized to an aldehyde and that in addition uronic acid was produced as a side product. A new electrospray ionization mass spectrometry method for the identification of C-6 oxidized products was developed, and the formation mechanism of the uronic acid was studied. CgRaOx presented a novel activity pattern in the AA5 family. IMPORTANCE Currently, there are only a few characterized members of the CAZy AA5 protein family. These enzymes are interesting from an application point of view because of their ability to utilize the cheap and abundant oxidant O2 without the requirement of complex cofactors such as FAD or NAD(P). Here, we present the identification and characterization of a novel AA5 member from Colletotrichum graminicola. As discussed in the present study, the bioinformatics approach using the modular structure of

  10. Obesity is a significant susceptibility factor for idiopathic AA amyloidosis.

    PubMed

    Blank, Norbert; Hegenbart, Ute; Dietrich, Sascha; Brune, Maik; Beimler, Jörg; Röcken, Christoph; Müller-Tidow, Carsten; Lorenz, Hanns-Martin; Schönland, Stefan O

    2018-03-01

    To investigate obesity as susceptibility factor in patients with idiopathic AA amyloidosis. Clinical, biochemical and genetic data were obtained from 146 patients with AA amyloidosis. Control groups comprised 40 patients with long-standing inflammatory diseases without AA amyloidosis and 56 controls without any inflammatory disease. Patients with AA amyloidosis had either familial Mediterranean fever (FMF) or long-standing rheumatic diseases as underlying inflammatory disease (n = 111, median age 46 years). However, in a significant proportion of patients with AA amyloidosis no primary disease was identified (idiopathic AA; n = 37, median age 60 years). Patients with idiopathic AA amyloidosis were more obese and older than patients with AA amyloidosis secondary to FMF or rheumatic diseases. Serum leptin levels correlated with the body mass index (BMI) in all types of AA amyloidosis. Elevated leptin levels of more than 30 µg/l were detected in 18% of FMF/rheumatic + AA amyloidosis and in 40% of patients with idiopathic AA amyloidosis (p = .018). Finally, the SAA1 polymorphism was confirmed as a susceptibility factor for AA amyloidosis irrespective of the type of the disease. Obesity, age and the SAA1 polymorphism are susceptibility factors for idiopathic AA amyloidosis. Recent advances in treatment of FMF and rheumatic disorders will decrease the incidence of AA amyloidosis due to these diseases. Idiopathic AA, however, might be an emerging problem in the ageing and increasingly obese population.

  11. AAS 228: Day 2 morning

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session (Day 1) The Galaxy Zoo(by Benny Tsang)Galaxy Zoo was so hot that the servers hosting the galaxy images got melted down soon after being launched.Kevin Schawinski from ETH Zurich took us on a tour ofhis wonderful Galaxy Zoo. It is a huge zoo with about a quarter million zookeepers, they are citizen astronomers who collaboratively classify galaxies by their looks as an attempt to understand galaxy evolution. The big question that is being answered is: how do blue, actively star-forming galaxies evolve into red, quiescent (non-star-forming) galaxies? The Zoo helped reveal that blue galaxies turn into red galaxies via two possible paths galaxies might run out of supply of gas and shut off star formation slowly; or they could merge with one another and turn off star formation by destroying the gas reservoir rapidly!The Galaxy Zoo project also led to the discoveries of:Green Peas: they are the living fossils of galaxy evolution; compact, bright, green galaxies that are actively forming starsOverlapping galaxies: they are pairs of galaxies that are separated physically but happen to lie on the same line of sight; they provide excellent laboratories for studying dust extinctionHannys Voorwerp: an unusual object named after Hanny the discoverer, which is believed to be the first detection of quasar light echoThe idea of Galaxy Zoo in getting help from citizen scientists was further extended into an award-winningproject known as the Zooniverse, which is an online platform for streamlined crowd-sourcing for scientific research that requires human input. The future of astronomy is going to be

  12. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. MDCT evaluation of acute aortic syndrome (AAS)

    PubMed Central

    Rossi, Giovanni; Lassandro, Francesco; Rea, Gaetano; Marino, Maurizio; Muto, Maurizio; Molino, Antonio; Scaglione, Mariano

    2016-01-01

    Non-traumatic acute thoracic aortic syndromes (AAS) describe a spectrum of life-threatening aortic pathologies with significant implications on diagnosis, therapy and management. There is a common pathway for the various manifestations of AAS that eventually leads to a breakdown of the aortic intima and media. Improvements in biology and health policy and diffusion of technology into the community resulted in an associated decrease in mortality and morbidity related to aortic therapeutic interventions. Hybrid procedures, branched and fenestrated endografts, and percutaneous aortic valves have emerged as potent and viable alternatives to traditional surgeries. In this context, current state-of-the art multidetector CT (MDCT) is actually the gold standard in the emergency setting because of its intrinsic diagnostic value. Management of acute aortic disease has changed with the increasing realization that endovascular therapies may offer distinct advantages in these situations. This article provides a summary of AAS, focusing especially on the MDCT technique, typical and atypical findings and common pitfalls of AAS, as well as recent concepts regarding the subtypes of AAS, consisting of aortic dissection, intramural haematoma, penetrating atherosclerotic ulcer and unstable aortic aneurysm or contained aortic rupture. MDCT findings will be related to pathophysiology, timing and management options to achieve a definite and timely diagnostic and therapeutic definition. In the present article, we review the aetiology, pathophysiology, clinical presentation, outcomes and therapeutic approaches to acute aortic syndromes. PMID:27033344

  14. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry.

    PubMed

    Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M

    2016-09-01

    Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.

  15. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry.

    PubMed

    Bagheri, Hasan; Afkhami, Abbas; Saber-Tehrani, Mohammad; Khoshsafar, Hosein

    2012-08-15

    A versatile and robust solid phase with both magnetic property and a very high adsorption capacity is presented on the basis of modification of iron oxide-silica magnetic particles with a newly synthesized Schiff base (Fe(3)O(4)/SiO(2)/L). The structure of the resulting product was confirmed by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and transmission electron microscopy (TEM). We developed an efficient and cost-effective method for the preconcentration of trace amounts of Pb(II), Cd(II) and Cu(II) in environmental and biological samples using this novel magnetic solid phase. Prepared magnetic solid phase is an ideal support because it has a large surface area, good selectivity and can be easily retrieved from large volumes of aqueous solutions. The possible parameters affecting the enrichment were optimized. Under the optimal conditions, the method detection limit was 0.14, 0.19 and 0.12 μg L(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. The established method has been successfully applied to analyze real samples, and satisfactory results were obtained. All these indicated that this magnetic phase had a great potential in environmental and biological fields. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. An analytical method to screen for six thyreostatic drug residues in the thyroid gland and muscle tissues of food producing animals by liquid chromatography with ultraviolet absorption detection and liquid chromatography/mass spectrometry.

    PubMed

    Asea, Philip E; MacNeil, James D; Boison, Joe O

    2006-01-01

    A method was developed and validated to screen for residues of the thyreostatic drugs, tapazole (TAP), mercaptobenzimidazole (MBI), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PrTU), and phenylthiouracil (PhTU) in bovine, equine, ovine, and porcine thyroid and muscle tissues at concentrations > or = 5 ng/g using 2-methoxy-mercaptobenzimidazole (MeMBI) and dimethylthiouracil (DMTU) as internal standards. In this method, the drugs were solvent extracted from thyroid and muscle tissue and cleaned up on an amino-propyl solid-phase extraction (SPE) cartridge. The unretained fraction containing TAP and MBI and the internal standard, MeMBI, was collected as Fraction 1. The retained fraction containing TU, MTU, PrTU, PhTU, and the internal standard, DMTU, was eluted with 3% acetic acid-isopropanol as Fraction 2. Fraction 1 was further cleaned up on an alumina B SPE cartridge and analyzed by gradient elution on a C18 high-performance liquid chromatography (HPLC) column with ultraviolet detection at wavelengths of 255 and 300 nm. Fraction 2 was taken to dryness, derivatized with 4-chloro-7-nitrobenzo-2-furazan at pH 8, and analyzed by gradient elution on a C18 LC column with mass spectrometry (MS) detection. Any "presumptive positive" test results were submitted for further analysis by LC/MS/MS. The validated method was applied to the analysis of over 300 thyroid tissue samples.

  17. A flow-batch analyzer with piston propulsion applied to automatic preparation of calibration solutions for Mn determination in mineral waters by ET AAS.

    PubMed

    Almeida, Luciano F; Vale, Maria G R; Dessuy, Morgana B; Silva, Márcia M; Lima, Renato S; Santos, Vagner B; Diniz, Paulo H D; Araújo, Mário C U

    2007-10-31

    The increasing development of miniaturized flow systems and the continuous monitoring of chemical processes require dramatically simplified and cheap flow schemes and instrumentation with large potential for miniaturization and consequent portability. For these purposes, the development of systems based on flow and batch technologies may be a good alternative. Flow-batch analyzers (FBA) have been successfully applied to implement analytical procedures, such as: titrations, sample pre-treatment, analyte addition and screening analysis. In spite of its favourable characteristics, the previously proposed FBA uses peristaltic pumps to propel the fluids and this kind of propulsion presents high cost and large dimension, making unfeasible its miniaturization and portability. To overcome these drawbacks, a low cost, robust, compact and non-propelled by peristaltic pump FBA is proposed. It makes use of a lab-made piston coupled to a mixing chamber and a step motor controlled by a microcomputer. The piston-propelled FBA (PFBA) was applied for automatic preparation of calibration solutions for manganese determination in mineral waters by electrothermal atomic-absorption spectrometry (ET AAS). Comparing the results obtained with two sets of calibration curves (five by manual and five by PFBA preparations), no significant statistical differences at a 95% confidence level were observed by applying the paired t-test. The standard deviation of manual and PFBA procedures were always smaller than 0.2 and 0.1mugL(-1), respectively. By using PFBA it was possible to prepare about 80 calibration solutions per hour.

  18. Evaluation of zirconium as a permanent chemical modifier using synchrotron radiation and imaging techniques for lithium determination in sediment slurry samples by ET AAS.

    PubMed

    Flores, Araceli V; Pérez, Carlos A; Arruda, Marco A Z

    2004-02-27

    In the present paper, lithium was determined in river sediment using slurry sampling and electrothermal atomic absorption spectrometry (ET AAS) after L'vov platform coating with zirconium (as a permanent chemical modifier). The performance of this modifier and its distribution on the L'vov platform after different heating cycles were evaluated using synchrotron radiation X-ray fluorescence (SRXRF) and imaging scanning electron microscopy (SEM) techniques. The analytical conditions for lithium determination in river sediment slurries were also investigated and the best conditions were obtained employing 1300 and 2300 degrees C for pyrolysis and atomization temperatures, respectively. In addition, 100mg of sediment samples were prepared using 4.0moll(-1) HNO(3). The Zr-coating permitted lithium determination with good precision and accuracy after 480 heating cycles using the same platform for slurry samples. The sediment samples were collected from five different points of the Cachoeira river, São Paulo, Brazil. The detection and quantification limits were, respectively, 0.07 and 0.23mugl(-1).

  19. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    PubMed

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-01-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. © 2016 by the Association of Clinical Scientists, Inc.

  20. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  1. Magnetic dispersive solid-phase extraction based on graphene oxide/Fe3 O4 @polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, flour, celery and egg.

    PubMed

    Babaei, Azar; Zeeb, Mohsen; Es-Haghi, Ali

    2018-07-01

    Magnetic graphene oxide nanocomposite has been proposed as a promising and sustainable sorbent for the extraction and separation of target analytes from food matrices. Sample preparation based on nanocomposite presents several advantages, such as desired efficiency, reasonable selectivity and high surface-area-to-volume ratio. A new graphene oxide/Fe 3 O 4 @polythionine (GO/Fe 3 O 4 @PTh) nanocomposite sorbent was introduced for magnetic dispersive solid-phase extraction and flame atomic absorption spectrometric detection of zinc(II) in water, flour, celery and egg. To fabricate the sorbent, an oxidative polymerization of thionine on the surface of magnetic GO was applied, while polythionine was simply employed as a surface modifier to improve extraction yield. The properties of the sorbent were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis, vibrating sample magnetometry and Fourier transform-infrared spectroscopy. The calibration curve showed linearity in the range of 0.5-30 ng mL -1 . Limits of detection (S/N = 3) and quantification (S/N = 10) were 0.08 and 0.5 ng mL -1 , respectively. The method was applied for trace-level determination of Zn(II) in water and food samples, and its validation was investigated by recovery experiments and analyzing certified reference material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  2. Modified Activated Carbon Prepared from Acorn Shells as a New Solid-Phase Extraction Sorbent for the Preconcentration and Determination of Trace Amounts of Nickel in Food Samples Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Ebrahimi, Bahram

    2017-03-01

    A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.

  3. Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids

    SciTech Connect

    Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.

    2014-01-15

    Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition inmore » view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.« less

  4. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.

    PubMed

    Niedzielski, P; Kozak, L; Wachelka, M; Jakubowski, K; Wybieralska, J

    2015-01-01

    The article presents the optimisation, validation and application of the microwave induced plasma optical emission spectrometry (MIP-OES) dedicated for a routine determination of Ag, Al, B, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn, in the geological samples. The three procedures of sample preparation has been proposed: sample digestion with the use of hydrofluoric acid for determination of total concentration of elements, extraction by aqua regia for determination of the quasi-total element concentration and extraction by hydrochloric acid solution to determine contents of the elements in acid leachable fraction. The detection limits were on the level 0.001-0.121 mg L(-1) (from 0.010-0.10 to 1.2-12 mg kg(-1) depend on the samples preparation procedure); the precision: 0.20-1.37%; accuracy 85-115% (for recovery for certified standards materials analysis and parallel analysis by independent analytical techniques: X-ray fluorescence (XRF) and flame absorption spectrometry (FAAS)). The conformity of the results obtained by MIP-OES analytical procedures with the results obtained by XRF and FAAS analysis allows to propose the procedures for studies of elemental composition of the fraction of the geological samples. Additionally, the MIP-OES technique is much less expensive than ICP techniques and much less time-consuming than AAS techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Risk control of traditional Chinese medicines containing aristolochis acids (AAs) based on influencing factors of content of AAs].

    PubMed

    Tian, Jing-Zhuo; Liang, Ai-Hua; Liu, Jing; Zhang, Bo-Li

    2017-12-01

    Aristolochic acids (AAs) widely exist in such plants as Aristolochia and Asarum. The renal toxicity of AAs as well as its carcinogenicity to urinary system have been widely known. In 2003 and 2004, China prohibited the use of Aristolochiae Radix, Aristolochiae Manshuriensis Caulis and Aristolochiae Fangchi Radix, and required administering other AAs-containing medicines in accordance with the regulations for prescription drugs. In this paper, we retrieved literatures on the content determination of AAs in recent 10 years in China. It suggested that the AAs content is lower in Asarum herb, especially in its roots and rhizomes, and most of which do not show detectable amount of AA-I. Some of traditional Chinese medicines show fairly small amount of detectable AA-I. The AAs content in Aristolochia herb (including Fructus Aristolochiae, kaempfer dutchmanspipe root) is relatively high; however, there are fewer literatures for studying the content determination of AAs in Chinese patent medicines. There were many factors affecting AAs content, including the parts used, origins, processing methods, extraction process. It suggested that we should pay attention to the toxicity of Chinese medicines containing AAs and use these decoction pieces and traditional Chinese medicines cautiously. In addition, basic studies for the origins, processing methods and extraction process of Chinese patent medicines containing AAs, as well as supervision and detection of AAs content in traditional Chinese medicinal materials, decoction pieces and Chinese patent medicines shall be strengthened for reducing medication risk and guaranteeing clinical medication safety. Copyright© by the Chinese Pharmaceutical Association.

  6. Longitudinal study of experimental induction of AA amyloidosis in mice seeded with homologous and heterologous AA fibrils.

    PubMed

    Muhammad, Naeem; Murakami, Tomoaki; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-09-01

    To investigate pathogenesis and kinetics of experimentally induced murine AA amyloidosis seeded with homologous (murine) and heterologous (bovine) AA fibrils. Experimental AA amyloidosis was induced by administration of inflammatory stimulus and preformed AA fibrils to a total of 111 female C57/Black mice. In this longitudinal study, heterologous (bovine) as well as homologous (murine) AA fibrils were injected intraperitoneally to mice in various combinations. Re-stimulation was done at 120 or 300 days post first inoculation. To analyze the intensity of amyloid depositions in mice organs, immunohistochemical techniques and image J software were used. Assessment of cytokines level in sera was done using a Mouse Th1/Th2/Th17 Cytokine CBA Kit. Incidence and severity of AA amyloidosis were quite low in mice inoculated with heterologous bovine AA fibrils than homologous murine one. Homologous AA fibrils administration at first and second inoculation caused maximum amount of amyloid depositions and severe systemic form of amyloidosis. Increase in the level of pro-inflammatory cytokine IL-6 was observed after first inoculation, while second inoculation caused a further increase in the level of anti-inflammatory cytokine IL-10. AA amyloidosis can be induced by heterologous as well as homologous AA fibrils. Severity of AA amyloidosis induced with homologous AA fibrils is higher compared to heterologous AA fibrils.

  7. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    ERIC Educational Resources Information Center

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  8. Identification of a "glycine-loop"-like coiled structure in the 34 AA Pro,Gly,Met repeat domain of the biomineral-associated protein, PM27.

    PubMed

    Wustman, Brandon A; Santos, Rudolpho; Zhang, Bo; Evans, John Spencer

    2002-12-05

    Fracture resistance in biomineralized structures has been linked to the presence of proteins, some of which possess sequences that are associated with elastic behavior. One such protein superfamily, the Pro,Gly-rich sea urchin intracrystalline spicule matrix proteins, form protein-protein supramolecular assemblies that modify the microstructure and fracture-resistant properties of the calcium carbonate mineral phase within embryonic sea urchin spicules and adult sea urchin spines. In this report, we detail the identification of a repetitive keratin-like "glycine-loop"- or coil-like structure within the 34-AA (AA: amino acid) N-terminal domain, (PGMG)(8)PG, of the spicule matrix protein, PM27. The identification of this repetitive structural motif was accomplished using two capped model peptides: a 9-AA sequence, GPGMGPGMG, and a 34-AA peptide representing the entire motif. Using CD, NMR spectrometry, and molecular dynamics simulated annealing/minimization simulations, we have determined that the 9-AA model peptide adopts a loop-like structure at pH 7.4. The structure of the 34-AA polypeptide resembles a coil structure consisting of repeating loop motifs that do not exhibit long-range ordering. Given that loop structures have been associated with protein elastic behavior and protein motion, it is plausible that the 34-AA Pro,Gly,Met repeat sequence motif in PM27 represents a putative elastic or mobile domain. Copyright 2002 Wiley Periodicals, Inc.

  9. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false U.S. Grade AA. 51.596 Section 51.596 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks...

  10. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false U.S. Grade AA. 51.596 Section 51.596 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks...

  11. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false U.S. Grade AA. 51.596 Section 51.596 Agriculture..., CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks of celery of similar varietal characteristics, which are well...

  12. 7 CFR 51.596 - U.S. Grade AA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false U.S. Grade AA. 51.596 Section 51.596 Agriculture..., CERTIFICATION, AND STANDARDS) United States Consumer Standards for Celery Stalks Grades § 51.596 U.S. Grade AA. U.S. Grade AA shall consist of stalks of celery of similar varietal characteristics, which are well...

  13. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.

    PubMed

    Radu, Tanja; Diamond, Dermot

    2009-11-15

    Past mining activities in the area of Silvermines, Ireland, have resulted in heavily polluted soils. The possibility of spreading pollution to the surrounding areas through dust blow-offs poses a potential threat for the local communities. Conventional environmental soil and dust analysis techniques are very slow and laborious and consequently there is a need for fast and accurate analytical methods, which can provide real-time in situ pollution mapping. Laboratory-based aqua regia acid digestion of the soil samples collected in the area followed by the atomic absorption spectrophotometry (AAS) analysis confirmed very high pollution, especially by Pb, As, Cu, and Zn. In parallel, samples were analyzed using portable X-ray fluorescence radioisotope and miniature tube powered (XRF) NITON instruments and their performance was compared. Overall, the portable XRF instrument gave excellent correlation with the laboratory-based reference AAS method.

  14. 40 CFR Table Aa-1 to Subpart Aa of... - Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O AA Table AA-1 to Subpart AA of Part 98 Protection of Environment... Paper Manufacturing Pt. 98, Subpt. AA, Table AA-1 Table AA-1 to Subpart AA of Part 98—Kraft Pulping...

  15. 40 CFR Table Aa-1 to Subpart Aa of... - Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O AA Table AA-1 to Subpart AA of Part 98 Protection of Environment... Paper Manufacturing Pt. 98, Subpt. AA, Table AA-1 Table AA-1 to Subpart AA of Part 98—Kraft Pulping...

  16. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for CH4 and N2O

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment ENVIRONMENTAL... Manufacturing Pt. 98, Subpt. AA, Table AA -2 Table AA-2 to Subpart AA of Part 98—Kraft Lime Kiln and Calciner...

  17. 40 CFR Table Aa-1 to Subpart Aa of... - Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O AA Table AA-1 to Subpart AA of Part 98 Protection of Environment... Paper Manufacturing Pt. 98, Subpt. AA, Table AA-1 Table AA-1 to Subpart AA of Part 98—Kraft Pulping...

  18. 40 CFR Table Aa-1 to Subpart Aa of... - Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Kraft Pulping Liquor Emissions Factors for Biomass-Based CO2, CH4, and N2O AA Table AA-1 to Subpart AA of Part 98 Protection of Environment... Paper Manufacturing Pt. 98, Subpt. AA, Table AA-1 Table AA-1 to Subpart AA of Part 98—Kraft Pulping...

  19. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such

  20. Treatment of AA amyloidosis in rheumatoid arthritis.

    PubMed

    Balakrishnan, C; Sule, A; Mittal, G; Gaitonde, S; Pathan, E; Rajadhyaksha, S; Deshpande, R B; Gurmeet, M; Samant, R; Joshi, V R

    2002-07-01

    Four patients of rheumatoid arthritis (RA) with biopsy confirmed AA amyloidosis were treated with chlorambucil. All had established but uncontrolled RA with a persistently raised ESR. Moderate (> 1 gm, < 3.5 gm/d) to nephrotic range (> 3.5 gm/d) proteinuria and a relatively well preserved renal function was noted in three patients. One patient had deranged renal function and required dialysis. On chlorambucil, there was complete recovery, partial improvement and no improvement in one patient each. The fourth patient required haemodialysis, did not tolerate chlorambucil and succumbed to the illness. Therapy with chlorambucil can benefit some patients of RA with AA amyloidosis. Leucopenia is the most important dose limiting side effect.

  1. Structure of AA5056 after friction drilling

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Kalashnikova, T. A.; Fortuna, S. V.

    2017-12-01

    Here we present data on the structure of AA5056 alloy after friction drilling to unveil potentials of the process for use in model experiments on friction stir welding. Our analysis of the average size and volume content of precipitates shows that their content decreases immediately beneath the friction surface and that the structure of this zone is the same as the structure of stirring zones formed in friction stir welding. The data suggest that both processes provide similar metal structures.

  2. The Effectiveness of the AAS REU Program

    NASA Astrophysics Data System (ADS)

    Hemenway, M. K.; Boyce, P. B.; Milkey, R. W.

    1996-05-01

    In an attempt to address the particular needs of astronomy faculty and undergraduate students, in 1991 the Education Office of the American Astronomical Society approached the National Science Foundation with a unique proposal for funding through the Research Experiences for Undergraduates program. The goals of the AAS program were to "slow the hemorrhage of students out of science...", extend the REU program to non-NSF-funded scientists, to reach under-represented women and minority students particularly in small educational institutions, and to encourage research scientists there to mentor students. As this grant has now expired, the AAS has surveyed the 44 mentors and their students to assess the program's effect on the mentor and the mentor's career; the educational institution; and the student's education and career choices. More than half the mentors responded by the abstract deadline. The program clearly had an effect upon the individuals involved. The greatest effect (in 85% of the cases) was to develop more interest in the mentor's research project both among the students and among the mentor's faculty colleagues. The mentors rated the grant to be a medium or strong factor in their student's decision to pursue graduate study, which 90% of them did. All but one of the AAS-REU students attended an AAS meeting and 3/4 of those gave a paper on their project research. Over 90% of the mentors felt that the research experience strongly promoted a greater interest in science, a greater understanding of science and a desire to continue in science. According to the mentors, this was a very positive and beneficial program for the students as well as for themselves.

  3. Administrator Bolden Delivers Speech at AAS

    NASA Image and Video Library

    2010-01-05

    NASA Administrator Charles Bolden speaks at the 215th meeting of the American Astronomical Society (AAS) in Washington on Tuesday, Jan. 5, 2009. Throughout the meeting, NASA research and mission highlights will be presented from missions that include Kepler, the Spitzer Space Telescope, the Hubble Space Telescope, and the newly launched Wide-field Infrared Survey Explorer, or WISE. Photo Credit: (NASA/Bill Ingalls)

  4. AAS Oral History Project - Seeking Planetary Scientist

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Holbrook, Jarita

    2016-10-01

    Now in its fourth year, the AAS Oral History Project has interviewed over 100 space scientists from all over the world. Led by the AAS Historical Astronomy Division (HAD) and partially funded by the American Institute of Physics Niels Bohr Library and ongoing support from the AAS, volunteers have collected oral histories from space scientists at professional meetings starting in 2015, including AAS, DPS, and the IAU general assembly. Each interview lasts one and a half to two hours and focuses on interviewees' personal and professional lives. Questions include those about one's family, childhood, strong influences on one's scientific career, career path, successes and challenges, perspectives on how astronomy is changing as a field, and advice to the next generation. Each interview is audio recorded and transcribed, the content of which is checked with each interviewee. Once complete, interview transcripts are posted online as part of a larger oral history library at https://www.aip.org/history-programs/niels-bohr-library/oral-histories. We will present preliminary analysis of those interviewed including characterizing career status, age range, nationality, and primary field. Additionally, we will discuss trends beginning to emerge in analysis of participants' responses about data driven science and advice to the next generation. Future analysis will reveal a rich story of space scientists and will help the community address issues of diversity, controversies, and the changing landscape of science. We are actively recruiting individuals to be interviewed at this meeting from all stages of career from undergraduate students to retired and emeritus astronomers. We are especially interested in interviewing 40+E members of DPS. Contact Sanlyn Buxner to schedule an interview or to find out more information about the project (buxner@psi.edu). Contact Jarita Holbrook if you would like to become an interviewer for the project (astroholbrook@gmail.com).

  5. AAS Publishing News: Astronomical Software Citation Workshop

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  6. Introducing the AAS Astronomy Ambassadors Program

    NASA Astrophysics Data System (ADS)

    Gurton, S.; Fienberg, R. T.; Fraknoi, A.; Prather, E. E.

    2013-04-01

    Newly established by the American Astronomical Society (AAS), the Astronomy Ambassadors program is designed to support early-career AAS members with training in resources and techniques for effective outreach to students and/or the public. A pilot Astronomy Ambassadors workshop will be held at the January 2013 AAS meeting. Workshop participants will learn to communicate effectively with public and school audiences; find outreach opportunities and establish ongoing partnerships with local schools, science centers, museums, parks, and/or community centers; reach audiences with personal stories, hands-on activities, and jargon-free language; identify strategies and techniques to improve their presentation skills; gain access to a menu of outreach resources that work in a variety of settings; and become part of an active community of astronomers who do outreach. Applications are welcome from advanced undergraduates (those doing research and committed to continuing in astronomy), graduate students, and postdocs and new faculty in their first two years after receipt of the PhD. We especially encourage applications from members of groups that are presently underrepresented in science.

  7. Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africana.

    PubMed

    Canning, Corene; Sun, Shi; Ji, Xiangming; Gupta, Smiti; Zhou, Kequan

    2013-05-02

    The stem bark of Mammea africana is widely distributed in tropical Africa and commonly used in traditional medicine. This study aims to identify the active compound in Mammea africana and to evaluate its antimicrobial and antiproliferative activity. Methanol extract from the bark of the Mammea africana was separated by liquid-liquid extraction, followed by open column chromatography. A principal antimicrobial compound was purified by high performance liquid chromatography (HPLC) and its structure was elucidated by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The antibacterial activity of the purified compound was determined using the broth microdilution method against 7 common pathogenic bacteria. The compound was also evaluated for cytotoxicity by cell proliferation assay (MTS) using the mouse embryonic fibroblast cell line NIH 3T3 and the non-small cell lung cancer cell line A549. The purified active compound was determined to be mammea A/AA and was found to be highly active against Campylobacter jejuni (MIC=0.5 μg/ml), Streptococcus pneumoniae (MIC=0.25 μg/ml), and Clostridium difficile (MIC=0.25 μg/ml). The compound exhibited significant antiproliferative activities against both NIH 3T3 and A549 cell lines. Mammea A/AA isolated from Mammea africana exerts specific inhibitory activity against Campylobacter jejuni, Streptococcus pneumoniae, and Campylobacter difficile. Mammea A/AA was also found to exhibit significant cytotoxicity against both cancer and normal cell lines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The AAS Visiting Professor Programs: Three Anniversaries

    NASA Astrophysics Data System (ADS)

    Philip, A. G. Davis

    2003-05-01

    The AAS Program of Visiting Professors was started in 1958 with three astronomers as lecturers. They were Paul Merrill (Mt. Wilson and Palomar Observatories), Seth Nicholson (Mt. Wilson and Palomar Observatories) and Harlow Shapley (Harvard College Observatory). The program was run by a Committee on Visiting Professors from 1958 through 1963. The program was funded by grants from the National Science Foundation. The Executive Officer of the AAS, Paul Routley headed the program from the 1963 - 64 academic year through the 1968 - 69 academic year. Larry Fredrick headed the program for 1969 - 70 and then Hank Gurin headed it through 1973 -74, the last year of the program. At the end of this summer meeting, the combined Visiting Professors Program and the Shapley Program will be starting their 47th year. The Shapley Visiting Lectureships in Astronomy Program was started in the 1974 - 75 academic year under the leadership of Hank Gurin. The original funding came from the Perkin Fund and a three year grant from the Research Corporation. In 1975 the Shapley Endowment fund was set up to help pay the expenses of the program. In 1976 there was support from the Slipher fund which lasted through the 1978 - 79 academic year. From 1979 to the present the program is financed by the Shapley Endowment Fund and by the contributions made by institutions which host the visits. In the fall of 1998 the fee that Institutions pay to the AAS in support of their Shapley visits was reduced from 300 to 250 to make it easier for them to apply for visits. Members of the AAS have made contributions to the program over the years and we are very appreciative of this support. In 1974 there were 42 lecturers in the program, of whom four are still active giving lectures (George Carruthers, Larry Fredrick, Arlo Landolt and Davis Philip). After the summer meeting, the Shapley Program will be embarking on its 30th year. Now there are 82 astronomers in the program and we get from 40 to 60 requests a year

  9. The application of Westcott Formalism k0 NAA method to estimate short and medium lived elements in some Ghanaian herbal medicines complemented by AAS

    NASA Astrophysics Data System (ADS)

    Ayivor, J. E.; Okine, L. K. N.; Dampare, S. B.; Nyarko, B. J. B.; Debrah, S. K.

    2012-04-01

    The epithermal neutron shape factor, α of the inner and outer irradiation sites of the Ghana Research Reactor-1 (GHARR-1) was determined obtaining results of 0.105 for the inner (Channel 1) Irradiation site and 0.020 for the outer (channel 6) irradiation site. The neutron temperatures for the inner and outer irradiation sites were 27 °C and 20 °C, respectively. The α values used in Westcott Formalism k0 INAA was applied to determine multi elements in 13 Ghanaian herbal medicines used by the Centre for Scientific Research into Plant Medicine (CSRPM) for the management of various diseases complemented by Atomic Absorption Spectrometry. They are namely Mist. Antiaris, Mist. Enterica, Mist. Morazia, Mist. Nibima, Mist. Modium, Mist. Ninger, Mist Sodenia, Mist. Tonica, Chardicca Powder, Fefe Powder, Olax Powder, Sirrapac powder and Lippia Tea. Concentrations of Al, As, Br, K, Cl, Cu, Mg, Mn, Na and V were determined by short and medium irradiations at a thermal neutron flux of 5×1011 ncm-2 s-1. Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using Atomic Absorption Spectrometry (AAS). Ba, Cu, Li and V were present at trace levels whereas Al, Cl, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. Arsenic was not detected in all samples. Standard Reference material, IAEA-V-10 Hay Powder was simultaneously analysed with samples. The precision and accuracy of the method using real samples and standard reference materials were evaluated and within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis (Q-mode and R-mode CA) and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into 2 statistically significant clusters (liquid based and powdered herbal medicines), reflecting the different chemical compositions. R-mode CA and PCA suggest common

  10. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40 CFR...

  11. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40 CFR...

  12. Determination of elements in ayurvedic medicinal plants by AAS

    SciTech Connect

    Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com

    India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations ofmore » Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.« less

  13. Rapid determination of six carcinogenic primary aromatic amines in mainstream cigarette smoke by two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry.

    PubMed

    Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun

    2017-01-27

    A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. High-throughput quantification of the levels and labeling abundance of free amino acids by liquid chromatography tandem mass spectrometry

    SciTech Connect

    Cocuron, Jean-Christophe; Tsogtbaatar, Enkhtuul; Alonso, Ana P.

    Accurate assessment of mass isotopomer distributions (MIDs) of intracellular metabolites, such as free amino acids (AAs), is crucial for quantifying in vivo fluxes. To date, the majority of studies that measured AA MIDs have relied on the analysis of proteinogenic rather than free AAs by: i) GC–MS, which involved cumbersome process of derivatization, or ii) NMR, which requires large quantities of biological sample. In this work, the development and validation of a high-throughput LC–MS/MS method allowing the quantification of the levels and labeling of free AAs is described. Sensitivity in the order of the femtomol was achieved using multiple reactionmore » monitoring mode (MRM). The MIDs of all free AAs were assessed without the need of derivatization, and were validated (except for Trp) on a mixture of unlabeled AA standards. Finally, this method was applied to the determination of the 13C-labeling abundance in free AAs extracted from maize embryos cultured with 13C-glutamine or 13C-glucose. Although Cys was below the limit of detection in these biological samples, the MIDs of a total of 18 free AAs were successfully determined. Due to the increased application of tandem mass spectrometry for 13C-Metabolic Flux Analysis, this novel method will enable the assessment of more complete and accurate labeling information of intracellular AAs, and therefore a better definition of the fluxes.« less

  15. High-throughput quantification of the levels and labeling abundance of free amino acids by liquid chromatography tandem mass spectrometry

    DOE PAGES

    Cocuron, Jean-Christophe; Tsogtbaatar, Enkhtuul; Alonso, Ana P.

    2017-02-16

    Accurate assessment of mass isotopomer distributions (MIDs) of intracellular metabolites, such as free amino acids (AAs), is crucial for quantifying in vivo fluxes. To date, the majority of studies that measured AA MIDs have relied on the analysis of proteinogenic rather than free AAs by: i) GC–MS, which involved cumbersome process of derivatization, or ii) NMR, which requires large quantities of biological sample. In this work, the development and validation of a high-throughput LC–MS/MS method allowing the quantification of the levels and labeling of free AAs is described. Sensitivity in the order of the femtomol was achieved using multiple reactionmore » monitoring mode (MRM). The MIDs of all free AAs were assessed without the need of derivatization, and were validated (except for Trp) on a mixture of unlabeled AA standards. Finally, this method was applied to the determination of the 13C-labeling abundance in free AAs extracted from maize embryos cultured with 13C-glutamine or 13C-glucose. Although Cys was below the limit of detection in these biological samples, the MIDs of a total of 18 free AAs were successfully determined. Due to the increased application of tandem mass spectrometry for 13C-Metabolic Flux Analysis, this novel method will enable the assessment of more complete and accurate labeling information of intracellular AAs, and therefore a better definition of the fluxes.« less

  16. Abnormal scintigraphic evolution in AA hepatic amyloidosis

    SciTech Connect

    Lomena, F.; Rosello, R.; Pons, F.

    1988-03-01

    A patient with AA amyloidosis secondary to ankylosing spondylitis showed intense liver uptake of Tc-99m MDP on bone imaging. The biopsy showed hepatic amyloid deposition. A repeat bone scan with Tc-99m MDP 1 year later was negative, although the clinical signs and liver function tests of the patient had not changed. A mechanism might exist, other than the affinity of amyloid to calcium, which would explain the extraosseous uptake of pyrophosphates and diphosphonates in organs and soft tissues affected by systemic amyloidosis.

  17. The Determination of Lead in Gasoline by Atomic Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Coleman, M. F. M.

    1985-01-01

    Describes an experiment that involves the extraction of lead from gasoline into an aqueous solvent using iodine monochloride reagent. This method (which avoids the aspiration of organic solvents) also illustrates the use of wavelengths other than the most sensitive wavelength and effects of flame stoichiometry and burner height upon absorbance.…

  18. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  19. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    NASA Astrophysics Data System (ADS)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  20. Phytosterol glycosides reduce cholesterol absorption in humans

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  1. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhang, F. D.; Liu, H.; Suebka, C.; Liu, Y. X.; Liu, Z.; Guo, W.; Cheng, Y. M.; Zhang, S. L.; Li, L.

    2018-03-01

    Laser cleaning has been considered as a promising technique for the preparation of aluminium alloy surfaces prior to joining and welding and has been practically used in the automotive industry. The process is based on laser ablation to remove surface contaminations and aluminium oxides. However the change of surface chemistry and oxide status may affect corrosion behaviour of aluminium alloys. Until now, no work has been reported on the corrosion characteristics of laser cleaned metallic surfaces. In this study, we investigated the corrosion behaviour of laser-cleaned AA7024-T4 aluminium alloy using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The results showed that the laser-cleaned surface exhibited higher corrosion resistance in 3.5 wt.% NaCl solution than as-received hot-rolled alloy, with significant increase in impedance and decrease in capacitance, while SVET revealed that the active anodic points appeared on the as-received surface were not presented on the laser-cleaned surfaces. Such corrosion behaviours were correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS). It was suggested that the removal of the original less protective oxide layer consisting of MgO and MgAl2O4 on the as-received surfaces and the newly formed more protective oxide layer containing mainly Al2O3 and MgO by laser cleaning were responsible for the improvement of the corrosion performance.

  2. Flow injection/atomic absorption spectrometric determination of zineb in commercial formulations of pesticide based on slurry sampling.

    PubMed

    Cassella, Ricardo J; Salim, Verĵnica A; Garrigues, Salvador; Santelli, Ricardo E; de la Guardia, Miguel

    2002-11-01

    This paper reports on a new strategy for the slurry sampling determination of dithiocarbamate pesticide zineb [[ethylenebis(dithiocarbamato)]zinc] employing a FIA system with a flame atomic absorption spectrometry detector. In the flow system, an on-line alkaline hydrolysis of the pesticide is performed, allowing the release of Zn(II) ions to the solution, which are easily detected by a flame AAS technique. Several parameters that could affect the performance of the analytical methodology were studied, such as the concentration of NH3(aq) used in the hydrolysis step, the effect of the presence of Triton X-100 on the sensitivity and precision, and the FIA parameters (carrier flow rate and mixing coil volume). Under optimized conditions, aqueous slurries containing 2.5 to 25 microg ml(-1) zineb provided good linear calibration fits. From the obtained data, a detection limit (3sigma) of 1.0 microg ml(-1) zineb was found and a repeatability of 2.7% was obtained from 12 measurements of a slurry containing 2.5 microg m(-1) zineb. On the other hand, a precision (reproducibility) of 7.8% was achieved from three determinations of a sample containing 128 mg g(-1) of the pesticide. Also, the developed system provides a sampling frequency of 72 h(-1).

  3. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    PubMed

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of whole-water recoverable arsenic, boron, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    2000-01-01

    Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.

  6. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  7. Hot tearing studies in AA5182

    NASA Astrophysics Data System (ADS)

    van Haaften, W. M.; Kool, W. H.; Katgerman, L.

    2002-10-01

    One of the major problems during direct chill (DC) casting is hot tearing. These tears initiate during solidification of the alloy and may run through the entire ingot. To study the hot tearing mechanism, tensile tests were carried out in semisolid state and at low strain rates, and crack propagation was studied in situ by scanning electron microscopy (SEM). These experimentally induced cracks were compared with hot tears developed in an AA5182 ingot during a casting trial in an industrial research facility. Similarities in the microstructure of the tensile test specimens and the hot tears indicate that hot tearing can be simulated by performing tensile tests at semisolid temperatures. The experimental data were compared with existing hot tearing models and it was concluded that the latter are restricted to relatively high liquid fractions because they do not take into account the existence of solid bridges in the crack.

  8. Predicting Hot Deformation of AA5182 Sheet

    NASA Astrophysics Data System (ADS)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  9. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  10. Inhibitory effect of propolis on the development of AA amyloidosis.

    PubMed

    Harata, Daichi; Tsuchiya, Yuya; Miyoshi, Tomoyuki; Yanai, Tokuma; Suzuki, Kazuhiko; Murakami, Tomoaki

    2018-04-01

    In the several types of amyloidoses, participation of oxidative stresses in the pathogenesis and the effect of antioxidants on amyloidosis have been reported. Meanwhile, the relationship between oxidative stresses and pathogenesis of amyloid A (AA) amyloidosis is still unclear. In this study, we used an antioxidant, Brazilian propolis, to investigate the inhibitory effects on AA amyloidosis. The results showed that AA deposition was inhibited by administration of propolis. Increased expression of antioxidant markers was detected in molecular biological examinations of mice treated with propolis. Although serum amyloid A (SAA) levels were strongly correlated with the immunoreactive area of AA deposits in the control group, the correlation was weaker in the propolis-treated groups. In addition, there were no changes in SAA levels between the control group and the propolis-treated groups. The results indicate that propolis, an antioxidant, may induce inhibitory effects against AA amyloidosis.

  11. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  12. States' Flexibility Waiver Plans for Alternate Assessments Based on Alternate Achievement Standards (AA-AAS). Synthesis Report 96

    ERIC Educational Resources Information Center

    Lazarus, Sheryl S.; Edwards, Lynn M.; Thurlow, Martha L.; Hodgson, Jennifer R.

    2014-01-01

    All states have alternate assessments based on alternate achievement standards (AA-AAS) for students with the most significant cognitive disabilities. For accountability purposes, the Elementary and Secondary Education Act (ESEA) allows up to 1% of students to be counted as proficient with this assessment option. In 2011 the U.S. Department of…

  13. Rapid and simple determination of selenium in blood serum by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Labat, L; Dehon, B; Lhermitte, M

    2003-05-01

    An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.

  14. Arachidonic acid with taurine enhances pulmonary absorption of macromolecules without any serious histopathological damages.

    PubMed

    Miyake, Masateru; Minami, Takanori; Yamazaki, Hiroyuki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2017-05-01

    Therapeutic peptides and protein are being used in several indications; however, their poor permeability still remains to be solved. This study focused on the pulmonary route of macromolecules. First, the effects of arachidonic acid (AA) as an absorption enhancer on drug serum concentration, after intratracheal administration, were investigated in rats. Second, the safety of AA was assessed in rats in an acute toxicity study for 7days. AA enhanced the exposure of both interferon-α (IFN-α) and fluorescein isothiocyanate 4000 (FD-4). In addition, the histopathological analysis indicated that AA caused alveolitis and bronchitis in rats. In combination with Taurine (Tau), these lung injuries were prevented through the histopathological analysis. The combined use of Tau with AA did not show any changes in the pharmacokinetics of FD-4. From these results, we suggest the combined use of AA with Tau as a novel formulation on the pulmonary route of macromolecule drugs. This formulation could improve the bioavailability of macromolecule drugs without any serious local damage to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    SciTech Connect

    Kubota, Akira; Bainy, Afonso C.D.; Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs.more » On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share

  16. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Koo, Sung I. (Inventor); Noh, Sang K. (Inventor); Hua, Duy H. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  17. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Laser Atmospheric Absorption Studies.

    DTIC Science & Technology

    1977-05-01

    A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure

  20. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. [Determination of heavy metals for RoHS compliance by ICP-OES spectrometry coupled with microwave extraction system].

    PubMed

    Hua, Li; Wu, Yi-Ping; An, Bing; Lai, Xiao-Wei

    2008-11-01

    The harm of heavy metals contained in electronic and electrical equipment (EEE) on environment is of high concern by human. Aiming to handle the great challenge of RoHS compliance, the determinations of trace or ultratrace chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb) by inductively coupled plasma optical emission spectrometry (ICP-OES) was performed in the present paper, wherein, microwave extraction technology was used to prepare the sample solutions. In addition, the precision, recovery, repeatability and interference issues of this method were also discussed. The results exhibited that using the microwave extraction system to prepare samples is more quick, lossless, contamination-free in comparison with the conventional extraction methods such as dry ashing, wet-oven extraction etc. By analyzing the recoveries of these four heavy metals over different working time and wavelengths, the good recovery range between 85% and 115% showed that there was only tiny loss or contamination during the process of microwave extraction, sample introduction and ICP detection. Repeatability experiments proved that ICP plasma had a good stability during the working time and the matrix effect was small. Interference was a problem troublesome for atomic absorption spectrometry (AAS), however, the techniques of standard additions or inter-element correction (IEC) method can effectively eliminated the interferences of Ni, As, Fe etc. with the Cd determination. By employing the multi-wavelengths and two correction point methods, the issues of background curve sloping shift and spectra overlap were successfully overcome. Besides, for the determinations of trace heavy metal elements, the relative standard deviation (RSD) was less than 3% and the detection limits were less than 1 microg x L(-10 (3sigma, n = 5) for samples, standard solutions, and standard additions, which proved that ICP-OES has a good precision and high reliability. This provided a reliable technique support

  3. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique.

    PubMed

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-06-01

    To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.

  6. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  9. A&A Painting and Restoration Co., Inc. Information Sheet

    EPA Pesticide Factsheets

    A&A Painting and Restoration Co., Inc. (the Company) is located in Great Mills, Maryland. The settlement involves renovation activities conducted at properties constructed prior to 1978, located in Drayden, Maryland.

  10. View northwest, wharf, A portion AA, detail showing timber groin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf, A portion AA, detail showing timber groin - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  11. SECTION AA, AXONOMETRIC Dyess Air Force Base, Atlas F ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION A-A, AXONOMETRIC - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Control Center (LCC), Approximately 3 miles east of Winters, 500 feet southwest of Highway 17700, northwest of Launch Facility, Winters, Runnels County, TX

  12. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  13. Section AA through main entrance gates & west stairs. San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section AA through main entrance gates & west stairs. San Bernardino Valley Union Junior College, Science Building. Also includes plans and sections of boys' and girls' toilets. Howard E. Jones, Architect, San Bernardino, California. Sheet 5, job no. 311. Scales 1/4 inch to the foot (section AA) and 1/2 inch to the foot (toilet rooms). February 15, 1927. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  14. Comparison of ``AA`` nickel metal hydride cells with ``AA`` Ni-Cd cells

    SciTech Connect

    Alminauskas, V.; Johnson, W.

    1996-12-31

    This paper compares ``AA`` size nickel metal hydride (Ni-HM) cells with comparable ``AA;; nickel cadmium (Ni-Cd) cells both of which were obtained in 1993. The Ni-MH cells were found to be a suitable substitute for conventional Ni-Cd cells. Both these cell types have similar voltages and discharge characteristics. The Ni-MH cells, though had nearly twice the capacity as comparable Ni-Cd cells. There was no significant difference in self discharge between the two types of cells. The Ni-MH cells also performed as well as Ni-Cd cells at rates lower than 5 amperes and at temperatures higher than 0 C (32 F).more » The most interesting finding is that the Ni-MH cells showed an irreversible decay of the discharge voltage with each cycle which was more noticeable during pulses. Eventually the Ni-MH packs fail, not because of loss of capacity, but because of low voltage during the pulse.« less

  15. Characteristics of AA amyloidosis patients in San Francisco.

    PubMed

    Lejmi, Hiba; Jen, Kuang-Yu; Olson, Jean L; James, Sam H; Sam, Ramin

    2016-04-01

    AA amyloidosis due to subcutaneous injection of drugs of abuse has been described in the USA, but all the existing literature is from more than 20 years ago. There is more recent literature from Europe. We have observed a high incidence of AA amyloidosis in the county hospital in San Francisco. Here, we describe 24 patients who had kidney biopsy-proven AA amyloidosis from our hospital from 1998 to 2013. All the patients were thought to have AA amyloidosis from skin popping of illicit drugs after having exhausted the intravenous route. These patients with biopsy-proven AA amyloidosis were analysed further. All patients were found to have hepatitis C infection, hypertension was not common, most had advanced kidney failure, and acidosis was common as was tubulointerstitial involvement on the kidney biopsy. Other organ involvement included hepatomegaly and splenomegaly in a number of patients; direct myocardial involvement was not seen, but pulmonary hypertension, history of deep vein thrombosis and pulmonary embolism were common. The prognosis of these patients was poor. The mortality rate approached 50% 1 year after biopsy, and most of the patient needed dialysis shortly after diagnosis. Cessation of drug use seemed beneficial but rarely achievable. AA amyloidosis from skin popping is common in San Francisco. Most patients with renal involvement end up on dialysis, and mortality rates are exceedingly high. © 2015 Asian Pacific Society of Nephrology.

  16. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  17. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  18. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  19. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  20. Outcomes From AAS Hack Day at the 227th AAS Meeting

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This is a final post from the 227th AAS Meeting in Kissimmee, FL. This special summary of AAS Hack Day, a meeting of AAS members to collaboratively work on various small projects, was written by Meredith Rawls (@Merrdiff) and was originally posted on astrobites.com.As the 227thAmerican Astronomical Society meeting drew to a close (see highlights from Day 1, Day 2, Day 3, and Day 4), a group of at least 50 attendees spent Day 4working on small projects fondly called hacks. Thanks to sponsorship from LSST and Northrup Grumman, the industrious hackers werewell-caffeinated and fed so we could devote time and energy toworking in groups on one-day projects.TheHack Day beganat 10am with pitches. Anybody with a project idea was welcome to briefly speak and try to convince others to work with them. Only someideas panned out, but the enthusiasm was palpable. Its not every day you get a full room of astronomers and affiliates eager to spend hours working on fun and useful projects to benefit the community.#hackAAS is getting underway! #aas227 pic.twitter.com/yX7jlOnSCK James R A Davenport (@jradavenport) January 8, 2016Here is a rundown of what we accomplished. Pretty impressive for a single day! Many thanks to fellow astrobiter Erika Nesvold (now at Carnegie DTM; @erikanesvold) whose hack was live-documenting all the other hacks. Her tweets as @astrobites appeared with the #hackaas hashtag, and her notes made this recap post infinitely easier to write.Interested in joining the fun? Sign up for Hack Day at the 2017 JanuaryAAS meeting (its free with meeting registration), and consider applying for the .Astronomy conference this summer.Towards Optimal Session Scheduling:Adrian Price-Whelan (Columbia), David Hogg (NYU), and Scott Idem (AAS) began writing a program to take all submitted abstracts to a conference like AAS and sort them using keywords to avoid scheduling similar talks in parallel sessions. Its impossible to make everyone happy, but minimizing conflicts

  1. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF THE PERKIN-ELMER ZEEMAN/5000 SYSTEM ATOMIC ABSORPTION SPECTROMETER (BCO-L-6.0)

    EPA Science Inventory

    The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...

  2. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION, AND MAINTENANCE OF THE PERKIN-ELMER ZEEMAN/5000 SYSTEM ATOMIC ABSORPTION SPECTROPHOTOMETER (BCO-L-6.0)

    EPA Science Inventory

    The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...

  3. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  4. Determination of Lead in Urine by Atomic Absorption Spectrophotometry1

    PubMed Central

    Selander, Stig; Cramé, Kim

    1968-01-01

    A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975

  5. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  6. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  7. The Pasadena Recommendations: Five Years After AAS Endorsement

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia; Frattare, L.; Ulvestad, J.

    2010-01-01

    It has been five years since the AAS Council unanimously endorsed the document, known as "Equity Now: The Pasadena Recommendations for Gender Equality in Astronomy," in January 2005. This document was the main product of the conference entitled "Women in Astronomy II: Ten Years After” (WIA II), held in June 2003 in Pasadena, CA. Participants of that 2003 meeting assessed the progress for women in science, offering insights into causes of the slower advancement of women, and discussed strategies to accelerate the achievement of equality. These insights and strategies were then incorporated into the "Pasadena Recommendations" by the CSWA. It was subsequently released to the entire AAS community for review and comments prior to its endorsement by the AAS. We will discuss the Recommendations and their impact since the endorsement by the AAS, including the process that is in place for organizations and departments to formally endorse the Pasadena Recommendations, thus making an organizational commitment to their implementation (see http://www.aas.org/cswa/pasadena_endorse.html).

  8. Linear absorptive dielectrics

    NASA Astrophysics Data System (ADS)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  9. Vehicular impact absorption system

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Wilson, A. H. (Inventor)

    1978-01-01

    An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.

  10. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  11. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study.

    PubMed

    Takebayashi, Jun; Tai, Akihiro; Gohda, Eiichi; Yamamoto, Itaru

    2006-04-01

    The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.

  12. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  13. Etalon Array Reconstructive Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2017-01-01

    Compact spectrometers are crucial in areas where size and weight may need to be minimized. These types of spectrometers often contain no moving parts, which makes for an instrument that can be highly durable. With the recent proliferation in low-cost and high-resolution cameras, camera-based spectrometry methods have the potential to make portable spectrometers small, ubiquitous, and cheap. Here, we demonstrate a novel method for compact spectrometry that uses an array of etalons to perform spectral encoding, and uses a reconstruction algorithm to recover the incident spectrum. This spectrometer has the unique capability for both high resolution and a large working bandwidth without sacrificing sensitivity, and we anticipate that its simplicity makes it an excellent candidate whenever a compact, robust, and flexible spectrometry solution is needed.

  14. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  15. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  16. Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease

    PubMed Central

    Zhang, Beiru; Une, Yumi; Fu, Xiaoying; Yan, Jingmin; Ge, FengXia; Yao, Junjie; Sawashita, Jinko; Mori, Masayuki; Tomozawa, Hiroshi; Kametani, Fuyuki; Higuchi, Keiichi

    2008-01-01

    AA amyloidosis is one of the principal causes of morbidity and mortality in captive cheetahs (Acinonyx jubatus), which are in danger of extinction, but little is known about the underlying mechanisms. Given the transmissible characteristics of AA amyloidosis, transmission between captive cheetahs may be a possible mechanism involved in the high incidence of AA amyloidosis. In this study of animals with AA amyloidosis, we found that cheetah feces contained AA amyloid fibrils that were different from those of the liver with regard to molecular weight and shape and had greater transmissibility. The infectious activity of fecal AA amyloid fibrils was reduced or abolished by the protein denaturants 6 M guanidine·HCl and formic acid or by AA immunodepletion. Thus, we propose that feces are a vehicle of transmission that may accelerate AA amyloidosis in captive cheetah populations. These results provide a pathogenesis for AA amyloidosis and suggest possible measures for rescuing cheetahs from extinction. PMID:18474855

  17. Nonlinear absorption of short intense laser pulse in multispecies plasma

    SciTech Connect

    Kargarian, A.; Hajisharifi, K.; Mehdian, H.

    In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtainedmore » results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.« less

  18. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling newmore » applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.« less

  19. Molecular Differences in Hepatic Metabolism between AA Broiler and Big Bone Chickens: A Proteomic Study.

    PubMed

    Zheng, Aijuan; Chang, Wenhuan; Liu, Guohua; Yue, Ying; Li, Jianke; Zhang, Shu; Cai, Huiyi; Yang, Aijun; Chen, Zhimin

    2016-01-01

    Identifying the metabolic differences in the livers of modern broilers and local chicken breeds is important for understanding their biological characteristics, and many proteomic changes in their livers are not well characterized. We therefore analyzed the hepatic protein profiles of a commercial breed, Arbor Acres (AA) broilers, and a local dual purpose breed, Big Bone chickens, using two-dimensional electrophoresis combined with liquid chromatography-chip/electrospray ionization-quadruple time-of-flight/mass spectrometry (LC-MS/MS). A total of 145 proteins were identified as having differential abundance in the two breeds at three growth stages. Among them, 49, 63 and 54 belonged to 2, 4, and 6 weeks of age, respectively. The higher abundance proteins in AA broilers were related to the energy production pathways suggesting enhanced energy metabolism and lipid biosynthesis. In contrast, the higher abundance proteins in Big Bone chickens showed enhanced lipid degradation, resulting in a reduction in the abdominal fat percentage. Along with the decrease in fat deposition, flavor substance synthesis in the meat of the Big Bone chickens may be improved by enhanced abundance of proteins involved in glycine metabolism. In addition, the identified proteins in nucleotide metabolism, antioxidants, cell structure, protein folding and transporters may be critically important for immune defense, gene transcription and other biological processes in the two breeds. These results indicate that selection pressure may have shaped the two lines differently resulting in different hepatic metabolic capacities and extensive metabolic differences in the liver. The results from this study may help provide the theoretical basis for chicken breeding.

  20. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    NASA Astrophysics Data System (ADS)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  1. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  2. Rapidly variable relatvistic absorption

    NASA Astrophysics Data System (ADS)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  3. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  4. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)